Under review as a conference paper at ICLR 2023

FEDX: FEDERATED LEARNING FOR
COMPOSITIONAL PAIRWISE RISK OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we tackle a novel federated learning (FL) problem for optimizing a
family of compositional pairwise risks, to which no existing FL algorithms are ap-
plicable. In particular, the objective has the form of E, s, f(E, s,l(w;2,2')),
where two sets of data Sy, Sy are distributed over multiple machines, £(+; -, ) is a
pairwise loss that only depends on the prediction outputs of the input data pairs
(z,2'), and f(-) is possibly a non-linear non-convex function. This problem has
important applications in machine learning, e.g., AUROC maximization with a
pairwise loss, and partial AUROC maximization with a compositional loss. The
challenges for designing an FL algorithm lie in the non-decomposability of the
objective over multiple machines and the interdependency between different ma-
chines. We propose two provable FL algorithms (FedX) for handling linear and
nonlinear f, respectively. To address the challenges, we decouple the gradient’s
components with two types, namely active parts and lazy parts, where the active
parts depend on local data that are computed with the local model and the lazy
parts depend on other machines that are communicated/computed based on his-
torical models and samples. We develop a novel theoretical analysis to combat the
latency of the lazy parts and the interdependency between the local model param-
eters and the involved data for computing local gradient estimators. We establish
both iteration and communication complexities and show that using the historical
samples and models for computing the lazy parts do not degrade the complexities.
We conduct empirical studies of FedX for deep AUROC and partial AUROC max-
imization, and demonstrate their performance compared with several baselines.

1 INTRODUCTION

This work is motivated by solving the following optimization problem arising in many ML applica-
tions in a federated learning (FL) setting:

1 1
min — — Uw;z,2 >, (1
weRd | Sy | z%;l f< |Sa| z;sz ( )
9(w;z,852)

where &1 and Sz denote two sets of data points that are distributed over many machines, w denotes
the model parameter of a prediction function hy(-) € R, f(-) is a deterministic function that
could be linear or non-linear (possibly non-convex), and ¢(w; z,z’) = {(hw(2z), hw(2z')) denotes a
pairwise loss that only depends the prediction outputs of the input data z, z’. We refer to the above
problem as compositional pairwise risk (CPR) minimization problem.

When f is a linear function, the above problem is the classic pairwise loss minimization problem,
which has applications in AUROC (AUC) maximization (Gao et al., 2013 |Zhao et al.|[2011;|Gao &
Zhou, 2015} |Calders & Jaroszewicz, 2007} [Charoenphakdee et al., 2019; |Yang et al.,[2021b), bipar-
tite ranking (Cohen et al.L{1997; |Clémencon et al., 2008; Kotlowski et al.} 201 1; Dembczynski et al.,
2012), distance metric learning (Radenovic et al., 2016 [Wu et al.l 2017} |Yang et al., 2021b). When
f is a non-linear function, the above problem is a special case of finite-sum coupled compositional
optimization problem (Wang & Yang| |2022a), which has found applications in various performance
measure optimization such as partial AUC maximization (Zhu et al,|2022), average precision max-
imization (Q1 et al., 2021; Wang et al., [2022), NDCG maximization (Qiu et al., 2022), and p-norm
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push optimization (Rudin, [2009; Wang & Yang| |2022a)) and distance metric learning (Sohnl 2016)).
We provide details of some examples of CPR minimization applications in Appendix

This is in sharp contrast with most existing studies on FL algorithms (Yang, [2013; Konevcny et al.,
2016; McMahan et al., [2017; Kairouz et al., 2021 \Smith et al., 2018}, |Stich, [2018; |Yu et al.,[2019aib;
Khaled et al., 2020; ' Woodworth et al., 2020bza; |Karimireddy et al., [2020b; [2021; |Haddadpour et al.,
2019)), which focus on the following empirical risk minimization (ERM) problem with the data set
S distributed over different machines: miny,cga Fll > ses {(w;z). The major differences between

CPR and ERM are (1) the ERM’s objective is decomposable over training data, while the CPR is
not decomposable over training examples; and (2) the data-dependent losses in ERM are decoupled
between different data points; in contrast the data-dependent loss in CPR couples different training
data points. These differences pose a big challenge for optimizing CPR in the FL setting, where the
training data are distributed on different machines and are prohibited to be moved to a central server.
In particular, the gradient of CPR cannot be written as the sum of local gradients at individual
machines that only depend on the local data in those machines. Instead, the gradient of CPR at
each machine not only depends on local data but also on data in other machines. As a result, the
design of communication-efficient FL algorithms for optimizing CPR is much more complicated
than that for ERM. In addition, the presence of non-linear function f makes the algorithm design
and analysis even more challenging than that with linear f. There are two levels of coupling in
CPR with nonlinear f with one level at the pairwise loss ¢(h (2), hw(2z’)) and another level at the
non-linear risk of f(g(w;z,S>)), which makes estimation of stochastic gradient more tricky.

Although optimization of CPR can be solved by existing algorithms in a centralized learning set-
ting (Wang et al.,2017;|Ghadimi et al., [ 2020; [Hu et al.| 2020; Wang & Yang|, [2022a}; |Q1 et al., 2021}
Wang et al., 2022; [Zhu et al., |2022; Chen et al., 2021), extension of the existing algorithms to the
FL setting is non-trivial. This is different from the extension of centralized algorithms for ERM
to the FL setting. In the design and analysis of FL algorithms for ERM, the individual machines
compute local gradients and update local models and communicate periodically for averaging mod-
els. The rationale of local FL algorithms for ERM is that as long as the gap error between local
models and the averaged model is on par with the noise in the stochastic gradients by controlling the
communication frequency, the convergence of local FL algorithms will not be sacrificed and is able
to enjoy the parallel speed-up of using multiple machines. However, this rationale is not sufficient
for developing FL algorithms for CPR optimization due to the challenges mentioned above.

To address the challenges, we propose two novel FL algorithms named FedX1 and FedX2 for
optimizing CPR with linear and non-linear f, respectively. The main innovation in the algorithm
design lies at that we decouple the gradient of the objective with two types, active parts and lazy
parts. The active parts depend on data in local machines and the lazy parts depend on data in other
machines. We estimate the active parts using the local data and the local model and estimate the lazy
parts using the information with delayed communications from other machines that are computed at
historical models in the previous round. In terms of analysis, the challenge is that the model used in
the computation of stochastic gradient estimator depends on the (historical) samples for computing
the lazy parts at the current iteration, which is only exacerbated in the presence of non-linear function
f. We develop a novel analysis that allows us to transfer the error of the gradient estimator into the
latency error of the lazy parts and the gap error between local models and the global model. Hence,
the rationale is that as long as the latency error of the lazy parts and the gap error between local
models and the global model is on par with the noise in the stochastic gradient estimator we are able
to achieve convergence and linear speed-up.

The main contributions of this work are summarized as follows:

* We propose two novel communication-efficient algorithms, FedX1 and FedX2, for optimizing the
CPR with linear and nonlinear f, respectively. Besides communicating local models, the proposed
algorithms need to communicate local prediction outputs only periodically.

* We perform novel technical analysis to prove the convergence of both algorithms. We show that
both algorithms enjoy parallel speed-up in terms of the iteration complexity, and a lower-order
communication complexity.

* We conduct empirical studies on two tasks for federated deep partial AUC optimization with a
compositional loss and federated deep AUC optimization with a pairwise loss, and demonstrate
the advantages of the proposed algorithms over several baselines.



Under review as a conference paper at ICLR 2023

2 RELATED WORK

FL for ERM. The challenge of FL is how to utilize the distributed data to learn a ML model with
light communication cost without harming the data privacy (Konevcny et al.,2016; McMahan et al.,
2017). To reduce the communication cost, many algorithms have been proposed to skip commu-
nications (Stichl 2018} [Yu et al.| 2019a3b} |Yang, 2013} [Karimireddy et al., [2020b)) or compress the
communicated statistics (Stich et al.,[2018};|Basu et al., |2019; Jiang & Agrawall |2018};|Wangni et al.}
2018; Bernstein et al., 2018)). Tight analysis has been performed in various studies (Kairouz et al.,
2021;[Yu et al., [2019ajb; Khaled et al., 2020; [Woodworth et al., 2020bza; [Karimireddy et al.| |2020bj
Haddadpour et al., 2019). However, most of these works target at ERM.

FL for Non-ERM Problems. In (Guo et al., [2020; |Yuan et al., 2021a; Deng & Mahdavi, 2021}
Deng et al,, [2020; Liu et al., [2020; Sharma et al. 2022), federated minimax optimization al-
gorithms are studied, which are not applicable to our problem when f is non-convex. |Gao
et al.| (2022)) have considered a much simpler federated compositional optimization in the form of
Dok ]ECND;; Ji(Beprge(w; §); ¢), where k denotes the machine index. We can see that compared

with our CPR risk, their objective does not involve interdependence between different machines. |L1
et al.|(2022);|/Huang et al.| (2022)) have analyzed FL algorithms for bi-level problems where only the
low-level objective involves distribution over many machines. [Tarzanagh et al.| (2022) considered
another federated bilevel problem, where both upper and lower level objective are distributed many
machines, but the lower level objective is not coupled with the data in the upper objective. Xing
et al.| (2022) studied a federated bilevel optimization in a server-clients setting, where the central
server solves an objective that depends on optimal solutions of local clients. Our problem cannot be
mapped into these federated bilevel optimization problems.

Centralized Compositional Pairwise Risk Minimization. In the centralized setting CPR mini-
mization has been considered in recent works (Q1 et al.l 2021; [Wang et al., [2022; Wang & Yang,
2022a}; |Qiu et al.l 2022} Jiang et al.| 2022)). However, it is non-trivial to extend these algorithms to
the FL setting due to the challenges mentioned earlier. We provide a summary of state-of-the-art
sample complexities for solving ERM and CPR in both centralized and FL setting in Appendix

3 FEDX FOR OPTIMIZING CPR

We assume S1, So are spht into N non- overlapplng subsets that are distributed over N clients El, ie.,

S =8SuUS?...USY and S, = S3 USZ...USY. We denote by E,.5 = |S‘ > ses- Denote
by wi; = N|Si|/|S1| and wy; = N|S}|/|Szl,i = 1,...,N,j = 1,...,N. We assume that these
quantities w; = (wy1,...,win) and wy = (wey, .. .,wsn) are available on all clients. If not, they
can be easily computed and communicated once between the N clients. Denote by V14(-,-) and
Vo/(-,-) the partial gradients in terms of the first argument and the second argument, respectively.
Without loss of generality, we assume the dimensionality of h(w;z) is 1 (i.e., d, = 1) in the
following presentation. For our discussion of complexity, we will simply assume w1;, wa; ~= O(1).

3.1 FEDXI FOR OPTIMIZING CPR WITH LINEAR f
With linear f, we rewrite the CPR risk into an equivalent form that is tailored to the FL setting:

N

min, F(w) erf 2 Eyesiia (hw,2), w,2), @)
=

where ¢;; (hw(2z), h(w,2')) = wungf(h(w, z), h(w,z')). To highlight the challenge and motivate

FedX, we compute the gradient of the objective function and decompose it into two terms:

ZEM@*ZEZ cs3Vilij(h(w,2), h(w,2)) Vi (2)

Aix

N N
1 1
+ v Z; Ez’esgﬁ g 1 Ezes{ Valji(h(w,z), h(w,z"))Vh(w,2z').
1= 1=

Aj2

"We use clients and machines interchangeably.
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With the above decomposition, we can see that the main task at the local client ¢ is to estimate the
gradient terms A;; and A;5. Due to the symmetry between A;; and A;o, below, we only use A;; as
an illustration for explaining the proposed algorithm. The difficulty in computing A;; lies at it relies
on data in other machines due to the presence of E , s for all j. To overcome this difficulty, we

decouple the data-dependent factors in A;; into two types marked by green and blue shown below:

Ap = Buesi % 2y Byesy Vil (h(w,2) , h(w,2)) Vh(w,z) . 3)
N—_—— W—’ N————’
locall globall local2 global2 local3

It is notable that the three green terms can be estimated or computed based the local data. In par-
ticular, locall can be estimated by sampling data from S? and local2 and local3 can be computed
based on the sampled data z and the local model parameter. The difficulty springs from estimating
and computing the two blue terms that depend on data on all machines. We would like to avoid com-
municating h(w; z') at every iteration for estimating the blue terms as each communication would
incur additional communication overhead. To tackle this, we propose to leverage the historical
information computed in the previous round To put this into context of optimization, we consider
the update at the k-th iteration during the r-th round, where k¥ = 0,..., K — 1. Let w} . denote

the local model in i-th client at the k-th iteration within 7-th round. Letz!, , € Si,z}, , € S}

denote the data sampled at the k-th iteration from S¢ and Si, respectively. Each local machine
will compute h(w; ;27 ;) and h(w] ;2 ,), which will be used for computing the active

parts. Across all iterations £ = 0,..., K — 1, we will accumulate the computed prediction out-
puts over sampled data and stored in two sets Hj; = {h(w],;2]; ),k = 0,...,K — 1} and
Hio = {h(W] ;2] }2),k = 0,..., K — 1}. At the end of round r, we will communicate W}

and Hi 1 and ”HTQ to the central server, which will average the local models to get a global model
W, and also aggregate My = Hi, UH5 ;... UH, and Hy = Hi, UHs5... UH]y 5. These
aggregated information will be broadcast to each individual chent Then at the k th iteration in the
r-th round, we estimate the blue term by sampling h; 51 € Hy™ ! without replacement and compute
an estimator of A;; by

. r—1 .
Gzyk,l = Vili;( h(w;k,zf’kyl) ) hz,g ) Vh(wg,kvz;,k,l) ) 4)
—_— —— —
active lazy active

where £ = (4, ¢, ] : 2) represents a random variable that captures the randomness in the sampled

client j € {1,..., N}, iteration index k € {0,. — 1} and data sample z L € SJ, which is
used for estlmatmg the globall in (3). We refer to the green factors in G 1,1 as 'the active parts and
the blue factor in G; 1, 1 as the lazy part. Similarly, we can estimate A;o by Gik2

Giro = Valjri( h;zl ) h(W;mZ{k,z) ) Vh(w] Z; 2) ) &)
——
lazy active active

where hq_l Hr_l is a randomly sampled prediction output in the previous round with { =
(4,2 ) representmg a random variable including a client sample ;' and iteration sample ¢’

and the data sample z " t, - Then we will update the local model parameter w; , by using a gradient
estimator G} ; ; + Gz’k’2

We present the detailed steps of the proposed algorithm FedX1 in Algorithm[I} Several remarks are
following: (i) at every round, the algorithm needs to communicate both the model parameters w; ;-
and the historical prediction outputs 7—[: and 7—[1 o5 » where 7—[:;1 is constructed by collecting all or
sub-sampled computed predictions in the (7 — 1)-th round. The bottom line for constructing Hf;l is
to ensure that H” ! contains at least K independently sampled predictions that are from the previous
round on all machines such that the corresponding data samples involved in H"~! can be used to
approximate % Efil E,es: K times. Hence, to keep the communication costs minimal, each client
at least needs to sample O([ K/N|) sampled predictions from all iterations k¥ = 0,1,..., K — 1 and

send them to the server for constructing H-~1, which is then broadcast to all clients for computing
the lazy parts in the round 7. As a result, the minimal communication costs per-round per-client is

2A round is defined as a sequence of local updates between two consecutive communications.
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Algorithm 1 FedX1: Federated Learning for CPR with linear f
1: On Client i: Require parameters 1, K

2: Initialize model wY, and initialize Buffer B;; = ) and B; 5 = ()
3: Sample K points from S}, compute their predictions using model W?,o denoted by H?’l
4: Sample K points from S, compute their predictions using model W?,o denoted by ’H?,Q
5: forr =1,. R d0
6: Send ”H,; 1Mo ! to the server
7. Receive R} 1, Ris ! from the server
8:  Update buffer B; 1, B; » using Rl 1 L RT ! with shuffling o see text for updating the buffer
9: Set/Hrl—(Z)/ng—@
10:  fork =0,. —ldol ‘
11: Sample zl, k1 from Si, sample z7; , from S5 © or sample two mini-batches of data
12: Take next h?l and hzfl from B; 1 and B; 2, respectively
13: Compute h(w;k, fkl)and h(w Wi ks f“)
14: Add h(wj 2z, ) into H{ | and add h(w] ;2] ,) into Hj 5
15: Compute Gy ; and G, 5 according to (Ef[) and
16: Wi = Wi — (Gl + Gy o)
17:  end for
18:  Sends w; j to the server
19:  Receives w” from the server and set w%l =W,
20: end for

21: On Server

22: forr =0,...,R—1do

23: Collects Hj = Hj | UHS ... UH}, and Hy = H] , UH] ... UHR
24 SetRy, =H}, R, =M} ’

25: Send Rj ;, R}, toclienti forall i € [N]

26:  Receive wf}l, from client ¢, compute wrtl = ~ ZZ 1 WTJr1 and broadcast it to all clients.
27: end for

O(d+ Kd,/N). Nevertheless, for simplicity in Algorithm|[I|we simply put all historical predictions
into H "

Similar to all other FL algorithms, FedX1 does not require communicating the raw input data, hence
protects the privacy of the data. However, compared with most FL algorithms for ERM, FedX1 for
CPR has an additional communication overhead at least O(d,K /N ) which depends on the dimen-
sionality of prediction output d,. For learning a high-dimensional model (e.g. deep neural network
with d > 1) with score-based pairwise losses (d, = 1), the additional communication cost O(K/N)
could be marginal. For updating the buffer B; ; and B; 2, we can simply flush the history and add
the newly received R: 1 ! with random shuffling to B; 1 and add R’"Q with random shuffling to
B; 2. However, we can keep the history up to a certain limit as long as the latency error can be well
controlled which will be analyzed in Appendix [E]

Next, we present the theoretical results of FedX1 with more formal results given in appendix.

Theorem 1. (Informal) Under appropriate conditions, by setting n = O(R2/3 Yand K = O( R;V/B)

Algorlthmlensures that E [E 27:1 (IVE(w)]| } < (W)

Remark. To get E[L % [VF(w")|?] < €2, we just need to set R = O(L), 7 = Ne? and

K = ﬁ The number of communications is much less than the total number of iterations i.e.,

O(5=r) as long as N < O(1). And the sample complexity on each machine is -, which is
linearly reduced by the number of machines N.

Novelty of Analysis. As the lazy parts are computed in different machines in a previous round, the
gradient estimators G7 ;. ; and G}, , will involve the dependency between the local model parameter
w; ;. and the historical data contained in &, ¢ used for computing G ;. ; and G7 . 5, which makes the
analysis more involved. We need to make sure that using the gradient estimator based on them can
still result in “good” results. To this end, we borrow an analysis technique in (Yang et al., | 2021b)
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to decouple the dependence between the current model parameter and the data used for computing
the current gradient estimator, in which they used data in previous iteration to couple the data in
the current iteration in order to compute a gradient of the pairwise loss £(h(wy;z:), h(Wy;2¢—1)).
Nevertheless, in federated CPR controlling the error brought by the lazy parts is more challenging
since the delay is much longer and they were computed on different machines. In our analysis,
we replace w; , with w"™ ! to decouple the dependence between the model parameter w” ! and
the historical data &, ¢, then we need to control the latency error ||[w"~! — w"||? and the gap error
between different machines Y, >~ E[|w" —w] , [|* such that the complexities are not compromised.

3.2 FEDX2 FOR OPTIMIZING CPR WITH NONLINEAR f
Similarly, we re-write the objective into an equivalent form that is tailored to the FL setting, i.e.,

N
- 7 2 Eesf (5 ZEzesw 2).hwia) ) ©
i=1

where f;(-) = wi; f(-) and 4;(-,-) = wajl(, ). We compute the gradient and decompose it into two
terms:

VF(w) =+ ZEZE‘S%%Z]EZ es; VIilg(w:2,82)) Vily(h(w;z), h(w;2'))Vh(w; 2)

A

@)
N N
1 1
+ N ; ]Ez'esg N ; Ezesg Vfi(g(w;z,S2)) Vali(h(w;z), h(w;2"))Vh(w;z').

Az

Compared to that in (3) for CPR with linear f, the A;; term above involves another fac-
tor V f;(g(w;z,S2)), which cannot be computed locally as it depends on Ss distributed over
all machines. Similarly, the A;> term above involves another non-locally computable factor
Vfi(g(w;z,S2)). To address the challenge of estimating g(w; z, S2), we leverage the similar tech-
nique in the centralized setting (Wang & Yang] [2022b)) by tracking it using a moving average es-
timator based on random samples. In a centralized setting, one can maintain and update u(z) for
estimating g(w, z, S2) by u(z) < (1 —vy)u(z) +~v4(h(w,z), h(w,2z’)), where z’ is a random sam-
ple from S». However, this is not possible in an FL setting as Sz is distributed over many machines.
To tackle this, we leverage the same delay communication technique used in the last subsection. In
particular, at the k-th iteration in the r-th round, we can update u(zf’ k’l) for a sampled z; ; | by

;o (2 k1) = (1= )0; 4 (2] 1) + 7L (R(W] ks i,k,i)ahg,_zl)a 3
where hg‘zl is a random sample from H5 ™' where & = (j/,t,z zj, fl, ) captures the randomness
in client, iteration index and data sample in the last round. Then, we can use V f;(uf (2, ;))
in place of Vfi(g(w] ;27 ,)) for estimating A;;. However, it is more nuanced for estimating
Vfi(g(w;2,82)) in Ayg; since z € S is not local random data. To address this, we propose to
communicate Y"1 = {u;;l(zz . '),i € [N],k € [K] — 1}. Then at the k-iteration in the r-
th round of the i-th client, we can estimate V f;(g(w;z,S>)) with a random sample from /"~*
denoted by uzfl, where ¢ = (j/,t, z;f,ftl,)l), i.e., by using Vf]v(uzfl). Then we estimate Aq; and
Ay; by

k= Vfi(ui,k(zf,k,l)) Vil;( h(Wi:kiZi,k,i) ) hgél ) Vh(Wi,kézi,k,i)
—_—

active active lazy active

©))
k2= V() Vali(hig, h(wisal,,) ) VAW 2] )
— e ed
lazy lazy active active

where 7, £, 5, ¢ are random variables. Another difference from CPR with linear f is that even in
the centralized setting directly using G, ; + G , will lead to a worse complexity due to that
non-linear f make the stochastic gradient estimator biased (Wang et al., 2017). Hence, in order to
improve the convergence, we follow existing state-of-the-art algorithms for stochastic compositional
optimization (Ghadimi et al., | 2020; [Wang & Yang| 2022b) to compute a moving average estimator
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Algorithm 2 FedX2: Federated Learning for CPR with non-linear f
1: On Client i: Require parameters n, K

2: Initialize model w{ o, U = {u’(z) = 0,z € S}, G}, = 0, and buffer B; 1, B; 2,C; = 0
3: Sample K points from S%, compute their predictions using model w o denoted by HY,
4: Sample K points from S%, compute their predictions using model W@,o denoted by ’H?}
5:forr=1,..., Rdo
6: Send HZII, ’H;’gl , U1 to the server
7:  Receive Rz 1 ,R: 9 L Pr=1 from the server
8:  Update the buffer B; 1, B; 2, C; using R}y ,R: 9 !, Pr=1 with shuffling, respectively
9:  SetHi, =0, 7-[12 @,U{—@
10:  fork=0,. —ldol ‘
11: Sample zl, k1 from Sj, sample z7; , from S; © or sample two mini-batches of data
12: Take next hgfl, hzfl and u?l from B3; ; and B; 2 and C;, respectively
13: Compute h(wj ., 2z, 1) and h(W; .,z 5)
14: Compute h(w; ;27 ;) and h(W],, 2], ,) and add them to H; |, H] 5, respectively
15: Compute uj ; (2] ; ;) according to and add it to U]’
16: Compute Ga k.1 and G; k.2 according to
17: Gi=01=0)G] 1 +B(Gi 1 +Gipo)
18: Wir,k+1 = W;'r,k - nGzT,k
19:  end for

20:  Sends w; x, G7 to the server

21:  Receives w”, G" from the server and set WH'1 = W,, G:Jorl G"
22: end for

23: On Server

24: forr =0,...,R—1do

250 Collects Hy = Hi ,UH;, ... UH ,andU" =U; UUT ... UUy, where x = 1,2
26:  SetRi; = Hi,Ri, =H3, P/ =U" and send them to Client i for all 7 € [N]

. r+1 r+1 ; ; ~r+1 _ 1 N r+l ~r4l r+1
27:  Receive w; - .G ) from client 4, compute W' = &> 70, wi, G LN G

and broadcast them to all clients.
28: end for

for the gradient at local machines, i.e., Step 17 in Algorithm[3] With these changes, we present the
detailed steps of FedX2 for solving CPR with non-linear f in Algorithm [3| The buffers B; . and
C; are updated similar to that for FedX1. Different from FedX1, there is an additional communi-
cation cost for communicating Z/lir_1 and an additional buffer C; at each local machine to store the
received 737 from aggregated U™ 1. Nevertheless, these additional costs are marginal compared
with communicating H”~! and maintaining the buffer 5, ...

We present the convergence result of FedX?2 below with more formal results given in appendix.
Theorem 2. (Informal) Under appropriate conditions, denoting M = max; |S}| as the largest
number of data on a single machine, by setting v = O(Ag%//;) 8= O(W) n= O(WRQ/;)

and K = O(M'/3R/3), Algorithmensures that E [% ZT LIVE( _T)||2} < O(37)-
Remark. To get E[ £ Zf LIVE&™)|?] < €2, we just set R = O(e—g,) n= 0(37) v = 0(e?),
B = 62 and K = M ) is less than the total

number of iterations i.e., O(%) by a factor of O(M'/2/e). And the sample complexity on each
machine is EM4 which is less than that in Wang & Yang| (2022b)) which has a sample complexity of

. 1/2
. The number of communications R = O( Mé =

O(va:1 |S#|/€*). When the data are evenly distributed on different machines, we have achieved a
linear speedup property. And in an extreme case where all data are on one machine, we see that the
sample complexity of FedX2 matches that established in (Wang & Yang|,2022b), which is expected.
Compared with FedX1, the analysis of FedX2 has to deal with several extra difficulties. First, with
non-linear f, the coupling between the inner function and outer function adds to the complexity of
interdependence between different rounds and different machines. Second, we have to deal with the
error for the lazy part related to u.
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It is notable that our analysis for FedX2 with moving average gradient estimator for solving CPR is
different from previous studies for local momentum methods (Yu et al.,[2019a; Karimireddy et al.,
2020a), which used a moving average with a fixed momentum parameter for computing a gradient
estimator in local steps for the ERM problem. In contrast, in FedX2 the momentum parameter
is decreasing as R increases, which is similar to centralized algorithms for solving compositional
problems (Ghadimi et al.}|2020; |Wang & Yang, 2022b)).

4 EXPERIMENTS

To verify our algorithms, we run experiments on two tasks: federated deep partial AUC maximiza-
tion and federated deep AUC maximization with a pairwise surrogate loss, which corresponds to
with non-linear f and linear f, respectively.

Datasets and Neural Networks. We use four datasets: Cifarl0, Cifarl00 (Krizhevsky} [2009),
CheXpert (Irvin et al.,2019), and ChestMNIST (Yang et al., 2021a), where the latter two datasets are
large-scale medical image data. The statistics of these datasets are reported in Appendix. For Cifar10
and Cifar100, we sample 20% of the training data as validation set, and construct imbalanced binary
versions with positive:negative = 1:5 in the training set similar to (Yuan et al.,|2021b). For CheXpert,
we consider the task of predicting Consolidation and use the last 1000 images in the training set
as the validation set and use the original validation set as the testing set. For ChestMNIST, we
consider the task of Mass prediction and use the provided train/valid/test split. We distribute training
data to N = 16 machines unless specified otherwise. To increase the heterogeneity of data on
different machines, we add random Gaussian noise of N (1£,0.04) to all training images, where
€ {—0.08 : 0.01 : 0.08} that varies on different machines, i.e., for the i-th machine out of the
N = 16 machines, its 4 = —0.08 + 7 * 0.01. We train ResNet18 from scratch for CIFAR-10 and
CIFAR-100 data, and initialize DenseNet121 by an ImageNet pretrained model for CheXpert and
ChestMNIST data. All experiments use the PyTorch framework (Paszke et al., 2019).

Baselines. We compare our algorithms with three local baselines: 1) Local SGD which optimizes
a Cross-Entropy loss using classical local SGD algorithm; 2) CODASCA - a state-of-the-art FL
algorithm for optimizing a min-max formulated AUC loss (Yuan et al., 2021a); and 3) Local Pair
which optimizes the CPR risk using only local pairs. As a reference, we also compare with the
Centralized methods, i.e., mini-batch SGD for CPR with linear f and SOX for CPR with non-linear
f. For each algorithm, we tune the initial step size in [le™2,1] using grid search and decay it
by a factor of 0.1 after every 5K iterations. All algorithms are run for 20k iterations. The mini-
batch sizes By, Bs (as in Step 11 of FedX1 and FedX?2) are set to 32. The [ parameter of FedX2
(and corresponding Local Pair and Centralized method) is set to 0.1. In the Centralized method,
we tune the batch size By and Bs from {32, 64, 128,256,512} in an effort to benchmark the best
performance of the centralized setting. For CODASCA and Local SGD which are not using pairwise
losses, we set the batch size to 64 for the sake of fair comparison with FedX. For all the non-
centralized algorithms, we set the communication interval KX = 32 unless specified otherwise. In
every run of any algorithm, we use the validation set to select the best performing model and finally
use the selected model to evaluate on the testing set. For each algorithm, we repeat 3 times with
different random seeds and report the averaged performance.

FedX2 for Federated Deep Partial AUC Maximization. First, we consider the task of one way
partial AUC maximization, which refers to the area under the ROC curve with false positive rate
(FPR) restricted to be less than a threshold. We consider the KL-OPAUC loss function proposed
in (Zhu et al., 2022), which is the formulation of where S{ denotes the set of positive data, S;
denotes the set of negative data and ¢(a,b) = exp((b+ 1 — a)3/A) and f(-) = Alog(-) where
A is a parameter tuned in [1 : 5]. The experimental results are reported in Table I We have the
following observations: (i) FedX2 is better than all local methods (i.e., Local SGD, Local Pair and
CODASCA), and achieves competitive performance as the Centralized method, which indicates
the our algorithm can effectively utilize data on all machines. The better performance of FedX2 on
CIFAR100 and CheXpert than the Centralized method is probably due to that the Centralized method
may overfit the training data; (ii) FedX2 is better than the Local Pair method, which implies that
using data pairs from all machines are helpful for improving the performance in terms of partial AUC
maximization; and (iii) FedX2 is better than CODASCA, which is not surprising since CODASCA
is designed to optimize AUC loss, while FedX2 is used to optimize partial AUC loss.

FedX1 for Federated Deep AUC maximization with Corrupted Labels. Second, we consider the
task of federated deep AUC maximization. Since deep AUC maximization for solving a min-max
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Table 1: Comparison for Federated Deep Partial AUC Maximization. All reported results are partial

AUC scores on testing data.

K=32,N=16 Centralized Local SGD CODASCA Local Pair FedX2
(OPAUC Loss) (CE Loss) (Min-Max AUC) | (OPAUC Loss) | (OPAUC Loss)
Cifarl0 FPR < 0.3 | 0.76554+0.0039 || 0.6825+0.0047 | 0.7288+0.0035 | 0.7487+0.0059 | 0.7580-0.0034
FPR < 0.5 | 0.80324+0.0039 || 0.7279+0.0050 | 0.77024+0.0029 | 0.7888+0.0052 | 0.7978+0.0026
Cifar100 FPR < 0.3 | 0.628740.0037 || 0.5875+0.0016 | 0.6131+0.0054 | 0.6281+0.0032 | 0.6332+0.0024
FPR < 0.5 | 0.64874+0.0026 || 0.6124+0.0021 | 0.6406+0.0041 | 0.6569+0.0017 | 0.6623+0.0022
CheXpert FPR < 0.3 | 0.72204+0.0035 || 0.6495+0.0039 | 0.6903+0.0059 | 0.6902+0.0053 | 0.7344+0.0042
FPR < 0.5 | 0.78614+0.0040 || 0.7017+0.0042 | 0.77704+0.0071 | 0.7483+0.0033 | 0.7918+0.0037
ChestMNIST FPR < 0.3 | 0.6344+0.0053 || 0.5904+0.0012 | 0.6071+0.0040 | 0.5802+0.0039 | 0.6228-+0.0048
FPR < 0.5 | 0.6622+£0.0029 || 0.60724+0.0034 | 0.6272+0.0038 | 0.6026+0.0025 | 0.6490+0.0039

Table 2: Comparison for Federated Deep AUC maximization under corrupted labels. All reported
results are AUC scores on testing data.

K =32, N=16 Centralized Local SGD CODASCA Local Pair FedX1
(PSM Loss) (CE Loss) (Min-Max AUC) (PSM Loss) (PSM Loss)
Cifarl0 0.73524+0.0043 || 0.6501£0.0024 | 0.6407+0.0044 | 0.728740.0027 | 0.7344+0.0038
Cifar100 0.61144+0.0038 || 0.5700+0.0031 | 0.5950+0.0039 | 0.617540.0045 | 0.6208+0.0041
CheXpert 0.814940.0031 || 0.6782+0.0032 | 0.7062+0.0085 | 0.792440.0043 | 0.8431+0.0027
ChestMNIST 0.722740.0026 || 0.5642+0.0041 | 0.6509+0.0033 | 0.6766+0.0019 | 0.6925+0.0030
Cifar10, pAUC, FPR < 0.3 . Cifar10, pAUC, FPR < 0.5 . Cifar10, pAUC, FPR < 0.3 Cifar10, pAUC, FPR < 0.5
& = :
Eﬁ - Centralized é 060 - Centralized § o %
= - K-16 Zoss - k-16 2 =
> 0504 $- K=32 > 050 +- K=32 Z >
045 3 K=64 s 3 K=64
—4- k=128 —+- k=128 1

20 7 ) 0 ) 50 )
Number of Iterations (+100) Number of Iterations (¥100)

Figure 1: Ablation study: Left two: Fix N and Vary K; Right two: Fix K and Vary N

loss (an equivalent form for the pairwise square loss) has been developed in previous works (Yuan
et al.,2021a)), we aim to justify the benefit of using the general pairwise loss formulation. According
to (Charoenphakdee et al.,|2019)), a symmetric loss can be more robust to data with corrupted labels
for AUC maximization, where a symmetric loss is one such that £(z)4¢(—z) is a constant. Since the
square loss is not symmetric, we conjecture that that min-max federated deep AUC maximization
algorithm CODASCA is not robust to the noise in labels. In contrast, our algorithm FedX1 can opti-
mize a symmetric pairwise loss; hence we expect FedX1 is better than CODASCA in the presence of
corrupted labels. To verify this hypothesis, we generate corrupted data by flipping the labels of 20%
of both the positive and negative training data. We use FedX1/Local Pair to optimize the symmetric
pairwise sigmoid (PSM) loss (Calders & Jaroszewicz, 2007)), which corresponds to (E]) with linear
f(s) = sand £(a,b) = (1 + exp((a —b)))~ !, where a is a positive data score and b is a negative
data score. The results are reported in Table[2] We observe that FedX1 is more robust to label noises
compared to other local methods, including Local SGD, Local Pair, and CODASCA that optimizes
a min-max AUC loss. As before, FedX1 has competitive performance with the Centralized method.

20 & 50 0 ) ) 50
Number of Iterations (*100) Number of Iterations (¥100)

Ablation Study. Third, we show an ablation study to further verify our theory. In particular, we
show the benefit of using multiple machines and the lower communication complexity by using K >
1 local updates between two communications. To verify the first effect, we fix K and vary IV, and
for the latter we fix N and vary K. We conduct experiments on the CIFAR-10 data for optimizing
the CPR risk corresponding to partial AUC loss and the results are plotted in Figure[I] The left two
figures demonstrate that our algorithm can tolerate a certain value of K for skipping communications
without harming the performance; and the right two figures demonstrate the advantage of FL by
using FedX2, i.e., using data from more sources can dramatically improve the performance.

5 CONCLUSION

In this paper, we have considered federated learning (FL) for compositional pairwise risk minimiza-
tion problems. We have developed communication-efficient FL. algorithms to alleviate the inter-
dependence between different machines. Novel convergence analysis is performed to address the
technical challenges and to improve both iteration and communication complexities of proposed
algorithms. We have conducted empirical studies of the proposed FL algorithms for solving deep
partial AUC maximization and deep AUC maximization and achieved promising results compared
with several baseline algorithms.
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A APPLICATIONS OF CPR PROBLEMS

We now present some concrete applications of the CPR minimization problems, including AUROC
maximization, partial AUROC maximization and AUPRC maximization. A more comprehensive
list of CPR minimization problems is discussed in the Intrduction section and can also be found in a
recent survey (Yang, [2022).

AUROC Maximization The area under ROC curve (AUROC) is defined (Hanley & McNeil, [1982)) as

AUROC(w) = E[l(h(w,z) > h(w,2z))|ly = +1,y' = —1], (10)
where z,z’ are a pair of data features and y,y’ are the corresponding labels. To maximize the
AUROC, there are a number of surrogate losses £(-), e.g. {(w;z,2z') = (1 — h(w,z) + h(w,z'))?,
that have proposed in the literature (Gao et al.,|2013;|Zhao et al.| 2011} |Gao & Zhoul, [2015}|Calders &
Jaroszewicz, 2007; Charoenphakdee et al., 2019; [Yang et al., 2021b), which formulates the problem

into ) )
min —— Z — Z Uw,2z;,2;5), (11)
w |Sl| z;, €S, |82‘ ZjESQ
where S is the set of data with positive labels and Sa is the set of data with negative labels. This is
a CPR problem of (1)) with f(x) = .

Partial AUROC Maximization In medical diagnosis, high false positive rates (FPR) and low true
positive rates (TPR) may cause a large cost. To alleviate this, we will also consider optimizing
partial AUC (pAUC). This task considers to maximize the area under ROC curve with the restriction
that the false positive rate to be less than a certain level. In|Zhu et al|(2022), it has been shown that
the partial AUROC maximization problem can be solved by the

o1 1 Uw,z;,2;)
min — Aog | — exp(—222Y | 12)
W |81| Xi;sl g |82‘ Z§S2 p( A ) (

where S is the set of positive data, Ss is the set of negative data, EN() is surrogate loss, and A
is associated with the tolerance level of false positive rate. This is a CPR problem of (1) with
f(z) = Mog(z), and l(w, z;,2;) = exp(w).

AUPRC Maximization According to (Boyd et al., [2013), the area under the precision-recall curve
(AUPRC) can be approximated by

1 > Wy; = DI(h(w,2z;) > h(w,z;))
- Z H(Z/z _ 1) (Zj-,yj)esz

13
g (h(w, ) = (w,%,)) 4
(2:.:)€S (25,9;)€S
Then using a surrogate loss, the AUPRC maximization problem becomes
. ( Z) S]I(yj = 1)l(w,2,2;))
Z;,Yj)€E

min — I(y; = 1)~ - : (14)

w | | Z Z g(w7zizj)

(e v)€s (z;,y;)€S

which is a CPR problem of with l(w,z;,2;) = [(Iy,=1)0(W,2i,2;),0(W,2;,2;)] and

f@1,22) = £ (Qi etal} 2021).

B COMPLEXITY FOR SOLVING CPR AND ERM PROBLEMS

In Table 3] we summarize state-of-the-art results for ERM problems and CPR problems, in both
centralized setting and federated setting. We cover the cases when the data comes with/without
a finite-sum structure. For the CPR problem, we consider the finite-sum form for both the inner
function and the outer function.

Here we focuses on non-convex problems. For federated learning in convex/strongly-convex cases,
please refer to (Shamir et al., 2014} L1 et al., 2019; [2020; |Khaled et al., 2020; |Karimireddy et al.,
2020b; 2021} Mishchenko et al.| [2022; [Khaled & Jin, 2022)) and reference therein.

In Table 3] the * notion indicates that an algorithm matches a known lower bound complexity. The
Spider algorithm (Fang et al.| |2018)) matches the lower bound result in (Zhou & Gul 2019)) for the
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Table 3: Comparison for sample complexity on each machine for solving ERM problem and CPR
problem to a e-stationary point, i.e., E[||F'(w)||?] < €. N is the number of machines in federated
setting. n is the number of finite-sum components in outer finite-sum setting, which in ERM is the
number of all data and in CPR is the number of data on the outer function. n;, denotes the number
of finite-sum components for the inner function g when it is of finite-sum structure. In federated
learning setting with a finite-sum structure, each machine ¢ has n; data in the outer function. *
indicates the complexity matches a known lower bound.

Sample Complexity Setting
Centralized SGD* O(1/€%) (Ghadimi & Lan|[2013) Expectation
SPIDER*: O(y/n/€?) (Fang et al.|2018) Finite-sum
ERM PR-SGD*: O(1/Ne*) (Yu et al.|[2019b) Expectation
Federated VRL-SGD*: O(1/Ne*) (Liang et al.|2019) Expectation
SCAFFOLD*: O(1/Ne¢*) (Karimireddy et al.|2020b) Expectation
FedProx: O(1/Ne") (Li et al.[[2020) Finite-sum
Mime: O(1/Ne*) (Karimireddy et al.[[2021) Finite-sum
BSGD: O(1/¢°) (Hu et al.][2020) Inner Expectation + Outer Expection
BSpiderBoost*: O(1/€”) (Hu et al.|[2020) Inner Expectation + Outer Expectation
CPR - iralized MSVR: O(max(1/e*,n/e)) Jiang et al.[2022) Inner Expectation + Outer Finite-sum
MSVR: O(n/niy/e?) (Jiang et al.[[2022) Inner Finite-sum + Outer Finite-sum
SOX: O(n/e*) (Wang & Yang]|[2022b) Inner Expectation + Outer Finite-sum
Federated This Work: O(max; n;/€*) Inner Expectation + Outer Finite-sum

finite-sum setting and the SGD algorithm (Ghadimi & Lan, 2013) matches the lower bound in (Ar-
jevani et al., |2022) for the expectation setting. In finite-sum setting, the federated ERM algorithms,
i.e., PR-SGD, VRL-SGD, SCAFFOLD, matches the lower bound in (Woodworth et al., |2020bja};
Glasgow et al., 2022). BSpiderBoost matches the lower bound in (Hu et al., 2020). For CPR
problems with a finite-sum structure on the outer function, the tight lower bounds are still unclear.
After submitting to ICLR 2023, we noticed a later work Jiang et al.| (2022)) has propose a MSVR
algorithm (in Table [3) that further improves the sample complexities by utilizing variance reduce
techniques SVRG and STORM. However, naively implementing MSVR in federated setting would
have a much higher communication cost than our algorithm. Actually, even for those ERM algo-
rithms which have used similar variance reduction techniques, it remains an open problem whether
any communication-efficient algorithm could be feasible.

C ANALYSIS OF FEDX1 FOR OPTIMIZING CPR WITH LINEAR f

In this section, we present the analysis of the FedX1 algorithm. For z € S! and z’ € SJ, we define
Gi(w,z,w',2z') = Vil;j(h(w;z), h(w';2')) " Vh(w; z)

15)
Ga(w,z,w',2') = Vali;(h(w,2z), h(W;2)) T Vh(W';2).
Therefore, the
;,k,l = Vlgij(h(wzm er,m)v h;gl)Vh(W;M er,k.q)»
defined in (3) is equivalent to G1(w; k,zak’l,wﬁl,z;;’lz), where hggl = h(w?;l;z;;é) is a

scored of a randomly sampled data that in computed in the round r — 1 at machine j and iteration
t. Technically, notations j and ¢ are associated with ¢ and k, but we omit this dependence when the
context is clear to simplify notations.

Similarly, the

Gf,k,z = v2€j’i(hqzla h(wg,k; ZQM), )Vh(Wf,k-; Zz,k,z),
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defined in H is equivalent to G(w7, | s z, tl,’l, Wi 1+ 2] 1.o). Denote
N
1
VFz (W) = EZES{ N Z Ez/e‘gg V1fz‘j(h(w7 Z)v h(W, z/))Vhw (Z) (16)
j=1
Ajq
N
1 / /
+Eyesi Y Eoesi Valsi(h(w,2), h(w, 7)) Vh(w,2). (17)
j=1
JAVD

We make the following assumptions regarding the CPR with linear f problem, i.e., problem

Assumption 1.

* (;;(-) is differentiable, L;-smooth and Cy-Lipschitz.

* h(-,z) is differentiable, Ly,-smooth and Cy-Lipschitz on w for any z € Sy U Sa.

* Esesimes,||VEj(Mw;z), h(w;2'))Vh(w; z) + Vi (h(w;z), h(w;2'))Vh(w; z') —
VE(w)|? < o2

|VF;(w) — VF(w)|? < D2

Under Assumption [} it follows that F'(-) is Lg-smooth, with Lg := 2(L,C} + C¢Lp). Simi-
arly, G1,G> also Lipschtz in w with some constant L that depend on Cp,Cy, Ly, L. Let

L= max{Lp, Ly }. Basically, we consider well-conditioned problems where wi1 = A‘[‘!S‘jlll d
wio = AII “s‘j\Ql are of O(1), therefore the above constants are appropriate. Nevertheless, we can also

directly consider the FL objective where w; ; = 1 and w» ; = 1 similar to existing FL studies for the
ERM problem. We re-present Theorem 1| as below.

Theorem 3. Under Assumption by setting n = O( RJQV/S) and K = O( R]lv/g ), Algorithm@ensures
that

1< 1
E[EZ_; IVEW)I?] < O575). (18)
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Proof. Denote 7] = nkK. Using the L-smoothness of F( ), we have
)T(v—vr-i-l —r) ||—r+1 —’I‘H2
w ||2

") < VE(W"
T §Hv—vr+1 _
_WTH2

F(w"™t)
( KZZ zk1+sz2)>

—nVF(w
(VF(") = VE(w 1) + VF(w' )T (NKZZ k1+G2k2>> + L

ZZ (Giyr +Giyo)lP

— F(w

“HIF +2ﬁ2LII

1
< —=||VF(wW") - VF
< S=IVF(w) = VE(w

—VFw )T (NKZZ zk1+sz2)> S Iw w"|?
+1—WT||2

< 2772LH7ZZ fea T Glia)l® + Liw

—UVF _T 1 ( KZZ zkl+le2)>

Gira+ G:k2)>:|
2

(19)

t12)+G2(W’t”Z]’t'17 Wi ks 7,k2)

where
1
—E [qVF(w" T [ —
K (NK
—r—1\T 1 - r
:—E|:T]VF( 1 (722 Gl zky zkl: gtlyz]
@ k
- G1(W 7Zi,k,17 WT?lvz’jr';}Q) - GQ(V_VT717 Z;’jtlf’pwril Z;‘,kﬂ)
_r— T _r—1 _r—1 _r—1 _r—1 —r—1
+G1(W 7Zi,k,l7w »Zj,t,Q) +G2(W 7Zj’,t/717w sz?))))]
< TRITR@ P + AL w4 8AL L S S B — whil?
ik
:k,lv WT_I,Z;;,;) + GQ(‘T"T 7Zg' tl’ pWT_lvzzk,?) — VFi(w

—E[FVETYT (ﬁZZ(Gl(W —,
i k
+VF(W—1))]
T 4 8L e ST S B - whiF - AR VR
] k

P+ SALE W — w
r—1 ~ 72 1 — 7

I+ 800" e 3B — i

(20)

= Tg|VF(w"
4
sZr 1, % o are indepen-

<-E {ng(wH)HZ} + 8iHL°E||w

where the second equality holds because that data samples z; ; |,z
= r—1
" ) Z:,k,Q)

-1
dent samples after w"— L therefore
) zkleT717 Jt2)+G2( B ,Z;, fl’l’w 7VFZ(WT71)}:O (21)

E[(Gi(w™™
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To bound the updates of v‘v after one round, we have

Elw™ —w"|? —JEH ZZ Gira+Gir)l
= ~2IE” ZZ Gl Wi, k: i, k 1, W g;17Z;,t12) + GQ(WJ/ t1’7ZJ’ tl’ 1 :,k7zzr,k,2))”2

< 57°E

‘ﬁ ZZ[Gl(W;mZ;k,h g?17 §t12) + Ga(w ’_tl’azg’_,tl’,lvW:,kazz,k,Q)}
%
2
— 1
Z[le szly jt ) ]t2)+G2(w't’7Z;’t’17W sz?)]

r—1

~2 —
150 EHNKZZGIW £ Wi Z) + Cawlh 2k W el )]

~2 1 —r T — r— r— —r—1 _r—1
o EHW Z_E};[GI(W ) Zik, 1, W 1»Zj,t,12) + G2 (W XIS W2k 2)]
i

7 ZZ[Gl(wT7z;‘,k,lyv_vT_17Z;;,12) + GQ(W B ,Z;, tl’ 17V_V 7Zz k, 2)]
i k

1 _r—1 _r _r—1 _r—1 —_r—1 _r—1 _r—1 _r
7 E § [G1(w yZi k1, W »Zj,t,Q) + Ga(W 1L 15 W 7Zi,k,2)]
i k

2

=~ 1 — T r — T r— — T T— — T T —
+5172EHNK;;[GI(W Nzl W2l h) + Ga (W 2 W 2 0) — VE(WTTY)]

+57°E | VE(w" Y|

L? _ .
<107 —— N EZEHM w— WP+ 10~2 ZZEHW —w PP+ 1077 LW — w

—12
I

+ 10172]\‘;7 + 105°E || F(w" Y%

(22)
Thus
ZEW“ w7 < 3 [0 e Y S Bl - I+ 20 -+ 207E| P ).
' CE (23)
Then we bound the updates in one round and one machine as
W = wi > = (Wi s = n(Gr(W] g1, 2] g1 1, Wi 20 s) + Ga(Wh bzl Wiy 1,205 0)) — W12
< Wi ko1 —w" = (G (w" Zip 1,15 W Lz ;t12)+G2( ,z;, tl/ 1,Wr_1,z§,k_1’2))
+77([G1(‘7VT zk 1,1b W W' 1: ;;2) +G2(W S ;’_tl’ LW g gk—l 2)]
=[G (w" vzi,k—l,lvwril’ Zjt, 2) + Ga(W" _7’ tl/ W2 1 0)])
+n([Gi(W", 2] g 1, W' L §t12) + Ga(w" »er/ tl’ 17W s Zi —1,2)]
- [Gl(wg,k—lvzf,k—l,laWrilv Zj¢, 2) + Ga(W" ,zj, tl’ 10 i,k—lvzzr,k—l,Q)])
+ W([Gl(wf,k—uZz,k—1,1v‘7VT71, Zj wn) + Ga(w" 7Z§f tl/ Wi k—1,2] g—1,2)]
- [Gl(wz,kfper,kq,pwﬁlv ;tlz) + G2(W i’ t/7Z]’ tl/ 1 zr,k—lvzf,kq,z)])H? on
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Using Young’s inequality, we continue this inequality as
= 2
Efw" — wil

< (1"‘&)15”“’21@—1 —WT—U(GI(WPlaZ;k—l 1a"7"r717 ]t2)+G2( o ;/ t1’17 7T717Z§,k—1,2))||2
+ (4K +1)n 2E|‘([G1(7T_1a zrk 117‘7VT_1a jt2)+G2( vZ;' tl’l w _1’Zi,k71,2)]
—[Gi(W" 2z g, W' 172222)+G2( " 17Z]’t1’ W25 1))
+(Gi(W" 2]y W ;t12)+G2( 7z’t’17w 2 po1,2)]
—[Gi(W] 1, 2] 1, Wz ]t2)+G2( 7Zj/t1'1, Wi o152 k—1,2)])
+([Gl(wzkflaer,lcfl,lav_vr_lazjtz)+G2(_ Tz tl’ Wi k1% k—1,2)]

- [Gl(Wz‘T,/c—lef,k—Lp J, e Zjy wh) + Ga(w), ’t1’7Z]’ tl’ Wi k102 g1, DI
<(1+ E)EIIW{,H — W = n(Gi(W Tz, W)+ Ga (Wl w2 0)IP
+ 18K LPE(|[w" ™ = &" || + |W" — wi I+ W™ = w) %)
< (1 EWEy — W~V F ()| 4 5 Ko?
+ 18K LPE(|W" " = %" || + |W" — wi [P+ W™ = W) %)
< (1+ Bl — W2+ AR E|VE(w )| + 5K
+ 8K LE([w™ ™ = w2 + |W" = wi |+ W =i
<(1+ %)EIIWZ}H —w"|? + 8Kn’E||VF (W' 1)|* + 8Kn*(D* + o°)
+IBK P LE([w" ™ — w2 + [|W" = wi, |+ W =i
=1+ 2 + 18K’ L*)E|| W} ,_y — W'||> + 8K7°E||[VF(w"1)||* + 8Kn*(D? + o?)

K
+ K’ LPE(|W" " = W[ + [[w" ! = wi ).

(25)
Thus,
E[lw" — wi |
<8Kn2E||VF(’T YII? +8Kn*(D? + 0°) + 18Kn° L°E[||[w" ' —w"|?
k—1 2
—r—1 —'r 1 2\m
+w T =W ]) (;_O(HKHsKn ) )
< BEN’E|VE(W"|* +8Kn*(D* + 0%) + 18Ky L*E(|W" " — W[ + [w" ™" — W} !||*)5K
<4A0K*n’E|VE (W™ 1)|1? + 40K°n*(D? + 0%) + 100K *n* L’E(||w" " = w"||> + |w" ' =W}, '[%),
(26)
where the second inequality is due to 18 Kn? < %
Then,
R N K
N SN D EIWT = wi P < 80KPp’E|VE (W™ )| + 200K (D? + 07),  (27)
r=11:=1 k=1
and )
— ZEH Wt — W2 < 8OKZPE|VF (W™ Y)|1? + 8072 K2n*(D? + 02) 4 207 z\O;K (28)
Recalling (67) and (20), we obtain
F(wo)—F.) _o?
E|F(w 2<0(— 2(D? 4 0%) + 407 — | . 29
RZ |F(w) ( iR TT(D? 0%+ Al g (29)
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R

If we set n = O(Ne?), K = O(1/Ne), thus 7 = O(e), to ensure & > E||F(w,)||> < €2, it takes
r=1

Nle4)' O

communication rounds of i = O(e%) and sample complexity on each machine O(

D FEDX2 FOR OPTIMIZING CPR WITH NON-LINEAR f

In this section, we define the following notations:
Gii(W1,21,u,Wa,22) = V fi(w)VL(h(W1,21), M(Wa,22)) Vh(W1,21)

30
Gia(W1, 21,0, Wa, 2) = —V fi(W)VE(h(wy,21), h(Wa, 22))Vh(wa,z5). OO

Denote

N
VE;(w) —Ezeszﬁz B, esiVIilg(w;2,82))Vili(h(w:z), h(w:z'))Vh(w;z) (1)

A

+Eyes; N ZEZGSJ Vfi(g(w;z,82))Vali(h(w;z), h(w;z'))Vh(w;z'). (32)

Aj2
We make the following assumptions regarding the CPR with non-linear f, i.e., problem ().

Assumption 2.

* (;(-) is differentiable, L-smooth and Cy-Lipschitz. |((-)] < C.

* fi(-) is differentiable, L j-smooth and C's-Lipschitz.

* h(-,z) is differentiable, Ly-smooth and C},-Lipschitz on w for any z € 81 U Sa.

Eresiwes: IV fi(g(W:2,82))VE;(h(w; z), h(w; 2)) Vh(w; z) +
Vfilg(w;z,82))VEj(h(w;z), h(w;z'))Vh(w; z) — VF;(w)|]? < o™

IVE;(w) = VF(w)|* < D%

Based on this assumption, it follows that G; 1, G; 2 are Lipschitz with some constant modulus C
and are bounded by C, F' is Lp-smooth, where C'y, Cs, L are some proper constants depend on
Assumption We denote L = max{C1, Cs, Lr} to simplify notations.

D.1 ANALYSIS OF THE MOVING AVERAGE ESTIMATOR u

Forz, € Si,zy € S}, define g(w, 21, Wy, 2) = 0;(h(w1;21), h(w2,22)) and for z; € Si, we
define
N

g(wlazlaw2782 = Z ZGSJZ Wl;z1)7h’(w27zl)) (33)
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Lemma 1. Under Assumption|2| the moving average estimator u satisfies
NZ| 5 > Elu(z) — g(w, 2, Wi, S5)||?
1

z€|S}|
N

<0 N L

Z [El[u 1 (2) — 9(Wi_1,2, Wy, S2)|I?

i=1 z6|87\
752K200 ’72 2 2
o t 250"+ Cp)
B H 0
418 ~
(14 DD P — w4 22— w2 — w2 - i
(34)
Proof. By update rules, we have
r r r r -1, r—1 r
r _ a1 (2) —y(uf i (z) — C(h(W] k2], 1)7h(W;t ;thﬂ))) Z=12Z;k1
u. 7)) = s s . Ky s 5Ty K, 35
Z’k( ) { ug,k—l(z) z # Zg,k,l' 53
Or equivalently,
r r 7"—1 —1 r
u’(z) = { ui,kq(z) - V(Ui,kﬂ(z): g(wi W, ko 2y, k Wit 7Z§,t,g)) zZ= Zi,k,l (36)
’ ui,k—l(z) z # Zi k1
N
Define i, = (uf ,, 0 ;... Wy 1), Wi = 7 >, W), and
N =
o1( = oON Z |S | Z [0}, (2) — g(Wi, 2, W}, S2)||>. (37)

zcS; i
Then it follows that

*¢k T 9N Z S Z El|ui x(z) — g(Wk, 2, Wk782)||

€|S7

- NZ ‘S‘ Z |: ||uzk 1 )_g(WZ,Z7WZ782)H2+<u:,k71(z)_g(WZ,Z7WZ782)7u:,k(Z)_u:,kfl(z)>

ze|Si|

+ gl o @)

1 1 I .
= NZ S| Z E|:§||ui,k—l(z) —Q(Wk7z7wk752)”2

z€S]

1 _ _
+ @(uz,kfl(zz,k,l) - Q(WZ7 Z7W2732)7 uz,k(zz,k,l) - uf,k71(zf,k,1)>
1
o @) — i (2
2|Sz‘ 3 L) 3 3Ky

_r _r 2
V) S [ luacs(a) — gt 2w 50

+ @Eﬁl;kfl(zz,k,l) - g(W:,lwZz,k,l’W]T';le;;,lz)y uzr,k(Z:,k,l) - u:,k—l(Z:,k,1)>
1

1 _ _ _ _
@E@(W;k, Z’{,k,lv W;,t 17 Z;,t,12) - g(W£7 Z’{,k,lv W£7 82)5 u;‘,k(z;‘,k,l) - u;‘,kfl(zz‘,k,l»

+ 2‘8 ‘EHUZ k(zlkl) u’ir,k—l(z;'r,k,l)l‘z )
(38)
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where

(Wi p1(2f 1) — 9(Wi ks 2 15 W;;17 Z;,;,lz)a (2] 1) — W k(20 1))
1

=i 1(2f 1) — 9(W; 1,20 l,wﬁl,z;;g),g(v‘vz, Zi k1 Wi S2) — 0 1(2] 1))
+ (0] o125 1) — 9(Wi ks 2l g1, W T?,Z’;fé) u; (27 61) — (Wi 27 41, Wi, S2))

:<u£k—1(zf,k,1)*9( ik i,k,lv t a Jt2 ,9(Wp, 1klvwk782) g,k—1(zg,k,1)>

1 _ _
+ ;<uzr,kfl(zzr,k,1) — 0 (2] k1), 07 (20 5 1) — 9(WE, 20 11, Wi, S2))

3)
k1) =
<y 1(Zl ) — 9(Wi 4, 20 g1, W) Jt V25 5),9(Wi, 2z} Zi k1> Wi g S2) — W 1(%; 11))
+ %(”u;‘,k—l(z;‘,k,l) - g(Wg, 2 Z L, 1vwka82)H - HUZk(Z:,k,l) - u:,k—l(zz,k,l)Hz - ||u£k(zf,k-,1)

— 9(Wi, 21, Wi, S2)[1?)
(39)
Ify < %, we have
5 (3 -1- 220 et - s et
+(9(Wi 1 25 o1 Wiy 'z ;t12) 9(Wi, 2 g1, Wi, S2),up (2 1) —0f k1 (2] 5 1))
< *H\\uak(zzk,l) - uzr,k—l(zz,k,l)w +7g(Wi g, ZQk,pW}Zle;J}z) - Q(WLZQ,k,l,WZ,Sz)IIQ

n %nuzmzk,n ()|

<ANg(Wi ks 2 g1, W Tt17zjt12) 9("_"272;‘,1@,1"’_‘72782)”2

< g 2 W ) — (W g W S|P+ Ay —
F gL, — WP 4 L wl -

< dy0? 4 Ay LW — P+ L wl, w2+ Ay Lwl —

(40)
Then, we have
1 L1 N
7\,2 S E|uj () — g(W}, 2, Wi, S2) |? Z S Z Elluj ;1 (2) — (W}, 2z, W, S2) ||
= =r ] i=1 1‘ze|8;‘\

1 1 1 1
+ N Z @ 2*||uf,k—1(zf,k,1) - g(wZ,ZZk,l,wz,Sz)IIQ - %Huak(zak,l) - Q(Wzvzf,k,lvwga&)HQ

’7+ e o _ .
8y ”uzk( :k,1)_uzr,k71(zzr,k,1)||2+7||9(WT lvzzr,k,uwr 17Z;,t,12)_9(WT 1» Zip 1, W ! 82)H2

+4yL|w" — w1 + 4’yfj||wir,k — w2 + 4’yl~/2||w;;1 w2

. . 1 o _ . .
+ 0] o—1(Zf 1) = 9(Wi ks 21, Wiy »Z§t12) I(Wi, 20 1, Wi, S2) =0 1 (275 1)) |-

41)
Note  that Zzsfézﬁk,l [0} (z) — 9(Wiip2 Wiy, S)IP = Zz;ézf,k,l [0 k1 (2)
I(Wi 1,2 Wi, S»)||?, which implies
1 _ _ _ _
> (i k-1 (28 k1) — 9(Wi 2, W5, S)II” = w1 (2 1, 1) — 9(Wh, 2, W, S2) %)
1 - B 42)

=2 (I} k1 (2) — g(W, 2, %5, S2)[I” = [|uj . (2) — g(W}, 2, W, S2)|1%) -
z€S}
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Besides, we have
E(ui p1(2f 1) — 9(Wi 452 1 T?1,Z§t12) 9(Wis 2 1, Wi, S2) —ug 1 (2] 11))

=E(uj, (2] 1) — g(w" !z Zi 1, W laZ;,?,lz)vg("—"z’er,k,1»"_vz752) —uj (2] 1))
+E(g(w 2, W Z;,?Q) - 9(Wi z;,k,lﬂW]T';17Z;;,é)vg(vv£>z£k,1aWZaSQ) —u;y1(2f 1))
< E<u§k—1(zg,k,1) - g(wr—17 Zi k1) W W T_la Z;‘;,IQ)vg(wza Zg,k,17WZ7 82) - g(wr_la Z;,k,17wr_la 82)>

+E(uf 1 (2] 1) — 9(WT_17Zi,k,17W7'_17Z§,§,12)’g(V_V’”_laZ?,k,uWr_l»Sz) —u; (27 1))

. 1 _
+ W = Wil 4 (W2 Wi S2) — ui o (7)1
<ACG + *II W

+Eu 1( Pk1) — Q(Wr_lvZ:,k,pWr_laZ;,Z,lz)vQ(Wr_lvzzr,k,1vwr_lvs2) =i 1(zi 1))

o 1 _ . _
+ W —willP + 1||9<W’“7ZZ,19717WZ,82) —ul (2] )7,

(43)
where
E(uj,_1(2] 1) — g(w 1, Zi 15 W Z;;,lz)a g(w 1, Zi k1, W, S2) — i 1(2] 1))
=E(u; _1(2{ 1) — u%l(zak@) + u?,al(zz",k,l) —g(W" ], W 1,Z§;712)7
9wzl W T Ss) — u?,al(Zl»",k,l) + u?,al(Z2,k,1) — i 1(2l 1))
SE(ui 1 (2f5q) — u%l(z;,k,1)>9("_"r_17Z;-,k,hV_VT_1752) - U§,61(ZZ',k,1)>
+ ]E<u1r,k—1(zg,k,l) - uf,al(ZZ,k,l)v u?,al( ;‘k 1) — u?,k_l(Z§,k,1)>
+E(uyg (2 g0) — (W 2l W 20 h) g (W 2 W So) — g (2 )
+ E<u§,61(z;",k,1) —g(w 1, Zi k1 W' Z;,t,12)’ uf,Bl(Z?,k,l) —uj (2] 1))

o 1 o o o
< 4]E||u£k—1(zf,k,1) - ug,ol(zf,m)HQ + *EHQ(WT 17Z:,k,1vwr 1,32) - u;,ol(zzr,m)HQ

—Ellg(w 2y, W' T Sp) — U’{,El(% )l

1 e o _ _

+ 1 Ellg(w” Yag W S) —ul N (2] )P+ AR (2 0) —upgt (2 0) 1P
(44)
Noting
—E —r—1 'r' —r—1 S B e i 2
g(w" ™7, Zi g, 1HW 2) ;o (Zi,k,l)H

=—E|g(w", z,k,la"_"r_la&) — 0 (2 1) Ui (2] ) — u?,al(zz k, DI
=—E|g(w" ", Zz,k,uv_"r_leZ) - u:,k(zzr,k,l)HQ —Elluj p (27 k1) —ui, (zi,k,l)H2

+ 2E(g(w" ", Zi g1 W' 8y) - W (27 1) WG (27 k1) — u?,El(Z’{,k,m (45)

1 o o _
< _§E||9(WT 17Z1T,k,1aWT 1»32) - u;,k(zzr,k,l)nz + 8||uzr,k(zf,k,1) - u:,ol(z:,m)”z

1 X X X ) )
< _§]E||g(v_v7_17Z;,k,17w7_1782) - u;,k(zz,k,1)||2 + SﬂQKQCg'

Then, we can obtain

74—1 1
Z| | Z E” (Wk:7z Wk:782)||
1

z€|S}|
'Y(l— 11' )+1 1 N 1 2
< S 2N S Efulyy(2) — g(Wh 7 W S)|2 + e (02 + C2) (46)
2 N & |8]| =~ |Si
2 z€|S}|
vB2K2C? o 1 _ ; I
+ ST] O+ w —w" 1H2+72NZHWT_Wi,k||2+HW — Wi
1 i
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D1v1d1ng VH on both sides gives

NZ| S| Y Eluii(z) - g(wh.z, W, Ss)|f?
1

z€|S}|

~(1 4 )+1
R

Tt 1 Z Elluf ;1 (2) — g(Wy, 2, WkaSQ)H

2€|Si |

752[(202 72 =T T — =T T =T =T
W+2\5§|(”2+03)+272||W = WP 292 W = wi P+ 2w — W
47

Using Young’s inequality,

Z| ‘ Z EHu'Lk (kaz Wk782)||
1

z€|S}|

JEluf .y (2) = g(Wi 1,2, Wi 1, S)||?

Mz

< ( T
- 2\51 4|51|
i=1 z€|S] \

4|81, +
+(1+ |71|)L2||V‘VL1 = WillP]+ 2927 = WP 292 — w2 - w1

N
Y 1 1 _ _ 2
<(1- —)— E . E E||u} —g(wy, W
= ( 4‘8“)]\7 g |8’L| [ ||u7,,k71(z) g( k—152; k71782)H

1 z€|S}|

VB2K2Cy v, 2

+ 25 (0" + ()

|Si |Si | 0

4|88 -

1+ ',Y”>L2||wz_1 — WEIP 2 w2 4 292 w2 2w — W
(48)
O

D.2 ANALYSIS OF THE ESTIMATOR OF GRADIENT

With update G}, = (1 — B)G}, | + B(G ., + Gi o). we define Gy = Z Gy, and
Aj = ||Gy — VF(w})||?. Then it follows that G}, = (1 — 8)Gy_, + B > i(Gi 4 T Gi’w).

Lemma 2. Under Assumption[2] Algorithm[3|ensures that

, o ., B2o? _ r
AL <(1=B)Giy — VE(Wi_)|I* + 27 +58||w" — Wi,kH2 (49)

+ 58w = W2+ 56|uf (2] 1) — gar,, (W)
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Proof.
= |Gk — VE(w})*

T 1 T ™ — T
=[|(1-8)Gr-1 + IBN Z(Gi,k,l + Gik2) — VE(Wy) |2

- H(l CBNGs — VW) + (1 — B)(VE(W_) — VE(W]))

1 -
+ ﬂ(ﬁ Z(Gl(wz,hzz,k,h Wik (2i k1), W ] t 5 Z;t12) + G2(WJ/ t1’7zg’ tl/ 1 uT’ tl’ (Z i’ k/ 1)y Wiks Zik,2))

i

1 . . _ _ .
N (Gl( er’,k,h u?,k(ZQ,k,1)7w] t 1a Z; ¢, 2) + G2( Z i’ tl’ 1 UT/ tl’ (Zr/ tll 1)awz,kyz:,k,2))>
1 —r—1 _r T T —r—1 . —1 r—1 r—1 —r—1 _r
+ B N Z(Gl(w azi,k,laui,k(zi,k,l)aw ) J,t,z) + G2( Z i’ 17u ' t'(z it 1)7W 7zi,k72))
7
1 —r—1 _r _r T _ T —r—1 r—1
- ﬁ (G1(W vzi,k,lag(w y Zik, 1y W 782),W azj,t,Q)

+ GQ(W - ,Z;/ tll 179(‘%,7‘— 7ZJ/ t’ 19 T_1782)7WT_1vz:,k,2)))
1 . _ _ . _
+ﬁ(ﬁ Z(Gl(wr 17Z:,k,hg(wr7Z§,k,17wr782)7wr lvzg",t,l2)

+G2(V7VT7 ’ J/ t/ 179( 717ZJ’ tll 17WT71782)7W70717Z21€,2))

1 z : —r—1 _r —r—1 _r —r—1 —r—1 _r—1
- N (Gl(W 7Zi,k,lvg(w yZi k1, W 782)3W 7zj,t,2)
i
—r—1 —1 —r—1 _r—1 —r—1 —r—1 _r
+ GQ(W 7ZJ’ t’, 1,g(W 7zj’7t/’1aw 782)7W azi,k:,Q)))

+ B(i Z(Gl(WT_17 Z;‘,k,h g(WT_lv z:,k',lywr_lv 82)7 Wr_l? z;;,12)
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Denoting g,(w) = g(w, z,w,Ss). Using Young’s inequality, we can then derive

Al < (1+8)[(1 = B)(Gior — VF(Wi—1))

1 -1 1 _r—1 _r—1 —1
+ﬂ <N Z(Gl(wr 7Z§,k,17g(wr ,Zz,k,l,wT 782)7WT 7Z;,t,2)
i

+Ga(W T2l g (W T2 W S), W T 2 n)) — VE(WTTY)

1 1 _
+(1+3) ‘ﬁ (N D (G (Wi 2o, Wk (200 WS 250) + G (W72 o Wi (257 4 1), Wi 26 .2)
i

1 —_r—1 T T T r—1 — —1 r—1 1 T r

N (Gl(w 7Zi,k,17ui,k(zi,k,1)7wj t o g t, 2) + G2( 7ZJ/ /10 Wyr yr (ZJ/ t 1)awi,k7Zi,k,2))

i
1 —r—1 T T T _r—1 r—1 —r—1 r—1 r—1 r—1 _r—1 r
+6l ¥ DG Tz (), W2 ) + G (W (2 ) W 2 o))

i
1 —r—1 _r —_r T _ 7 —r—1 r—1
- ﬁ Z(Gl(w vzi,k:,lag(w y Zi k1) W 782),W azj,t,Q)
1
+G2(V_V 7Zg’ t/, 1ag(V_VT_ 7ZJ’ t’ 19 T_1782)7WT_17Z:J€,2)))

Z(Gl(wria Z;‘,k,h g(w'l”7 Z;k,h WT7 82)7 vaT‘*17 Z;;é)

i

2=

oo

+G2(V7Vr7 7ZJ/ t, 179("7"7071 z /tl’ LW ! ,S2), rilvzz,k,Q))
1 — T — r— T — r— —r— T—
N (Gl( Zi,k,hg(w 17Zi,k,l7w 1782)3W 1azj,t,l2)
2
+ GQ(WT7 7Z / tl' 1ag(w’r717z i’ tll 17WT71782)7WT715Z’1,"J€,2))
(51)
By the fact that
1
E[i (Gl (erl’ ka 1 g(wrila ka 1 Wr717 82)’ Wril? ZT’;12)
N Z " (52)
+ GQ(WT 9 ;/_tl’ 17g(w71717Z;"’_,tl’,hwrilaSQ)vWrilaZ;'A,k,Q)) - VF(Wril)] = Oa
and1
E”N Z(Gl(wr_laZ;’:k,lﬂg(wr_laZ27k,1awr_1782)awr_17Z;";}Q)
2
r = T — T W' — T — r T g
+ Go(w" ’zj’ tl’ 179(“’ 1’Z]' tl’ W 18,), W 1azi,k,2))*VF(W HIZ < N
(53)
we obtain ) o
_ B o+ C;C
AL < (14 B)(1 = BPIGL, — VR +252 0
+ 501w — wi | + 58w _’"||2+5ﬁ||u§k( 2] 1) — 9(W, 2] 5,1, W', S2))|7
T B T
< (1*5)||Gk_1*VF( DI+ 27— ~ +5ﬂ\|w —wigl? 58wt - w2 (54)
+58— leu z)51) — 9(W", 2] 1, W, 8))|I?
+ 56—+ ZHu 't’ z; ’t’ )_Q(V_"r_l’ Zj tl' LW ! 32))”2
O]
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D.3 THEOREM

We re-present Theorem 2] as below.

Theorem 4. Suppose Assumption 2| holds, denoting M = max; |S}| as the largest number of
data on a single machine, by setting v = (Alg//:) 8 = (W) n = O(W) and
K = O(M'Y3RY/3), AlgorithmHensures that E {ﬁ 27-:1 IV F(w )||2] < O(77)-

Proof. By updating rules,

[w" —wi,|I* <’ K*C7CY, (55)
and
Iwic =W = NKZZG I” < ZIIG’” VE(w)) £ VR (56)
i m=1

By updating rule, we also have

W' = |? = 7| ZZGT PP < ZHGT L VF(wp ™) + VE(w, )|)?
(57)

Lemma 2] gives that

LZEHGDVNWUH% a0 2o +5ﬁ—2nw — il 5 3 -

RK k k = i,k R

BRK
+5RZNKZ‘SZ > Efuli(z) - g(W;z, S0
657
*“ZNKZW S gt ) — o9 el S
GSI
(58)
which by setting of 17 and 3 leads to
2A  4B0?

E|GL — VF(w})|? < 0 4+ 277 110 2002 9752 F(wL)|?
RK;; | VEWwp| _ﬂRK+ N T Bi*CFC2 + nRZ”V )l
5% ZNKZ|S|ZE||Um 9(W":2,5)|?

zES]
+5RZNKZ| ST oI ) — oW hEg L S
't' ZESZ
(59
Using Lemma |I| yields
RZ NKZZ\ Si| > Ellui k() - g(Wi, 2. W, S2)|?
z€S!
4M 1 18M2 1
E 0 S 2 L2 2
ZNKZ|31 g ||llzo — (W, 2, W), S2)||* + T RKZ Wiy — Wil

+ 4’y52KQCO + 8y(0? + C2)

1 — 7 W' 12 T 2 ‘Sﬂ 1 — 7 — 7|2
+ 8 ST W — WP 4 81 e oI =W 55 g I = Wil

7,k
(60)
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Combining this with previous five inequalities, we obtain

RZNK ZZ Z Eluj . (2) — g(W, 2, W}, Sa)|?

z€S}
M o M? M 1
< - 2 2 - 2
_O< rre TVPE by 0t 4+ 8y M+ ol "R N RZ PIVE® ]|
(61)
anld
— S E|G; — VE(w)|
r.k
M o M? M 1
< - 2 2 R - 2
O( rie TVE 0t 4 8y|SH + ol (ﬁRK N Z IVEw )
(62)
Then using the standard analysis of smooth function we derive
F(v—vr-i-l) _ F(V_VT) < VF(V—VT)T(V—vr-i-l ) ” <r+1 —rH2
_ r — 7 r+1 —1’ 2
— —IVF(w (NK 3230 Gy~ VF() + VF(w )) Sl [
e — T T] =T T‘ 8 ' —T‘
= || VF(®")|* + §||VF(W |+ *II ZZG |+ IIW e
ﬁ T by
< 5 IVEWwT) ||2+n|| ZZ ))H2+77H*Z(VF(WIC)*VF(W NI
k
+ %HWTJrl _ Wr”2
’F] =T T =T ~I~’2 =T =T =T
—5IVE)I + nK Z I~ Z( i = VEWD))I® + 7= Do lwg = w1+ H i
) k
(63)

Combining with Lemma|[T]and Lemma[2] we derive

1 2 M S 5 M? M 1 8
_ T < R -
RET E||VF(w")| O( RK+vﬂK +5+7n? +87M77 + n( + =)

BRK N
(64)
By setting parameters as in the theorem, we can conclude the proof. Further to get
£ 3L EIVF(W")||? < €2, we justneed to set y = €2, 8 = \/EJZT, K= ‘/CM, n=4%.R= ‘/: O

E ANALYSIS OF FEDX1 FOR OPTIMIZING CPR WITH LINEAR f WITH A
LARGER BUFFER

In this section, we present the analysis of FedX1 with a larger buffer, i.e,. B; 1, B; 2 keeps the history
of previous 7 > 1 rounds instead of only keep the history of the one previous round. For z € S, and
z' € §;, we define

Gi(w,z,w',2') = Vl;;(h(w;z) — h(w';2')) " Vh(w;2)

Ga(w,z,w',2') = —Vi;;(h(w,z) — h(w';2')) T Vh(w';2)),
We use superscript {r — 7,7 — 1} to denote that a historical statistics sampled from the buffer is
computed at some round in (r — 7,7 — 1) randomly. Therefore, the

r r r r—r1,r—1 ro.,Tr
Gi,k,l = Vili; (h(Wz‘,m Zi,k,l)a h275 )Vh(wi,kvzi,k,l)a

(65)

30

77*”2.



Under review as a conference paper at ICLR 2023

defined similarly as (3) is equivalent to Gy (W} 4,2}, |, W; " 'z ;t 5), and the
r—r,r—1
Gfk 2 = ngj i(h h( Wi k> z’,k,2)7 )Vh( Wi k> z’,k,2)7
defined in (5) is equivalent to Gia (W, tT/ T T W ).

We use same assumption and notations as in Appendix [C|Under Assumption (1} it follows that F'(-)
is Lp-smooth, with Lr := 2(LyC}y, + C¢Ly,). Similarly, G1, G2 are also Lipschtz in w with some
constant modulus L that depend on C}, Cy, Ly, Ly,.

We present the analysis in the theorem below.

Theorem 5. Under Assumption I by setting n = O(Rz/s) and K = O(NR1/3) and T = O(1),

Algorithm 2 with a larger buffer that keeps the history of last T rounds ensures that

RZIIVF (W 7))?] < (32/3) (66)

Proof. Denote 7 = nK. Using the L-smoothness of F( ), we have
@)~ F(w") < VR T (85— w0 4 L - ?

~ =T = T—T = T—T T T z’ = T =T
—i(VF(W) = VE(W'") + V(") (NK > PG+ Gi,m)) Sl -
1 _ -
S IVF) = VF )P+ 2P 7 L2 (Glaa+ o)l

~ A 1 r T =7 *7"
—NVF(w )T (NK ZZ(szl + Gi,k,2)> *H o ||2

<2772LH ZZ (Ghpn + Glpo)l® + LWt = w'|?

—WVF _7 T <NKZZ Zk1+G'Lk:2)>7

(67)
where

—-E

—7" T 1 r
NV EF(w <NK Gk +Gi,k,2)>:|

i
Z—E[UVF (w"™7) T(%ZZ (G1(Wik, Zig1, Wy, " 17Z§,?,12)+02(W§7,§” 17237 tlf 1 Wik Zik,2)

i k
= (Gr(w"™ »Zi,k,hwr_TaZ;;;’T_l)+G2(WT_T7Z;/;Q LW 2 02)
+Gi(W T 2, W 2 )+ Ga(W T2 W z{ym)))ﬂ

_ ﬁ —T—T\|2 ~ 72 — T —r T 72
= TRV E(w )| + SALEw — W + 8L NKZZEHW o

~ _r—T 1 —r—T _T —_r—T _T—T,r— _ r— r—T,r— _r—T _T
—E [fVF(w" )" (NKZZ(Gl(W 1Zik,1sW 2o D)+ Go(w Tz LW 2] 0)
ik
~VE(WT) + VEWT))

—r—7\2 ~F2 _r —'r T 72 —r T T 2 ~ —r—7\12
BIVEW™ )" + 8L E[w" — I+ 87L NKZZEII = winll” = E[VF(wT)"

(68)

<

=~
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By the updating rule,
E|[Wri1 — Wi —NQEH*ZZ Gira+Gira)l?

= ~QIE”iZZ G(1 zlm zk:17 T o lazgg,g’r_l)_FGQ(wr/;r 17Z;/_,Z;:’ll’_17wzr,k7Z:,k,Q))HQ

< 57°E

r T,r—1 r—71,r—1 r—71,r—1 r—7,r—1 r T
‘NK E E Gl Wi, k7 i, Ic 1, W 7Zj7t,2’ ) + GQ(W it 7Zj’,t/:1 7wi,k7zi,k,2)]

2
—_r—T _T _r—71 _r—1 —_r—7t _r—1 —r—T _T
E [Gl(w y Zi k1) W 7Zj,t,2) +G2(W 7Zj’,t’,1vw 7Zi,k,2)]
i k

~ 1 _r—T _T _r—T _r— _r—T _T— —r—T _T —r—T
+5"721E TZZ[GI(W yZik,1, W azj,t,12)+G2(W 7Zj’,t1’,1vw 7Zi,k,2) 7VFZ(W )]

+ 57 ]EHVF w7
< 107° NK ZZE”Wl k= W7+ 1077 NK ZZEIIW W P+ 107w - W

2
+107% — + 105°E||[F(w"~ 7).

NK
(69)
Thus
Z]E” T+l rH2
(70)
40 E Ww[|? 420 207°E| F 2.
< 7 2 107 g S S iwi - WP 70 207 ()|
Since ¢;;(+) is C, Lipschitz, we have
Elw" — wi,|* <n*K*C}. (71)
and
E|w" — w72 < n?K2*r2C3. (72)
Thus,

R o(F(w P
1 = 2 (F(wo) = FY) | 2/ 2 2 =222 o
_ < . S AT _ 7
E E||F(W,—7)|| O( iR +n°(D*+0°) +0°1°C; +4OnN = R

Setn and K as in theorem, we conclude the proof. Further, to ensure + E E|F(Ww™T)|? < €%, we
r=1

just need to set n = Ne?, K = 1/Ne, i) = nK = e and 7 = O(1), then number of communication

rounds is R = O(% ), sample complexity on each machine is O( -z ). O

F FEDX2 FOR OPTIMIZING CPR WITH NON-LINEAR f WITH MEMORY
BANK

In this section, we present the analysis of FedX?2 with a larger buffer, i.e,. B; 1, B; 2 keeps the history
of previous 7 > 1 rounds instead of only keep the history of the one previous round. We use the
same notations and assumptions as in Appendix [D] The framework of the proof is similar as in
Appendix [D]except that we need to handle the extra error caused by the large buffer.

Theorem 6. Suppose Assumption 2| holds, denoting M = max; |S}| as the largest number of
. . . 1/3

data on a single machine, by setting v = O(%), B = O(W), n = O(W),

T = OMY*" and K = O(M'/3R'/3), Algorithm@ensures that E [% Ef”:l ||VF(WT)H2} <

Proof. First, we need to handle the u estimator. Denote g(w1, p, wa,q) = £(h(w1;p), h(wa,q)).
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sby

—7,r—1, 1 _
ul,(z) = { “f,k—1(z) - 7(u§,k—1(z) - E(h(wf,m Z;,k,l)v h(W;tT " 7Z;t2T ) z=1z;,,
3

; uy, (z ZF i),
(74)
Or equivalently,
—rr—=1 _r—7r—1
u’ . (z) = { uf,k—1(z) - 7(“%-1(2) - g(wg,kvzzr,k,lijr',tq— " ’Zg,t,y ) z= Z; 1
N ug,k—l(z z# Z )1
(75)

N
=T r r r ~r __ 1 r
Define uj, = (uj ;,uh ..., Uy ;) and Wi = 5 > wi ;. We have
i=1

oON Z |Si Z Elluix(z) — 9(Wk, 2, Wk,52)“

65’

=N Z \Sl Z E{ luf k—1(z) — g(Wy, z, Wk,Sz)H +(u j—1(2) — g(Wi, 2, Wi, S2),uj 1 (2) — uj ,_1(2))

ESl

b o I() i (a M
NZ\Sl ZE{ ||ulk 1(z) — g(wy, 2, Wk,Sz)H

z€S]

1 _ _

+ 7|$Z| (i x—1(2i k1) — 9(Wk, 2, Wi, S2), 0 (27 1) — Wi k—1 (20 5,1))
1
1 7 T r r 2

+ 251 lui k (Z8 k1) — Wi k—1(Zi k1)l

1
1 1 1 r _r — T 2
= N Z 7 Z E *Hui,k—l(z) - g(WmZ»Wk,Sz)H
i ‘Sll z€S! 2
1

1 i
+@<U£k71(zzk,1)—Q(Wf,k, e LW 1vz;,t,72’T 1)7u:,k(zzr,k,1)_uz,kfl(zzk,ln
1 rr— _ _
+@<9(W;k, Zik1s Wi 17Z;,t,72-7r Y — g(Wi, 2] k1, Wi, S2), 0 (20 501) — Ui 1 (2 k1))
1

1
+ m”uz,k(zz,k,l) - uzin,kfl(z;k,l)HQ )

(76)
where . )
(j _1(2f p1) — 9(Wi k20 1aWr e ,Z;;;’r_ )W (27 g 1) — g 1 (2] 1))
—rr—1 _r—7r—1 _ _
= <u;,k—1(z;,k,1) - Q(Wi k> Zi k 17W§t” 7Z;,t;T )s 9(W, Zz,k,1’WZvS2) - uzr,k—l(zz,k,l»
1 _r—rr—1 _ _
+ <u§,k—1(zzk,1) - Q(W:k Z;, k 1aWr e ’Z;,t;r ) uzr,k(zam) - g(WZaZf,k,pWZ,Sz»
1 _r—rr—1 _ _
= <u;,k—1(z;,k,1) - g(wi,ka zi,k,l’wg,t o 7Z;,t;T )s 9(W, Zz,k,1’WZvS2) - uzr,k—l(zz,k,l»
1 _ _
+ ;<u£k71<zzk,l) - UZk(Z{kJ)’ u;,lc(zg,k,l) — g(Wg, Zf,k,1aWZ7S2)>
-1 _r—rr—1 _ _
<1 (Bl 1) = 9(OW ks 20 s Wiy 25 ) g( Wi 2 g1, Wi ks S2) — WG (2 k1))
1 _ _
+ %(”uak—l(zak,l) - Q(WZ»Z;,IC,MWL&)H? - Hu;;,k(zg,k,l) - u?,k_l(ZZ,k,l)IIQ
- ||11 ( 1k1) g(WZazz,k,thv‘SQ)”Q)'
(77
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If v < %, we have

1/1 v+ 1
-5 (31 150 et - el
1 rerr—1 _ _
+ <g( 1 k2 %, k 17WT o 7Z§,t,gr ) - g(W£7Z:,k,hWZaS?%u:,k(zg,k,l) - u;’:k—l(zak,l»
1 —rr=1 r—7r—1 _ _
< *B\\uak(zﬁk,l) —uf (2 DI+ (W g2l w72 ) — g(Wh 2 Wi S) |1

1
+ @”uzk(zz,k,l) - uzr,k—l(zzr,k,l)||2

S’VHQ( zkﬂ zk:lﬂwr o lvzgyg’ril)_g(v_vzvzzrk 1?‘7‘/2782)”2

< Ay g(F T2 W2 ) — (W2 W S) |+ Ay LW — w2
+dyLlwhy, — W'l + Ay Llw - w
40 + Ay LI[W" = %2+ Ay LWl — W2+ dy L wl =W
(78)
Then, we have
1, N 1, _ _
SI8E = (W12 < Slai, — g(w; )]
S () — 9O By WE S0P — o (2 1) — 9O 2Ly W o)
N - |8ﬂ 2,.), 1,K— 1,K, 1K, 2,.}/ T, K, 1,K,

|| (2 1) — W1 (20 )12+ llg(W T 2, W 2 ))

- g(wrf'r’ Z:,k,lv WT7T7$2)||2
+ 47L||W — WP dy L wiy — WP Ay L2 wi - w2

+ (i p1(2i 1) — g(wg,kvZ:,k,lvW;,;l’z;:;,é)vg(wz’er,k,lﬂwzv‘sé) —u; . 1(2i 1)) |-

(719)
Note  that Zméz;',k’l ||u;k(z) - 9(W£+1>Z7W£+1»S2>||2 = Zz;ﬁz;"k,l a5 11 (2)
g(Wi 1,2, W}, 1,S2)||?, which implies
1 _ _ _ _
ﬂ (Hu;’:k—l(zzk,l) - g(WZ’ er,k,lawzv‘92)||2 - ”uak(zak,l) - Q(W£7Zf,k71,wz732)||2)
(80)

> Z ui 1 (2) — 9(Wi, 2, Wi, So)||” — [[uf(2) — g(W}, 2, %7, S2)|1?) -
7 sesi

Besides, we have

E(uj p_1(zi k1) = 9(Wi ks 201, Wy 1aZ;‘:QT_1) 9(Wi, 27 1, Wi, S2) —ug 1 (2] 1 1))

=E(u] ;1 (zi 1) —9(W Tzl W2 5 ), 9(Wi, 27 1, W, S2) — g 1(Zi k1))

+E(g(W" T, 2] 1, W25 Y= g(w W2 e Wiy 2 5), g(Wh 2] g 1, Wy Sa) —u) (24 1))

< E(uj kfl(zi,k,l) —g(Ww'" ",z Z] 1 W Zr;,lz)aQ(VVZ»Z;,k,lvV_VZvSZ) - Q(WT_TvZ;k,lvV_VT_TaSZ»
r
2

')
+E( (27 1) —9(W T 2], W T2 _1)79(‘7"%77Z:,k,uwr*l’&) —uj (2 1))

r—T

o . _
+ W — Wir,k”z + 1||9(Wrazf,k,1awza52) - uzr,k—l(zzrk DI
< r T _ (w1 7 —r—7 _r—7,7—1 2 - T T|2
<Allui s 1 (2i k1) —9(W™ 2, W Tz ")+ HW W

+E 1 (2750) - g(V‘V"_lyZZ’,k,uV’V"_T7Z§,§,§’r71)79(‘7v"_77zi,k,l»W"_T”'_lySz) — w1 (Zi1))

e 1, _
+ W~ Wir,kHQ + Z||g(wr,z£k71,w£,82) - uf,k—1(zg,k,1)||27
(81)
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where
E(uj (2] 50) —g(W 7" gy W g ), g (W T T g W Sa) — (2] 0)
. o o —7rr—1
= E(u; W; - 1(2; k,l) - uzromu( ik, 1) +uiy 0 "(z ;,k,l) —g(w' Tvzf,k,lvwr T,Z}tET ),
gW" Tz, W S) =g T (2 1) o (2] k1) — g 1 (2 0))
<E} o 1(Z5 1) — o (25 5,1), 9(W 7,20 1, W' T, S2) —ui g7 (2 1))
+ B i1 (zi k1) =00 (Z1 k1), Wo (2 1) — WG k1 (2] 1))
+ E<u:,6‘r(zzr,k 1) - g(WT_T7 er,k,lv wT ’zgtgr 1)7 g(wr_lv Z:,k,lv Wr_lv‘s?) - u;gf(z;m))
_ o e 1 _
+ E<u;07(z£k,1) —g(w" Tvzz’,k,lvwr ’, Z;,t;r ), uz,oT(Z;’,k,l) - u;,k—l(zg,k,1)>
_ 1 o
< 4E||u1r,k—1(zz,k,l) - u?((ZI,k 1)||2 + *EHQ(WT Tvzzr,k,lv T, 82) — uz 0 (Zz k, 1)||2
*EHQ(WPTaer,k,la 7, 52) *uzo (zzkl)HQ
1 . X _
+ 1 Ellg(w™7, 2740, W7, S2) — iy (2 Do) ARG, (2] 1) =l (2] )17
(82)
Noting
—Ellg(W T 20, W' T, Sa) — iy (2707
= —Ellg(W" 7,2}, W 7, 8) —uj (2] 1) + 04 (2] 1) —uioT (270
=—Elg(w" 7", 2{ 1, W 7,S2) - uzr,k(zz,k,l)Hz —Elluj o (27 k1) —ui o (zi 4, DI?
+2E(g(W" 7,2 1, W, S2) — g (2] 1), WG (B ) — W07 (2 ) (83)
1 o o -
< —Bllg(W"™7 2741, W, S2) — uf (2 )1+ 8l (274 1) — ui o7 (205017
1
< —Bllg(W"™, 2740, W, S) — uj (2], 0)|1? + 882 K> C3.
Then, we can obtain
1—2)+1 2 2 2 12,212
7+ . 70— 5 s YR 8B2K22(3
—E||u}. W, < —  FElui_, — g(w;] + — 4 .
+ 72 lw" V’V“lllz + 2w — w2
Dividing 2Z* on both sides gives
Eljuy, — g(Wi,k)H2 =(1- 1P IOVEIug_, — g(wi_y)IP> + 221w = %" Y2 42wt = w2
2 2
—|—7772K27203 + Yo .
|Si
(85)

Next, we deal with moving average of gradients, i.e., G} ;. With update G}, = (1 — 8)G7,_; +
_ N _
B(GP oy + Gy o). we define Gy, := = - G, and Ay = [|G}, — VF(wy)||?. Then it follows
=1
that G, = (1 - B)G}_, + B% Zz(G:kl + G;kﬁ)'
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We get B
=Gk = VF(wp)|?

(1= B8)C 1*%2 For 4 Gla) — VE(WD)?
- H(l CB)Gh s — VE(WE1) + (1 B)(VE(W_) — VE(WL))

1 1 1
+ ’8<N Z(Gl(wakv 2] 1 W (2] 1) Wiy 125 5)
7
1 1 71, r—
+ Ga(wj, " ,z;,f,,; R A CR Y

1

W;‘:k» Zz,k,z))

1 _
N (Gl( ’ ;,k,hug,k(zg,k,l) ;tTr 7Z§,t,12)
'L
1 r—rr—1, p—
Gy T (z;,,;,o,w;k,zz,m»)

1 . 1 e
e (zv S (G g (), W 2 )

%

—r—T r 1 r—7r,r—1, r—r,r—1 T r
oW T e

1 o _ _ .
_N (Gl(wT TaZg,k,lvg(wrver,k,lvwr782)vwr Tv ;tgr 1)
7
oW g W S ) )
1 o _ _ e
+B<N Z(Gl(wr Tvzf,k,lvg(wraer,k,lawr782)vwr T’ ;t;r 1)
[
oW g (T T W S, W )
1 o o e e e
*N (GI(WT T7Z;,k,1ag(wr 77Z:,k,1vwr TaSQ)vwr T’zg,t,‘;m 1)
7
+GQ(WriTaz;/i,t‘l’—:gilvg(wri‘rvzg’ t‘cg 1’ W' SQ) a 7Z;,k,2))>
1 —r—T _T T gt T 1
+B NZ(Gl(W 7Zi,k717ngb."k_yl(v’vT*TﬁW ) ]t2 )
[
2
+ Go(W T 2 T g (W T W, S) W ?,k,z))—VF(WZ)>
(86)
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Using Young’s inequality, we can then derive

Ak <(1+ B)H(l = B)(Gr—1 = VF(Wi_1))

! ol T — =T _T —r
+ﬁ(ﬁ Z(Gl(w 1’Zi,1€,l’g(w yZik,1, W

5T Sa) W 2 a)) — W(v-v;))

r—T
,pj/’t/ , W

77‘7 82)3 WT*T’ Z;;,l2)

2

r—7,r—1 — =T

+C;’Q(‘X/T ,Zj/ t’ 1 7g(W

r—1,r—1 ’V‘*T,’I‘fl)

1
5(7 Z(Gl(w;‘,k7 Z;‘,k,l7 u;‘,k(zzk,l)7 W]"t 3zj7t72
[

1
+0+3)

N
G r—r,r—1 _r—7,r—1 r—r1,r—1/ r—7,r—1 T T
+ 2(Wj’,t’ 12y o Wy (zj/,t/,1 )vwi,kzzi,k,Q))
1 T T s r—1,r—1 _r—71,r—1
(Gl( 7i,k,17ui,k(zi,k,1)7wj,t’ 120 )

N

—r—7,r—1 r—r,r—1 r—1/ r—7,r—1 r T

+ GQ(W 7Zj’,t’:l 7uj/,t/(z‘7/ t/,1 ) wi,kazi,k,Q))>
_r—7 _r—7,7r—1 _r—71 _r—r,r—1 r—1/_1T—1 — =T _T

)+ Gal” T ) )

1 .
+5(ﬁ DG Tz () W2

i
1 e _ _ o Crr—
7ﬁ (Gl(wr Tyz:,k,lvg(wr7zz;,k,17WT782)7WT T7 ;,t,‘;r 1)
@
+Ga (W Tz T (W 2 T W T S), W Tvzf,m)))

_r—7 _r— 1)

1 o .
+B(NZ(G1(WT >Z:,k,1>g(wraZ;k,lawr782)7w 7th2

7
+ G2(W7'7 Z i1 tl/ 17g(w’r77—7Z;’jt‘c’l?W7l7T7S2)7W7l777z’2(',k,2))
1 - e o o e
N (Gl( vZ;‘,k,lag(WT Tvzzk,l?wr T382)7WT Taz;",t,;r 1)
2
+ Go(W TPl g (W T T W 80), W T 7 )
87)
By the fact that
E[*Z Gl( ) g,k,l:g(WT_T7Zg,k,17WT_T782)7WT_T7Z;;,12)
i (88)
o (W (W T A W T 80), W ) — VE (W) = 0,
and
o o o =1
EH*Z Gl( ;’:k,lvg(wr T’Z:,k,l’wr 7—782)’Wr Tvzz,t,‘g7 )
%
+ GQ(Wrila z;:t‘l;:§717 g(wrf‘r’ Z;’jtl/,la WT?Tw SQ)a er‘r’ Z:,k,Q)) - VF(WE)HQ (89)
0,2
< —
N
we obtain

_ ., P
BNGr_y — VF(Wi_,)|> + 252W
W17 +58|uf (2] 1) — g(W'Z] ey, W, S82))|I° ©0)

WT‘HQ

Ap <1481 -
T = wiglP 58w

+56||w
~T ﬁ o’ — T r —r—T
<A =BGy = VEWE_)|” + 277 + 5BI%" — wi[|* + 58]w"" —

+ 58I 4 (2 5.1) = gar,, (W)
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Wil — 7r||2 ~2 1K ZZGZHQ
i k

©On
~ 1 ~T — 7 — 7
< 772? Z |G = VF(w}) + VF(wp)|?
k
Then,
1 T
K > A
k
B*a* _r—T r 92
-0 ZnGk L= VE(WE_)IP + 4—+55—ZZH —wi 2 ©?
+ 105Hui,k(zz‘,k,1) —g(W" 2z, W" ,Sa)||.
Finally, we can analyze the convergence of the VF(w),
. . L .
F(V_V7+1) _ F(Ww) S VF(V—VT')T(WT-‘,-l _ V_VT) + §||V—Vr+1 _ V_V7 ||2
— —+1 — 12
= —AVE (W (NKZZG ) —w"
— T L ' —7"
= —VF(w ZZG (W) + VF(w") HW 1 ||2
NK
= —ijl[VF(W")|* + IIVF(" )1+ ZZG - VF(W")[” + || W't — w2
ﬁ — T — T
< =5 IVET) )II” il ZZ — VE(wp))|I? +77||*Z(VF(W1§) — VE(w"))|?
k
H = 7r+1 77"”2
S—§||VF( ||2+77|| ZZ \I2+niZZHW w||?
H —r+1 7r||2.
93)
Noting
lw" —wisll* <n*K*CiCq (94)

With similar technique to Appendix [D|except that we have an extra error term caused by the larger
buffer, we obtain

1 — T
= S E|VFE)|

777 +

M , M? M 1 3
<0 2 p2 eI Y 2p2,202 4 205200
( ~rE TP +y+7° ~ + 8yMn* +yn*K*m°C§ + (5RK N)

95)
By setting parameters as in the theorem, we can conclude the proof.

Further, to get
£ S, EIVEW)[? < ¢, we just need to set v = O(e?), B = O(y), 7 = O(MY1),
K =04, = 0(5;), R = 0(¥1),

O
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G FEDX WITH PARTIAL CLIENT PARTICIPATION

Considering that not all client machines are available to work at each round, in this section, we
provide an algorithm that allows partial client participation in every round. The algorithm is given
in Algorithm [3] We use the same assumption as in Appendix [D] The convergence results will be
presented in Theorem |7}

Algorithm 3 FedX?2: Federated Learning for CPR with non-linear f
1: On Client 7: Requlre parameters n, K
Initialize model w? o, U = {u’(z) = 0,z € S}, G}, = 0, and buffer B; 1, B; 2,C; = 0
Send HY |, HY,, UIO to the server
Sample K points from S?, compute their predictions using model W?,o denoted by 7—[?}1

Sample K points from S5, compute their predictions using model W?,o denoted by H?,
forr=1,...,Rdo '
ifi g P" then sk1p th1s round, otherwise continue
Receive RZ 1 Ris ', P71 from the server

9:  Update the buffer B; 1, B; 2, C; using Rl 1 Ris . Pr=1 with shuffling, respectively
10: Set%rl—(DHQ—@uT—@
11: fork=0,. K —1do

12: Sample zl, k.1 from Si, sample z; ) o from Si © or sample two mini-batches of data
13: Take next hgfl, hzfl and uzfl from B; ; and B, 2 and C;, respectively

14: Compute h(w} .2z, ;) and h(W] .2z} 5)

15: Compute h(w; ;.2 ;) and h(W] ;. 2], ,) and add them to H] |, H] ,, respectively

16: Compute uj , (2, ;) according to and add it to U]

17: Compute G7 , ; and G} 5 according to

18: ir=0=8)G] 1 +B(G] 1 +Gi}o)

19: W1 = Wi —1Gl g

20:  end for

21:  Sends wy ;, G7 . to the server

22: Send M7 i, H; Q,L{ to the server

23:  Receives w”, G" from the server and set WT+1 =W, G’”Jr1 G"
24: end for

25: On Server

26: Collects HO = 7—[(1)7* UHI,...U 7—[?\,7* andU° =UP UUY ... UUS, where x = 1,2

27: forr=1,..., Rdo

28:  Sample a set P" of clients to participant this round

29:  Broadcast w” and G to clients in P"

300 SetRiy' =H{" R, =H5, P/ =U""! and send them to Client iforalli € P"

31 Recelve wi i G from client i € P7, compute W't = o3 oWl G =

+1
|P7| ZZEPT Gr
32:  Collects Ht! = UHT

TV € Prand U™ = UUS, Vi € Py, where x = 1,2
33: end for
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G.1 ANALYSIS OF THE MOVING AVERAGE ESTIMATOR u

Lemma 3. Under Assumption[2] the moving average estimator u satisfies

NZ\ 57 2 Ela() — o(wm W 8)|
1

z€|S¥|

N
VP 1 _ _ 2
<(1- E - E El|u] —g(wy, wi_1,S
= ( 16|SZ‘N) pa |Si| [ ||uz,k‘,—1(z) g( k=12, Wg_1, 2)”

z€| S]]
20|S{|N =0 2 ~2 |P"| 167ﬁ2K2C'§|PT|
7.[/ WT_ — W +8 — |\ O C —_—
P - P’I‘
+8| ‘L2\| —WT_1H2+8L2—|N|||WT—Wk||2

1
2 2
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Proof. Denote P" as the clients that are sampled to take participation in the r-th round. By update
rules of u, we have

u!,(z) = { ug,kﬂ(z) - ’Y(uf,kq(z) - f(h(wir,k’ Z@r,m)a h(wgr‘;lvi;;,lz)))y i€ Pl andz = Z )1
)

u;,k—l(z)v otherwise.
(96)
Or equivalently,
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where for ¢ € P it has
(Wi p1(2f 1) — 9(Wi ks 20 g1, Jr;lai;;,lz)a (20 1) — W p1(20 1))
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)

u;q,kfl (Zf,k71)>
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Then, we have
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Note that for ¢ € P, Zz;ﬁz || :k 1( ) - g(V_V£7Z,V_VZ782)||2 = Zz;éz;kyl Hu:,k(z) -
g(wh,z, wh,Ss)||%, which 1mphes forz epPr
1 _ _ _ _
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Since £(-) < Cp, we have that ||g(-)||* < C2, ||u;",,€(z)\|2 < C2 and
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Besides, we have for 7 € P" that
E{u; o—1(2i k1) — 9(Wik» Zi k1, W) t172;t12) g(
=E(u p—1(2ik,1) *Q(WTﬂ,Zi,k,l,WPl 12
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where .
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Noting for: € P",

P . 1
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With the client sampling and data sampling, we observe that
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Then by multiplying v to every term and rearranging terms using the setting of v < O(1), we can
obtain
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Using Young’s inequality,
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G.2 ANALYSIS OF THE ESTIMATOR OF GRADIENT

With update G}, = (1 — B)Gi,_, + B(G] . + Gj ), we define G, = ‘Pl,.‘ > Gi}, and
icPr
Aj, = [|Gf, = VF(w})||*. Then it follows that G} = (1 — 8)Gr_y + Bpry 2 (G py + G o).
iePr

Lemma 4. Under Assumption[2] Algorithm[3|ensures that
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Proof.
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Using Young’s inequality and f/—Lipschtzness of G1, G4, we can then derive
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By the fact that
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we obtain
_ 9 6202
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G.3 CONVERGENCE RESULT

Theorem 7. Suppose Assumption IZ| holds, and assume there are at least |P| machines take par-
ticipation in each round. Denoting M = max; |S}| as the largest number of data on a sin-

1/3 2/3 2/3 2/3
gle machine, by setting v = O(u) 8 = O(W), n = O(W) and

(R P\ 2/3
K = O(%) Algorithmensures that E [ﬁ Ef;l IV F(w )HQ} < O(37)-

Proof. By updating rules, we have that for i € P,
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Similarly, we also have
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which by setting of 1 and /3 leads to
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Then using the standard analysis of smooth function, we derive
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By settlng parameters as in the theorem, we can conclude the proof.  Further, to get
+ 3L EIVF(w")||? < €2, we justneed to set y = O(e?), B = O(J5 ) K= O(r) n= O(%),

R=0(%Y0). O

H STATISTICS OF DATASETS AND MORE EXPERIMENTS

The statistics of the datasets we use are listed in Table 4]

Table 4: Statistics of the Datasets

# of Training Data | # of Validation Data | # of Testing Data
Cifar10 24000 10000 10000
Cifar100 24000 10000 10000
CheXpert 190027 1000 202
ChestMNIST 78468 11219 22433

Here we show some experiment results to verify the effectiveness of the larger buffers, the analysis
of which is given in Appendix[E]and[F] We focus on the task of one way partial AUC maximization
optimized by FedX2 algorithm as in the experiment section. Recall that with the larger buffers, we
just need to keep the last 7 rounds of communicated history in B; 1, BB; » instead of the just keeping
the previous one round’s history. With large buffers, it would provide each machines with a larger
pool to sample when computing local gradients. It would possibly help enhance the performance in
local steps. In Figure[2] 7 = 1 denotes the Algorithm [3] while large 7 refers to the algorithms with
larger buffers. We can see that by keeping some larger 7 can improve the performance. And we
have further verified that FedX2 can tolerate to skip a big number of communications.
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Cifarl0, pAUC, FPR=<0.3 Cifarl0, pAUC, FPR < 0.5

---- Centralized . K=32 mm K=128 0.84 ---- Centralized mmm K=32 N K=128
. K=16 . K=64 . K=16 . K=64
0.78 0.82
9 9 0.80
076 2
Q 2o78
o o
£ £
B 074 B 0.76
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=1 =2 =2 =128 =1 =2 =4 =128

Figure 2: Fix N, Vary K, 7
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