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Abstract

The integration of spatial multi-omics data from single tis-
sues is crucial for advancing biological research. However,
a significant data imbalance impedes progress: while spatial
transcriptomics data is relatively abundant, spatial proteomics
data remains scarce due to technical limitations and high
costs. To overcome this challenge we propose STProtein,
a novel framework leveraging graph neural networks with
multi-task learning strategy. STProtein is designed to accu-
rately predict unknown spatial protein expression using more
accessible spatial multi-omics data, such as spatial transcrip-
tomics. We believe that STProtein can effectively addresses
the scarcity of spatial proteomics, accelerating the integration
of spatial multi-omics and potentially catalyzing transforma-
tive breakthroughs in life sciences. This tool enables scien-
tists to accelerate discovery by identifying complex and pre-
viously hidden spatial patterns of proteins within tissues, un-
covering novel relationships between different marker genes,
and exploring the biological “Dark Matter”.

Introduction

Recently, spatial transcriptomics has been evolved into spa-
tial multi-omics, enabling the visualization and analysis of
multiple omics within a single tissue sample. This signifi-
cant progress can be mainly attributed to the advancement
of spatial multi-omics techniques, including SPOTS (Ben-
Chetrit et al. 2023), STARmap PLUS (Zeng et al. 2023), 10x
Genomics Xenium s(Janesick et al. 2023), Stero-CITE-seq
(Liu et al. 2023), and Stereo-CITE-seq (Liao et al. 2023).
These techniques enable the acquisition of multiple comple-
mentary perspectives of individual cells with spatial infor-
mation, offering significant potential for revealing insights
into cellular and previously undiscovered tissue properties.
In this field, developing an Al-powered toolkit, serving as a
precise “telescope”, can assist scientists in exploring the re-
search horizons and uncovering scientific discoveries by de-
ciphering the majority of the unannotated data, also called
the “Dark Matter” (Han et al. 2024).

In order to fully use spatial multi-omics data for a thor-
ough understanding of the tissue, it is vital to integrate multi-
omics data to perform analysis. However, the main chal-
lenge is the scarcity of multi-omics data that has greatly hin-
dered comprehensive analysis. Furthermore, the cost of spa-
tial proteomics sequencing is typically between $3,000 and

$7,000 more expensive than that of spatial transcriptomics
sequencing (Ben-Chetrit et al. 2023) in SPOTS (Ben-Chetrit
et al. 2023) sequencing platform. This has given rise to a
phenomenon in which the pace of spatial transcriptomics
data generation has exceeded that of spatial proteomics, re-
sulting in an imbalance in the volume of data between the
two modalities. This imbalance poses a significant barrier
to widespread adoption and constraints the advancement of
studies in spatial multi-omics.

In this paper, we propose STProtein, a framework for pre-
dicting spatial protein expression from spatial multi-omics
data. STProtein leverages graph neural networks (GNNs)
to effectively model complex spatial relationships, integrat-
ing RNA and protein expression with cellular interactions
within tissue structures. In addition to its predictive ca-
pabilities, STProtein serves as a powerful computational
toolkit that can accelerate scientific discovery by enabling
the identification of complex, hidden spatial protein patterns
within tissues, uncovering previously undetectable relation-
ships between marker genes, and facilitating the exploration
of “Dark Matter” within the biological world.

Related Work
Multi-omics Prediction

Multi-omics prediction aims to infer unmeasured molecu-
lar features—such as protein expression or chromatin ac-
cessibility—from available omics data, typically from tran-
scriptomic data. Existing methods for multi-omics predic-
tion can be divided into three main categories: 1): ma-
trix factorization methods; 2): probabilistic methods and 3):
deep learning methods. Matrix factorization methods, like
non-negative matrix factorization, break down multi-omics
datasets into shared latent factors to create unified repre-
sentations (Abe and Shimamura 2023). Probabilistic meth-
ods, often based on Bayesian statistics theory, use condi-
tional probability distributions to predict one omics modality
from another, typically requiring prior biological knowledge
(Argelaguet et al. 2020). Compared with two traditional
methods mentioned above, deep learning methods have be-
come increasingly popular due to their generality and strong
predictive performance across diverse datasets. For exam-
ple, total VI (Gayoso et al. 2021), a variational autoencoder-
based algorithm, can jointly model single-cell RNA and pro-



tein data. By mapping both modalities into a shared low-
dimensional latent space, enabling cross-modality predic-
tion. In addition, scArches (Lotfollahi et al. 2022) uses trans-
fer learning strategy by fine-tuning pre-trained models to
adapt to new datasets. For protein expression prediction,
scArches can apply a model trained on large-scale multi
single-cell omics dataset to make protein expression pre-
diction on a new dataset. Although predicting certain omic
expression from multi-omics, these deep learning methods
ignore the influence of spatial location on omics features.

Computational Methods for Spatial Resolved
Omics

Recently, spatial resolved omics technologies, particularly
spatial transcriptomics, have been introduced to combine
spatial information with transcriptomic data. This advance-
ment has led to the development of several computational
methods for analyzing these complex datasets. For instance,
Seurat (Satija et al. 2015) is a widely used tool that facil-
itates data preprocessing, including normalization and di-
mensionality reduction using Principal Component Analy-
sis (PCA) (Abdi and Williams 2010) and Uniform Manifold
Approximation and Projection (UMAP) (Mclnnes, Healy,
and Melville 2018). Seurat also employs clustering algo-
rithms to identify distinct cell populations based on gene ex-
pression patterns. In addition, STAGATE (Dong and Zhang
2022), recognized as one of the top advancements in bioin-
formatics in China in 2022, uses a graph attention net-
work to capture the local structure and spatial dependen-
cies in transcriptomic context. By focusing on the interrela-
tionships between spatially located cells, STAGATE can en-
hance the understanding of cellular behavior within their mi-
croenvironments. The most recent work, SpatialGlue (Long
et al. 2024), an integration algorithm, constructs a K-nearest
neighbor (KNN) graph (Kang 2021) to model semantic re-
lationships among different cell types. It integrates spa-
tial information with multi-modal omics through attention
weights, offering a comprehensive representation for spatila
multi-omics. This integration allows for a more nuanced in-
terpretation of how spatial context influences gene expres-
sion and cellular interactions. Despite the progress made by
existing methods, there is still a notable gap when it comes
to prediction algorithms that can use transcriptomic data to
predict proteomic data. Our work aims to address this gap by
introducing a new algorithm designed to predict spatial pro-
tein expression from transcriptomic profiles, thus improving
predictive capabilities in spatial omics. Additionally, spatial
transcriptomic data is abundant, while spatial proteomic data
is limited and costly to sequence compared to transcriptomic
data. This creates a data imbalance issue. Our prediction al-
gorithm can generate new proteomics data based on known
transcriptomics data, helping to mitigate this problem.

Method

The design of STProtein framework is inspired by the al-
gorithm BulkTrajBlend in Omicverse (Zeng et al. 2024),
which can deconvolve single-cell data from bulk RNA-seq
and employ a GNN-based algorithm to identify contigu-

ous cell populations within the generated single-cell dataset.
STProtein framework can be divided into three main parts:
1): Construction of feature graph; 2): Graph attention au-
toencoder block; and 3): Upstream and downstream tasks.
The training process of STProtein, including the first two
parts, is shown in Figure 1. The workflow of the upstream
and downstream tasks within STProtein is shown in Figure
2. In this study, X and X' represent the RNA expression and
its reconstruction, respectively, while Z denotes the embed-
ding.
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Figure 1: Training Framework of STProtein

Graph neural networks typically operate on graph-
structured data, consisting of node features and edge index
matrices. Therefore, the first part of STProtein is about con-
struction of feature graph from the original spatial omics
data. The feature graph then serves as the input for the sec-
ond part: graph attention autoencoder block. The direct out-
put also called protein embedding from this block can sub-
sequently be utilized in the upstream task such as protein
expression prediction. Finally, after applying clustering to
the direct output (protein embedding), it can be used in the
downstream task to observe and identify protein spatial do-
mains. The above parts will be introduced in detail in the
following sections.

Data Preprocessing

For all datasets, STProtein employs standard data prepro-
cessing steps for transcriptomic and protein data. Specif-
ically, for the transcriptomic data, gene expression counts
are log-transformed and normalized by library size using the
SCANPY package (Wolf, Angerer, and Theis 2018). The top
4,000 highly variable genes (HVGs) by using Seurat version
3 (Satija et al. 2015) method are selected as inputs for PCA
to reduce dimensionality. To maintain a consistent input di-
mension with the protein data, the first k principal compo-
nents (where k represents the number of proteins) are re-
tained and used as model inputs. For protein data, protein
expression counts are normalized using the Centered Log
Ratio (CLR) (Townes et al. 2019). All principal components
obtained after PCA dimensionality reduction are utilized as
inputs for the model.



Construction of Feature Graph

Typically, the construction of feature graph for spatial om-
cis data can be divided into two mainstream methods with
different assumptions. 1): Spatial Neighbor Feature Graph
(Palla et al. 2022): assume the similar spots are spatially ad-
jacent; and 2): KNN Feature Graph (Dann et al. 2022): as-
sume the similar spots may not be spatially adjacent. In our
project, we use the second method to construct feature graph
with more reasonable and trustworthy assumption based on
domain knowledge in biology and previous work (Dong and
Zhang 2022).

Spatial Neighbor Feature Graph: With the assumption
that spots with similarly cell types or states are spatially ad-
jacent, we can convert spatial information into an undirected
feature graph G%7,,,,.. = (V°", £°"). V" denotes the set
of N spots. E°™ denotes the set of connected edges between
spots. We use the adjacency matrix A%2,,,,.. € RY*N to

denote the feature graph G77,;,,,.. = (V°", E°"). If the Eu-

clidean distance between spot 7 € V™ and spot i € V°" is

less than the specific radius number r, then A3? ;... (7, ) =

1, otherwise A%, (4, ) = 0. The default value for 7 is 2,
which is the same as default value in scikit-learn (Pedregosa
2011).

KNN Feature Graph: In complex tissue samples, spots
with identical cell types or states may not be spatially ad-
jacent or could be distantly located in spatial context. To
capture the relationship of such spots in a latent space, we
explicitly model their relationships using a feature graph.
Specifically, we apply a k-nearest neighbours (KNN) algo-
rithm to PCA embeddings and construct the feature graph
Gkrn = (Vknn pknny yknn denotes the set of N

feature
spots. E*"" denotes the set of connected edges between
spots. For each spot, we select the top k nearest spots as
neighbours. The default value for k is 3. And experiment
and discussion of k value’s impact for STProtein frame-
work can be seen in Section . We use the ad_]acency matrix

Abnn, o € RN*N to denote the feature graph G2, =

(Vhnn Ek””) If spot j € VF"™ is the neighbour of i €

gk"" then A5 | (i,7) = 1, otherwise AF27, (4, 7) =

Graph Attention Autoencoder Block

The graph attention autoencoder block can be divied into
four main parts: graph attention layer, encoder, decoder and
loss function. And graph attention layer is implemented by
using PyG (PyTorch Geometric) (Fey and Lenssen 2019).
The comparison experiments of other graph convolutional
layers can be seen in Appendix . And the details of graph at-
tention autoencoder block can be seen in the following sec-
tion.

Graph Attention Layer: Our graph attention layer is based
on the GATv2 (Brody, Alon, and Yahav 2021) layer. And
experiment and discussion for choosing GATV2 can be seen
in Appendix . Normally, the inputs for graph neural network
can be divided into two parts: 1): node feature; and 2): edge
index. The normalized RNA expression is taken as the node
feature matrix as input. The edge index representing the ad-

jacency structure of the graph is generated in Section con-
struction of feature graph by using KNN methods. Then it
generates the spots embedding by involving parallel multi-
head attention mechanisms followed by aggregation. Let x;
be the normalized RNA expression of spot ¢ (node is the
spot) and L be the number of layer for graph attention layer,
H is heads number, F}, is the input feature dimensions and
F,y+ is the output feature dimensions. The formula deriva-
tion is as follows:

Linear Transformation: Graph attention layer first applies
a linear transformation to the input feature h; to generate an
intermediate representation for each head.

z{F) = Wwhn{®), (1)

where hgo) =ux;,Vie {1,2,3,..,
representation for spot j is h§0) =uz;,Vj € {1,2,3,..,N}.
W) ¢ RFourxF g the weight matrix and k—th (k €
{1,2,3,...,L — 1}.

Attention Score: uses a dynamic attention mechanism,
first concatenating the raw features of the query node and

its neighbors, then computing the attention score egf).

N} for spot ¢ and the same

e®) — a®T . LeakyReLU (W“”

where W, (F) € RFoutxH*Fin g the linear transformation
matrix for attention in the k-th head and a(*) € F,4 is the
attention vector for the k-th head.

Attention Normalization: normalizes the attention scores
across the neighbor set N (including the node itself if self-
loops exist) using softmax to get normalized attention coef-

ficient ozl(.f):

(k)
exple.; .
al(?) _ softman(ez(‘?)) _ p( ij ) Q 3)
ZmEN exp( )

Feature Aggregation: uses the normalized attention coef-
ficients to weight and aggregate the neighbor features, pro-

ducing the output BE’“’ € F,,; for each head.

B = 3 aw

JEN;

Multi-Head Aggregation: outputs of the multi-head are
averaged rather than concatenated.

wER® 4)

1 -
= 2 B = ZZ oW ERP - (5)
k=1 k 1jEN;
where hz(-k) € F,y: is the final embedding of spot .
Encoder: The encoder in STProtein framework consists of
two graph attention layer in sequence with respective non-
linear activation function ReLLU with one linear layer in the
final layer, which can be called one graph attention block.

hgkj) and hékl) represent the first and second outputs of graph
attention layer for spot j and spot ¢ in the graph attention



block respectively. In encoder , input h§.0) = w;,Vj €
{1,2,3,.., N}, the output in k—th (k € {1,2,3,...,L — 1}
layer can be defined as follows:

h{") = ReLU

Z Z 1k2]W(k)h(k 1) (6)

k: 1jEN;
h{") = ReLU Z S ol win ) @
k 1j5EN;
where a( ),7 and ozg ) are the edge weight between spot i

and spot j in the output of the k-th graph attention block in
encoder respectively.

After two graph attention layer with nonlinear activation
function ReLU. The output of encoder after the linear layer

1sh()

enc, 7’

which can be defined as follows:
hiy., = Weehi) + be @®)
The output of encoder is considered as the reconstructed
protein normalized expression.
Decoder: Compared with encoder, decoder reverses the em-
bedding for reconstructed protein normalized expression
back into the RNA reconstructed normalized expression pro-

file. The input of the decoder is represented as ﬁ§k) for spot

5,8 = n("), and output in k-th k € {1,2,..,L — 1,L}
layer can be formulated as follows:

h{*~" = ReLU Z S WA 9

k 1jEN;

hY" " = ReLU

(10)
where a( ) and ag ) are the edge weight between spot i
and spot j in the output of the k-th graph attention block in
decoder respectively.

After two graph attention layer with nonlinear activation

function ReLU. The output of decoder after the linear layer
is h®)

enc,i’ which can be defined as follows:

Al Y = Wby + by (11)

dec,i

To avoid the overfitting problem, STProtein sets W(l)
ng) Wél) Wél)’ Agkz)j - agkz)] and Aékz)j = aékz)]
spectively.

The output of decoder is considered as the reconstructed
RNA normalized expression.
Loss Function: The loss function design for STProtein uses
the multi-task learning (MTL) strategy. And the its objec-
tive is to minimize the reconstruction loss of RNA normal-
ized expression and corresponding protein normalized ex-
pression together. The two loss function for RNA and pro-
tein can be formulated as follows:

N

rna Z”‘rz _sz (12)
N
Lprotien = Z Hyz - Z)i”z 5 (13)

where Z; and g; represent the predicted RNA and protein
normalized expression for spot i. x; and y; represent the
ground truth of RNA and protein normalized expression for
spot i. £1 and By are two parameters, indicating the impact
weights for RNA reconstruction impact factor and protein
reconstruction impact factor. Thus, total loss function can
be given as follows:

Ltotal = BlLrna + ﬁQLprotien (14)

Upstream and Downstream Tasks

After training of STProtein on known multi-omics dataset
containing both spatial RNA expression data and corre-
sponding protein expression data, we can use the pre-trained
model to do the upstream and down stream tasks on another
dataset that only contain RNA expression table and corre-
sponding spatial information. The workflow for upstream
and downstream tasks by using STProtein can be seen in
Figure 2

Predicted Protein Expression Table

Figure 2: Workflow for Upstream and Downstream Tasks by
Using STProtein

Upstream Task of Protein Expression Prediction: Due to
the spatial and novel design of STProtein, the embedding
represents the actual normalized protein expression table,
which means Z =Y, Z is the embedding for STProtein and
Y is the protein expression table. We can use the pre-trained
model, which was trained on another dataset containing
both transcriptomics and corresponding protein data. In
order to predict unknown spatial protein expression in new
dataset with known transcriptomics data. As shown in the
Figure 2, the input to the pre-trained model is the known
transcriptomics KNN feature graph that is constructed by
known RNA expression table and relevant spatial infor-
mation. The new embedding is the corresponding spatial
protein expression table.



Downstream Task of Clustering: As shown in Figure 2,
after protein expression prediction, we perform clustering
analysis using the protein embedding to identify the pro-
tein spatial domains by observing the spatial clusters. There
are three primary clustering tools commonly used in spatial
omics: 1) mclust; 2) leiden; and 3) louvain. In our parameter
sensitivity experiments in Appendix , we observed that the
mclust algorithm generally outperforms both leiden and lou-
vain when the number of labels is known to identify spatial
domains in most cases.

Experiments
Benchmarking Prediction Methods

To benchmark the prediction performance, we compare
STProtein against four state-of-the-art deep learning-based
multi-omics prediction methods: totalVI (Gayoso et al.
2021), scArches (Lotfollahi et al. 2022), Dengkw (Lance
et al. 2022) and cTp_net (Zhou et al. 2020) which serve as
our baselines. A detailed introduction to these benchmark-
ing methods is provided in Appendix .

Quantitative Evaluation Metrics

Our quantitative evaluation metrics includes in two as-
pects: 1): Quantitative upstream evaluation metrics assess
the model’s performance in terms of the prediction accu-
racy of protein expression; and 2): Quantitative downstream
evaluation metrics on annotation datasets, which reveals the
quality of prediction protein distribution in the spatial con-
text. For quantitative upstream evaluation of protein expres-
sion prediction, the prediction accuracy of protein expres-
sion is assessed using the Root Mean Squared Error (RMSE)
metric. For quantitative downstream evaluation of cluster-
ing, the quality of the predicted protein distribution within
the spatial context is assessed through clustering analysis.
Thus, we decided to employ a set of several metrics to-
gether related to evaluating accuracy of clustering (e.g. NMI
(Danon et al. 2005), AMI (Vinh, Epps, and Bailey 2009),
FMI (Walach et al. 2006), ARI (Hubert and Arabie 1985),
Homogeneity (Rosenberg and Hirschberg 2007), V-measure
(Rosenberg and Hirschberg 2007), F1-Score (Chicco and Ju-
rman 2020) and Jaccard (Niwattanakul et al. 2013)), ensur-
ing that results are both statistically significant and biologi-
cally relevant (Xu et al. 2023).

Implementation details of STPrortein

In all experiments, the encoder of STPrortein is set as a two-
layer neural network with the graph attention layer, and the
decoder is set as the same number of layers as the encoder.
Adam optimizer is used to minimize the reconstruction loss
with an initial learning rate of 1e-4. The weight decay is set
as le-4. The epoaches for training is 12000. The activation
function is set as the ReL.U. The weights 3, and S5 for RNA
and protein reconstruction loss are 5 and 3, respectively. The
parameter sensitivity experiment about weights 5, and (5
and support for this kind of weights’ setting §; = 5 and
B2 = 3 can seen in Appendix . The input feature graph is
based on KNN methods to construct.

Results

Quantitative Upstream Evaluation of Protein
Expression Prediction

We first performed quantitative upstream evaluation of pro-
tein expression prediction on three datasets: 1): Mouse
spleen (SPOTS); 2): Mouse Thymus (Stereo-CITE-seq); and
3): Human Lymph Node (10x Genomics Visium). We com-
pare with four state-of-the-art methods that mentioned in
Section and use RMSE metrics mentioned in Section
to evaluate the performance of the prediction results. The
Table 1 summarizes the quantitative results of prediction
outcomes on these three datasets. STProtein outperforms
other four benchmarking methods at all three datasets: For
RMSE value, it is 0.04 higher on Mouse Spleen Dataset;
0.07 higher on Mouse Thymus Dataset and 0.17 higher on
Human Lymph Node Dataset. The results demonstrate that
our method, STProtein, can more effectively learn impor-
tant features and generate reliable, comprehensive embed-
dings and protein expression predictions from complex spa-
tial multi-omics data.

Quantitative Downstream Evaluation of Clustering

We then performed quantitative evaluation of clustering on
three tasets: 1): Mouse spleen (SPOTS); 2): Mouse Thymus
(Stereo-CITE-seq); and 3): Human Lymph Node (10x Ge-
nomics Visium). Similar to the quantitative upstream evalua-
tion, we compare STProtein with four state-of-the-art meth-
ods and use metrics mentioned before for evaluation. The
Tables 2 - 4 summarize the quantitative results of quantita-
tive downstream evaluation on three datasets. Similar to its
prediction performance, the STProtein method also outper-
forms the four benchmark methods across all three datasets
and almost all seven metrics, consistently. According to
the results shown in Table 3, although the NMI and AMI
metrics of STProtein are lower than those of Dengkw and
scArches, it outperforms both methods on the remaining five
metrics. Overall, STProtein demonstrates superior perfor-
mance across comprehensive evaluation metrics on down-
stream clustering task on three platforms with different reso-
lutions, which further proves the effectiveness of STProtein.

Furthermore, both upstream and downstream quantitative
evaluation results demonstrate that the STProtein method
exhibits superior capability for multi-omics learning across
different datasets and tasks.

Ablation Study

In the ablation study, we evaluate the effectiveness and con-
tribution of STProtein’s graph construction and loss func-
tion on the Mouse Spleen Dataset (SPOTS). For STProtein,
it use KNN methods to feature graph rather than use spatial
neighbor (SN) feature graph as the graph neural network’s
input. Lp,otien represents the loss function only use the pro-
tein loss function. Similarly, L., represents the loss func-
tion only use the RNA loss function. Whereas, STProtein’s
loss function combine the protein loss function and RNA
loss function together.



Table 1: Quantitative Upstream Evaluation on Three Datasets by Using RMSE Metric

Methods Mouse Spleen Dataset Mouse Thymus Dataset Human Lymph Node Dataset
total VI 1.05 1.42 1.22
scArches 1.03 1.38 1.20
Dengkw 0.99 1.05 117
cTp-net 1.27 1.47 1.27
STProtein 0.95 0.98 1.00

Table 2: Quantitative Downstream Evaluation on Mouse Spleen Dataset (SPOTS)

Methods NMI(%) AMI(%) FMI(%) ARI(%) V-Measure(%) F1-Score(%) Jaccard(%)
total VI 25.58 25.39 41.49 4.84 25.58 39.42 24.55
scArches 26.40 26.21 43.28 5.28 26.40 40.61 25.47
Dengkw 28.69 28.52 39.66 8.19 28.69 39.46 24.58
cTp_net 17.22 17.04 42.33 18.39 17.22 42.27 26.80
STProtein 30.91 30.75 60.35 40.43 30.91 59.74 42.59

Table 3: Quantitative Downstream Evaluation on Mouse Thymus Dataset (Stero-CITE-seq)

Methods NMI(%) AMI(%) FMI(%) ARI(%) V-Measure(%) Fl-score(%) Jaccard(%)
total VI 39.03 38.90 53.64 32.77 39.03 51.55 34.72
scArches 45.01 44.89 56.45 36.51 45.96 54.25 37.22
Dengkw 45.04 45.32 58.79 38.94 47.04 57.37 40.22
cTp-net 43.35 43.23 57.98 38.18 46.35 56.23 39.11
STProtein 43.85 43.71 63.25 40.35 49.85 59.19 47.72

Table 4: Quantitative Downstream Evaluation on Human Lymph Node Dataset (10x Genomics Visium)

Methods NMI(%) AMI(%) FMI(%) ARI(%) V-Measure(%) Fl-score(%) Jaccard(%)
total VI 29.90 29.70 51.56 21.63 29.90 50.63 34.10
scArches 41.71 41.55 52.80 29.12 41.71 52.77 35.84
Dengkw 41.18 41.00 55.75 35.67 41.18 56.73 40.57
cTp_net 35.66 35.48 48.13 24.42 35.66 48.11 31.67
STProtein 42.31 42.12 56.82 35.97 42.31 57.22 41.26

Table 5: Ablation study for feature graph construction and
loss function design on prediction task

Methods RMSE
STProtein 0.95
SN Feature Graph  0.96
Lproticn 0.97
L, 1.02

According to Table 5 and Table 6, KNN feature graph
construction that used in STProtein has better performance
than the way of SN feature graph construction. Addition-
ally, using either the RNA loss function or the protein loss
function alone results in worse performance compared to
incorporating both RNA and protein terms together in the
loss function. The design of this combined loss function

is inspired by the MTL strategy, which provides multi-
perspective constraints on the learning process for both pre-
diction and clustering tasks, ultimately leading to improved
performance.

Scientific Discovery by Using STProtein

In this part, we conduct more analytical experiments and a
case study on the Mouse Spleen Dataset (SPOTS) to support
the fact that the power of STProtein for scientific discov-
ery. First, we explore the ability for STProtein to accurately
predict the tissue structures and marker gene distribution on
different sequencing platforms. Then, we conduct the case
study to explore the great power for STProtein in observing
and resolving unknown mouse spleen structure and spleen
macrophage subsets.

STProtein Accurately Enables the Protein Prediction of
Tissue Structures and Maker Gene Distribution: Differ-



Table 6: Ablation study for feature graph construction and loss function design on clustering task

Methods NMI(%) AMI(%) FMI(%) ARI(%) V-Measure(%) F1-Score(%) Jaccard(%)
STProtein 30.91 30.75 60.35 40.43 30.91 59.74 42.59
SN Feature Graph 27.05 26.89 44.49 21.31 27.05 42.72 27.16
Lorotien 29.10 28.94 43.43 19.12 29.10 42.06 26.63
Lina 20.56 20.38 37.85 9.23 20.56 37.20 22.85

ent spatial multi-omics sequencing platforms have different
resolutions. The three dataset used in this research are se-
quenced on different platforms: 1): Mouse Spleen Dataset
(SPOTS); 2): Mouse Thymus Datset (Stero-CITE-seq); and
3): Human Lymph Node (10x Genomics Visium). Build-
ing a robust model can adapt different sequencing platforms
with different resolutions is of great importance. Next, we
show clustering results about comparison of benchmark-
ing prediction methods and STProtein with original Ground
Truth on three dataset: Mouse Spleen Dataset (SPOTS) in
Appendix Figure 5, Mouse Thymus Dataset (Stero-CITE-
seq) in Appendix Figure 6 and Human Lymph Node (10x
Genomics Visium) in Appendix Figure 7. The quantitative
benchmarking results using metrics have been mentioned
in Section . We discover that compared with benchmark-
ing prediction methods, STProtein can better predict marker
gene distribution with different resolutions.

STProtein Accurately Resolves Unknown Mouse Spleen
Structures and Spleen Macrophage Subsets: We use the
Mouse Spleen Dataset (SPOTS) to make a meaningful case
study to support the idea that STProtein can empower the
scientific discovery for life science research. For domain
knowledge in biology, spleen plays a vital role in the lym-
phatic and immunity system, which a complex structure with
an array of immune cells like T cells and B cells. The mouse
spleen’s histological image can be seen in Figure 3a.
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Figure 3: a): H&E Histological Image for Mouse Spleen
Structure; b): Ground Truth of Clustering Results for Mouse
Spleen with its Orignial Annotation (RpMZ®, B Cell and T
Cell) Shown in the Right.; ¢): UMAP Picture and cluster-
ing Visualization Picture for STProtein with its Annotation
RpMZP, MZMP, MMM®, B Cell and T Cell) Shown in
the Right.

As shown in Figure 3b, original study’s ground truth only
annotates three kinds of cells (RpMZ®, B cell and T cell).

However, STProtein’s final annotated result shown in Figure
3c can generate more clusters (MZM® and MMM®), which
is the “Dark Matter” discovered by STProtein.

Thus, based on above analysis and detailed instruments in
Appendix we can re-annotate the clusters on Mouse Spleen
Dataset (SPOTS). The new annotation of marker genes and
visualization of individual maker gene can both be seen in
Appendix Figure 10. From new annotation figure by using
STProtien, it can show that B cells and T cells highly coex-
isted, MMM@® was distributed around the white pulp, which
can be seen in Figure 3a. And the positive correlation be-
tween macrophage subsets (RpMZ® and MZM®, MZM®
and MMM®) reflected the hierarchical structure of red pulp-
marginal zone around white pulp.

Discussion

STProtein is a novel deep learning framework based on
graph neural network with multi-task learning strategy.
STProtein can leverage great power in spatial protein ex-
pression prediction form spatial multi-omics data. It also
can be a powerful tool to address the problem for sarcity
of spatial proteomics data, the critical bottleneck in spatial
multi-omics research. From a practical view, STProtein is
designed to be computationally efficient. It only requires
only resources such as an NVIDIA RTX 4090 GPU for
training and inference. The case study on the Mouse Spleen
Dataset (SPOTS) reveals STProtein’s great power in scien-
tific research in life science filed, It can uncover previously
undetected macrophage subsets and providing new annota-
tions for marker genes.

Limitation and Future Work

Despite its advantages, STProtein still has limitations that
should take into consideration. The model may not accu-
rately capture subtle structural similarities within tissues,
particularly in cases where spatial adjacency plays a more
dominant role than latent feature similarity. This stems from
its reliance on KNN-based feature graph construction, which
prioritizes global relationships over local spatial constraints.
Our Future work could explore the possibility of integrating
H&E image information alongside spatial transcriptomics
data could enhance STProtein’s ability to predict spatial pro-
tein expression by providing visual cues about tissue struc-
ture and cellular shape. This multimodal approach could
be implemented by extending the current GNN framework
to include image-derived features’ block: potentially using
the foundation model for H&E histological image like UNI
(Chen et al. 2024), CHIEF (Wang et al. 2024) and TITAN
(Ding et al. 2024).
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Dataset

Table 7: Dataset’s detialed information for STProtein

Name Platform Size(spots x genes/proteins)

SPOTS 2,568x32,285

Mouse spleen replicate 1

(RNA-protein) 2,568x21
Mouse spleen replicate 2 SPOTS : e

(RNA-protein) 2,768x21
Mouse Thymus 1 (Slg\r&)_-;gg;ls)eq j:gg;g?’&z
Moy SeoCTEwq 4is
e o
Vo T s S CTEq £mvasa
Human Lymph Node Al (II(Q)XNS_GI?%I:;;S) Visium g:jgji:l;?,ogs
Human Lymph Node D1 (II(Q)XNS_GI?I%I::;S) Visium g:gggié?pgs

According to the above table, it is clear that three types of dataset are from different sequencing platforms (SPOTS, Stero-CITE-
seq and 10x Genomics Visium) with different resolutions. For clustering task, we have acquired the annotation by biological
experiments, the ground truth for clustering, from original authors. Thus, we have known the cluster numbers according to the
annotation ground truth.

Benchmarking Prediction Methods

totalVI: A variational autoencoder-based tool that jointly models single-cell RNA and protein data. By mapping both
modalities into a shared low-dimensional latent space, it enables cross-modal predictions.

scArches: A transfer learning based fine-tuning pre-trained models to adapt to new datasets, reducing training time signifi-
cantly. In protein abundance prediction, scArches can apply a model trained on large-scale single-cell data to new experiments.

Dengkw: A model uses kernel ridge regression to predict protein levels from single-cell RNA-seq data. It performs exception-
ally well in intra-dataset evaluations, particularly in capturing cell-cell correlation metrics.

cTp_net: A neural network-based transfer learning framework designed for cell-type-specific protein expression prediction.
When applied to diverse immune cell subsets, cTP-net uses existing multi-omics data to train models and predict protein levels
in new single-cell datasets.

Quantitative Evaluation Metrics

Our quantitative evaluation metrics includes in two aspects: 1): Quantitative upstream evaluation metrics, which is the model
performance evaluation about the prediction accuracy of protein expression; and 2): Quantitative downstream evaluation
metrics on annotation datasets, which reveals the quality of prediction protein distribution in the spatial context.

Quantitative Upstream Evaluation Metrics of Protein Expression Prediction: Prediction accuracy of protein expression
can be evaluated in the metric: Root Mean Squared Error (RMSE). The metric indicate the accuracy of our predictions and the
degree of deviation from the actual values. The metric equation has been given as follows:

2
RMSE — Z(yT_yp) (15)

where y; is the true protein expression, ¥, is the predicted protein expression and n is the number of prediction instances. The
lower values for RMSE and MAE indicate better prediction accuracy of protein expression.

Quantitative Downstream Evaluation Metrics of Clustering: The quality of prediction protein distribution in the spatial
context can be evaluated by clustering. Thus, we decided to utilize combination of several metrics together related to evaluating



accuracy of clustering (e.g. NMI (Danon et al. 2005), AMI (Vinh, Epps, and Bailey 2009), FMI (Walach et al. 2006), ARI
(Hubert and Arabie 1985), Homogeneity (Rosenberg and Hirschberg 2007), V-measure (Rosenberg and Hirschberg 2007),
F1-Score (Chicco and Jurman 2020) and Jaccard (Niwattanakul et al. 2013)) can provide a robust system for evaluating the
performance of model, ensuring that results are both statistically significant and biologically relevant (Xu et al. 2023). The
seven detailed metrics significances can be clearly explained in the following Table 8.

Table 8: Significance of clustering evaluation metrics

Metrics Significance
NMI Indicates perfect correlation.
AMI Adjusted for chance
FMI Similarity between two clustering results
ARI Measures similarity with truth table
V-measure Combines homogeneity and completeness
F1-Score Harmonic mean of precision and recall

Jaccard Similarity between prediction and ground truth

The seven metrics in Table 8 all range from O to 1, where 1 indicates perfect clustering and 0 means poor clustering. Nine
quantitative metrics (NMI (Danon et al. 2005), AMI (Vinh, Epps, and Bailey 2009), FMI (Walach et al. 2006), ARI (Hubert and
Arabie 1985), V-measure (Rosenberg and Hirschberg 2007), F1-Score (Chicco and Jurman 2020) and Jaccard (Niwattanakul
et al. 2013)) can be computed by using the scikit-learn (Pedregosa 2011) package in Python. As for the equations for the
aforementioned six metrics, they are given in following part.

Define the cluster label of embedding predicted STProtein as X and the ground truth label as Y. p(z) and p(y) are the
marginal probability distributions of X and Y. And p(x, y) is the joint probability distribution of X and Y. And MI, Msutual
information, can be defined as following equation.

MIX,Y) = 3° 3 pla,y) log (p(y)) (16)

s e p(x)p(y)
NMI, Normalized mutual information can be defined as the standardization of MI:
MI(X,Y)
H(X) «H(Y)’

where H(X) and H(Y") represents the entropy of predicted clusters and ground truth clusters, respectively.
AMI, Adjusted mutual information, modifies the mutual information and adjusts the expected value of MI for random
clustering to minimize the influence of chance:

NMI(X,Y) = (17)

MI — E[MI]
max(MI) — E[MI]’

AMI = (18)
where E[MI] is the average value for MI.

RI, the rand index, FMI, Fowlkes-Mallows index that measuring the similarity between two clustering outcomes by taking
into account the proportion of intra-class pairs (data points within the same class) to inter-class pairs (data points across different
classes) can be both defined as:

TP+ TN

I= 1

R TP+TN+FP+FN (19)
TP?

FMI = \/(TP + FP)x (TP +FN)’ 20)

where TP, TN, FP and FN represent true positives, true negatives, false positives and false negtives, respectively.
ARI, Adjusted Rand Index, measures the consistency between the predicted clustering results and the reference ground truth
labels:

E[RI]

ARL= max(RI) — B[RI]’

2

where E[RI] is the average value for RI.
V-measure represents the harmonic average of homogeneity and completeness:



H(X) = — Zp(m) log(p(z:)) (22)

H(Y) = =Y p(yi) log(p(v:)) (23)

H(X|Y
Homogeneity = 1 — I({(X|)) (24)

H(Y|X
Completeness = 1 — IEIO'/) ) (25)

V-Measure — 2 Homogene.lty * Completeness

Homogeneity + Completeness 26)

_,, HOXY) +H(Y|X)

H(X)+H(®Y)
F1-Score represents the harmonic average of Precision and Recall:
TP
Precision = TP+ FP (27)
TP

Recall = —— 28
T TPYFN %)

Precision * Recall
F1-S =2 29
core * Precision + Recall (29

Jaccard coefficient is employed to assess the degree of similarity between X and Y':

X NY|
IXUY|

Jaccard = (30)

Experiments Protocol

The experiments for STProtein can be mainly divided into two parts: 1): Upstream experiments; and 2): Downstream
experiments. For all quantitative experiments in upstream and downstream experiments, we conducted the statistics analysis by
at least running the codes for 10 times and using the average values as our final results, ensuring variances within a reasonable
range.

Upstream Experiments: The upstream experiments include four parts: 1): Quantitative evaluation of protein expression
prediction; 2): Graph convolutional layer model comparison experiments; 3): Ablation study; and 4): Parameter sensitivity
experiments. All above four experiments in upstream task are quantitative experiments. The first experiment in upstream task
conducted in all three datasets: 1): Mouse spleen (SPOTS); 2): Mouse Thymus (Stereo-CITE-seq); and 3): Human Lymph
Node (10x Genomics Visium). Other three experiments in upstream task only conducted in the Mouse Spleen Dataset (SPOTS).

Downstream Experiments: The downstream experiments include two parts: 1): Quantitative evaluation of clustering; and 2):
Scientific discovery. The first experiment in downstream task is quantitative experiment. The second one is the case study on
Mouse Spleen Dataset (SPOTS) to verify that STProtein can empower the scientific discovery in the life science research.

Graph Convolutional Layer Model Comparison Experiments

For graph convolution layer model comparison experiments, we chose five graph convolution layer: GCN (Kipf and Welling
2016), SAGE (Hamilton, Ying, and Leskovec 2017), GraphTransformer (Shi et al. 2020), GAT (Velickovic et al. 2017) and
GATv2 (Brody, Alon, and Yahav 2021) and tested on both upstream and downstream tasks: 1): Protein expression predic-
tion; and 2): Clustering on Mouse Spleen Dataset (SPOTS). The implementation and evaluation metrics are the same as the
quantitative evaluation.



Table 9: Prediction Results of Different Graph Convolutional Layer on Mouse Spleen Dataset (SPOTS)

Methods RMSE
GCN 0.98
SAGE 0.96
Transformer  0.96
GAT 0.97
GATV2 0.95

Table 10: Clustering Results of Different Graph Convolutional Layer on Mouse Spleen Dataset (SPOTS)

Methods NMI(%) AMI(%) FMI(%) ARI(%) V-Measure(%) F1-Score(%) Jaccard(%)

GCN 21.46 21.24 38.69 12.12 29.04 37.65 23.19
SAGE 29.24 29.65 44.60 22.52 29.24 42.08 26.64
Transformer 24.13 23.91 41.20 11.37 24.13 40.91 25.71
GAT 21.95 21.73 41.70 15.30 21.95 40.85 25.66
GATv2 30.91 30.75 60.35 40.43 30.91 59.74 42.59

From the above Table 9 and Table 10, it is clear that GATv2 outperforms than other four graph convolutional layer for both
upstream task and the downstream task’s evaluation on comprehensive evaluation metrics. Thus, choosing GATv2, what is this
dissertation used, can be better and Convincing choice to build STProtein framework.

Parameter Sensitivity Experiments

We conducted parameter sensitivity experiments on the Mouse Spleen Dataset (SPOTS) to verify the impact of different
K values in the initial KNN feature graph, the influence of different clustering algorithm methods for STProtein clustering
performance and modal reconstruction loss weights between protein loss and RNA loss on STProtein’s performance.

K Value in the Initial KNN Graph: For feature graph construction, we use the KNN to construct feature graph as graph
neural network’s input. However, the process for construction needs the constant parameter K value. Thus, we designed the
below experiments and evaluated the impact of different K values (ranging from 1, 2, 3, 4, to 5) on the performance of STProtein.
As shown in Table 11 and Table 12, STProtein only has subtle fluctuations on K value’s change and achieves the best results
when K = 3, which is the value selected for STProtein experiments.

Table 11: Parameter sensitivity experiments for k value in KNN graph construction on prediction task

K value RMSE

1 0.96
2 0.97
3 0.95
4 0.96
5 0.96

Table 12: Parameter sensitivity experiments for k value in KNN graph construction on clustering task

Kvalue NMI(%) AMI(%) FMI(%) ARI(%) V-Measure(%) F1-Score(%) Jaccard(%)

1 29.27 29.11 47.85 23.19 29.27 47.10 30.81
2 26.00 25.84 42.66 18.22 26.00 41.26 25.99
3 30.91 30.75 60.35 40.43 30.91 59.74 42.59
4 28.52 28.35 52.76 30.24 28.52 51.92 35.06
5 27.49 27.32 56.02 34.22 27.49 55.41 38.32

Clustering Algorithm Choices: After acquiring the embedding from the STProtein to get clusters, we need to choose a suitable
clustering algorithm for use to get the better classification. Based on the previous work, we choose three main widely used three



clustering algorithm: 1): mclust; 2): leiden; and 3): louvain to make comparison. As illustrated in Table 13, mclust achieves
the best performance compared with other clustering algorithms, which is the choice of clustering algorithm for STProtein

experiments.

Table 13: Parameter sensitivity experiments for clustering algorithm choices on clustering task

Algorithms NMI(%) AMI(%)

F1-Score(%)

mclust 30.91 30.75

leiden 28.36 28.19

louvain 27.29 27.12

ARI(%) V-Measure(%)
40.43 30.91
28.06 28.36
30.20 27.29

59.74

52.42

Reconstruction Loss Weights: We set the weights 3 and 2 for RNA and protein in ranging from 1 to 5 and test it on
the Mouse Spleen dataset. As shown in Fig. 4, the performance of STProtein have some small fluctuations when weights for
RNA and protein loss function items change. It can also demonstrate that the insensitivity of STProtein’s performance to the
reconstruction loss weights. However, the weights 1 = 5 and 52 = 3 for RNA and protein outperform others on comprehensive
evaluation metrics, which are the values setted for STProtein experiments.
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Figure 4: Parameter Sensitivity Experiments for Reconstruction Loss Weights for RNA and Protein Items on Mouse Spleen
Dataset (SPOTS). The Data Presented in Heatmap are Presented in Percentages.



STProtein Accurately Enables the Protein Prediction of Tissue Structures and Maker Gene
Distribution with Different Resolutions

As mentioned in Section ?? and Section , different spatial multi-omics sequencing platforms have different resolutions. And
three dataset are sequenced on different platforms: 1): Mouse Spleen Dataset (SPOTS); 2): Mouse Thymus Datset (Stero-CITE-
seq); and 3): Human Lymph Node (10x Genomics Visium). Building a robust model can adapt different sequencing platforms
with different resolutions is of great importance. Next, we show clustering results about comparison of benchmarking prediction
methods and STProtein with original Ground Truth on three dataset: Mouse Spleen Dataset (SPOTS) in Fig. 5, Mouse Thymus
Dataset (Stero-CITE-seq) in Fig. 6 and Human Lymph Node (10x Genomics Visium) in Fig. 7. The quantitative benchmarking
results using metrics have been mentioned in Section . We discover that compared with benchmarking prediction methods,
STProtein can better predict marker gene distribution with different resolutions.

Ground Truth totalVI scArches

Dengkw cTp_net STProtein

Figure 5: Visualization Results about Comparison of Benchmarking Prediction Methods and STProtein with Original Ground
Truth on Mouse Spleen Dataset (SPOTS)

Ground Truth totalVI scArches

Dengkw cTp_net STProtein

Figure 6: Visualization Results about Comparison of Benchmarking Prediction Methods and STProtein with Original Ground
Truth for Mouse Thymus Dataset (Stero-CITE-seq)
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Figure 7: Visualization Results about Comparison of Benchmarking Prediction Methods and STProtein with Original Ground
Truth on Human Lymph Node (10x Genomics Visium)

STProtein Accurately Resolves Unknown Mouse Spleen Structures and Spleen Macrophage
Subsets

We use the Mouse Spleen Dataset (SPOTS) to make a meaningful case study to support the idea that STProtein can empower
the scientific discovery for life science research. For domain knowledge in biology, spleen plays a vital role in the lymphatic
and immunity system, which a complex structure with an array of immune cells like T cells and B cells.

In order to accurately annotate the clusters that discovered by STProtein, we first visualize all marker genes in Mouse Spleen
Dataset (SPOTS) as shown in Fig. 9. Then based on the annotation in original study shown in Fig. 3b, we classified the some
marker genes into three categories: 1): T cell; 2): B cell; and 3): RpMZ®. And the result can be seen in Fig. 8.
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Figure 8: Spatial Visualization of RpMZ®, B Cell and T Cell in Mouse Spleen Dataset (SPOTS)
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Figure 9: Spatial Visualization of all Maker Genes in Mouse Spleen Dataset (SPOTS)

According to Fig. 3 and Fig. 8, we can directly observe the T cell, B cell and RpMZ® maker genes’ distributions in mouse
spleen. Spatial visualization of protein markers further revealed the distribution of cell types: B cells and T cells were con-
centrated in the germinal center and T cell zone, respectively, with obvious spatial proximity. RpMZ® was clearly located
by strong expression of F4_80 and CD163, while MZM® and MMM® were distinguished by specific markers such as CD29
(MZM®) and CD169_siglec (MMM®) shown in Fig. 9. They have shown different patterns of the heterogeneity of marginal

zone macrophages.
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Figure 10: The New Annotation of Marker Genes on Mouse Spleen Dataset (SPOTS) by Using STProtein

In conclusion, we can use the STProtien to discover new cells MZM® and MMM®) that are not annotated in the original
study on Mouse Spleen Dataset (SPOTS) and identify macrophage subsets (RpMZ®, MZM®, MMM®) with immue cells (T
cell and B cell), which means STProtein can help scientists to find and uncover “Dark Matter” and boost the speed of new
scientific discovery. Similarly, we can continue use STProtein on different dataset like Mouse Thymus (Stero-CITE-seq) and
Human Lymph Node (10x Genomics Visium) with the same analysis pipeline to uncover more “Dark Matter” and observe more
scientific discoveries in the life science filed.



