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ABSTRACT

In-context learning (ICL) enables Large Language Models (LLMs) to undertake
challenging tasks through given examples. However, it is prone to instability: dif-
ferent orderings of input examples can significantly influence predictions. Current
mitigation strategies, focused on post-processing, fail to enhance the model’s inher-
ent robustness. This paper extensively investigates this issue of LLMs and uncovers
a natural, permutation-based attack that can nearly achieve 100% success rates on
LLMs, while remaining imperceptible to humans. To address this vulnerability,
we propose a distributionally robust optimization (DRO)-based tuning method
as a defence, explicitly optimizing the model’s performance against worst-case
permutations to bolster robustness. Our framework comprises two modules: the
Permutation Proposal network (P-Net) and LLM. The P-Net formulates the identifi-
cation of the most challenging permutation as an optimal transport problem, solved
using the Sinkhorn algorithm. Through adversarial training, the P-Net progressively
enhances the LLM’s robustness against permutation instability. Experiments with
a synthetic task and ICL tuning task demonstrate that our methodology effectively
mitigates permutation attacks and enhances overall performance.

1 INTRODUCTION

Human intelligence excels at learning new tasks from limited examples, a trait increasingly emulated
by LLMs through few-shot, in-context learning (Brown et al., 2020; Chowdhery et al., 2023), with
performance further enhanced by targeted fine-tuning (OpenAI et al., 2023; Min et al., 2022; Wei
et al., 2023). This capability has been harnessed to achieve success in a broad range of NLP tasks,
such as dialogue generation (Deng et al., 2023; Wang et al., 2023) and question answering (Chen
et al., 2023a). However, despite these advances, the ICL capabilities of LLMs can react unpredictably
to minor prompt perturbations, notably the permutation of input examples (Lu et al., 2022; Zhao
et al., 2021). This fragility underscores a significant gap in achieving human-like adaptability.

Our investigations have identified a critical susceptibility in LLMs to adversarial attacks via strategic
reordering of ICL examples. This method achieves near-universal success in deceiving the advanced
open-source LLM, LLaMA-2-7B, on 11 public datasets without altering prompt semantics, remaining
undetected by humans but significantly impairing LLM performance.

Current countermeasures have emerged in two primary forms: output calibration, effective for
classification but limited in generative tasks (Zhao et al., 2021); permutation order optimization,
constrained by its exponential complexity (Lu et al., 2022). These strategies fail to fundamentally
fortify LLMs against the subtle yet impactful manipulations of example ordering.

To counteract this vulnerability, we introduce a defence mechanism based on distributionally robust
optimization (DRO) (Ben-Tal et al., 2011). Rather than viewing each training instance merely in
terms of its permutations observed during training, our method conceptualizes each instance as
part of a broader distribution that includes all conceivable permutations. This comprehensive set of
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permutations is termed the ambiguity set. By persistently optimizing against the worst-case scenarios
within this ambiguity set, our strategy substantially enhances the robustness of LLMs.

Our DRO mechanism operates as a two-player game involving a Permutation Proposal Network
(P-Net) and the LLM. P-Net, acting as the adversary, strives to find the most challenging permutation
of ICL examples to maximize the LLM’s loss. The LLM, in response, aims to minimize the loss
despite P-Net’s interventions. P-Net formulates the search for the toughest ICL permutation as an
optimal transport (OT) problem (Monge, 1781), iteratively addressed with the Sinkhorn algorithm.
This adversarial training allows P-Net to challenge the LLM with increasingly difficult permutations,
compelling the LLM to improve its defence against potential attacks. Our framework explicitly
targets the LLM’s worst-case performance, enhancing its defence against permutation attacks.

Our empirical studies on fitting linear functions and in-context tuning reveal that our DRO tuning
framework effectively counters permutation attacks and improves LLM performance. These results
confirm the method’s capacity to strengthen LLM robustness and advance adaptability.

2 RELATED WORK

In-Context Learning Large Language models have demonstrated in-context learning through
exemplar-based adaptation, a capability pioneered by (Brown et al., 2020). Subsequent studies
have attributed this to the transformer’s standard learning algorithms (Akyürek et al., 2023; von
Oswald et al., 2022; Dai et al., 2023). Further research (Garg et al., 2022; Min et al., 2022; Wei
et al., 2023) has shown that transformers can significantly enhance ICL when explicitly fine-tuned
with in-context objectives. Nevertheless, the robustness of LLMs to permutations of input examples
(Brown et al., 2020; Zhao et al., 2021) remains an unresolved challenge. Contemporary approaches
have centred on post-processing techniques, such as model calibration (Zhao et al., 2021) or exhaus-
tively seeking the optimal sequence of ICL samples (Lu et al., 2022)—a process with prohibitive
combinatorial complexity. However, these methods fail to fundamentally strengthen the LLMs’
robustness against varying input orders. Our contribution is an improved ICL tuning algorithm that
bolsters LLMs’ resistance to suboptimal permutations, thereby directly enhancing robustness to
permutation variability.

Distributionally Robust Optimization In distributionally robust optimization (DRO), ambiguity
sets are often defined as divergence balls centred on the empirical distribution of data pairs (x, y),
which act as regularizers for small radii (Ben-Tal et al., 2013; Lam & Zhou, 2015; Duchi et al.,
2016; Miyato et al., 2018). However, larger radii can result in excessively conservative sets. Our
methodology deviates from this radius-centric paradigm, constructing ambiguity sets via permutations
of samples that are semantically invariant. Prior applications of DRO have addressed distributional
shifts, including label (Hu et al., 2018) and data source shifts (Oren et al., 2019). In contrast, our
work employs DRO in the context of overparameterized LLMs, which are prone to suboptimal
worst-case generalization, a departure from the bulk of DRO research that focuses on traditional,
underparameterized models (Namkoong & Duchi, 2017; Duchi et al., 2019).

Optimal Transport Optimal transport (OT), a foundational mathematical discipline established by
(Monge, 1781; Kantorovich, 1942), provides a metric for measuring distances between distributions,
commonly known as the Wasserstein distance or Earth Mover Distance. It has been applied as a
tool for manipulating probability distributions. In our study, the Permutation Proposal Network
(P-Net) is designed to act as a conduit for transportation between two discrete measures, leveraging
entropy-constrained OT (Cuturi, 2013), also referred to as the Sinkhorn distance, to enable the
derivation of a differentiable loss (Genevay et al., 2018). Our work extends the concept of learning
permutation structures through neural networks, as explored in (Mena et al., 2018) for learning to
sort numbers or solve jigsaw puzzles. However, we apply this concept to the more intricate domain
of NLP, where P-Net learns the most challenging permutations of ICL samples in a meta-learning
manner, aiming to enhance the robustness of LLMs.

2



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Figure 1: An overview of the adversarial training framework.

3 METHODOLOGY

3.1 ICL TUNING VIA DISTRIBUTIONALLY ROBUST OPTIMIZATION

Training LLMs for the ICL problem involves predicting outputs y ∈ Y from input examples x ∈ X
and few-shot prompts p ∈ P . The standard goal, given a language model parameter space Θ and a
loss function ℓ : Θ× (P ×X ×Y) → R+, is to find a model θ ∈ Θ that minimizes the expected loss
EP [ℓ(θ; (p, x, y))] over the underlying data distribution P . Typically, this minimization is approached
via empirical risk minimization (ERM):

θ̂ERM argmin
θ∈Θ

E(p,x,y)∼P̂ [ℓ(θ; (p, x, y))] (1)

where P̂ denotes the empirical distribution over the training data. However, given that P̂ covers
only a subset of all possible permutations of the ICL prompt demonstrations, the model might face a
variety of permutations during testing, where performance is not guaranteed and could significantly
deteriorate. Training exhaustively on all permutations is not computationally viable, as it is an
NP-hard challenge due to the combinatorial explosion of possible inputs.

To overcome this challenge, our approach seeks to identify the worst-case scenarios within the
combinatorial inputs and optimize model performance accordingly. For this purpose, we employ a
distributionally robust optimization (DRO) strategy:

θ̂DRO = argmin
θ∈Θ

{
sup
Q∈Q

E(p,x,y)∼Q[ℓ(θ; (p, x, y))]
}

(2)

The Q denotes the ambiguity set, it represents the combinatorial space of inputs that the model aims
to be robust against. This considers training data not merely as individual points but as a distribution
subject to perturbations, thereby enhancing the model’s generalization capabilities. Moreover, by
optimizing a lower bound on Q, we render this process computationally feasible. To this end,
we endeavour to spot a realistic set of potential worst-case permutations, enhancing the model’s
robustness to such variations.

3.2 CRAFTING WORST LATENT PERMUTATIONS VIA SINKHORN OPERATOR

The NP-hard nature of finding challenging permutations for language models in in-context learning
necessitates a computationally feasible alternative to brute force searches. We introduce an approach
that frames the problem within the scope of entropy-constrained optimal transport, resolved by the
Sinkhorn operator (Sinkhorn, 1966; Mena et al., 2018).

Our Permutation Proposal Network (P-Net) is designed to generate challenging permutations for ICL
examples. The P-Net processes examples {(xp

i , y
p
i )}, each initiated with a [cls] token. This yields a

latent matrix H , which is then projected into a permutation matrix X through a transformation W
and nonlinear activations g, where X is given by X = g((HW )HT ).

To refine X towards a permutation matrix, the iterative Sinkhorn normalization is applied until
convergence to a doubly stochastic matrix is achieved (Sinkhorn, 1966):

S(X) = lim
l→∞

Tc(Tr(exp(X))) (3)

Tr(X) = X ⊘ (X1N1⊤
N ) (4)

Tc(X) = X ⊘ (1N1⊤
NX) (5)
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where Tr(X) and Tc(X) represent the row and column normalization operators of a matrix, respec-
tively, with ⊘ indicating element-wise division, and 1N a column vector of ones. As established by
Sinkhorn (1966), the Sinkhorn operator S(X) converges to the set of doubly stochastic matrices as
the number of iterations l approaches infinity.

For further convergence to a discrete permutation matrix, we utilize a Gumbel distribution with a
temperature parameter τ , as τ approaches zero (Gumbel, 1954):

Π = lim
τ→0+

S ((X + u)/τ) , u ∼ − log(− log(U(0, 1))) (6)

3.3 ADVERSARIAL OPTIMIZATION

In our learning framework, the LLM and the P-Net engage in a co-optimization process. P-Net is
designed to generate permutations that convert ICL demonstrations into prompts that are challenging
for the LLM. Subsequently, the LLM predicts outputs for these transformed instances (Figure 1).

This adversarial relationship features duality: P-Net progressively escalates the complexity of permu-
tations to challenge the LLM. In turn, the LLM responds to these permutations and provides feedback
to refine P-Net’s permutation strategy. The iterative process persists until P-Net can uniformly
simulate permutation distributions and the LLM can effectively interpret complex permutations.

The combined loss function for the LLM, which includes a maximum likelihood loss and a Lipschitz
penalty term as proposed by (Arjovsky et al., 2017), is given by:

L(θ)LM = E(p,x,y)∼P̂ ,Π∼G(ϕ;p)

[
ℓ(θ; (Π · p, x, y)) + α (∥∇p̂ℓ(θ; p̂, x, y)∥2 − 1)

2
]

(7)

where p̂ = β · p+ (1− β) ·Π · p, and β is sampled from a uniform distribution U(0, 1).
P-Net’s loss function, aiming to maximize the LLM’s difficulty level, can be expressed as:

L(ϕ)P−Net = E(p,x,y)∼P̂ ,Π∼G(ϕ;p)[b− ℓ(θ; (Π · p, x, y))] (8)

The hyperparameter λ is introduced to balance the optimization of both networks. The aggregate
optimization objective, minimizing the combination of the LLM’s and P-Net’s losses, is thus:

min
θ,ϕ

{L(θ)LM + λL(ϕ)P−Net} (9)

The comprehensive training algorithm of this co-optimization is presented in Algorithm 1.

Algorithm 1 Training Procedure for LM with P-Net

1: Input: Corpus P̂ , LM parameters θ, P-Net parameters ϕ, the number of LM iterations per
generator iteration n, Difficulty coefficient λ.

2: repeat
3: for t = 1, . . . , n do
4: Sample an instance (p, x, y) from P̂ .
5: Generate a permutation matrix Π ∼ G(ϕ; p).
6: Update θ by ascending its gradient ∇θL(θ)D.
7: end for
8: Update ϕ by ascending its gradient λ∇ϕL(ϕ)G.
9: until the loss function converges or a predefined number of iterations is reached

10: Output: Optimized parameters θ, ϕ.

4 EXPERIMENTS

We validate the effectiveness of our method on fitting linear functions and in-context tuning tasks.
For each test sample, we use randomized ICL demonstrations and assess all possible permutations.
The statistical metrics across these permutations were reported.
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Model ICL # Mean Var. Worst.

GPTCL

3 1.45 2.13 2.67
4 1.20 2.02 3.34
5 1.28 2.90 5.03

GPTDRO

3 0.86 0.01 0.92
4 0.79 0.07 1.11
5 0.87 0.12 1.33

Table 1: Impact of Permutation on ICL.
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Figure 2: Comparison of Attack Success Rates.

Experimental setup details are presented in Appendix A.

Table 2: Impact of Permutation on Performance of Llama-2.

Model ICL # Origin Mean Variance Best Case Worst Case

LlamaMetaICL

3 0.190 0.112 0.039 0.230 0.02
4 0.280 0.120 0.054 0.390 0.002
5 0.210 0.064 0.033 0.570 0.001

LlamaDRO

3 0.190 0.183 0.007 0.250 0.170
4 0.300 0.272 0.015 0.400 0.240
5 0.220 0.200 0.007 0.500 0.180

Fitting Linear Functions The permutation of training examples significantly affects the learning
outcomes of GPT2, as evidenced by the data presented in Table 1. Despite the observed average
performance enhancement with an increase in the number of incremental ICL samples, this trend is
accompanied by greater variability in performance. Specifically, altering the sequence of training
examples can lead to a performance drop, characterized by a fourfold increase in mean squared error
(MSE) metrics. The left chart in Figure 2 illustrates the success rates of two methodologies across
varying ICL sample sizes, with the baseline threshold set at a 50% increase in MSE. The right chart,
conversely, depicts the relationship between attack success rates and different thresholds, based on an
analysis with four ICL samples. The implementation of our proposed algorithm effectively reduces
both the most significant performance declines and the attack success rates by more than 50%.

ICL Tuning Table 2 reveals that perturbations significantly compromised accuracy, reducing
it to almost zero for scenarios with three, four, and five shots. This reduction implies an attack
success rate nearing 100%. In contrast, the deployment of our defence strategy successfully limited
performance declines to within 20%, effectively curtailing the susceptibility of the LLama2-7b model
to permutation attacks.

5 CONCLUSION

We introduced a DRO tuning approach to enhance the robustness of LLMs against malicious permu-
tations. This approach employs a Permutation Proposal Network (P-Net) that utilizes the Sinkhorn
algorithm to generate challenging permutations, combined with adversarial training to systematically
improve LLM performance. Through empirical evaluations in both synthetic and in-context learning
tuning tasks, our framework has proven effective in mitigating attacks and enhancing the adaptability
of LLMs. This research addresses a significant vulnerability in LLMs, setting a foundation for the
development of more resilient future language models.

LIMITATIONS

While our framework is designed to be a universal solution for mitigating order sensitivity in
NLP fine-tuning, the scope of our empirical validation has been focused on linear function fitting
and in-context learning with LLMs. This concentrated approach has not allowed us to explore
the framework’s applicability across all NLP tasks, including those that involve complex dialogue
sequence management in conversational systems or the nuanced ordering of information in knowledge-
based documents (Chen et al., 2023b). To ensure the comprehensive efficacy and adaptability of our
framework, future research will be directed towards incorporating a wider array of NLP scenarios.
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Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In
Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Ma-
chine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 214–223. PMLR, 06–
11 Aug 2017. URL https://proceedings.mlr.press/v70/arjovsky17a.html.

A. Ben-Tal, D. den Hertog, A. D. Waegenaere, B. Melenberg, and G. Rennen. Robust solutions
of optimization problems affected by uncertain probabilities. Management Science, 59:341–357,
2013.

Aharon Ben-Tal, Dick den Hertog, Anja De Waegenaere, Bertrand Melenberg, and Gijs Rennen. Ro-
bust solutions of optimization problems affected by uncertain probabilities. Advanced Risk & Port-
folio Management® Research Paper Series, 2011. URL https://api.semanticscholar.
org/CorpusID:761793.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901. Curran Associates, Inc., 2020.

Liang Chen, Yang Deng, Yatao Bian, Zeyu Qin, Bingzhe Wu, Tat-Seng Chua, and Kam-Fai Wong.
Beyond factuality: A comprehensive evaluation of large language models as knowledge generators.
In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, pp. 6325–6341, Singapore, December
2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.390. URL
https://aclanthology.org/2023.emnlp-main.390.

Liang Chen, Hongru Wang, Yang Deng, Wai Chung Kwan, Zezhong Wang, and Kam-Fai Wong.
Towards robust personalized dialogue generation via order-insensitive representation regular-
ization. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), Findings of the
Association for Computational Linguistics: ACL 2023, pp. 7337–7345, Toronto, Canada, July
2023b. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.462. URL
https://aclanthology.org/2023.findings-acl.462.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Er-
ica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language model-
ing with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023. URL
http://jmlr.org/papers/v24/22-1144.html.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf.

6

https://arxiv.org/abs/2211.15661
https://proceedings.mlr.press/v70/arjovsky17a.html
https://api.semanticscholar.org/CorpusID:761793
https://api.semanticscholar.org/CorpusID:761793
https://aclanthology.org/2023.emnlp-main.390
https://aclanthology.org/2023.findings-acl.462
http://jmlr.org/papers/v24/22-1144.html
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf


Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Zhifang Sui, and Furu Wei. Why can GPT learn in-
context? Language models secretly perform gradient descent as meta-optimizers. In Workshop on
Understanding Foundation Models at the International Conference on Learning Representations,
2023. URL https://arxiv.org/abs/2212.10559.

Yang Deng, Lizi Liao, Liang Chen, Hongru Wang, Wenqiang Lei, and Tat-Seng Chua. Prompting and
evaluating large language models for proactive dialogues: Clarification, target-guided, and non-
collaboration. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Association
for Computational Linguistics: EMNLP 2023, pp. 10602–10621, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.711. URL
https://aclanthology.org/2023.findings-emnlp.711.

J. Duchi, P. Glynn, and H. Namkoong. Statistics of robust optimization: A generalized empirical
likelihood approach. arXiv, 2016.

J. Duchi, T. Hashimoto, and H. Namkoong. Distributionally robust losses against mixture
covariate shifts. https://cs.stanford.edu/˜thashim/assets/publications/
condrisk.pdf, 2019.

Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. In Advances in Neural Information Processing
Systems, volume 35, pp. 30583–30598. Curran Associates, Inc., 2022.

Aude Genevay, Gabriel Peyre, and Marco Cuturi. Learning generative models with sinkhorn
divergences. In Amos Storkey and Fernando Perez-Cruz (eds.), Proceedings of the Twenty-
First International Conference on Artificial Intelligence and Statistics, volume 84 of Pro-
ceedings of Machine Learning Research, pp. 1608–1617. PMLR, 09–11 Apr 2018. URL
https://proceedings.mlr.press/v84/genevay18a.html.

W. Hu, G. Niu, I. Sato, and M. Sugiyama. Does distributionally robust supervised learning give
robust classifiers? In International Conference on Machine Learning (ICML), 2018.

Leonid Kantorovich. On the transfer of masses. In Doklady Akademii Nauk, volume 37, pp. 227–229,
1942.

H. Lam and E. Zhou. Quantifying input uncertainty in stochastic optimization. In 2015 Winter
Simulation Conference, 2015.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,
Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario
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APPENDIX

A EXPERIMENTAL SETUP DETAILS

A.1 FITTING LINEAR FUNCTIONS

In this section, we detail the process of training a transformer model, specifically to in-context learn a
defined class of functions. We concentrate on a straightforward function class—linear functions—and
examine the model’s robustness to different demonstration permutations.

Data Construction. We focus on the class of linear functions, denoted as F = {f | f(x) =
w⊤x,w ∈ Rd}, in a d-dimensional space where d = 5. We independently draw samples x1, . . . , xk,
xquery, and w from the isotropic Gaussian distribution N(0, Id). Subsequently, we calculate yi =

w⊤xi for each i and construct the prompt as p = (x1, y1, x2, y2, . . . , xk, yk, xquery). The model
underwent training on a dataset comprising 40,000 linear functions. During testing, novel functions
were sampled to evaluate the model’s capability to learn the new weight w through given in-context
demonstrations.

Baselines. In alignment with (Garg et al., 2022), we adopt a curriculum learning (CL) strategy for
training a GPT-2 model, using squared error loss as the optimization criterion. The model is initially
exposed to 3 demonstrations, with the complexity gradually increasing to 5 demonstrations.

A.2 IN-CONTEXT LEARNING

Tuning Tasks & Prompt Construction In alignment with (Wei et al., 2023), our study involves
22 publicly accessible NLP datasets from HuggingFace (Lhoest et al., 2021), acknowledged widely
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in research (Wang et al., 2018; 2019). These datasets cover a broad spectrum of NLP tasks, which
we divide into seven categories. For ICL tuning, we generate prompts using training split examples,
incorporating 2 to 10 in-context exemplars per class, chosen randomly.

Evaluation Tasks To evaluate model performance on unfamiliar tasks, we avoid datasets used
in the ICL and instruction tuning stages. We selected 11 unique NLP datasets from HuggingFace,
ensuring none were involved in any finetuning phase.

Baselines We compare our approach against MetaICL (Min et al., 2022), which refines the base
model through explicit ICL fine-tuning on a multitude of tasks.
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