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Abstract

Conformal prediction is a valuable tool for quan-
tifying predictive uncertainty of machine learn-
ing models. However, its applicability relies on
the assumption of data exchangeability, a con-
dition which is often not met in real-world sce-
narios. In this paper, we consider the problem of
adaptive conformal inference without any assump-
tions about the data generating process. Existing
approaches for adaptive conformal inference are
based on optimizing the pinball loss using vari-
ants of online gradient descent. A notable short-
coming of such approaches is in their explicit
dependence on and sensitivity to the choice of the
learning rates. In this paper, we propose a dif-
ferent approach for adaptive conformal inference
that leverages parameter-free online convex opti-
mization techniques. We prove that our method
controls long-term miscoverage frequency at a
nominal level and demonstrate its convincing em-
pirical performance without any need of perform-
ing cumbersome parameter tuning.

1. Introduction
Accurate uncertainty estimation plays a crucial role in the
practical deployment of machine learning models, particu-
larly in contexts where model outputs impact downstream
decision-making. A popular approach for quantifying pre-
dictive uncertainty is by using prediction sets: intervals in
regression tasks or collection of labels in classification prob-
lems. The primary objective of such sets is to achieve valid
coverage, meaning that they should cover the true labels
with high probability (e.g., 90%). In addition to coverage,
the sharpness, or size of such prediction sets is extremely
important in real-world applications. Conformal predic-
tion (Vovk et al., 2005) stands out as a versatile framework
which is well-suited for this task: it allows for the con-
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struction of uncertainty quantification wrappers that can be
seamlessly placed on top of arbitrary prediction models.

Suppose that a model f̂ : Rd → R has been trained to
generate real-valued predictions. One option is to resort to
conformal predictors that output sets of the following form:
Ĉ(x; s) := [f̂(x)−s, f̂(x)+s]. Here, candidate prediction
sets are parameterized by a single univariate parameter, de-
noted by s. The goal is to calibrate this parameter, i.e, deter-
mine a suitable ŝ that ensures coverage. In this context, we
remind the reader of a well-known technique of split confor-
mal prediction, which relies on a holdout set not used during
training: {(Xi, Yi)}ni=1. Estimating errors via the absolute
residuals, or the nonconformity scores: Ri = |f̂(Xi)− Yi|,
and selecting ŝ as the ⌈(1 − α)(n + 1)⌉-smallest value
amongst {R1, . . . , Rn,+∞} results in a conformal predic-
tor that satisfies:

P
(
Ytest ∈ Ĉ(Xtest; ŝ)

)
≥ 1− α,

as long as (X1, Y1), . . . , (Xn, Yn), (Xtest, Ytest) are ex-
changeable. We note that conformal inference is not spe-
cific to the above setting and has been extended in various
directions. First, it offers much higher flexibility beyond the
standard point forecasting model described above, e.g., it
can be applied to recalibrate the prediction intervals associ-
ated with conditional quantile regression models (Romano
et al., 2019). Moreover, procedures that extend the split
conformal framework beyond a single sample split, and
hence allow better utilization of available data, have been
developed, including procedures like Jackknife+ (Barber
et al., 2021). For a detailed overview of recent advance-
ments and trends in the field of conformal inference, we
refer the reader to Angelopoulos & Bates (2023).

While conformal inference relies on the assumption of data
exchangeability, it often fails to be met in practice. Exam-
ples include cases where data arrive sequentially over time,
possibly exhibiting shifts in distribution, or where one is
dealing with time series data. Despite the imposed practical
challenges, there remains a huge demand for supplementing
point predictions with valid measures of uncertainty. In this
work, we consider the problem of online conformal infer-
ence — without imposing any distributional or dependency
assumptions on the data generating process — and focus on
approaches that are applicable to arbitrary data streams.
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We assume that the data are observed as a stream:
((Xt, Yt))t≥1. At each time point t, the goal is to construct
a prediction set for Yt using all of the previously observed
data {(Xi, Yi)}i≤t−1, as well as feature vector Xt. For
brevity, we often capture the dependence of a conformal
predictor on all of the available information that can be used
at any time point (e.g., exogenous features or lagged re-
sponse variables) using the index variable. Specifically, we
write Ĉt(s) := Ĉt({(Xi, Yi)}i≤t−1 , Xt; s) to represent the
prediction set for the response variable Yt. Our objective is
to design a conformal predictor whose observed long-term
miscoverage rate is equal to the nominal level denoted as
α. In other words, we aim to construct a sequence of radii
(st)t≥1 so that the corresponding prediction sets satisfy:

lim
T→∞

∣∣∣∣∣ 1T
T∑

t=1

1
{
Yt /∈ Ĉt(st)

}
− α

∣∣∣∣∣ = 0. (1)

In addition to assessing long-term coverage, we consider
other performance metrics that are helpful in differentiat-
ing meaningful conformal predictors from trivial ones. For
example, assuming that the response variables are bounded
(i.e., |Yt| ≤ B, t ≥ 1, for some absolute constant B > 0), a
conformal predictor that switches at random between gen-
erating empty sets (α fraction of the time) and intervals
[−B,B] (the remaining (1− α) fraction of the time) tech-
nically satisfies (1), yet represents a practically useless tool
for uncertainty quantification. To address this, we use the
concept of regret, quantified as the cumulative pinball loss
(since we are working with online quantile estimation) of a
sequence of radii obtained using our method in comparison
to an unknown benchmark point, as an additional metric.
In particular, sub-linear regret bounds allow to justify the
effectiveness of an adaptive conformal predictor in a more
meaningful way compared to the coverage guarantee alone.

Related Work. One of the earliest works where online
convex optimization techniques have been applied in the
context of uncertainty quantification is the one by Gibbs &
Candès (2021). Their methodology for learning a sequence
of radii is based on applying online (sub)gradient descent
to optimize the pinball loss. However, this approach has
some limitations, including the need to specify the learning
rate in advance and the potential for outputting empty or
infinite prediction sets. Subsequent works by Zaffran et al.
(2022); Gibbs & Candès (2022); Bhatnagar et al. (2023);
Angelopoulos et al. (2023) have introduced extensions of
the above method to address some of those shortcomings.

The primary drawback of the aforementioned methods lies
in their explicit dependence on a learning rate (or a speci-
fied grid thereof for approaches that utilize meta-learning
to improve upon using a single learning rate), with the
performance often being highly sensitive to such design
choices. For example, higher learning rates promote adapt-

ability to dynamic environments but may often lead to highly
volatile prediction sets. The resulting online conformal pre-
dictors may oscillate between outputting overly small (anti-
conservative) and excessively large (conservative) predic-
tion sets for consecutive time steps, while still demonstrat-
ing empirical coverage close to the target level. Conversely,
lower learning rates often result in conformal predictors that
may sacrifice coverage for stability, potentially taking much
longer to adapt to changes in distribution, hence failing to
accurately represent uncertainty. Moreover, the selection of
learning rates is heavily influenced by the scale of the errors,
or the nonconformity scores, particularly in the case of real-
valued responses. Heuristic approaches for approximating
the scale, such as using a maximum or a high quantile of the
historical response values, come with risks that may com-
promise the performance in practice (beyond the coverage
guarantee being lost). These considerations introduce (po-
tentially unnecessary) complexity if one aims to automate
the implementation of the uncertainty quantification block
in practice and become even more pronounced if uncertainty
estimates are constructed for (a) a large collections of input
data streams instead of a single one, and (b) multi-horizon
forecasts rather than the one-step-ahead ones.

We note that several of the aforementioned works (Bhatna-
gar et al., 2023; Gibbs & Candès, 2022) proposed to supple-
ment the coverage guarantee (1) with regret guarantees that
are stronger compared to the one considered in the current
work. This is achieved via meta-learning: selected base
models, e.g., the adaptive conformal predictors proposed
by Gibbs & Candès (2021) with different learning rates, are
subsequently aggregated using a meta-procedure. Our focus,
however, is different as we consider practical algorithms
designed to address the issues of cumbersome parameter tun-
ing or even the necessity of selecting a grid of learning rates.
We achieve this by leveraging parameter-free online convex
optimization techniques with sub-linear regret bounds, par-
ticularly those that are based on coin betting (Orabona &
Pál, 2016; Cutkosky & Orabona, 2018).

Amongst other related works on conformal prediction with
non-exchangeable data, we highlight methods that leverage
reweighting schemes (Tibshirani et al., 2019; Podkopaev &
Ramdas, 2021; Lei & Candès, 2021; Fannjiang et al., 2022;
Candès et al., 2023) and approaches designed to handle
time series data (Chernozhukov et al., 2018; Xu & Xie,
2021; Stankeviciute et al., 2021; Xu & Xie, 2023). We
note that these methods either place some distributional
assumptions (e.g., relationship between the source and the
target domains for covariate/label shift, mixing assumptions
for time series data) or characterize the coverage gap rather
than guaranteeing coverage of the resulting predictor at a
user-specified level.
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Contributions. In this work, we apply parameter-free op-
timization techniques to the problem of online conformal
inference. We prove that the resulting conformal predic-
tor controls the miscoverage rate at a pre-specified level.
Through extensive simulations with focus on adaptability to
distribution shifts, we demonstrate the compelling empirical
performance of the proposed methods. Our approach nicely
complements the existing methods in the literature due to
its ease of implementation, computational efficiency, and
absence of any parameter tuning.

2. Betting-based Adaptive Conformal
Inference

We focus on conformal predictors that output sets of the fol-
lowing form: Ĉt(s) := [Ŷt−s, Ŷt+s], where the prediction
Ŷt is based on all information available prior to the true re-
sponse Yt being revealed. We note that our methodology is
applicable beyond such setting, e.g., it can be used to recali-
brate the prediction intervals based on conditional quantile
regression models: Ĉt(s) := [q̂

(α/2)
t − s; q̂

(1−α/2)
t + s], but

we avoid the details for brevity. We refer the reader to Gupta
et al. (2022) for more versions of the nested prediction sets
for which our methodology is applicable. Let St denote
the radius of a smallest prediction set that contains the true
response Yt:

St = inf
{
s ∈ R : Yt ∈ Ĉt(s)

}
= inf

{
s ∈ R : Yt ∈ [Ŷt − s, Ŷt + s]

}
=
∣∣∣Yt − Ŷt

∣∣∣ .
Since the coverage event: {Yt ∈ Ĉt(s)}, is equivalent to
{St ≤ s}, the target property (1) of the miscoverage being
equal to the nominal level α can be expressed as:

lim
T→∞

∣∣∣∣∣ 1T
T∑

t=1

1 {St ≤ s} − (1− α)

∣∣∣∣∣ = 0. (2)

Hence, we can frame the task of constructing adaptive con-
formal predictors as a problem of learning (1− α)-quantile
of the nonconformity scores: (St)t≥1, in an online fashion.

Quantile Estimation and Adaptive Conformal Inference.
Learning the quantiles of a distribution is achieved by opti-
mizing the pinball loss, defined for β-quantile as

ℓβ(s, St) =max {β(St − s), (1− β)(s− St)}
=(1 {s ≥ St} − β) (s− St) .

The pinball loss is a convex and max{β, 1− β}-Lipschitz
(in the first argument) loss function, whose subdifferential

is given by

∂ℓβ(s, St) =

{
1 {St ≤ s} − β, s ̸= St,

[−β, 1− β], s = St.
(3)

Taking β = 1− α, we recall that the updates corresponding
to the online subgradient descent (OGD) take form:

st+1 = st − η · (1 {St ≤ st} − (1− α))

= st − η ·
(
1
{
Yt ∈ Ĉt(st)

}
− (1− α)

)
= st − η ·

(
α− 1

{
Yt /∈ Ĉt(st)

})
.

(4)

Throughout this work, we let gt ∈ ∂ℓ1−α(s, St)|s=st de-
note the subgradients of the quantile losses at time steps
t = 1, 2, . . . The online gradient descent updates stated
above admit a natural interpretation as an adjustment of
the prediction interval’s radius for the subsequent round in
response to whether a conformal predictor covers the truth
at a given time step: the radius is increased if a conformal
predictor fails to cover the truth, and decreased otherwise.
We note that in Gibbs & Candès (2021), the authors did
not directly apply the online subgradient descent to update
the radii as stated in (4). Instead, they applied it to update
a sequence of quantile levels: (αt)t≥1, and the radii were
determined by computing the empirical quantiles of the
residuals, or the nonconformity scores, at the corresponding
levels. However, this approach faces the following issue:
whenever some αt falls outside the unit interval, the result-
ing conformal predictor outputs either infinite (αt > 1) or
empty (αt < 0) prediction sets. While this problem does not
arise when the radii are updated as per (4), the scale of the
radii becomes a crucial factor in determining an appropriate
learning rate η since the subgradients of the pinball loss are
less than max {1− α, α} ≤ 1 in absolute value.

We also consider a closely-related method for adaptive con-
formal inference that has been proposed by Bhatnagar et al.
(2023). This approach builds upon scale-free online gradi-
ent descent (SF-OGD) introduced in Orabona & Pál (2018).
The corresponding update rule takes form:

st+1 = st − η ·
α− 1

{
Yt /∈ Ĉt(st)

}
√∑t

i=1

(
α− 1

{
Yi /∈ Ĉi(si)

})2 , (5)

where, in contrast to (4), the effective learning rate decays
over time, being inversely proportional to the square root
of the sum of the squared gradients. We note that SF-OGD
still requires pre-specifying the learning rate, just as the
standard OGD, and hence, requires considering the scale of
the nonconformity scores. In both cases, the tuning process
becomes much more complex if one applies adaptive con-
formal inference for multi-step forecasts or for a potentially
large collection of input data streams.
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Our Approach. We address the issues related to tuning
the learning rates when learning conformal predictors by
adopting parameter-free online convex optimization tech-
niques. Specifically, we utilize optimization techniques that
are based on coin betting (Orabona & Pál, 2016; Cutkosky
& Orabona, 2018). The high-level idea involves framing
the learning process as a game where a gambler repeatedly
places bets on the outcomes of continuous coin flips.

Let Wt denote the gambler’s wealth at the end of round
t. Starting with initial capital W0 = 1, the gambler bets
on the outcome of a coin flip ct ∈ [−1, 1] at each round
t. The gambler is allowed to bet any amount st on either
heads or tails but is restricted from borrowing any money,
i.e., we can write st = λtWt−1 for some λt ∈ [−1, 1]. The
sign of st specifies the gambler’s choice between heads or
tails (in general, st may be negative) and the absolute value
represents the corresponding betting amount.

In the t-th round, the gambler gains stct if sign(st) =
sign(ct) and incurs a loss of stct otherwise. Thus, we have:
Wt = Wt−1 + stct = 1 +

∑t
i=1 sici. For the setting of

i.i.d. coin flips (ct ∈ {−1,+1} are generated i.i.d. with a
known probability of heads p ∈ [0, 1]), the optimal strat-
egy has been proposed by Kelly (1956): he showed that
betting st = 2p − 1 yields more wealth than betting any
other fixed fraction in the long run. For a sequence of pos-
sibly adversarial coin flips, Krichevsky & Trofimov (1981)
proposed a practical betting scheme that guarantees almost
the same wealth as one could obtain betting any fixed frac-
tion of wealth at each round. Moreover, the corresponding
guarantee is known to be optimal up some constant fac-
tors (Cesa-Bianchi & Lugosi, 2006).

In our scenario, the coin outcomes are determined by the
negation of the subgradients of the pinball loss defined
in (3): ct = −gt for t ≥ 1. We consider two popu-
lar betting strategies: one based on Krichevsky-Trofimov
(KT) estimator (Krichevsky & Trofimov, 1981), extended
to the case of continuous coins (i.e., ct ∈ [−1, 1] instead
of {−1,+1}) in Orabona & Pál (2016), and a simple opti-
mization procedure based on the Online Newton Step (ONS)
method (Hazan et al., 2007; Cutkosky & Orabona, 2018).
In online learning, a standard performance metric is regret,
which measures the cumulative loss of (st)Tt=1 relative to
an unknown benchmark point, denoted by s◦:

RT (s
◦) =

T∑
t=1

ℓt(st)− ℓt(s
◦).

Betting games are useful for designing online convex op-
timization algorithms since the bounds on the minimum
wealth can be used to derive the corresponding regret
bounds. Both of the considered betting strategies yield on-
line convex optimization algorithms with sub-linear regret
in our setting. In particular, taking ℓt(s) = ℓ1−α(s, St) for

t ≥ 1, we get a sequence of convex and (1− α)-Lipschitz
(assuming α < 1/2) loss functions. Therefore, for a se-
quence of radii (st)Tt=1 obtained using the KT estimator it
holds that:

RT (s
◦) ≤ 1+|s◦|

√
4T ln (1 + |CTs◦|), ∀s◦ ∈ R, (6)

for some universal constant C (Orabona & Pál, 2016). For
online subgradient descent, the corresponding regret bound
involves the learning rate parameter. More precisely, it can
be shown for online subgradient descent that:

RT (s
◦) ≤ (s◦)2

2η
+

ηT

2
, ∀s◦ ∈ R,

and hence, the learning rate which minimizes the upper
bound is η = |s◦| /

√
T . As discussed later in this Section,

the boundedness of the nonconformity scores: |St| ≤ D
for some D > 0 and all t ≥ 1, is a necessary condition
to ensure long-term coverage (1). In this case, using η =
D/

√
T results in regret bound: D

√
T , which is known

to be optimal for bounded domains up to multiplicative
constants. However, implementing the resulting algortihm
in practice still requires an explicit knowledge of D. In
contrast, utilizing KT betting results in a sub-optimal regret
bound up to logarithmic factors (which is a secondary metric
of our interest), but allows to avoid tuning any parameters.

We summarize the adaptive conformal predictor that utilizes
KT betting strategy in Algorithm 1 and defer the descrip-
tion of the adaptive conformal predictor that uses the ONS
betting scheme to Appendix A.

Algorithm 1 KT-based Adaptive Conformal Predictor.
Initialize: α ∈ (0, 1), W0 = 1, λ1 = 0, s1 = 0.
for t = 1, 2, . . . do

Produce a forecast Ŷt = ft(Xt, {(Xi, Yi)}i≤t−1) and
output a set: Ĉt(st) = [Ŷt − st; Ŷt + st];
Observe Yt and compute error: St =

∣∣∣Yt − Ŷt

∣∣∣;
Compute gt ∈ ∂ℓ1−α(s, St)|s=st as per (3);
Set Wt = Wt−1 − gtst;
Set λt+1 = t

t+1λt − 1
t+1gt;

Set st+1 = λt+1Wt;
end for

While the sub-linear regret guarantees are helpful in elim-
inating trivial conformal predictors, the coverage guaran-
tee outlined in (1) does not directly follow from the regret
bound. These guarantees have to be derived independently.
In the following result, we establish that the proposed ap-
proach for online conformal inference based on KT betting
strategy attains a long-term miscoverage rate precisely equal
to the nominal level α. The proof is deferred to Appendix B.

Theorem 2.1. Fix the target miscoverage level α ∈ (0, 1/2).
Suppose that the nonconformity scores are bounded: St ∈
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[0, D] for t = 1, 2, . . . , for some D > 0. Then the adaptive
conformal predictor defined in Algorithm 1 satisfies the
long-term coverage guarantee (1).

The boundedness of the nonconformity scores is the only
assumption which is made in Theorem 2.1 to ensure cover-
age of the proposed conformal predictor. The method itself
does not depend on the explicit knowledge of such bound.
It is easy to see that for the KT-based online conformal
predictor outlined in Algorithm 1 the assumption regarding
bounded scores is indeed necessary for achieving (1). If
this assumption is violated, then one can easily construct
an adversarial example where miscoverage rate is actually
equal to one: once the radius st is predicted, it is always pos-
sible to choose a response value Yt that lies outside of the
predicted interval, resulting in error at each round. Finally,
we note that the same argument can be used to show that the
boundedness assumption is also necessary for conformal
predictors whose radii are updated according to (4) or (5) to
satisfy the long-term coverage guarantee (1).

3. Experiments
In our simulation study, we consider a collection of simu-
lated and real datasets where the data distribution changes
over time, and hence, the exchangeability assumption is
violated. Throughout all experiments, we fix the target
coverage level at 90% (α = 0.1). We compare adaptive
conformal predictors learned using the proposed betting
scheme against those that are learned using OGD (4) and
SF-OGD (5). We demonstrate that our method — without
performing any parameter tuning — achieves performance
that either matches or is close to that of a conformal pre-
dictor obtained by deploying versions of online gradient
descent with carefully tuned learning rates.

Changepoint Setting. Following Barber et al. (2023),
we consider a changepoint setting setting where the data
{(Xt, Yt)}nt=1 are generated according to a linear model:
Yt = X⊤

t βt+εt, Xt ∼ N (0, I4), εt ∼ N (0, 1), t ≥ 1. We
consider the following scenario:

βt = β(0) = (2, 1, 0, 0)⊤, t = 1, . . . , 500,

βt = β(1) = (0,−2,−1, 0)⊤, t = 501, . . . , 1500,

βt = β(2) = (0, 0, 2, 1)⊤, t = 1501, . . . , 2000,

where two changes in the coefficients happen up to time
2000. For prediction, we first use a standard linear regres-
sion model whose coefficients are learned by optimizing
the least squares objective on observed data prior to a given
time step. In Figure 1, we compare our adaptive conformal
predictors against those that are trained using variants of
gradient descent with varying learning rates.

The top plot shows that the empirical coverage of the con-

formal predictors learned via versions of online gradient
descent is nearly equal to the nominal level whenever the
learning rates are high enough. Although our conformal pre-
dictor demonstrates slightly lower coverage (around 88%),
such difference is typically of minor practical importance.
When the learning rates are too small, the OGD-based con-
formal predictors demonstrate empirical coverage that is
significantly lower than the target level. Conversely, with
learning rates that are overly high, the average width of the
output sets increases, resulting in overly conservative sets,
as observed in the bottom plot. In fact, such conformal
predictors oscillate between outputting overly narrow and
overly wide sets (since the learning rate is high and fixed).
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Figure 1. Comparison of the proposed conformal predictor against
those learned via OGD/SF-OGD with different learning rates. The
performance of the conformal predictors learned via OGD/SF-
OGD is sensitive to the choice of the learning rate, whereas the
performance of the betting-based ones is close to (in terms of cov-
erage and width) to that of the carefully tuned alternative methods.
The results are aggregated over 200 random seeds.

While useful, the above findings provide limited insights
into the adaptability of conformal predictors to changes in
distribution. To illustrate such adaptability properties, we
compare the localized coverage and width of our conformal

5



Adaptive Conformal Inference by Betting

predictors and those trained via online gradient descent for
three particular choices of learning rates in Figure 2. We ob-
serve a drastic impact of a learning rate on the performance
of the resulting conformal predictor. For the OGD-based
method, the output sets are generally overly conservative
(top-right plot) for large learning rate (η = 4). This issue is
addressed by SF-OGD (bottom-right plot), whose learning
rate effectively decreases over time. However, if the learn-
ing rate becomes too low (η < 1), the localized coverage
of SFOGD-based conformal predictor recovers very slowly
after changes in distribution take place.

As alluded to before, if the learning rate for OGD-based con-
formal predictors is set too high, the resulting sets may be-
come volatile. We illustrate this problem on Figure 3 where
the KT-based conformal predictor is compared against the
one based on OGD with η ∈ {0.25, 1}. For each approach,
we estimate local deviation of the interval width using a
rolling window of size 10. Although the empirical coverage
and average width of the uncertainty intervals produced by
conformal predictor based on OGD with η = 1 is close to
that of the KT-based one (Figure 2), we observe that the
local deviation of the interval width for the former method
is much higher, indicating that the corresponding width
changes abruptly between consecutive time steps.

Under an abrupt change in the data distribution, the predic-
tive accuracy may drop if the model is trained on all data
(without considering potential shifts in distribution). Predic-
tive models which are trained using online gradient descent
or utilize weighting schemes, with higher weights being
assigned to the most recent datapoints, may adapt to shifts
in distribution much faster. We consider a second option and
refer the reader to Appendix C.1 for a comparison between
various methods for adaptive conformal inference when a
linear model, whose coefficients are learned by optimizing
the weighted least squares objective, is used.

Electricity Demand Data. Next, we consider the dataset
for forecasting the electricity demand in New South
Wales (Harries, 1999). Following Angelopoulos et al.
(2023), we use AR(3) model as an underlying predictor.
In Figure 4, we compare coverage and width respectively
of conformal predictors constructed using betting schemes
against those based on online gradient descent with varying
learning rates. We present the results for SF-OGD only,
deferring those for OGD to Appendix C.2.

We observe that four conformal predictors demonstrate sim-
ilar performance: for all methods, the empirical coverage is
near the nominal level and the resulting prediction sets have
roughly similar width. As we illustrate in Appendix C.2
(particularly, Figure 12), the resulting prediction sets be-
come visually indistinguishable after processing a relatively
small number of observations. In contrast, OGD with the

same learning rate (η = 0.1) yields conformal predictors
that are significantly wider on average than that of alter-
native methods. This is due to using a fixed learning rate
throughout the whole process; see Figure 10 for details.

In applications, practitioners are often interested in multi-
step forecasting for some horizon H . Adaptive conformal
predictors may handle such cases by simply associating
each step with a separate radius: s(1), . . . , s(H), and deploy-
ing online optimization schemes (e.g., one in Algorithm 1)
independently for each of the parameters. On the same
electricity dataset, we consider the problem of uncertainty
quantification in multi-step forecasting, setting the horizon
H = 5. We use AR(3) model and utilize a simple approach
when k-step ahead forecast is used as an input feature for
constructing a forecast on (k + 1)-st step. The parameters
of the model are updated each time the next 5 true responses
are revealed. In Table 1, we summarize average empirical
coverage and average size of the prediction set for conformal
predictors learned using KT betting scheme and versions of
online gradient descent with η = 0.01. In terms of global
metrics, all methods demonstrate similar performance.

In Figure 5, we illustrate localized coverage and width for
all methods, restricting the attention to the last step in the
forecasting horizon (k = 5). In this case, we observe that
the KT-based conformal predictor exhibits behavior that is
closer to that based on OGD (4) rather than to that based
on SF-OGD (5): for the two former methods, localized
coverage is more tightly concentrated around the nominal
level. In contrast, the conformal predictor based on SF-
OGD happens to either undercover or be overly conservative
over long periods of time, failing to respond quickly to the
changes in the data distribution.

Coverage Width
k KT OGD SF-OGD KT OGD SF-OGD
1 89.1 89.9 90.1 7.58 8.36 7.92
2 89 89.9 90.1 14.3 14.9 14.6
3 89 89.9 89.8 21.6 22.6 21.8
4 89 89.9 89.5 28.6 30 28.7
5 88.9 89.8 89.2 35.3 36.3 35

Table 1. The results for uncertainty quantification in k-step ahead
electricity demand forecasting. The empirical coverage of confor-
mal predictors learned using versions of online gradient descent is
closer to the nominal level, yet the coverage of that learned using
betting schemes is only slightly below. The KT-based conformal
predictor yields shorter prediction sets on average (four out of
five cases). The empirical coverage is shown in percentages. The
average width of prediction sets has been multiplied by 100.

Stock Prices Data. Finally, we consider uncertainty quan-
tification in the problem of forecasting stock prices. In
particular, we use the closing prices of five different stocks:
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Figure 2. Comparison of the conformal predictor trained using parameter-free optimization techniques (KT, ONS) against those trained
using variants of online gradient descent with varying learning rates (OGD, SF-OGD). We avoid plotting results observed for the first 50
observations. The results are aggregated over 250 random seeds and smoothed using rolling window of size 10.
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Figure 3. Local deviation of the width of the uncertainty sets re-
turned by KT-based and OGD-based conformal predictors. If the
learning rate for OGD-based conformal predictor is set too high,
the width of the output sets may change abruptly between consec-
utive time steps. Deviations are computed using rolling window of
size 10 and are averaged over 250 random seeds.

Apple (APPL), Meta (META), Microsoft (MSFT), Netflix
(NFLX), and Walmart (WMT), collected over a five-year pe-
riod (from January, 25th 2019 to Jan, 24th 2024); see Fig-
ure 61. Rather than forecasting the closing price for the next
day only, we consider multi-horizon forecasting for each
calendar week (i.e., forecasting horizon H = 5): each day
is associated with the corresponding radius which is updated
on a weekly basis, i.e., s(1) is a radius that is used to con-
struct uncertainty estimates for Mondays exclusively. We
take into account the days of market closure due to holidays
as follows. For example, if the first trading day of a week
happens to be Wednesday, we use the radius s(3) to con-
struct the corresponding prediction interval. Subsequently,
after prices in a given week are observed, there is no update
to s(1) and s(2).

We use the Prophet (Taylor & Letham, 2018) as our pre-
diction model and operate in the log-space for forecasting.
For each stock, the first 25 weeks of data are used to train
the initial model, followed by retraining at the end of each
subsequent week. For conformal predictors based on vari-
ants of online gradient descent, we compute the in-sample
residuals for the initial model and use the empirical absolute
error as a learning rate. Although the in-sample residuals

1Example of the data source for one of the stocks.
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(a) One-step ahead.
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Figure 4. Comparison between conformal predictors constructed using betting schemes and SF-OGD (5) with η ∈ {0.01, 0.1} for
one-step ahead forecasting. For all methods, the empirical coverage is near the nominal level and the resulting prediction sets have roughly
similar width. The results are smoothed over a rolling window of 100 observations.
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Figure 5. Comparison between conformal predictors constructed using betting schemes and versions of versions of online gradient
descent (4) and (5) with η = 0.01 for five-step ahead forecasting. The results are presented for the fifth step and are smoothed over a
rolling window of 100 observations.

underestimate the out-of-sample residuals, one may want to
try a smaller learning rate, particularly for the OGD-based
conformal predictor (4). However, our empirical observa-
tions indicated that such choice worsens the results in terms
of coverage. In addition to conformal methods, we also
consider prediction intervals that are provided by Prophet
as a native uncertainty quantification tool.

In Table 2, we present an overview of the empirical coverage
results aggregated across five stocks. We observe that all
methods for uncertainty quantification demonstrate an aver-
age coverage lower than the nominal level. The uncertainty
intervals provided by Prophet stand out as significantly sub-
optimal compared to alternative methods. In Appendix C.3,
we further illustrate Prophet fails to adapt to multi-step fore-
casting by only marginally increasing in set size relative to
the number of steps ahead. Amongst other methods, confor-
mal predictor which is based on OGD (4) demonstrates the
coverage that is closest to the nominal level. However, we
note that the KT-based conformal predictor is only slightly
inferior, while being insensitive to parameter tuning. Unlike
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Figure 6. Visualization of the prices for the selected stocks over
five years.

standard OGD, the effective learning rate of SF-OGD is
decreasing over time. This in turn has a direct impact on the
poor empirical coverage of the resulting conformal predic-
tor: decreasing learning rate happens to hurt the ability of
the uncertainty estimates to appropriately adjust in response
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to the drop of model accuracy. We refer the reader to Ap-
pendix C.3 for additional results about the performance of
different adaptive conformal predictors in stock price fore-
casting. In particular, we demonstrate that in some cases,
the KT-based conformal predictor yields shorter intervals
than that based on OGD, despite showing similar coverage.

Coverage
k KT OGD SF-OGD Native method
1 84.8 86 79.6 69.4
2 85.0 86.4 79.5 67.6
3 84.9 86.4 78.8 62.9
4 84.6 85.9 76.9 60.4
5 84.6 85.4 76.3 58.8

Table 2. Empirical coverage comparison in k-step ahead stock
price forecasting. The OGD-based conformal predictor demon-
strates coverage that is closest to the nominal level, with the KT-
based one being slightly inferior. The native prediction intervals
offered by Prophet show the lowest coverage across all steps.

4. Conclusion
A number of methods have been recently proposed for on-
line conformal inference, primarily utilizing versions of
online gradient descent. Such methods are generally sen-
sitive to the choice of (possibly a grid of) learning rates,
and hence, usually require careful tuning. Our primary con-
tribution lies in demonstrating that parameter-free online
convex optimization techniques can effectively address this
issue, resulting in a compelling method for adaptive con-
formal inference. Despite its simplicity, our approach is
advantageous from several standpoints. First, our online
conformal predictor provably achieves long-term coverage.
Second, additional properties, such as sub-linear regret, jus-
tify its practical utility. We note that the absence of tuning
comes at a cost: our method is guaranteed to achieve cor-
rect coverage rate in the limit, it may demonstrate coverage
that is lower than the nominal level in finite-sample regime
(although, the difference is usually small and is of little prac-
tical interest). Methods that are based on versions of online
gradient descent often demonstrate marginal coverage that
is closer to the the nominal level, but run into risk of failing
to adapt to distribution shifts, yielding either overly con-
servative or overly optimistic prediction sets over spans of
time as a result. Empirical evidence demonstrates that our
method generally performs only slightly worse or matches
the performance of methods based on gradient descent with
carefully tuned parameters. Therefore, using betting-based
conformal inference can be advantageous in scenarios where
precision is prioritized (given an acceptable coverage). The
primary strength of our method lies in its simplicity and
ease of implementation, making it a practical and accessible
choice for applications. Therefore, we view it as a useful

method in a toolbox of machine learning practitioners.

Impact Statement
This paper presents general methodological work whose
goal is to advance the field of Machine Learning. By provid-
ing open access to the code as a supplement for the purposes
of transparency and reproducibility, our work aims to reach
better understanding within the research community. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.
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Appendix

A. Omitted Details
Online Conformal Predictor with ONS Bets. A complete description of online conformal predictor that uses bets
provided by online Newton step (ONS) is provided in Algorithm 2.

Algorithm 2 ONS-based Online Conformal Predictor.
Initialize: W0 = 1, λ1 = 0, A0 = 1, α ∈ (0, 1).
for t = 1, 2, . . . do

Produce a forecast Ŷt = ft(Xt, {(Xi, Yi)}i≤t−1) and output a set: Ĉt(st) = [Ŷt − st; Ŷt + st];

Observe Yt and compute error: St =
∣∣∣Yt − Ŷt

∣∣∣;
Compute gt = ∂ℓ1−α(s, St)|s=st ;
Set Wt = Wt−1 − gtst;
Set zt = gt/(1− λtgt);
Set At = At−1 + z2t ;
Set λt+1 =

((
λt − 2

2−log(3)
zt
At

)
∨ − 1

2

)
∧ 1

2 ;
Set st+1 = λt+1Wt;

end for

While ONS betting scheme tends to yield adaptive conformal predictors with very impressive empirical performance, the
corresponding betting fractions: (λt)t≥1, are defined recursively which complicates the theoretical analysis of the resulting
adaptive conformal predictors.

B. Proofs
Theorem 2.1. Fix the target miscoverage level α ∈ (0, 1/2). Suppose that the nonconformity scores are bounded:
St ∈ [0, D] for t = 1, 2, . . . , for some D > 0. Then the adaptive conformal predictor defined in Algorithm 1 satisfies the
long-term coverage guarantee (1).

Proof. 1. First, note under the assumption that the nonconformity scores are bounded: Si ≤ D, i = 1, 2, . . . , for some
D > 0, the following statements hold:

(a) Suppose that for some i ≥ 1, it happens that the predicted radius si exceeds the upper bound D: si > D. Since
si = λi · Wi−1 and the wealth is nonnegative Wi−1 ≥ 0, it implies that λi > 0. Further, the corresponding
(sub)gradient is gi = α − 1{Yi /∈ Ĉi(Xi)} = α − 1{Si > si} = α, which in turn implies that Wi =
Wi−1(1− λigi) < Wi−1. For KT estimator, it holds that: λi+1 = i

i+1λi − 1
i+1gi < λi. In other words, we get

that si+1 = λi+1Wi < si, meaning that the predicted radius for the next step necessarily decreases, and this
process repeats until the predicted radius becomes less or equal than D.

(b) Suppose that for some i ≥ 1, it holds that: si ≥ 0, but si+1 < 0. Then it has to be the case that si+2 > 0. Indeed,
si ≥ 0 implies that λi ≥ 0 and si+1 < 0 implies that λi+1 < 0. Next, note that for KT estimator, it holds that:

0 > λi+1 =
i

i+ 1
λi −

1

i+ 1
gi,

which implies that gi > 0, and hence, gi = α. Since Si+1 ≥ 0, it holds that gi+1 = α−1{Si+1 > si+1} = α−1.
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Finally,

λi+2 =
i+ 1

i+ 2
λi+1 −

1

i+ 2
gi+1

=
i+ 1

i+ 2

i

i+ 1
λi −

i+ 1

i+ 2

1

i+ 1
gi −

1

i+ 2
gi+1

=
i

i+ 2
λi −

1

i+ 2
(gi + gi+1).

Hence, since λi ≥ 0 and gi + gi+1 = 2α− 1 < 0 (where we make a mild assumption that α < 0.5), we conclude
that λi+2 > 0, and hence, si+2 > 0.

2. Since for any t ≥ 1, Wt = 1−
∑t

i=1 sigi ≥ 0, we get that
∑t

i=1 sigi ≤ 1. On the other hand, recall that if si > D,
then we have that: gi = α > 0, and if si < 0, then gi = α− 1 < 0. Hence,

t∑
i=1

gisi =

t∑
i=1

gisi︸︷︷︸
>0

·1 {si > D}+
t∑

i=1

gisi · 1 {si ∈ [0, D]}+
t∑

i=1

gisi︸︷︷︸
>0

·1 {si < 0}

≥
t∑

i=1

gisi · 1 {si ∈ [0, D]}

≥ −Dt.

We have shown that: −Dt ≤
∑t

i=1 sigi ≤ 1, and hence,∣∣∣∣∣
t∑

i=1

sigi

∣∣∣∣∣ ≤ max {1, Dt} ≤ Dt+ 1. (7)

Next, we bound the distance between the consecutive predicted radii. Observe that for KT bettor:

st+1 = −
∑t

i=1 gi
t+ 1

(
1−

t∑
i=1

gisi

)

= −
∑t

i=1 gi
t+ 1

(
1−

t−1∑
i=1

gisi

)
+ gtst

∑t
i=1 gi
t+ 1

= −
∑t−1

i=1 gi
t+ 1

(
1−

t−1∑
i=1

gisi

)
− gt

t+ 1

(
1−

t−1∑
i=1

gisi

)
+ gtst

∑t
i=1 gi
t+ 1

=
t

t+ 1
st +

1

t+ 1

(
−gt + gt

t−1∑
i=1

gisi + gtst

t∑
i=1

gi

)
,

and hence,

st+1 − st =
1

t+ 1

(
−st − gt + gt

t−1∑
i=1

gisi + gtst

t∑
i=1

gi

)
. (8)

From (8) and (7), it follows that:

|st+1 − st| ≤
1

t+ 1
(D + 1 +D(t− 1) + 1 +Dt) ≤ 2D + 1.

Combining that with the fact that s1 = 0 ∈ [0, D] and the result in step 1, we conclude that the iterates of the KT
algorithm are bounded: |st| ≤ 3D + 1.

3. Finally, we show that if (1) fails to hold, then the iterates of KT bettor can not be bounded. Note that:∣∣∣∣∣1t
t∑

i=1

1
{
Yi /∈ Ĉi(Xi)

}
− α

∣∣∣∣∣ = 1

t

∣∣∣∣∣
t∑

i=1

gi

∣∣∣∣∣ ,
12
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where gi are defined in Algorithm 1. Next, suppose that (1) is not true, that is, ∃ε > 0 : ∀T ∃T ′ > T : 1
T ′

∣∣∣∑T ′

i=1 gi

∣∣∣ ≥ ε.
Since

|st+1| = |λt+1Wt| =
1

t+ 1

∣∣∣∣∣
t∑

i=1

gi

∣∣∣∣∣ ·Wt,

we have that ∃ε > 0 : ∀T ∃T ′ > T such that:

|sT ′+1| ≥
1

T ′ + 1

∣∣∣∣∣∣
T ′∑
i=1

gi

∣∣∣∣∣∣ ·WT ′ ≥ T ′

T ′ + 1
ε ·WT ′ .

For KT bettor, it holds that (Orabona & Pál, 2016):

Wt ≥
1

K
√
t
exp

 t

4

(
1

t

t∑
i=1

gi

)2
 ,

where K > 0 is a universal constant. Hence, we know that ∀T ∃T ′ > T :

|sT ′+1| ≥
T ′

T ′ + 1

ε

K
√
T ′

exp

(
T ′

4
ε2
)
,

implying that the iterates are unbounded. Hence, we have reached a contradiction with the conclusion of step 2, and
thus, the coverage guarantee (1) has to hold. This completes the proof.

C. Additional Experiments
In this Section, we present additional simulations to Section 3. Section C.1 is deferred to the changepoint setting. Section C.2
is deferred to the experiment with electricity demand dataset (Harries, 1999).

C.1. Changepoint Setting and Weighted Least Squares Model

Here, we compare adaptive conformal predictors that are learned using parameter-free optimization techniques against those
that are trained via versions of online gradient descent, and hence, require specifying the learning rates (see Section 2 for
details). As an underlying model, we use a linear model, whose coefficients are learned by optimizing the weighted least
squares objective:

min
β

t∑
i=1

wi(Yi −X⊤
i β)2.

Specifically, with t available training points, the weights (wi)
t
i=1 are assigned to the first t (ordered) points, where

wi = 0.99t+1−i, i = 1, . . . , t. The results for varying learning rates are presented in Figure 7. Similar to the case of a
standard linear model, adaptive conformal predictors that utilize betting scheme tends to slightly undercover after processing
2000 observations. Using learning rates that are too high results in conformal predictors that output overly conservative
sets. For example, OGD with η = 4 yields conformal predictors that output sets which are more than 50% larger than those
corresponding to KT betting.

The results localized coverage and width for a subset of learning rates are presented in Figure 8. We observe that the
performance of the proposed parameter-free approaches is close or matches that of the competitors with carefully tuned
learning rates. Our conformal predictor quickly restore coverage after a change in distribution has occurred and avoid being
overly conservative once an underlying model adapts to the new settings (see bottom-left plot and η = 0.25 or η = 1).
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Figure 7. Comparison of our conformal predictor against those learned via OGD/SF-OGD with varying learning rates. We observe that
the performance of the proposed parameter-free approaches is close or matches that of the competitors with carefully tuned learning rates.
Importantly, it avoids outputting overly conservative sets.
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Figure 8. Performance of several methods when a linear model, whose coefficients are learned by optimizing the weighted least squares
objective. We observe that the performance of the proposed parameter-free approaches is close or matches that of the competitors with
carefully tuned learning rates. The results are aggregated over 250 random seeds and smoothed using rolling window of size 10.
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C.2. Electricity Demand Dataset

In Figure 9, we compare coverage and width (smoothed over a rolling window of 100 observations) of conformal predictors
constructed using betting schemes against those based on OGD with varying learning rates. While for all methods the
empirical coverage is near the nominal level, the width of a conformal predictor based on OGD with learning rate η = 0.1 is
consistently higher than that of other methods.

In Figure 10, we demonstrate the histograms for the ratios of the widths of the prediction intervals obtained from conformal
predictors based on versions of online gradient descent to that of conformal predictors based on KT betting scheme. Ignoring
the first 100 observations (warm-up period), the average width of intervals corresponding to OGD with learning rate η = 0.1
is almost 70% larger than that of KT-based conformal predictor. For SF-OGD with the same learning rate, this number
reduces to only 3%.
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Figure 9. Comparison between conformal predictors constructed using betting schemes and versions of OGD (4) with learning rates
η ∈ {0.01, 0.1}. For all methods the empirical coverage is near the nominal level. The width of a conformal predictor based on OGD
with learning rate η = 0.1 is consistently higher than that of other methods. The results are smoothed over a rolling window of 100
observations.
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(a) Higher learning rate.

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0

2000

4000

6000

8000

10000

C
ou

nt
s

Width (OGD, = 0.01)
Width(KT)

Width (SF-OGD, = 0.01)
Width(KT)

(b) Lower learning rate.

Figure 10. The histograms for the ratios of the widths of the prediction intervals obtained from conformal predictors based on versions of
online gradient descent to that of conformal predictors based on KT betting scheme. The average width of intervals corresponding to
OGD with learning rate η = 0.1 is almost 70% larger than that of KT-based conformal predictor, whereas for SF-OGD with the same
learning rate the number reduces to 3%. For lower learning rates, the average width are almost equal.

In Figure 11, we compare the KT-based conformal predictor against that based on OGD with either of two learning rates:
0.01 or 0.1. The prediction bands for conformal predictors based on KT-betting and OGD with learning rate η = 0.01 are
visually very close, particularly for later time steps. Conformal predictor based on OGD with learning rate η = 0.1 yields
sets that are generally larger.

In Figure 12, we compare KT-based conformal predictor against that based on SF-OGD with the same learning rates:
0.01 or 0.1. The prediction bands for conformal predictors based on KT-betting and SF-OGD with either of the learning
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Figure 11. Prediction bands for conformal predictors which are learned via KT-betting (green), OGD with learning rate η = 0.01 (yellow),
and OGD with learning rate η = 0.1 (coral). Learning rate η = 0.1 yields conformal predictors that output overly large prediction sets
across all time steps. KT-based and learning rate η = 0.01 bands are visually very close, particularly for later time steps.

rates become visually indistinguishable, especially for later time steps. The difference between the outputs of conformal
predictors based on SF-OGD with different learning rates diminishes due to effective learning rate that decreases over time.
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Figure 12. Prediction bands for conformal predictors which are learned via KT-betting (green), SF-OGD with learning rate η = 0.01
(yellow), and SF-OGD with learning rate η = 0.1 (coral). While for the initial time steps the bands are close, they become visually
indistinguishable for larger time steps. The difference between two learning rates essentially disappears due to effective learning rate that
decreases over time.
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C.3. Stock Prices Data

In this Section, we demonstrate the results of running different approaches for quantifying predictive uncertainty in stock
price forecasting for MSFT (Figure 13 and Table 3), META (Figure 14 and Table 4), APPL (Figure 15 and Table 5), NFLX
(Figure 16 and Table 6), and WMT (Figure 17 and Table 7).

Coverage Width
k KT OGD SF-OGD Native KT OGD SF-OGD Native
1 85.7 87.1 81.9 71.9 32.2 33.5 27.8 21.1
2 85.5 87.2 80.9 71.1 32.8 34.3 31 21.4
3 85.5 86.8 80.3 63.7 36.2 39.3 31.9 21.7
4 85.2 86.5 77.8 63.5 38.2 42 34.6 21.4
5 85 85.9 78 61.2 39.4 42.3 33.3 21.5

Table 3. The empirical coverage and average width of prediction intervals for MSFT stock.
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Figure 13. Top row: localized coverage for MSFT stock. The results are averaged over a rolling window of size 30. Bottom row: stock
prices on Fridays plotted along with prediction bands corresponding to different methods.
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Coverage Width
k KT OGD SF-OGD Native KT OGD SF-OGD Native
1 83.8 86.2 80.5 69 54.9 60.7 47.9 31.6
2 84.3 86.4 80 66 52.5 64.1 50.2 31.9
3 84.6 86.8 79.1 61.5 56.7 68 55.5 32.3
4 84.3 85.7 78.3 58.7 63.6 74.1 55.3 31.9
5 84.6 85 78.4 60.8 63.5 76.4 55.5 32.1

Table 4. The empirical coverage and average width of prediction intervals for META stock.
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Figure 14. Top row: localized coverage for META stock. The results are averaged over a rolling window of size 30. Bottom row: stock
prices on Fridays plotted along with prediction bands corresponding to different methods.
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Coverage Width
k KT OGD SF-OGD Native KT OGD SF-OGD Native
1 84.8 84.8 77.1 64.3 21.8 27.1 20.9 14
2 84.7 85.5 77 63 24.3 25.8 22.1 14.1
3 84.6 85.5 76.1 58.5 23.6 28.7 22.5 14.3
4 84.3 85.2 74.3 54.8 24.5 28.3 22.4 14.1
5 84.1 84.1 73.6 53.3 27.5 31.7 23.2 14.2

Table 5. The empirical coverage and average width of prediction intervals for APPL stock.
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Figure 15. Top row: localized coverage for APPL stock. The results are averaged over a rolling window of size 30. Bottom row: stock
prices on Fridays plotted along with prediction bands corresponding to different methods.

20



Adaptive Conformal Inference by Betting

Coverage Width
k KT OGD SF-OGD Native KT OGD SF-OGD Native
1 83.8 86.7 80.5 70.5 78.7 84.6 68.8 55.3
2 84.3 86.8 80.9 69.8 79 87.5 69.7 55.3
3 83.3 86.8 80.3 64.1 82.9 94.8 76.8 55.8
4 83.5 87 79.1 62.6 88.9 96.5 84.5 55.5
5 83.7 86.3 78 59.9 105.2 105.6 85.9 55.4

Table 6. The empirical coverage and average width of prediction intervals for NFLX stock.
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Figure 16. Top row: localized coverage for NFLX stock. The results are averaged over a rolling window of size 30. Bottom row: stock
prices on Fridays plotted along with prediction bands corresponding to different methods.

21



Adaptive Conformal Inference by Betting

Coverage Width
k KT OGD SF-OGD Native KT OGD SF-OGD Native
1 85.7 85.2 78.1 71.4 13.5 12.7 10.4 9.1
2 86 86 78.7 68.1 13.4 13.1 11.8 9.2
3 86.3 86.3 78.2 66.7 14.6 14.3 11.7 9.2
4 85.7 85.2 75.2 62.6 15.2 15.4 12.4 9.2
5 85.5 85.5 73.6 58.6 16.9 16.5 12.9 9.2

Table 7. The empirical coverage and average width of prediction intervals for WMT stock.
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Figure 17. Top row: localized coverage for WMT stock. The results are averaged over a rolling window of size 30. Bottom row: stock
prices on Fridays plotted along with prediction bands corresponding to different methods.
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