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ABSTRACT

Customized molecule generation remains a challenging task, especially for data-
scarce categories such as atropisomers. Their structural complexity and scarcity
of labeled data often lead to unstable optimization and poor controllability in tra-
ditional diffusion models. To address this gap, we propose AtropDiff, a diffu-
sion framework guided by a multi-task pretrained classifier that implicitly encodes
stereochemical knowledge. Key innovations include: 1) multi-task pretraining of a
chirality-classifier for gradient-guided chirality control; 2) dynamically weighted
gradient guidance to balance chirality accuracy and functional group validity dur-
ing denoising; and 3) progressive integration of scaffold into the generation pro-
cess to enable optimization on known atropisomers. Our results demonstrate that
AtropDiff successfully overcomes data limitations, advancing AI-driven scientific
discovery in chemistry.

1 INTRODUCTION

Atropisomers, arising from hindered rotation around stereogenic axes, play a pivotal role in asym-
metric catalysis and drug discovery, with over 30% FDA-approved small-molecule drugs containing
at least one atropisomeric axis (ST & JL, 2018). While deep generative models show promise for
molecular design (Bagal et al., 2021; Luo et al., 2021; Hoogeboom et al., 2022; Xu et al., 2023),
generating atropisomeric compounds faces twin challenges: (1) data scarcity (experimental deter-
mination requires resource-intensive chiroptical spectroscopy or quantum chemistry calculations)
and (2) inadequate inductive biases (general molecular models fail to capture atropisomeric deter-
minants).

Current solutions exacerbate these issues: fine-tuning foundation models suffers from mode col-
lapse, while structure-free generation lacks chirality control. This creates a paradoxical situation
where generation guidance requires precisely the stereochemical knowledge unlearnable from min-
imal data.

We address this through embedding domain knowledge into diffusion models via pretrained classi-
fiers and scaffold information. Our AtropDiff framework introduces: 1) Multi-task pretrained atropi-
somer classifier: A classifier is pretrained using synthetic data augmentation on multiple chirality-
related determinants, including chiral axis presence, rotational energy barriers, and relative energy.
This enables robust performance during fine-tuning, even under real-data scarcity. 2) Dynamically
weighted gradient guidance: The framework adaptively balances chiral fidelity and structural va-
lidity during the denoising process by periodically adjusting the strength of gradient guidance. 3)
Progressive integration of scaffold into generation process: Chiral scaffold optimization is decoupled
from substituent sampling, resulting in significantly improved chiral fidelity (97%). This framework
represents a novel paradigm for addressing molecular generation challenges in data-scarce scenarios.
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Figure 1: Framework overview of AtropDiff

2 METHODS

The framework of our methods is shown in Figure 1. The method consists of two parts: (1) Predic-
tion part: A classifier is trained on a dataset of computationally generated atropisomer candidates
with three objectives: chiral axis identification, rotational energy barrier prediction, and relative en-
ergy prediction. (2) Generation part: An Equivariant Diffusion Model (EDM) is trained on the same
dataset for molecular generation. Two generation strategies are used: gradient-guided generation
and scaffold-guided generation. The gradient-guided generation uses the trained classifier to guide
the EDM generation process, while the scaffold-guided generation uses a pre-defined scaffold to
guide the EDM generation process.

2.1 DATASET CONSTRUCTION

Pre-training dataset. We generate a large-scale atropisomeric candidates dataset by: 1) Connect-
ing 20 heterocyclic units into atropisomeric scaffolds, 2) Introducing two specialized substituent
libraries and randomly attaching them to the scaffolds (10 common functional groups + 10 chirality-
relevant groups), yielding 1.7M unique structures. For each molecule, we perform a relaxed scan of
the dihedral angle around the inter-ring single bond (2.5° increments) using xtb to calculate rotational
energy barriers and relative conformer energies. After DBSCAN clustering for redundancy reduc-
tion, we obtain 12M annotated conformers labeled with ChiralFinder (Shi et al., 2025), a package
for finding chiral axes. The GEOM dataset (Axelrod & Gómez-Bombarelli, 2022) is incorporated
with chiral axis annotations to enhance model generalization.

Fine-tuning dataset. We construct a challenging benchmark through: 1) PubChem similarity
search based on known atropisomers (Yu et al., 2024), 2) Strict filtering using ChiralFinder and
CSM software (Inbal et al., 2023), 3) Scaffold-based 7:3 train-test split on 2,000 curated molecules.
For the fine-tuning dataset, the negative samples share structural similarity with positive samples to
increase classification difficulty.

2.2 ATROPISOMER PREDICTION

Based on the Uni-Mol architecture (Zhou et al., 2023), we introduce three additional atropisomer-
specific pre-training tasks:

1. Chiral axis identification (binary classification task)

2. Rotational energy barrier prediction (regression task)

3. Relative energy prediction (regression task)
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Additional tasks enable the model to learn fundamental atropisomeric patterns from computationally
generated labels before fine-tuning on limited experimental data.

2.3 ATROPISOMER GENERATION

Our framework adopts the E(3)-equivariant Diffusion Model (EDM) (Hoogeboom et al., 2022) as
the generative backbone, which operates on both continuous atomic coordinates x ∈ RM×3 and
discrete atom types h ∈ RM×K . The diffusion process is defined by gradually adding noise to data
through a variance-preserving scheme:

q(zt|x,h) = Nx(z
(x)
t |αtx, σ

2
t I) · N (z

(h)
t |αth, σ

2
t I),

where α2
t + σ2
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with the denoised estimate x̂, ĥ = zt/αt−σtϵ̂t/αt. The training objective minimizes the weighted
noise prediction error:
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This formulation ensures E(3)-equivariant generation while jointly modeling geometric and cate-
gorical features, making it ideal for atropisomer-aware molecular design.

Gradient-guided generation To enable generation under property constraints, we adapt a
training-free classifier-guidance strategy using our pretrained predictor (Han et al., 2024). By mod-
ifying Uni-Mol’s first transformer layer to accept differentiable probability matrices, we create a
gradient-guided diffusion process. During generation, the diffusion model navigates the chemical
space through gradient signals from the chiral axis classifier, effectively leveraging prior knowledge
without requiring additional training.

Scaffold-guided generation We adapt image inpainting techniques to molecular generation by
fixing core scaffolds during diffusion. For a scaffold with n atoms, the model initializes coordinates
and one-hot features for the scaffold atoms. At each denoising time step t, the model combines
denoised new atoms (backward process) with noised scaffold atoms (forward process) to form the
result as the input for the next time step. Finally, at time step 0, the output preserves the origi-
nal scaffold while generating novel substituents around the scaffold. This approach enables lead
optimization by providing a promising scaffold that is likely to form atropisomers.

3 EXPERIMENTS

3.1 ATROPISOMER PREDICTION

We assess the impact of incremental pretraining tasks on atropisomer prediction, as summarized in
Table 1. The baseline Uni-Mol model achieves moderate performance with the F1 score of 0.785,
while progressively adding pretraining tasks yields consistent improvements. The model with all
additional pretraining tasks achieves the best performance, with an F1 score of 0.824.

To evaluate model generalizability, we use a hold-out test set comprising seven newly identified
atropisomeric ligands. All pretraining configurations successfully identified atropisomerism in these
molecules, demonstrating robust performance despite positive samples constituting only one-fourth
of the fine-tuning dataset (563 out of 2000).

3.2 ATROPISOMER GENERATION

We quantitatively compare the generation performance of scaffold-guided and gradient-guided ap-
proaches against baseline unconditional generation, as detailed in Table 2. To address the prohibitive
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Table 1: Performance of Uni-Mol on atropisomer prediction tasks with different pretraining settings.
t1 refers to the chiral axis identification task. t2 refers to the rotational energy barrier regression. t3
refers to the relative energy regression.

Pretraining Setting Precision Recall F1 Score

Uni-Mol 0.779 0.793 0.785
Uni-Mol + t1 0.832 0.797 0.814
Uni-Mol + t1 + t2 0.825 0.813 0.819
Uni-Mol + t1 + t2 + t3 0.834 0.815 0.824

cost of experimental validation, we employ Chiralfinder to assess the presence of at least one chi-
ral axis as our success rate metric. Our results demonstrate that both guided generation strategies
achieve significantly higher success rates compared to unconditional generation, while maintaining
comparable performance in standard molecular generation metrics including uniqueness and nov-
elty. The relatively lower validity observed in scaffold-guided generation is because the scaffold
size is approaching the upper limit of atom count supported by the model architecture. A similar
scaffold does not appear in the training set. Nevertheless, the generative model still gives many
valuable results. Several newly designed molecules are shown in Figure 2.

Table 2: Performance of molecular generation approaches
Method Validity (%) Uniqueness (%) Novelty (%) Success Rate (%)

Unconditional Generation 77.65 99.77 99.96 7.01
Gradient Guidance 85.60 100 100 36.65
Scaffold Guidance 22.92 89.35 100 97.08

a)

b)

Figure 2: a) Gradient-guided generated molecules b) Scaffold-guided generated molecules

4 CONCLUSION

We present AtropDiff, the first deep learning-based framework capable of generating atropisomers.
This work establishes a new paradigm for atropisomer design, which generates chemically plausible
candidates computationally rather than through experimental trial-and-error. The scaffold-guided
generation technique is particularly advantageous for optimizing lead compounds with a limited
number of known examples. Our findings underscore the potential of leveraging physics-informed
synthetic data and guided generation strategies to address data scarcity in AI-driven scientific dis-
covery, particularly for complex molecular properties such as atropisomerism.
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