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Abstract
As the pre-training objectives (e.g., next token pre-
diction) of language models (LMs) are inherently
not aligned with task scores, optimizing LMs to
achieve higher downstream task scores is essen-
tial. One of the promising approaches is to fine-
tune LMs through reinforcement learning (RL).
However, conventional RL methods based on PPO
and a penalty of KL divergence are vulnerable
to text degeneration where LMs do not generate
natural texts anymore after RL fine-tuning. To
address this problem, we provide Degeneration-
free Policy Optimization (DfPO) that can fine-
tune LMs to generate texts that achieve improved
downstream task scores, while preserving the abil-
ity to generate natural texts. To achieve this, we
introduce KL-masking which masks out the ac-
tions that potentially cause deviation from the
reference policy when its likelihood is increased
or decreased. Then, we devise truncated advan-
tage functions for separately performing likeli-
hood maximization and minimization to improve
the task performance. In the experiments, we pro-
vide the results of DfPO and baseline algorithms
on various generative NLP tasks including text
continuation, text detoxification, and common-
sense generation. Our experiments demonstrate
that DfPO successfully improves the downstream
task scores while preserving the ability to gen-
erate natural texts, without requiring additional
hyperparameter search.

1. Introduction
Although pre-trained language models (LMs) have achieved
remarkable success in various NLP tasks (Ouyang et al.,
2022; Glaese et al., 2022; Bai et al., 2022; Stiennon et al.,
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2020; Nakano et al., 2022), fine-tuning LMs on downstream
tasks is essential to achieve higher task scores. Since the
pre-training and supervised fine-tuning objectives (e.g., next
token prediction (Radford et al., 2019)) of LMs are inher-
ently not maximizing the task scores, LMs fail to learn
an optimal behavior. One of the promising approaches to
fine-tune the LMs is reinforcement learning (RL) (Chris-
tiano et al., 2017). Recently, reinforcement learning from
human feedback (RLHF) (Christiano et al., 2017; Liang
et al., 2022; Kim et al., 2023; Ouyang et al., 2022) meth-
ods, which learn a reward model from human feedback and
then fine-tune LMs through reinforcement learning, has suc-
cessfully achieved to fine-tune the LMs using RL (Ouyang
et al., 2022; Glaese et al., 2022; Bai et al., 2022; Stiennon
et al., 2020; Nakano et al., 2022). However, optimizing LMs
against a given reward model through RL is yet challenging
due to the degeneration problem which generates unnatural
responses diverging from human language.

When optimizing LMs through RL, most of the existing on-
line RL methods mainly use PPO (Schulman et al., 2017) for
optimizing an LM policy, and a penalty of KL divergence
between the reference LM and an optimized LM for pre-
serving the ability to generate natural texts (Ouyang et al.,
2022; Ramamurthy et al., 2023). However, conventional
RL methods based on PPO and a KL divergence penalty are
vulnerable to the text degeneration problem that LMs do
not generate natural texts anymore after RL fine-tuning. As
illustrated in Figure 1, we can observe the text degeneration
problem through the diverging perplexity as the sentiment
score increases. We carefully conjecture that a penalty of KL
divergence often does not work with respect to the penalty
ratio β, since PPO is a simplified algorithm from TRPO
(Schulman et al., 2015) that guarantees to maximize target
task rewards. In other words, it is important to balance two
different objectives: (1) maximizing task rewards and (2)
minimizing the KL divergence (i.e. preserving the ability to
generate natural texts), while preventing one objective from
dominating the overall quantity. Especially in language
generation tasks, confining the probability distribution of
LMs within a certain level is more important than simply
maximizing the task rewards.

To address this problem, we present Degeneration-free
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Figure 1. Averaged learning curves over 5 runs of (Left) PPO for the varying the coefficient of KL-regularization penalty and (Right)
DfPO on IMDB text continuation task. PPO (β, KLtarget) indicates the PPO that considers the KL-regularization as a reward penalty with
KL coefficient β and target KL. The goal of the IMDB text continuation task is to learn a policy that maximizes the sentiment score (i.e.
task rewards) while preserving the perplexity score (i.e. naturalness). As shown in the results, PPO with KL-regularization is highly
sensitive to hyperparameters, impacting both sentiment and perplexity scores. In contrast, our proposed algorithm, DfPO, enhances
sentiment scores while maintaining initial perplexity scores, without any additional hyperparameter search. DfPO and DfPO+Supervised
indicate the DfPO training starts from a pre-trained language model and a supervised fine-tuning model as initial policies, respectively.

Policy Optimization (DfPO) that can fine-tune LMs to
generate texts that effectively achieve higher downstream
task scores, while preserving the ability to generate nat-
ural texts. To achieve this, we first investigate why the
degeneration problem occurs in policy gradient algorithms
under the perspective of likelihood max/minimization. Then
we reformulate policy optimization as stable likelihood
max/minimization with KL-masking and truncated advan-
tage functions that eventually mitigates excessive task re-
ward optimization. Consequently, DfPO does not require
any sensitive hyperparameters such as the penalty ratio of
KL divergence used in conventional RL methods. In the
experiments, we provide the results of DfPO and baseline al-
gorithms on various generative NLP tasks including text con-
tinuation (Maas et al., 2011), commonsense generation (Lin
et al., 2020), and text detoxification (Gehman et al., 2020)
using diverse LMs. Our experiments demonstrate that DfPO
successfully improves the downstream task scores while
preserving the ability to generate natural texts, without re-
quiring additional hyperparameter search.

The contributions of this paper can be summarized as fol-
lows:

• We find that conventional RL fine-tuning methods that
use PPO (Schulman et al., 2017) and a penalty of KL
divergence are vulnerable to result in the text degener-
ation problem that LMs do not generate natural texts
anymore after RL fine-tuning (see Figure 1).

• We introduce Degeneration-free Policy Optimization
(DfPO) that can fine-tune LMs to generate texts that
achieve higher downstream task scores while preserv-
ing the ability to generate natural texts. To achieve this,
we reformulate policy optimization as stable likelihood
max/minimization with KL-masking and truncated ad-
vantage functions (see Eq. 5, 6, and 7).

• We mathematically analyse the obejctive of DfPO and
provide the connection to the objective of PPO with
KL-regularization penalty (see Appendix A).

• We demonstrate that, even DfPO does not perform hy-
perparameter search, it achieves similar performance
to PPO (Schulman et al., 2017) and NLPO (Rama-
murthy et al., 2023) which require additional hyperpa-
rameter search for the penalty ratio of KL divergence
on various generative NLP tasks including text continu-
ation, text detoxification, and commonsense generation
(see Figure 1, 3, 4, 5 and Table 2, 4, 5, 6, 7).

• We also show that DfPO can fine-tune the large lan-
guage model (GPT-J-6B) to improve the task perfor-
mance while preserving the ability to generate natural
texts (see Figure 4 and 9).

2. Preliminaries
2.1. Reinforcement Learning for Language Models

We consider the generative NLP tasks that can be mod-
eled as a Markov decision process (MDP) defined by tuple
M = ⟨S,A, T, r, p0, γ⟩ (Sutton & Barto, 1998), where S
is the set of states s (a sequence of word tokens), A is the
set of actions a (a next word token), T : S × A → ∆(S)
is the transition probability, r : S × A → R is the re-
ward function, p0 ∈ ∆(S) is the distribution of the ini-
tial state, and γ ∈ [0, 1) is the discount factor. The
policy π(a|s) is a mapping from state to a probability
distribution over A, which can be naturally modeled as
language models. The value function, action-value func-
tion, and advantage function are defined as V π(s) :=
Es0,a0,···∼π[

∑∞
t γtr(st, at)|s0 = s], Qπ(s, a) := r(s, a)+

γEs′∼T (s,a)[V
π(s′)], and Aπ(s, a) := Qπ(s, a) − V π(s),

respectively. Unlike standard RL problems that aim to max-
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imize only cumulative rewards, the goal of generative NLP
tasks is to find an optimal policy that maximizes cumula-
tive rewards while preserving the ability to generate natural
texts.

2.2. Policy Gradient with KL-regularization penalty

Policy gradient algorithms are widely employed in rein-
forcement learning to maximize the expected cumulative
rewards Es0,a0,···∼π[

∑∞
t=0 γ

tr(st, at)]. In this paper, we
use the following formulation based on the advantage func-
tion, which represents the most commonly used form of the
policy gradient estimator:

∇θJ(θ) = E(s,a)∼dπθ

[
Aπθ (s, a)∇θ log πθ(a|s)

]
, (1)

where dπ(s) := (1− γ)
∑∞

t=0 γ
t Pr(st = s) is a stationary

distribution with s0 ∼ p0 and the actions are chosen ac-
cording to π, and dπ(s, a) := dπ(s)π(a|s). However, con-
ventional RL algorithms that focus solely on maximizing
the task rewards easily result in reward hacking behaviors,
which correspond to the degeneration problems in genera-
tive NLP tasks. To optimize the language model while pre-
serving the ability to generate natural texts (i.e. preventing
the degeneration problems), the current best-performing RL
algorithm for generative NLP tasks utilizes a KL-divergence
penalty between the current policy πθ and the reference pol-
icy π0 for preserving the naturalness by not much deviating
from the reference policy as follows:

maximize
θ

E(s,a)∼dπθ [A
πθ (s, a)] (2)

subject to Es∼dπθ

[
KL(πθ(·|s)∥π0(·|s))

]
≤ δ, (3)

where δ > 0 is a hyperparameter. Based on the Lagrangian,
we obtain the following unconstrained optimization for the
constrained optimization problem in (2-3):

maximize
θ

Edπθ

[
Aπθ (s, a)− βKL(πθ(·|s)∥π0(·|s))

]
= maximize

θ
Edπθ

[
Aπθ (s, a) + βRπθ (s, a)

]
, (4)

where β ≥ 0 is a fixed hyperparameter rather than a La-
grangian multiplier as in previous studies, and Rπθ (s, a) :=

log π0(a|s)
πθ(a|s) . However, as discussed in prior works (Rama-

murthy et al., 2023; Ouyang et al., 2022; Ziegler et al.,
2019), optimizing the policy through the KL-penalized ob-
jective (Eq. 4) is very sensitive to the hyperparameter β.
Figure 1 shows the results of PPO with various β for senti-
ment score (i.e. task scores) and perplexity (i.e. naturalness)
on the IMDB text continuation task. This sensitivity to hy-
perparameters can be especially troublesome for fine-tuning
the large-scale language models that require massive compu-
tational costs and also cause ambiguity in model selection,
as shown in Figure 1.

Aπθ (s, a) > 0 Aπθ (s, a) < 0

Desirable Samples Degeneration

Rπθ (s, a) > 0 (Likelihood or

Maximization) Task Scores ↓
Degeneration Desirable Samples

Rπθ (s, a) < 0 or (Likelihood

Task Scores ↓ Minimization)

Table 1. Summary for all types of samples used in policy gradient
update. The green area represents the state-action pairs that both
advantage Aπθ and log ratio Rπθ are positive or negative, which
are desirable samples for improving task scores while not deviating
from reference policy. On the other hand, the red area represents
the state-action pairs that have opposite directions to improve task
scores and avoid deviating from the reference policy, which are
undesirable samples that can cause degeneration problems in the
policy update.

3. Degeneration-free Policy Optimization
In this section, we present Degeneration-free Policy Op-
timization (DfPO) that can fine-tune LMs to generate
texts that achieve improved downstream task scores, while
preserving the ability to generate natural texts, without
any additional costs for hyperparameter search. First,
we investigate why the degeneration problem occurs in
policy gradient algorithms under the perspective of like-
lihood max/minimization. Then we reformulate policy
optimization as stable likelihood max/minimization that
eventually mitigates excessive task reward optimization
with 1) KL-masking which masks out the samples that
cause deviating from the reference policy when likelihood
max/minimization, and 2) truncated advantage functions
which separately perform likelihood max/minimization with
KL-masking to improve the downstream task scores.

3.1. Understanding Policy Gradient via Likelihood
Max/Minimization

Before presenting our algorithm, we first investigate why the
degeneration problem occurs in policy gradient algorithms
under the perspective of likelihood max/minimization. In-
tuitively, the policy gradient update can be interpreted as
the likelihood max/minimization: gradient update through
Eq. (1) that increases the likelihood of actions that are better
than the average behavior of the current policy (i.e. positive
advantages) and decreases the likelihood of actions that are
worse than the average behavior of the current policy (i.e.
negative advantages). However, when considering regular-
ized optimization as in Eq. (4), it is challenging to determine
whether the actions are better or worse than the average be-
havior of the current policy in terms of both task scores and
naturalness (i.e. penalty of KL-regularization).
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Figure 2. Illustrative example of the main mechanism of DfPO on IMDB text continuation task. The figure shows the process of sampling
the action sequence (i.e. generated text) and updating the policy for the initial state s0 (i.e. given prompt). Our policy optimization
consists of two processes: (1) KL-Masking and (2) truncated advantage functions. Red/blue colored tokens indicate unmasked tokens
due to positive/negative KL-masking, and X mark above the dashed box indicates undesirable samples that are truncated and not used
in the policy update due to the different signs of advantage Aπθ and log ratio Rπθ (i.e. samples of red area in Table 1). The likelihood
maximization (red box) and the likelihood minimization (blue box) correspond to the first and second terms in Eq. (7), respectively.

Table 1 summarizes cases of all state-action samples used in
the policy gradient update, according to the signs of the ad-
vantage Aπθ and the log ratio Rπθ . First, state-action pairs
corresponding to the green area, where both Aπθ and Rπθ

are positive or negative, are desirable samples that can up-
date the policy to improve task performance while preserv-
ing the naturalness (i.e. not deviating from reference policy)
through the policy gradient. On the other hand, state-action
pairs corresponding to the red area, which have opposite
directions for improving task performance and preserving
naturalness, are undesirable samples that can cause degener-
ation problems or deteriorate task performance in the policy
gradient update. Therefore, if we perform a policy gradient
update using only desirable samples in the green area, we
can learn a policy that maximizes task rewards while pre-
serving the naturalness of the generated texts, without any
dependency on hyperparameters.

3.2. Defining KL-Masking with Reference Policy

In order to perform a policy gradient update using only de-
sirable samples corresponding to the green area in Table 1,
we introduce KL-masking, which masks out the actions that
cause deviating from the reference policy when its likeli-
hood is increased or decreased. More formally, we define
positive KL-masking M+

KL and negative KL-masking M−
KL

according to the relationship between the log-probabilities
of the reference policy and current policy as follows:

M+
KL(s, a) :=

{
1 if Rπθ (s, a) > 0

0 otherwise
, (5)

M−
KL(s, a) :=

{
1 if Rπθ (s, a) < 0

0 otherwise
, (6)

where Rπθ (s, a) := log π0(a|s) − log πθ(a|s) and π0 is a
reference policy. Here, we assume that the reference pol-
icy in DfPO is a language model that can generate natural
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responses like a human. Intuitively, positive KL-masking
masks out the actions that can cause degeneration prob-
lems when their likelihood is increased, and negative KL-
masking masks out the actions that can cause degeneration
problems when their likelihood is decreased. In other words,
the positive/negative KL-masking aims to consider only ac-
tions for which the updated policy does not deviate from
the reference policy even if the policy is updated to in-
crease/decrease the likelihood of the action. Unlike existing
methods that use the KL divergence between the current
policy and reference policy as the reward penalty to prevent
the degeneration problem, we adopt it to determine whether
increasing/decreasing the likelihood of the actions cause the
degeneration problem in the policy gradient updates.

3.3. Likelihood Max/Minimization with KL-Masking
and Truncated Advantage Functions

Using the KL-masking defined before, we can separately
consider state-action pairs that can increase or decrease the
likelihood while preserving the naturalness. Now, for each
state-action pair filtered by KL-masking, it is necessary to
determine whether the likelihood should be increased or
decreased to improve the task performance. To achieve
this, we can easily determine the state-action pairs that
need to maximize or minimize the likelihood in terms of
task performance by truncating the advantage function Aπθ ,
then update the policy with likelihood maximization and
minimization as follows:

∇θJ(θ) = Edπθ

[
M+

KL(s, a)A
πθ (s, a)+∇θ log πθ(a|s)

]︸ ︷︷ ︸
Likelihood maximization for actions

with both positive advantage and log ratio

+Edπθ

[
M−

KL(s, a)A
πθ (s, a)−∇θ log πθ(a|s)

]︸ ︷︷ ︸
Likelihood minimization for actions

with both negative advantage and log ratio

,

(7)

where (·)+ = max(·, 0) and (·)− = min(·, 0). The first
term in Eq. (7) corresponds to the likelihood maximization
in Table 1, and it increases the likelihood of actions with
positive advantages among actions with a lower likelihood
in the current policy than in the reference policy. On the
other hand, the second term in Eq. (7) corresponds to the
likelihood minimization in Table 1, and it decreases the like-
lihood of actions with negative advantages among actions
with a higher likelihood in the current policy than in the
reference policy.

Connections to PPO The current best-performing online
RL algorithm is PPO which optimizes the policy through the
KL-penalized objective (i.e. Eq. (4)). The main difference
between DfPO and PPO with a KL-penalized objective is
the use of the log ratio between the reference policy and the
current policy. In contrast to the PPO which uses the log ra-
tio as a reward penalty, DfPO uses the log ratio to determine

whether the policy gradient update causes degeneration and
then excludes it for policy gradient updates. We also pro-
vide a mathematical connection to PPO in Appendix A. This
result demonstrates that, to prevent the new policy from de-
viating from the reference policy, DfPO directly modifies
the clipping technique in PPO, whereas PPO-based RLHF
algorithms additionally incorporate KL regularization. This
difference in the use of the log ratio allows DfPO can im-
prove the task performance while preserving the naturalness
without additional hyperparameter search.

3.4. Degeneration-free Policy Optimization

Finally, we present Degeneration-free Policy Optimization
(DfPO), a new policy optimization method that can fine-tune
LMs to generate texts that achieve improved downstream
task scores, while preserving the naturalness of the gener-
ated texts. Figure 2 shows an illustrative example of the
main mechanism of DfPO, and our algorithm can be sum-
marized as follows: 1) KL-masking separately considers
state-action pairs that do not deviate from the reference
policy even if the likelihood is increased or decreased, 2)
among the state-action pairs of the positive KL-masking, the
promising actions with a positive advantage are increased
which corresponds to the likelihood maximization part (red
box) in Figure 2. Similarly, among the state-action pairs of
the negative KL-masking, the unpromising actions with a
negative advantage are decreased which corresponds to the
likelihood minimization part (blue box) in Figure 2. The
pseudocode for the whole process of DfPO can be found in
Appendix B.4. Since our algorithm updates the policy to
maximize or minimize the likelihood of generated sentences
(i.e. sentence-level policy optimization), even if it is not
provided in the form of Gym-like (Brockman et al., 2016)
learning environment, it can be easily applied to any dataset
if only the reward function is provided. For the advan-
tage estimation, we use Generalized Advantage Estimation
(GAE) (Schulman et al., 2018), but any other advantage
estimation method can be used.

4. Related Work
Reinforcement learning for language models Training a
language model to improve the downstream task score can
be naturally considered as an RL problem (Ramamurthy
et al., 2023; Snell et al., 2023; Jang et al., 2022). Reinforce-
ment learning from human feedback (RLHF) (Christiano
et al., 2017; Liang et al., 2022; Kim et al., 2023; Ouyang
et al., 2022; Rafailov et al., 2023) is one of the representative
successes of fine-tuning LMs through reinforcement learn-
ing. However, optimizing LMs against the reward model
by using RL is yet challenging due to the degeneration
problem which generates responses diverging from human
language (Lewis et al., 2017; Jang et al., 2020). Recently,
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as a benchmark of evaluating RL algorithms for fine-tuning
language models, Ramamurthy et al. (2023) introduced (1)
RL4LMs which is a modular library for optimizing LMs
with RL, and (2) GRUE benchmark that is a set of genera-
tive NLP tasks with reward functions. Our work is based on
RL4LMs and GRUE, and aims to address the degeneration
in optimizing text generation with RL.

Direct policy optimization from preference dataset Re-
cently, with a provided preference dataset, preference-based
RL algorithms without an explicit reward have been pro-
posed to achieve promising performance concurrently in
RL (Hejna & Sadigh, 2023; Hejna et al., 2023) and NLP
tasks (Rafailov et al., 2023). Among these studies, Rafailov
et al. (2023) introduced direct preference optimization
(DPO), directly addressing the KL-regularized reward maxi-
mization problem using only a simple binary classification
loss. While DPO is more stable and efficient compared
to previous PPO-based RLHF algorithms, it may also be
sensitive to hyperparameters, as indicated by empirical ob-
servations presented in Appendix C.1.2. Additionally, the
use of only a pre-collected dataset may pose challenges for
improving performance in an online setting.

Stabilizing policy gradient methods Stabilizing policy gra-
dient (PG) methods (Peters & Schaal, 2008) is essential to
successfully optimize a policy, since PG methods use an es-
timator of the gradient of the expected return. TRPO (Schul-
man et al., 2015) provides a practical algorithm by making
approximations to the theoretically justified algorithm that
guarantees policy improvements. PPO (Schulman et al.,
2017) is a simplified method from TRPO by introducing a
clipped probability ratio, while attaining the data efficiency
and reliability of TRPO. Unlike these methods, NLPO (Ra-
mamurthy et al., 2023) is introduced by mainly considering
text generation tasks that have much larger action space
(i.e., a large number of tokens to select) than conventional
decision-making tasks. NLPO mitigates the instability of
policy optimization with action masking that learns to in-
validate less relevant tokens. Unlike NLPO, our algorithm
DfPO updates the policy only with desirable samples that
can simultaneously improve the task score and avoid deviat-
ing from the reference policy.

5. Experiments
In this section, we show the experimental results of
DfPO on generative NLP tasks including text continu-
ation (IMDB) (Maas et al., 2011), text detoxification
(REALTOXICITYPROMPTS) (Gehman et al., 2020), and
commonsense generation (CommonGen) (Lin et al., 2020).
The details of the experimental settings for each task can be
found in Appendix B.

Baselines We compare the following algorithms to evaluate
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Figure 3. Frontier of sentiment score and perplexity for each algo-
rithm on IMDB text continuation task with GPT-2 as a policy.

whether DfPO improves task performance while preserv-
ing the naturalness of the generated texts: 1) Zero Shot, a
pre-trained language model without any fine-tuning of down-
stream tasks, 2) Supervised, a supervised fine-tuning model
with datasets for downstream tasks, 3) PPO (Schulman et al.,
2017), a policy gradient method that is state-of-the-art in
discrete action space, 4) NLPO (Ramamurthy et al., 2023),
a PPO-based policy optimization method for NLP tasks that
effectively reduces the combinatorial action space with ac-
tion masking, 5) DPO (Rafailov et al., 2023), a direct prefer-
ence optimization method that directly optimizes the policy
from the preference dataset. For PPO, NLPO, and DPO, KL
divergence from the reference policy was used as a reward
penalty, and all results were obtained by hyperparameter
tuning for the coefficient of the KL-regularization penalty.
Unlike baseline algorithms which require massive compu-
tational costs for hyperparameter search, DfPO aims to
improve task performance while preserving the naturalness
of the generated texts without additional hyperparameter
search.

5.1. Evaluation on IMDB Text Continuation Task

We evaluate our algorithm on the IMDB text continuation
task, which is one of the representative generative NLP
tasks for evaluating the RL algorithms. The IMDB text
continuation task aims to positively complete the movie
review when given a partial review as a prompt. In this
task, we use GPT-2 (117M parameters) and GPT-J (6B
parameters) as a policy, and a trained sentiment classifier
DistilBERT (Sanh et al., 2019) is provided as a reward
function to train the policy and evaluate its task performance.
The naturalness of the trained model is evaluated with a
perplexity score.

Learning curves Figure 1 shows the learning curves for
PPO and DfPO with GPT-2 as a policy. We also provide
the learning curves for NLPO and DPO in Appendix C.1.1
and C.1.2. Here, DfPO and DfPO+Supervised indicate that
the results of DfPO trained starting from a pre-trained lan-
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guage model and supervised fine-tuning model as initial
policies, respectively. The results of baseline algorithms
(PPO, NLPO, and DPO) show very sensitive performance
on both sentiment score and perplexity to the coefficient of
the KL-regularization penalty. This sensitivity to hyperpa-
rameters can be especially troublesome for fine-tuning the
large-scale language models that require massive computa-
tional costs and also cause ambiguity in model selection
after learning. In contrast to the sensitive results of baseline
algorithms, DfPO shows results that successfully improve
the sentiment score (i.e. task performance) while preserving
their initial perplexity score (i.e. naturalness) without degen-
eration problem. Since DfPO maximizes only the sentiment
score while preserving naturalness, DfPO 1) does not re-
quire additional costs for hyperparameter search and 2)
can simply select the final model with the best sentiment
score on the validation dataset, without any ambiguity in
model selection. We further investigate whether DfPO is
adoptable even when using a large language model as a pol-
icy. Figure 9 in Appendix C.1.3 shows the learning curves
for DfPO with GPT-J (6B parameters) as a policy. Simi-
lar to the learning curve of DfPO with GPT-2, the results
show that DfPO with a large language model successfully
improves the sentiment score while preserving their initial
perplexity score without additional hyperparameter search.
Furthermore, we also provide an ablation study of DfPO to
investigate the role of each part of DfPO in Appendix C.4.

Frontier of sentiment score and perplexity To investigate
the effectiveness of DfPO in constrained policy optimiza-
tion (i.e. maximizing sentiment score while preserving the
perplexity), we evaluate the result of DfPO with the frontier
of sentiment score and perplexity for PPO and DPO. Since
DfPO has no ambiguity in model selection unlike other
baseline algorithms, we select the model with the highest
sentiment score on the validation dataset and evaluate it on
the test dataset as a final result of DfPO. Figure 3 shows
that DfPO achieves a better performance than the frontiers
of PPO and DPO, even though DfPO was trained without
hyperparameter search. Since PPO is sensitive to hyper-
parameters, the result shows the worst frontier even with
sufficient hyperparameter search. DPO achieves a better
frontier than PPO, but shows a worse frontier than DfPO
due to its sensitivity to hyperparameters and limitation of
offline learning.

Numerical comparison We provide the numerical results
of the final model for each algorithm in Appendix C.1.4.
Table 4 summarizes the performance of DfPO and baseline
algorithms on the IMDB text continuation task. The results
of baseline algorithms except DPO are from Ramamurthy
et al. (2023), and the results of PPO, NLPO, and DPO are
obtained by a massive hyperparameter search for the coeffi-
cients of the KL penalty. As shown in Table 4, even though
the results of DfPO are obtained without additional hyper-
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Figure 4. Learning curves of (Top) DfPO, (Middle) PPO, and
(Bottom) DPO on Text Detoxification task. PPO (β, KLtarget)
indicates the PPO that considers the KL-regularization as a reward
penalty with KL coefficient β and target KL. All results are aver-
aged over 3 runs, and the shaded area represents the standard error.

parameter search, DfPO outperforms or matches baseline
algorithms in optimizing sentiment scores while preserving
the perplexity of initial policy (i.e. Zero Shot model for
DfPO, and Supervised model for DfPO+Supervised).

Results of diversity We also evaluate the diversity of DfPO,
which is one of the most important factors when fine-tuning
LMs by using reinforcement learning. Table 5 in Ap-
pendix C.1.5 summarizes the results for diversity metrics
on the IMDB text continuation task. The results show that
DfPO can generate more diverse sentences than baseline
algorithms for all diversity metrics. Unlike existing RL
methods that easily suffer from overoptimization issues as
the policy deviates far from the reference policy, DfPO main-
tains diversity by optimizing the policy without deviating
from the reference policy. As a result, DfPO effectively op-
timizes task scores while preserving the ability to generate
diverse sentences.

5.2. Evaluation on Text Detoxification Task

We also evaluate our algorithm on the text detoxification
task, REALTOXICITYPROMPTS, where the goal is to com-
plete the sentence without toxicity. In this task, we use
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Algorithms Rouge-1 Rouge-2 Rouge-L Rouge-LSum Meteor BLEU BertScore Cider Spice

Zero Shot* 0.415 0.016 0.270 0.270 0.179 0.0 0.854 0.640 0.231
Supervised* 0.503 ± 0.001 0.175 ± 0.001 0.411 ± 0.001 0.411 ± 0.001 0.309 ± 0.001 0.069 ± 0.001 0.929 ± 0.000 1.381 ± 0.011 0.443 ± 0.001
PPO+Sup* 0.540 ± 0.005 0.204 ± 0.005 0.436 ± 0.004 0.436 ± 0.004 0.329 ± 0.003 0.076 ± 0.003 0.930 ± 0.001 1.474 ± 0.022 0.447 ± 0.004
NLPO+Sup* 0.537 ± 0.003 0.201 ± 0.004 0.431 ± 0.002 0.431 ± 0.002 0.326 ± 0.002 0.074 ± 0.003 0.930 ± 0.000 1.464 ± 0.025 0.448 ± 0.002
DfPO+Sup 0.555 ± 0.003 0.221 ± 0.002 0.443 ± 0.001 0.443 ± 0.001 0.336 ± 0.001 0.080 ± 0.001 0.929 ± 0.001 1.465 ± 0.028 0.445 ± 0.002

Table 2. Experimental results on commonsense generation task. The results with * are from the original paper (Ramamurthy et al.,
2023). The table shows experimental results on the commonsense generation task with averages and standard errors. All results indicate
averages and standard errors over 5 independent runs.
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Figure 5. Frontier of sentiment score and perplexity on text detox-
ification task with GPT-J as a policy.

GPT-J (6B parameters) as a policy, and a fine-tuned toxicity
classifier RoBERTa (Liu et al., 2019) model is provided
as a reward function to train the policy and evaluate their
non-toxicity score. The naturalness of the trained model is
evaluated with a perplexity score.

Learning curves Figure 4 shows the learning curves for
DfPO, PPO, and DPO on the text detoxification task. The
results show that PPO and DPO are sensitive to the co-
efficient of KL-regularization penalty, then easily fail to
preserve their initial perplexity (i.e. naturalness). In con-
trast to the sensitive results of baseline algorithms, DfPO
successfully improves the non-toxicity score (i.e. task per-
formance) while preserving their initial perplexity score (i.e.
naturalness) without degeneration problem.

Frontier of non-toxicity score and perplexity Figure 5
shows that DfPO achieves a better performance than the
frontiers of PPO and DPO, even though DfPO was trained
without additional hyperparameter search. Since PPO is sen-
sitive to the coefficient of the KL-regularization penalty, the
result shows the worst frontier even with sufficient hyperpa-
rameter search. Although DPO achieves a similar frontier
to DfPO, the ambiguity of model selection still remains a
limitation.

Numerical comparison We provide the numerical results of
the final model for each algorithm in Appendix C.2. Table 6
summarizes the performance of DfPO and baseline algo-
rithms on the text detoxification task. The results show that
DfPO successfully improves the non-toxicity score while
preserving the perplexity of the initial policy.

5.3. Evaluation on Commonsense Generation Task

We additionally evaluate our algorithm on the common-
sense generation task, where the goal is to generate a sen-
tence describing a scene using given concepts. In this task,
we use T5 (220M parameters) as a policy, and use a ME-
TEOR (Banerjee & Lavie, 2005) score as a reward func-
tion for training and evaluation of task performance, and
BERTScore (Zhang et al., 2019) and SPICE (Anderson et al.,
2016) as evaluation metrics for naturalness scores. There-
fore, the goal is to successfully improve the METEOR score
without degrading other task scores and naturalness scores.
Table 2 summarizes the overall results of each algorithm
on the commonsense generation task. As shown in Table 2,
DfPO successfully achieves a high score on METEOR while
not degrading other task scores and the naturalness scores.
Furthermore, we provide the diversity results of DfPO and
baseline algorithms in Appendix C.3.1. As shown in Table 7,
DfPO shows similar diversity in all metrics for diversity only
except MSTTR compared to other algorithms.

6. Conclusion
In this paper, we introduce Degeneration-free Policy Opti-
mization (DfPO) that can fine-tune LMs to generate texts
that achieve improved downstream task scores, while pre-
serving the naturalness of the generated texts. The basic idea
is to update the policy only with desirable samples that can
simultaneously improve the task score and preserve natural-
ness. To achieve this, we develop KL-masking which masks
out the samples that potentially cause deviating from the
reference policy when likelihood max/minimization. Then,
we devise a policy gradient method that separately performs
likelihood maximization and minimization by using trun-
cated advantage functions. We demonstrated the effective-
ness of DfPO in optimizing task scores and preserving the
naturalness of generated texts on various generative NLP
tasks using diverse LMs. Although we assume a sufficiently
fluent language model as a reference model, we believe
that DfPO can be applied to various downstream tasks by
leveraging recent high-performance sLLMs. We leave a
more extensive attempt to apply DfPO to the RLHF and
RLAIF framework with recent LLMs and sLLMs to future
work. We expect that DfPO will serve as an important step
towards providing a stable and robust RL method for LLM
fine-tuning research.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
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A. Connections to PPO
Before starting the derivation, we define the following stationary distributions:

dπ(s) := (1− γ)

∞∑
t=0

γt Pr(st = s),

dπ(s, a) := (1− γ)

∞∑
t=0

γt Pr(st = s, at = a),

where s0 ∼ p0 and the actions are chosen according to π. In addition, the policy gradient objective can be formulated as
Equation 1:

∇θJPG(θ) = E(s,a)∼dπθ [A
πθ (s, a)∇θ log πθ(a|s)].

A.1. PPO Objective

From the policy gradient objective, TRPO and PPO use the following gradient of the surrogate objective ĴPG(θ):

∇θJPG(θ) ≈ Es∼dπold ,a∼πθ(·|s)[A
πold(s, a)∇θ log πθ(a|s)]

= E(s,a)∼dπold

[
Aπold(s, a)

πθ(a|s)∇θ log πθ(a|s)
πold(a|s)

]
= ∇θE(s,a)∼dπold

[
Aπold(s, a)wθ,old(s, a)

]
=: ∇θĴPG(θ),

where wθ,old(s, a) :=
πθ(a|s)
πold(a|s) , and πold(a|s) denotes the previous policy before the update.

To stabilize this objective, PPO modifies the surrogate objective to penalize deviations of πθ(a|s) from πold(a|s) (Schulman
et al., 2017):

JPPO(θ) = E(s,a)∼dπold

[
min{Aπold(s, a)wθ,old(s, a), A

πold(s, a)clip(wθ,old(s, a), 1− ϵ, 1 + ϵ)}
]

for a hyperparameter ϵ > 0. For three arbitrary variables u, A, and ϵ, we define following two functions:

f(w,A, ϵ) := min{Aw,A · clip(w, 1− ϵ, 1 + ϵ)},
g(w,A, ϵ) := {I

(
A > 0, w < 1 + ϵ

)
+ I

(
A < 0, w > 1− ϵ

)
},

where I is an indicator function:

I(cond) :=

{
1 if cond = True

0 otherwise
.

Then, the following equations hold:

∇θJPPO(θ) = ∇θE(s,a)∼dπold

[
f
(
wθ,old(s, a), A

πold(s, a), ϵ
)]

= ∇θE(s,a)∼dπold

[
g
(
wθ,old(s, a), A

πold(s, a), ϵ
)
Aπold(s, a)wθ,old(s, a)

]
,

where the last equation can be obtained based on Figure 6. Consequently, the gradient of JPPO(θ) is equivalent to the
gradient of the following objective:

ĴPPO(θ) := E(s,a)∼dπold

[
g
(
wθ,old(s, a), A

πold(s, a), ϵ
)
Aπold(s, a)wθ,old(s, a)

]
.

Compared to the original surrogate objective ĴPG(θ), g
(
wθ,old(s, a), A

πold(s, a), ϵ
)

is added to prevent deviations of πθ(s, a)
too far from πold(s, a).
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Figure 6. Plots are provided to illustrate the behavior of f(w,A, ϵ) with respect to w under two conditions: (Left) A > 0 and (Right) A <
0 (Schulman et al., 2017). For the case of A > 0, ∇wf(w,A, ϵ) = 0 when w ≥ 1 + ϵ. Conversely, for A < 0, ∇wf(w,A, ϵ) = 0 when
w ≤ 1− ϵ. In all other instances, ∇wf(w,A, ϵ) = ∇w(Aw) = A. As a result, the relationship ∇θf(wθ, A, ϵ) = ∇θ(g(wθ, A, ϵ)Awθ)
holds for arbitrary values of wθ , A, and ϵ.

A.2. DfPO Objective

In NLP tasks, when we have a reward model, the environment interaction is not too expensive because generating an action
sequence from π is equivalent to generating a trajectory from π. Thus, we will use the policy gradient objective instead of
the surrogate objective. In addition, we want to penalize deviations of πθ from π0, instead of πold. Hence, similar to the
original PPO objective, incorporating g

(
wθ,0(s, a), A

π(s, a), ϵ
)

into the original policy gradient objective JPG(θ) can be
employed to avoid substantial deviations of πθ(s, a) from π0(s, a):

JPG(θ) = E(s,a)∼dπ [Aπ(s, a)]

≈ E(s,a)∼dπ [g
(
wθ,0(s, a), A

π(s, a), ϵ
)
Aπ(s, a)] =: J̃PG(θ) (8)

where wθ,0(s, a) :=
πθ(a|s)
π0(a|s) . After setting ϵ = 0, the gradient of J̃PG(θ) is derived as follows:

∇θJ̃PG(θ) =E(s,a)∼dπθ [{I
(
Aπ(s, a) > 0, wθ,0(s, a) < 1

)
+ I

(
Aπ(s, a) < 0, wθ,0(s, a) > 1

)
}Aπ(s, a)∇θ log πθ(a|s)]

=E(s,a)∼dπθ [I
(
wθ,0(s, a) < 1

)
Aπ(s, a)+∇θ log πθ(a|s)]

+ E(s,a)∼dπθ [I
(
wθ,0(s, a) > 1

)
Aπ(s, a)−∇θ log πθ(a|s)]

=E(s,a)∼dπθ

[
M+

KL(s, a)A
πθ (s, a)+∇θ log πθ(a|s)

]︸ ︷︷ ︸
Likelihood maximization for actions

with both positive advantage and log ratio

+E(s,a)∼dπθ

[
M−

KL(s, a)A
πθ (s, a)−∇θ log πθ(a|s)

]︸ ︷︷ ︸
Likelihood minimization for actions

with both negative advantage and log ratio

.

The last resulting term is equivalent to the DfPO objective in Eq. (7), which successfully improves the task performance
while preserving the naturalness of generated texts.

In summary, we confirm a remarkably high correlation between our DfPO objective and the clipped objective proposed
by Schulman et al. (2017). After reformulating PPO objective as:

ĴPPO(θ) = E(s,a)∼dπold

[
g
(
wθ,old(s, a), A

πold(s, a), ϵ
)
Aπold(s, a)wθ,old(s, a)

]
= Es∼dπold ,a∼πθ(·|s)

[
g
(
wθ,old(s, a), A

πold(s, a), ϵ
)
Aπold(s, a)

]
, (9)

we observe the primary difference between the DfPO objective (8) and the reformulated PPO objective (9) lies in the use of
π0 instead of πold. This distinction enables us to prevent the deviation of π from π0 without the need for an additional KL
regularization penalty, which is commonly employed in PPO-based RLHF algorithms.
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B. Experimental Details
B.1. Task Specification and Hyperparameter Configuration

Table 3 summarizes the task specifications and hyperparameter settings that we used in our experiments. For a fair
comparison, we use exactly same settings of task, decoding strategy and tokenizer to train and evaluate each algorithms. that
used in (Ramamurthy et al., 2023). We also provide the settings of hyperparameters that used in our experiments.

IMDB REALTOXICITYPROMPTS CommonGen
(Text Continuation) (Text Detoxification) (Commonsense Generation)

Task task preference metric Learned Sentiment Classifier Learned Toxicity Classifier METEOR
Specification naturalness metric Perplexity Perplexity SPICE

Decoding
sampling top-k (k = 50) top-k (k = 50) beam search (n = 5)
min length 48 24 5
max new tokens 48 24 20

Tokenizer
padding side left left left
truncation side left left -
max length 64 64 20

batch size 16 16 16
Hyper- learning rate 0.00001 0.00001 0.00001

parameters discount factor 0.99 0.99 0.99
gae lambda 0.95 0.95 0.95

Table 3. Task specification and hyperparameter configuration used in our experimental results on IMDB, REALTOXICITYPROMPTS, and
CommonGen domain.

B.2. Experimental Settings of DPO

In order to show the effectiveness of DfPO, we also compare the performance with DPO on IMDB text continuation and text
detoxification tasks. In contrast to the online RL setting (i.e. PPO, NLPO, and DfPO) given the reward function considered
in this paper, DPO assumes an offline RL setting given a pre-collected pairwise dataset. For the pairwise dataset, we created
20000 preference pairs for each task using the ground-truth reward model, and used it for fine-tuning the LMs with DPO.

B.3. Implementation Details of DfPO

We implement DfPO based on the codebase of RL4LMs (Ramamurthy et al., 2023), which is one of the representative
RL library for NLP tasks. For the policy network, we use GPT-2 and GPT-J (6B) for the IMDB text continuation task,
GPT-J (6B) for the text detoxification task, and T5 for the commonsense generation task. We provide the pseudocode of
our algorithm DfPO in Algorithm 1. For the advantage function estimation, we use Generalized Advantage Estimation
(GAE) (Schulman et al., 2018), but any other advantage function estimation method can be used. Since our algorithm
generates sentences and then maximizes or minimizes the likelihood of generated sentences, we implemented our algorithm
as a sentence-level policy optimization (not a word-level policy optimization).
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B.4. Pseudocode of DfPO

Algorithm 1 Degeneration-free Policy Optimization (DfPO)
Input: Training dataset D = {(sjt , a

j
t , s

j
t+1)

T
t=0}Nj=1, a policy network πθ with parameter θ, a value network Vϕ with parameter ϕ, a

reference policy π0

1: for each iteration i do
2: Define KL-masking with π0 as Eq. (5) and Eq. (6):

M+
KL(s, a) :=

{
1 if Rπθ (s, a) = log π0 − log πθ > 0

0 otherwise
,

M−
KL(s, a) :=

{
1 if Rπθ (s, a) = log π0 − log πθ < 0

0 otherwise
,

3: Sample mini-batch of initial states {sm0 }Mm=1 from D
4: Generate trajectories T ={smt , am

t } by running policy πθ

5: Update policy via likelihood max/minimization with KL-masking and truncated advantage functions as Eq. (7):

argmax
θ

M∑
m=1

T∑
t=0

M+
KL(s

m
t , am

t )A
πθ
ϕ (smt , am

t )∇θ log πθ(a
m
t |smt )

+

M∑
m=1

T∑
t=0

M−
KL(s

m
t , am

t )A
πθ
ϕ (smt , am

t )∇θ log πθ(a
m
t |smt )

6: Update the value function V
πθ
ϕ :

argmin
ϕ

M∑
m=1

T∑
t=0

(V
πθ
ϕ (smt )−R(smt , am

t ))2

7: end for
Output: updated policy πθ
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C. Additional Experimental Results
C.1. Experimental Results on IMDB Text Continuation Task

C.1.1. LEARNING CURVE OF NLPO

We provide the results of NLPO with KL-regularization penalty on the IMDB text continuation task. As shown in Figure 7,
NLPO with KL-regularization penalty also shows very sensitive performance on both sentiment score and perplexity to
hyperparameter.
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Figure 7. Averaged learning curve over 5 runs of NLPO with KL-regularization penalty on IMDB text continuation task for varying
KL coefficient and target KL. NLPO (β, KLtarget) indicates the NLPO that considers the KL-regularization as a reward penalty with
KL coefficient β and target KL. The goal of the IMDB text continuation task is to learn a policy that maximizes the sentiment score
(i.e. task reward) while preserving the perplexity (i.e. naturalness) of the initial policy. However, as shown in the results, NLPO with
KL-regularization penalty shows very sensitive performance on both sentiment score and perplexity to hyperparameter.

C.1.2. LEARNING CURVE OF DPO

We provide the results of DPO with various hyperparameters for the KL-regularization penalty (i.e.β) on the IMDB text
continuation task. As shown in Figure 8, DPO with KL-regularization penalty also shows very sensitive performance on
both sentiment score and perplexity to hyperparameter.
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Figure 8. Averaged learning curve over 5 runs of DPO on IMDB text continuation task for varying KL coefficient β. DPO(β) indicates
the DPO that considers the KL-regularization as a reward penalty with KL coefficient β. As shown in the results, DPO shows very
sensitive performance on both sentiment score and perplexity to hyperparameter.
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C.1.3. LEARNING CURVE WITH LARGE LANGUAGE MODEL

We also provide the result of DfPO with a large language model on the IMDB text continuation task. For the large language
model, we use GPT-J (6B parameters) as initial and reference policies. As shown in Figure 9, DfPO can improve task scores
while preserving the naturalness of the generated texts, even when using a large language model (GPT-J-6B) as a policy.
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Figure 9. Experimental results of DfPO with large language model on IMDB text continuation task. The plots show the results of DfPO
that was trained starting with GPT-J (6B parameters) model. All results are averaged over 5 runs, and the shaded area represents the
standard error.

C.1.4. NUMERICAL RESULTS ON IMDB TEXT CONTINUATION TASK

We also provide the numerical results of each algorithm on the IMDB text continuation task. Since the baseline algorithms
are sensitive to hyperparameters, it is difficult to select the best model from the whole results. Therefore, for the results
of baseline algorithms (except DPO), we use the the results from the original paper (Ramamurthy et al., 2023) which are
recorded by massive hyperparameter tuning. For the result of DPO, we reports DPO (S/P) which are selected by a similar
sentiment score and perplexity with the results of DfPO, respectively. Table 4 summarizes the performance of DfPO and
baseline algorithms on the IMDB text continuation task. Even though the results of DfPO are obtained without additional
hyperparameter search, DfPO outperforms or matches baseline algorithms in optimizing sentiment scores while preserving
the perplexity of initial policy (i.e. Zero Shot model for DfPO, and Supervised model for DfPO+Supervised, respectively).

Algorithms Sentiment Score ↑ Perplexity ↓

Cold
Starting

Zero Shot* 0.489 ± 0.006 32.171 ± 0.137
Supervised* 0.539 ± 0.004 35.472 ± 0.074
PPO* 0.602 ± 0.012 33.816 ± 0.233
NLPO* 0.611 ± 0.023 33.832 ± 0.283
DfPO (ours) 0.620 ± 0.009 32.563 ± 0.082

Warm
Starting
(Online)

PPO+Supervised* 0.626 ± 0.014 35.049 ± 0.347
NLPO+Supervised* 0.620 ± 0.014 34.816 ± 0.340
DfPO+Supervised (ours) 0.663 ± 0.006 35.796 ± 0.077

(Offline) DPO+Supervised (S) 0.661 ± 0.004 37.076 ± 0.091
DPO+Supervised (P) 0.551 ± 0.003 35.785 ± 0.013

Table 4. Experimental results on IMDB text continuation task with GPT-2 as a policy model. Cold starting indicates the results of each
algorithm trained starting with the pre-trained language model (i.e. Zero Shot), and Warm starting indicates the results of each algorithm
trained starting with the supervised fine-tuning model (i.e. Supervised). The results with * are from the original paper (Ramamurthy et al.,
2023), and DPO (S/P) indicate the results selected by a similar sentiment score and perplexity with the results of DfPO, respectively. (All
learning curves and frontier results for DPO can be found in Appendix C.1.2.) All results indicate averages and standard errors over 5
independent runs.
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C.1.5. DIVERSITY RESULTS ON IMDB TEXT CONTINUATION TASK

We also evaluate the diversity of each algorithm, which is one of the most important factors when fine-tuning LMs by using
reinforcement learning. Table 5 summarizes the results for diversity metrics on the IMDB text continuation task. The results
show that DfPO can generate more diverse sentences than baseline algorithms for all diversity metrics. Unlike existing RL
methods that easily suffer from overoptimization issues as the policy deviates far from the reference policy, DfPO maintains
diversity by optimizing the policy without deviating from the reference policy. As a result, DfPO effectively optimizes task
scores while preserving the ability to generate diverse sentences.

Algorithms MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2

Zero Shot* 0.682 ± 0.001 0.042 ± 0.001 0.294 ± 0.001 8.656 ± 0.004 13.716 ± 0.003 5063 ± 15 47620 ± 238
Supervised* 0.682 ± 0.001 0.047 ± 0.001 0.312 ± 0.002 8.755 ± 0.012 13.806 ± 0.016 5601 ± 57 51151 ± 345
PPO* 0.664 ± 0.007 0.042 ± 0.001 0.278 ± 0.005 8.529 ± 0.037 13.366 ± 0.119 5108 ± 204 45158 ± 961
PPO+Sup* 0.668 ± 0.004 0.048 ± 0.002 0.307 ± 0.008 8.704 ± 0.053 13.656 ± 0.066 5757 ± 324 50522 ± 1514
NLPO* 0.670 ± 0.002 0.043 ± 0.002 0.286 ± 0.006 8.602 ± 0.049 13.530 ± 0.076 5179 ± 196 46294 ± 1072
NLPO+Sup* 0.672 ± 0.006 0.048 ± 0.002 0.310 ± 0.012 8.725 ± 0.090 13.709 ± 0.174 5589 ± 140 50734 ± 1903

DfPO 0.711 ± 0.009 0.059 ± 0.004 0.369 ± 0.019 9.100 ± 0.119 14.386 ± 0.217 7609 ± 612 61217 ± 3415
DfPO+Sup 0.711 ± 0.007 0.061 ± 0.003 0.378 ± 0.014 9.155 ± 0.089 14.450 ± 0.151 7781 ± 435 62868 ± 2502

Table 5. Experimental results for diversity on IMDB text continuation task with GPT-2 as a policy model. The results with * are from
the original paper (Ramamurthy et al., 2023). All results indicate averages and standard errors over 5 independent runs.

C.2. Experimental Results on Text Detoxification Task

We provide the numerical results of the final model for each algorithm. Table 6 summarizes the performance of DfPO and
baseline algorithms on the text detoxification task. The results show that DfPO successfully improves the non-toxicity score
while preserving the perplexity of the initial policy. PPO (N/P) and DPO (N/P) indicate the results selected by a similar
non-toxicity score and perplexity with the results of DfPO, respectively.

Algorithms Non-Toxicity ↑ Perplexity ↓

GPT-J(6B) 4.066 ± 0.036 39.463 ± 0.000
GPT-J(6B)+PPO (N) 4.347 ± 0.194 52.610 ± 2.342
GPT-J(6B)+PPO (P) 4.102 ± 0.019 39.207 ± 0.019
GPT-J(6B)+DPO (N) 4.343 ± 0.026 39.266 ± 0.059
GPT-J(6B)+DPO (P) 4.263 ± 0.042 39.083 ± 0.046
GPT-J(6B)+DfPO(ours) 4.343 ± 0.018 39.091 ± 0.071

Table 6. Experimental results on text detoxification task. PPO (N) and PPO (P) indicate the results selected by a similar non-toxicity
score and perplexity with the results of DfPO, respectively. All results indicate averages and standard errors over 3 independent runs.

C.3. Experimental Results on Commonsense Generation Task

C.3.1. DIVERSITY RESULTS ON COMMONSENSE GENERATION TASK

We provide the diversity results of DfPO and baseline algorithms on commonsense generation task. As shown in Table 7,
DfPO shows similar diversity in all metrics for diversity only except MSTTR compared to other algorithms.

Algorithms MSTTR Distinct1 Distinct2 H1 H2 Unique1 Unique2

Zero Shot* 0.430 0.090 0.335 5.998 7.957 345 1964
Supervised* 0.509 ± 0.001 0.101 ± 0.001 0.339 ± 0.001 6.531 ± 0.006 10.079 ± 0.016 304 ± 7 2159 ± 25
PPO+Sup* 0.514 ± 0.004 0.105 ± 0.002 0.378 ± 0.008 6.631 ± 0.053 10.270 ± 0.064 507 ± 17 2425 ± 73
NLPO+Sup* 0.516 ± 0.006 0.106 ± 0.002 0.377 ± 0.008 6.634 ± 0.044 10.260 ± 0.077 506 ± 4 2401 ± 39
DfPO+Sup 0.489 ± 0.007 0.101 ± 0.003 0.369 ± 0.007 6.552 ± 0.017 10.178 ± 0.023 479 ± 11 2383 ± 24

Table 7. Experimental results for diversity on commonsense generation task. The results with * are from the original paper (Ramamurthy
et al., 2023). All results indicate averages and standard errors over 5 independent runs.

17



Degeneration-free Policy Optimization: RL Fine-Tuning for Language Models without Degeneration

C.3.2. LEARNING CURVE OF DFPO ON COMMONSENSE GENERATION TASK

We also provide the learning curve of DfPO on the commonsense generation task. As shown in Figure 10, DfPO can
improve task scores (i.e. METEOR) while preserving the naturalness (i.e. Perplexity) of the generated texts.
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Figure 10. Experimental results of DfPO on commonsense generation task. All results are averaged over 5 runs, and the shaded area
represents the standard error.
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C.4. Ablation Study

To study the role of each part of the objective, we provide ablation study results of DfPO on the IMDB text continuation task.
We compare the results of methods trained with the four types of objectives (Policy gradient, Likelihood Maximization,
Likelihood Minimization, and DfPO), and the details of each model are provided below. As shown in Figure 11, the naive
policy gradient (PG), similar to PPO without the KL regularization penalty in Figure 1, improves task performance but
the perplexity diverges (i.e. deteriorates the naturalness of generated texts). In the case of updating the policy with only
likelihood minimization, it fails to improve the task performance and also preserve the naturalness of generated texts.
In addition, when updating the policy with only likelihood maximization, the perplexity does not diverge, but the task
performance is improved relatively low compared to DfPO. Therefore, each part of the objective in DfPO is necessary to
successfully improve the task performance while preserving the naturalness of generated texts.
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Figure 11. Ablation study results of DfPO on IMDB text continuation task. All results are averaged over 5 runs, and the shaded area
represents the standard error.

Degeneration-free Policy Optimization (DfPO)

To show the role of each part of the objective, we compare the result of DfPO trained with the following objective, which is
exactly the same as the result of DfPO+Supervised in Figure 1:

∇θJ(θ) = Ea∼πθ(s)

[
M+

KL(s, a)A
πθ (s, a)+∇θ log πθ(a|s)

]︸ ︷︷ ︸
Likelihood maximization for actions

with both positive advantage and log ratio

+Ea∼πθ(s)

[
M−

KL(s, a)A
πθ (s, a)−∇θ log πθ(a|s)

]︸ ︷︷ ︸
Likelihood minimization for actions

with both negative advantage and log ratio

. (10)

Likelihood Maximization

First, we compare the results of updating the policy through the only likelihood maximization, which corresponds to the first
term of the main objective of DfPO:

∇θJ(θ) = Ea∼πθ(s)

[
M+

KL(s, a)A
πθ (s, a)+∇θ log πθ(a|s)

]︸ ︷︷ ︸
Likelihood maximization for actions

with both positive advantage and log ratio

. (11)

Likelihood Minimization

Second, we compare the results of updating the policy through the only likelihood minimization, which corresponds to the
second term of the main objective of DfPO:

∇θJ(θ) = Ea∼πθ(s)

[
M−

KL(s, a)A
πθ (s, a)−∇θ log πθ(a|s)

]︸ ︷︷ ︸
Likelihood minimization for actions

with both negative advantage and log ratio

. (12)

Policy Gradient (PG)
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We also compare the result of naive policy gradient update without KL-masking and advantage truncating as follows:

∇θJ(θ) = Ea∼πθ(s)

[
Aπθ (s, a)∇θ log πθ(a|s)

]
. (13)

C.5. Results of PPO with SFT

We conducted additional experiments for PPO+SFT, where the learning objective is aggregated with PPO and supervised
fine-tuning objectives. We provide the results of PPO+SFT with KL-regularization penalty on the IMDB text continuation
task. As shown in Figure 12, PPO+SFT with KL-regularization penalty also shows very sensitive performance on both
sentiment score and perplexity to hyperparameter.

0 10 20 30 40 50
Training Iterations

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Se
nt

im
en

t S
co

re

0 10 20 30 40 50
Training Iterations

35

40

45

50

Pe
rp

le
xi

ty

PPO+SFT(w/o KL)
PPO+SFT(0.1, 0.5)

PPO+SFT(0.1, 0.05)
PPO+SFT(0.1, 0.01)

PPO+SFT(0.5, 0.05)
PPO+SFT(0.5, 0.01)

Figure 12. Averaged learning curve over 5 runs of PPO+SFT with KL-regularization penalty on IMDB text continuation task for varying
KL coefficient and target KL. PPO+SFT (β, KLtarget) indicates the PPO+SFT that considers the KL-regularization as a reward penalty
with KL coefficient β and target KL. The goal of the IMDB text continuation task is to learn a policy that maximizes the sentiment score
(i.e. task reward) while preserving the perplexity (i.e. naturalness) of the initial policy. However, as shown in the results, PPO+SFT with
KL-regularization penalty shows very sensitive performance on both sentiment score and perplexity to hyperparameter.
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D. Qualitative Results
In this section, we demonstrate through qualitative examples that DfPO improves task performance while maintaining the
naturalness of generated texts. We provide generation results from DfPO and baseline algorithms. We selected the same
prompts as used in (Ramamurthy et al., 2023), and the generation results of baseline algorithms are from (Ramamurthy et al.,
2023). As shown in the examples, the generation results of DfPO show maintaining naturalness, which does not diverge
from human language. On the other hand, PPO-no-KL and NLPO-no-KL, which do not use the KL regularization penalty,
show results with poor naturalness of generated texts.

Sample 1

Prompt:
A man and his wife are not getting along because of the wife’s jealousy and drinking
problems. When the wife disappears, her sister begins a vigorous search involving the

References:
local police, state government, and a television crime show. What she finds out stuns the
entire community. Good drama with lots of fine performances; based on a true story

Zero-Shot:
husband’s sister, which leads several men to a remote cabin and then a boat. The wife and
her husband then start to see the same things. Finally, a strange woman is driving out to
her cabin and discovers the husband’s disappearance but

Supervised:
amily tree. The widower, now widowed, returns, the daughter, daughter is not pleased when
his wife is mistaken for one of her sons, and the patriarch, then a wealthy man, falls
victim to a jealous husband. The

PPO:
police and the local public. At the end, the woman is killed and the wife is found naked
and with a red head tattooed on her back. This is part of a special feature called"On the
Road, Hidden" which was

PPO-no-KL:
police and other local governments. Written by G. Scott Fitzgerald, who also stars in
this production, "A Very Merry Christmas" is a wonderful family movie with a wonderful
soundtrack and wonderful characters. It brings home the true beauty of small-

NLPO:
mother while the brother goes under. After all, his sister, who was apparently kidnapped
but who turns out to be a man, is no longer in her place. If a film that was made in the
1950s

NLPO-no-KL:
friends of the wife, and also the friend of the wife of the woman that is missing, and
eventually he begins to find that she has gone to Germany and he has made a very good
friend. There is a good scene between John and

DfPO:
town of Berenner, California. This is an excellent film, and it was made one year before
George Cloorman (Stick With Her). It’s as if George was already aware of the historical
context
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Sample 2

Prompt:
A very credible and unsettling movie portraying the effects of war on the general public,
Shame gives us a chilling understanding oh Ingmar Bergman’s beliefs. The absence of color
and sound (as in a soundtrack) helps to give the film a more realistic feeling. There
is no soft or hard lighting or a variety of camera angles to give the story a charming or
dramatic effect. Everything is very simply portrayed as it would be in reality. At times
the storyline was confusing, but perhaps in order to give a sense of the characters’ frame
of mind how they too do now know what is happening or why. The simplicity of the

References:
film made it somewhat boring, but I could understand how the director is trying not to
glamorize the story and points. He depicted the harsh and unsettling events and effects
of war. In the beginning the characters were introduced and shown as content with the
lighter settings

Zero-Shot:
camera work is at once apparent and fascinating in the manner in which it affects the way
things are portrayed. In other films these two have been referred to from time to time in
a form and manner more suited to the screen. The film shows

Supervised:
"Dakota Clan" and his sister, the two become friends with Ted Masters who soon finds the
chance to fly back to their home land and go back to save his brother’s life and his
family. The

PPO:
characters relationships is so engrossing and the great and unique story presented by each
pair of brothers and sisters creates a truly gripping and enjoyable experience. To put it
simply, I strongly recommend to everyone who plays the role to buy this DVD!!!

PPO-no-KL:
movie helps it to flow along in a believable way. Rating 4 out of 5 Great Movie! I
highly recommend these movies! I highly recommend these movies! Rating 5 out of 5 Great
Movie! I highly recommend these movies! Rating 10 of"

NLPO:
novel makes it one of the first books I have read by a British actor. It is a fun way
for someone who likes their books, like me, to sit through a novel. If you like to read
novels, check it out.

NLPO-no-KL:
setting makes the final product very enjoyable to watch. Highly recommended!! Michael
Bowerman, SPSA Film Festival Host, SPSA, WA (December 17, 2006), 8/17/2006 Great
photography, good acting,

DfPO:
screenplay which follows that, makes for an excellent point, by telling this to the
general public at hand with an all-merse narration and sound. The scene with Sgt Columbo
fighting for our pride is actually excellent and
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Sample 3

Prompt:
Shakespearean language is wild and rambling, saturated in multiple meanings, word play and
metaphor. To be understood it must be wrangled and tamed by an actor with the strength
and knowledge to do so. When an actor fails, the words pour forth in a torrent of
incomprehensible words, but when he succeeds, the English language springs to life with
an immediacy and vibrancy that takes your breath away. Al Pacino is one such actor, and
here displays an incredible level of clarity and control that, were there any justice,

References:
would sweep every award in the offering. He meets the challenge of presenting Shylock
head on, and delivers an extraordinarily subtle and nuanced performance. It would be a
crime if we never got the opportunity to see what he does with King Lear.<br /><br />The
supporting cast

Zero-Shot:
might still be seen in the world today. This movie, like "Vacation", is an effort at
telling the tale of two families from different races. One is African but never grew up
the other. One of them, a man

Supervised:
his performance (so far) would seem mere shadow. He is truly in the middle of a movie,
and this film is one of those films where he can be convincing in it (and his trademark
acting, as you can see in the

PPO:
would have made him an instant-classic. This movie captures the spirit of childhood and
has everyone in the world watching it. It’s a love story and it’s really heartbreaking.
And at the same time, it’s a classic. It

PPO-no-KL:
will bring victory to the fight against hatred and extremism. Al Pacino is a very
beautiful, well executed actor who brings an absolute intensity and sensibility to his
portrayal of love and loyalty. A must see! Recommended! Also, an Excellent

NLPO:
I would watch and enjoy. 7/10, Oscar Wilde is always a pleasure to see. A must see.
Highly recommend. Highly recommend! One of my top ten films of all time. A must see!!

NLPO-no-KL:
the whole film would have fallen to the same fate, just as it did just a couple hundred
years ago. Don’t miss it. It’s a real classic. Highly Recommended. * outta five stars
for it!

DfPO:
hardly could be conceived, couldn´ve only appear to be a dream. His acting speaks for an
incredible combination of passion and fear; his portrayal of Shakespeare that comes from
passion is mesmerishing. His accent is reminiscent of the softening with
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