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Abstract

How and where proteins interface with one another can ultimately impact the pro-1

teins’ functions along with a range of other biological processes. As such, precise2

computational methods for protein interface prediction (PIP) come highly sought3

after as they could yield significant advances in drug discovery and design as well4

as protein function analysis. However, the traditional benchmark dataset for this5

task, Docking Benchmark 5 (DB5) [1], contains only a modest 230 complexes for6

training, validating, and testing different machine learning algorithms. In this work,7

we expand on a dataset recently introduced for this task, the Database of Interacting8

Protein Structures (DIPS) [2, 3], to present DIPS-Plus, an enhanced, feature-rich9

dataset of 42,112 complexes for geometric deep learning of protein interfaces. The10

previous version of DIPS contains only the Cartesian coordinates and types of the11

atoms comprising a given protein complex, whereas DIPS-Plus now includes a12

plethora of new residue-level features including protrusion indices, half-sphere13

amino acid compositions, and new profile hidden Markov model (HMM)-based14

sequence features for each amino acid, giving researchers a large, well-curated15

feature bank for training protein interface prediction methods. We demonstrate16

through rigorous benchmarks that training an existing state-of-the-art (SOTA)17

model for PIP on DIPS-Plus yields SOTA results, surpassing the performance18

of all other models trained on residue-level and atom-level encodings of protein19

complexes to date.20

1 Introduction21

Proteins are one of the fundamental drivers of work in living organisms. Their structures often22

reflect and directly influence their functions in molecular processes, so understanding the relationship23

between protein structure and protein function is of utmost importance to biologists and other24

life scientists. Here, we study the interaction between binary protein complexes, pairs of protein25

structures that bind together, to better understand how these coupled proteins will function in vivo.26

Predicting where two proteins will interface in silico has become an appealing method for measuring27

the interactions between proteins as a computational approach saves time, energy, and resources28

compared to traditional methods for experimentally measuring such interfaces [4].29

A key motivation for determining protein-protein interface regions is to decrease the time required30

to discover new drugs and to advance the study of newly designed and engineered proteins [5].31
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Figure 1: A PyMOL [6] visualization for a complex of interacting proteins (PDB ID: 10GS).

Towards this end, we set out to curate a dataset large enough and with enough features to develop a32

computational model that can reliably predict the residues that will form the interface between two33

given proteins. In response to the exponential rate of progress being made in applying representation34

learning to biomedical data, we designed a dataset to accommodate the need for more detailed35

features indicative of interacting protein residues to solve this fundamental problem in structural36

biology.37

2 Related Work38

Machine learning has been used heavily to study biomolecules such as DNA, RNA, proteins, and39

drug-like bio-targets. From a classical perspective, a wide array of machine learning algorithms have40

been employed in this domain. [7, 8] used Bayesian networks to model gene expression data. [9] give41

an overview of HMMs being used for biological sequence analysis, such as in [10]. [11] have used42

decision trees to classify membrane proteins. In a similar vein, Liu et al. [12] used support vector43

machines (SVMs) to automate the recognition of protein folds.44

In particular, machine learning methods have also been used extensively to help facilitate a biological45

understanding of protein-protein interfaces. [13] created a random forests model for interface region46

prediction using structure-based features. Chen et al. [14] trained SVMs solely on sequence-based47

information to predict interfacing residues. Using both sequence and structure-based information,48

[15] created an SVM for partner-specific interface prediction. Shortly after, [16] achieved even better49

results by adopting an XGBoost algorithm and classifying residue pairs structured as pairs of feature50

vectors.51

Another avenue of research related to interface prediction stems from traditional computational52

approaches to protein docking. Such domain methods have previously been used to achieve global53

docking results between two or more protein structures, and interface predictors have found great use54

within such docking software. However, the performance of interface predictors remains a notable55

shortcoming of these traditional docking methods [1, 17]. Hence, innovations in interface prediction56

via new machine learning methods and enhanced protein complex datasets on which they are trained57

could lead to improved performance of future docking software.58

Over the past several years, deep learning has established itself as an effective means of automatically59

learning useful feature representations from data, with the MSA Transformer presenting a prime60

example of successful unsupervised learning on protein sequences [18]. Rivaling classical features,61

these learned feature representations, which oftentimes describe complex interactions and relation-62

ships between entities, can be used for a range of tasks including classification, regression, generative63

modeling, and even advanced tasks such as playing Go [19] or folding proteins in silico [20]. On64

the other hand, unsupervised representation learning can facilitate SOTA supervised prediction of65

mutational effect and secondary structure, as well as long-range contact prediction [21]. Thus,66

creating a dataset that provides sufficient information regarding complex prediction for unsupervised67

or semi-supervised learning is also important to the supervised learning task, since the combination68
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of information-rich features and graph-based protein structural data makes large-scale training on69

generative graph models possible.70

Out of all the promising domains of deep learning, one area in particular, geometric deep learning,71

has arisen as a natural avenue for modeling scientific among other types of relational data [22],72

such as the protein complex shown in Figure 1. Previously, geometric learning algorithms like73

convolutional neural networks (CNNs) and graph neural networks (GNNs) have been used to predict74

protein interfaces. Fout et al. [23] designed a siamese GNN architecture to learn weight-tied feature75

representations of residue pairs. This approach processes subgraphs for the residues in each complex76

and aggregates node-level features locally using a nearest-neighbors approach. Since this partner-77

specific method derives its training dataset from DB5, it is ultimately data-limited. [2] represent78

interacting protein complexes by voxelizing each residue into a 3D grid and encoding in each grid79

entry the presence and type of the residue’s underlying atoms. This partner-specific encoding scheme80

captures structural features of interacting complexes, but it is not able to scale well due to its requiring81

a computationally-expensive spatial resolution of the residue voxels to achieve good results.82

Continuing the trend of applying geometric learning to protein structures, [24] perform partner-83

independent interface region prediction with an attention-based GNN. This method learns to perform84

binary classification of the residues in both complex structures to identify regions where residues85

from both complexes are likely to interact with one another. However, because this approach predicts86

partner-independent interface regions, it is less likely to be useful in helping solve related tasks such as87

drug-protein interaction prediction and protein-protein docking [25]. To date, the best results obtained88

by any model for protein interface prediction come from [26] where high-order (i.e. sequential and89

coevolution-based) interactions between residues are learned and preserved throughout the network90

in addition to structural features embedded in protein complexes. However, this approach is also91

data-limited as it uses the DB5 dataset to derive its training data. As such, it remains to be shown92

how much precision could be obtained with these and similar methods by training them on much93

more exhaustive datasets.94

3 Dataset95

3.1 Overview96

As we have seen, two main encoding schemes have been proposed for protein interface prediction:97

modeling protein structures at the atomic level and modeling structures at the level of the residue.98

Modeling protein structures in terms of their atoms can yield a detailed representation of such99

geometries, however, accounting for each atom in a structure can quickly become computationally100

burdensome or infeasible for large structures. On the other hand, as residues are comprised of101

multiple atoms, modeling only a structure’s residues allows one to employ their models on a more102

computationally succinct view of the structure, thereby reducing memory requirements for the103

training and inference of biomolecular machine learning models by focusing only on the alpha-carbon104

(CA) atoms of each residue. The latter scheme also enables researchers to curate robust residue-105

based features for a particular task, a notion of flexibility quite important to the success of prior106

works in protein bioinformatics [15, 23, 26, 27]. Nonetheless, both schemes, when adopted by a107

machine learning algorithm such as a neural network, require copious amounts of training examples108

to generalize past the training dataset. However, only a handful of extensive datasets for protein109

interface prediction currently exist, DIPS being the largest of such examples, and it is designed solely110

for modeling structures at the atomic level. If one would like to model complexes at the residue111

level to summarize the structural and functional properties of each residue’s atoms as additional112

features for training, DB5 is currently one of the only datasets with readily-available pairwise residue113

labels that meets this criterion. As such, one of the primary motivations for curating DIPS-Plus was114

to answer the following two questions: Why must one choose between having the largest possible115

dataset and having enough features for their interface prediction models to generalize well? And is it116

possible for a single dataset to facilitate both protein-encoding schemes while maintaining its size117

and feature-richness?118

3.2 Usage119

As a follow-up to the above two questions, we constructed DIPS-Plus, a feature-expanded version120

of DIPS accompanied, with permission from the original authors of DIPS, by a CC-BY 4.0 license121
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Table 1: Residue features added in DIPS-Plus

New Features (1) New Features (2)

Secondary Structure Half-Sphere Amino Acid Composition
Relative Solvent Accessibility Coordinate Number
Residue Depth Profile HMM Features
Protrusion Index Amide Normal Vector

for reproducibility and extensibility. This dataset can be used with most deep learning algorithms,122

especially geometric learning algorithms (e.g. CNNs, GNNs), for studying protein structures,123

complexes, and their inter/intra-protein interactions at scale. It can also be used to test the performance124

of new or existing geometric learning algorithms for node classification, link prediction, object125

recognition, or similar benchmarking tasks. The standardized task for which DIPS-Plus is designed126

is dense prediction of all possible interactions between inter-protein residues (e.g. M ×N possible127

interactions where M and N are the numbers of residues in a complex’s first and second structure,128

respectively) [26]. In the context of computer vision, then, DIPS-Plus can be seen as a dataset129

for pixel-wise prediction on 2D biological images. The primary metric used to score DIPS-Plus130

algorithms is the median area under the receiver operating characteristic curve (MedAUROC) to131

prevent test results for extraordinarily large complexes from having a disproportionate effect on132

the algorithm’s overall test MedAUROC [15, 23, 2, 26]. To facilitate convenient training of future133

methods trained on DIPS-Plus, we provide a standardized 80%-20% cross-validation split of the DIPS-134

Plus complexes’ file names. For these splits, we a priori filter out 663 complexes containing more135

than 1,000 residues to mirror DB5 in establishing an upper bound on the computational complexity136

of algorithms trained on the dataset. As is standard for interface prediction [15, 23, 2, 26], we define137

the labels in DIPS-Plus to be the IDs (i.e. Pandas DataFrame row IDs [28]) of inter-protein residue138

pairs that, in the complex’s bound state, can be found within 6 Å of one another, using each residue’s139

non-hydrogen atoms for performing distance measurements (since hydrogen atoms are often not140

present in experimentally-determined structures).141

Similar to [2], in the version of DB5 we update with new features from DIPS-Plus (i.e. DB5-Plus),142

we record the file names of the complexes added between versions 4 and 5 of Docking Benchmark as143

the final test dataset for users’ convenience. The rationale behind this choice of test dataset is given144

by the following points: (1) The task of interface prediction is to predict how two unbound (i.e. not145

necessarily conformal) proteins will bind together by predicting which pairs of residues from each146

complex will interact with one another upon binding; (2) DIPS-Plus consists solely of bound protein147

complexes (i.e. those already conformed to one another), so we must test on a dataset consisting148

of unbound complexes after training to verify the effectiveness of the method for PIP; (3) Each of149

DB5-Plus’ unbound test complexes are of varying interaction types and difficulties for prediction150

(e.g. antibody-antigen, enzyme substrate), simulating how future unseen proteins (i.e. those in the151

wild) might be presented to the model following its training; (4) DB5’s test complexes (i.e. those152

added between DB4 and DB5) represent a time-based data split also used for evaluation in [23, 2,153

26], so for fair comparison with previous SOTA methods we chose the same complexes for testing.154

3.3 Construction155

In total, DIPS-Plus consists of 42,112 complexes compared to the 42,826 complexes in DIPS after156

pruning out 714 large and evolutionarily-distinct complexes that are no longer available in the RCSB157

PDB (as of April 2021) or for which multiple sequence alignment (MSA) generation was prohibitively158

time-consuming and computationally expensive. The original DIPS, being a carefully curated PDB159

subset, contains almost 200x more protein complexes than the modest 230 complexes in DB5, what160

is still considered to be a gold standard of protein-protein interaction datasets. Other protein binding161

datasets such as PDBBind [29] (containing 5,341 protein-protein complexes) and that which was162

used in the development of MaSIF [30] (containing roughly 12,000 protein-protein complexes in163

total) have previously been curated for machine learning of protein complexes. However, to the best164

of our knowledge, DIPS-Plus serves as the single largest database of PDB protein-protein complexes165

incorporating novel features such as profile HMM-derived sequence conservation and half-sphere166

amino acid compositions shown to be indicative of residue-residue interactions in Section 4. It is167

still a possibility that PDBBind or MaSIF may contain useful information regarding complexes not168
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already contained in DIPS-Plus. Fortunately, it remains possible with our data pipeline to extend169

DIPS-Plus to include these new complexes in PDBBind or MaSIF. For the time being, we defer the170

exploration of this idea to future works.171

3.4 Quality172

Regarding the quality of the complexes in DIPS-Plus, we employ a similar pruning methodology173

as [2] to ensure data integrity. DIPS-Plus, along with the works of others [1, 29, 30], derives its174

complexes from the PDB which conducts statistical quality summaries in its structure deposition175

processes and post-deposition analyses [31]. Nonetheless, recent studies on the PDB have discovered176

that the quality of its structures can, in some cases, vary considerably between structures [32]. As177

such, in selecting complexes to include in DIPS-Plus, we perform extensive filtering after obtaining178

the initial batch of 180,000 complexes available in the PDB. Such filtering includes (1) removing179

PDB complexes containing a protein chain with more than 30% sequence identity with any protein180

chain in DB5-Plus per [33, 34], (2) selecting complexes with an X-ray crystallography or cryo-181

electron microscopy resolution greater than 3.5 Å (i.e. a standard threshold in the field), (3) choosing182

complexes containing protein chains with more than 50 amino acids (i.e. residues), (4) electing for183

complexes with at least 500 Å
2

of buried surface area, and (5) picking only the first model for a given184

complex. The motivation for the first filtering step is to ensure that we do not allow training datasets185

built from DIPS-Plus to bias the DB5-Plus test results of models trained on DIPS-Plus, with the186

remaining steps carried out to follow conventions in the field of protein bioinformatics.187

3.5 New Features188

The features we chose to add to DIPS to create DIPS-Plus were selected carefully and intentionally189

based on our analysis of previously-successful interface prediction models. In this section, we190

describe each of these new features in detail, including why we chose to include them, how we191

collected or generated them, and the strategy we took for normalizing the features and imputing192

missing feature values when they arose. These features were derived only for standard residues (e.g.193

amino acids) by filtering out hetero residues and waters from each PDB complex before calculating,194

for example, half-sphere amino acid compositions for each residue. This is, in part, to reduce the195

computational overhead of generating each residue’s features. More importantly, however, we chose196

to ignore hetero residue features in DIPS-Plus to keep it consistent with DB5 as hetero residues and197

waters are not present in DB5.198

DIPS-Plus, compared to DIPS, not only contains the original Protein Data Bank (PDB) features199

in DIPS such as amino acids’ Cartesian coordinates and their corresponding atoms’ element types200

but now also new residue-level features shown in Table 1 following a feature set similar to [15, 23,201

26]. DIPS-Plus also replaces the residue sequence-conservation feature conventionally used for202

interface prediction with a novel set of emission and transition probabilities derived from HMM203

sequence profiles. Each HMM profile used to ascertain these residue-specific transition and emission204

probabilities are constructed by HHmake [35] using MSAs that were generated after two iterations by205

HHblits [35] and the Big Fantastic Database (BFD) (version: March 2019) of protein sequences [36].206

Inspired by the work of Guo et al. [27], we chose to use HMM profiles to create sequence-based207

features in DIPS-Plus as they have been shown to contain more detailed information concerning208

the relative frequency of each amino acid in alignment with other protein sequences compared to209

what has traditionally been done to generate sequence-based features for interface prediction, directly210

sampling (i.e. windowing) MSAs to assess how conserved (i.e. buried) each residue is [35].211

3.5.1 Secondary Structure212

Secondary structure (SS) is included in DIPS-Plus as a categorical variable that describes the type213

of local, three-dimensional structural segment in which a residue can be found. This feature has214

been shown to correlate with the presence or absence of protein-protein interfaces [37]. In addition,215

the secondary structures of residues have been found to be informative of the physical interactions216

between main-chain and side-chain groups [38]. This is one of the primary motivations for including217

them as a residue feature in DIPS-Plus. As such, we hypothesize adding secondary structure as a218

feature for interface prediction models could prove beneficial to model performance as it would allow219

them to more readily discover interactions between structures’ main-chain and side-chain groups.220
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We generate each residue’s SS value using version 3.0.0 of the Database of Secondary Structure221

Assignments for Proteins (DSSP) [39], a well-known and frequently-used software package in the222

bioinformatics community. In particular, we use version 1.78 of BioPython [40] to call DSSP and223

have it retrieve for us DSSP’s results for each residue. Each residue is assigned one of eight possible224

SS values, ’H’, ’B’, ’E’, ’G’, ’I’, ’T’, ’S’, or ’-’, with the symbol ’-’ signifying the default value for225

unknown or missing SS values. Since this categorical feature is naturally one-hot encoded, it does226

not need to be normalized numerically.227

3.5.2 Relative Solvent Accessibility228

Each residue can behave differently when interacting with water. Solvent accessibility is a scalar (i.e.229

type 0) feature that quantifies a residue’s accessible surface area, the area of a residue’s atoms that can230

be touched by water. Polar residues typically have larger accessible surface areas, while hydrophobic231

residues tend to have a smaller accessible surface area. It has been observed that hydrophobic residues232

tend to appear in protein interfaces more often than polar residues [41]. Including solvent accessibility233

as a residue-level feature, then, may provide models with additional information regarding how likely234

a residue is to interact with another inter-protein residue.235

Relative solvent accessibility (RSA) is a simple modification of solvent accessibility that normalizes236

each residue’s solvent accessibility by an experimentally-determined normalization constant specific237

to each residue. These normalization constants are designed to help more closely correlate generated238

RSA values with their residues’ true solvent accessibility [42]. Here, we again use BioPython and239

DSSP together, this time to generate each residue’s RSA value. The RSA values returned from240

BioPython are pre-normalized according to the constants described in [42] and capped to an upper241

limit of 1.0. Missing RSA values are denoted by the NaN constant from NumPy [43], a popular242

scientific computing library for Python. As we use NumPy’s representation of NaN for missing243

values, users have available to them many convenient methods for imputing missing feature values244

for each feature type, and we provide scripts with default parameters to do so with our source code245

for DIPS-Plus. By default, NaN values for numeric features like RSA are imputed using the feature’s246

columnwise median value.247

3.5.3 Residue Depth248

Residue depth (RD) is a scalar measure of the average distance of the atoms of a residue from its249

solvent-accessible surface. Afsar et al. [15] have found that for interface prediction this feature250

is complementary to each residues’ RSA value. Hence, this feature holds predictive value for251

determining interacting protein residues as it can be viewed as a description of how "buried" each252

residue is. We use BioPython and version 2.6.1 of MSMS [44] to generate each residue’s depth,253

where the default quantity for a missing RD value is NaN. To make all RD values fall within the range254

[0, 1], we then perform structure-specific min-max normalization of each structure’s non-NaN RD255

values using scikit-learn [45]. That is, for each structure, where min = 0 and max = 1, we find its256

minimum and maximum RD values and normalize the structure’s RD values X using the expression257

X =
X −X.min(axis = 0)

X.max(axis = 0)−X.min(axis = 0)
× (max−min) +min.

3.5.4 Protrusion Index258

A residue’s protrusion index (PI) is defined using its non-hydrogen atoms. It is a measure of the259

proportion of a 10 Å sphere centered around the residue’s non-hydrogen atoms that is not occupied260

by any atoms. By computing residues’ protrusion this way, we end up with a 1 x 6 feature vector that261

describes the following six properties of a residue’s protrusion: average and standard deviation of262

protrusion, minimum and maximum protrusion, and average and standard deviation of the protrusion263

of the residue’s non-hydrogen atoms facing its side chain. We used version 1.0 of PSAIA [46] to264

calculate the PIs for each structure’s residues collectively. That is, each structure has its residues’265

PSAIA values packaged in a single .tbl file. Missing PIs default to a 1 x 6 vector consisting entirely266

of NaNs. We min-max normalize each PI entry columnwise to get six updated PI values, similar to267

how we normalize RD values in a structure-specific manner.268
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3.5.5 Half-Sphere Amino Acid Composition269

Half-sphere amino acid compositions (HSAACs) are comprised of two 1 x 21 unit-normalized vectors270

concatenated together to get a single 1 x 42 feature vector for each residue. The first vector, termed271

the upward composition (UC), reflects the number of times a particular amino acid appears along272

the residue’s side chain, while the second, the downward composition (DC), describes the same273

measurement in the opposite direction, with the 21st vector entry for each residue corresponding to274

the unknown or unmappable residue, ’-’. Knowing the composition of amino acids along and away275

from a residue’s side chain, for all residues in a structure, is another feature that has been shown to276

offer crucial predictive value to machine learning models for interface prediction as it can describe277

physiochemical and geometric patterns in such regions [47]. These UC and DC vectors can also278

vary widely for residues, suggesting an alternative way of assessing residue accessibility [15, 26].279

Missing HSAACs default to a 1 x 42 vector consisting entirely of NaNs. Furthermore, since both the280

UC and DC vectors for each residue are unit normalized before concatenating them together, after281

concatenation all columnwise HSAAC values for a structure still inclusively fall between 0 and 1.282

3.5.6 Coordinate Number283

A residue’s coordinate number (CN) is conveniently determined alongside the calculation of its284

HSAAC. It denotes how many other residues to which the given residue was found to be significant.285

Significance, in this context, is defined in the same way as [15]. That is, the significance score for286

two residues is defined as287

s = e
−d2

2×st2 ,

where d is the minimum distance between any of their atoms and st is a given significance threshold288

which, in our case, defaults to the constant 1e−3. Then, if two residues’ significance score falls above289

st, they are considered significant. As per our convention in DIPS-Plus, the default value for missing290

CNs is NaN, and we min-max normalize the CN for each structure’s residues.291

3.5.7 Profile HMM Features292

MSAs can carry rich evolutionary information regarding how each residue in a structure is related to293

all other residues, and sequence profile HMMs have increasingly found use in representing MSAs’294

evolutionary information in a concise manner [35, 20]. In previous works on PIP, knowing the295

conservation of a residue has been found to be beneficial in predicting whether the residue is likely296

to be found in an interface [15, 23, 26], and profile HMMs capture this sequence conservation297

information in a novel way using MSAs. As such, to gather sequence profile features for DIPS-Plus,298

we derive profile HMMs for each structures’ residues using HH-suite3 by first generating MSAs299

using HHblits followed by taking the output of HHblits to create profile HMMs using HHmake. From300

these profile HMMs, we can then calculate each structure’s residue-wise emission and transition301

profiles. A residue’s emission profile, represented as a 1 x 20 feature vector of probability values,302

illustrates how likely the residue is across its evolutionary history to emit one of the 20 possible303

amino acid symbols. Similarly, each residue’s transition profile, a 1 x 7 probability feature vector,304

depicts how likely the residue is to transition into one of the seven possible HMM states.305

To derive each structure’s emission and transition probabilities, for a residue i and a standard amino306

acid k we extract the profile HMM entry (i, k) (i.e. the corresponding frequency) and convert the307

frequency into a probability value with the equation308

pik = 2−
Freqik

m .

where m is the number of MSAs used to generate each profile HMM (m = 1, 000 by default).309

After doing so, we get a 1 x 27 vector of probability values for each residue. Similar to other features310

in DIPS-Plus, missing emission and transition probabilities for a single residue default to a 1 x 27311

vector comprised solely of NaNs. Moreover, since each residue is assigned a probability vector as its312

sequence features, we do not need to normalize these sequence feature vectors columnwise. We chose313

to leave out three profile HMM values for each residue representing the diversity of the alignment314

with respect to HHmake’s generation of profile HMMs from HHblits’ generated MSAs for a given315
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Table 2: A comparison of datasets for PIP

Dataset # Complexes # Residues # Residue Interactions # Residue Features

DB5 230 121,943 21,091 0
DB5-Plus 230 121,943 21,091 8
DIPS 42,826 22,547,678 5,767,039 0
DIPS-Plus 42,112 22,127,737 5,677,450 8

Table 3: How many residue features were successfully generated for each PIP dataset

DB5-Plus DIPS-Plus DB5-Plus DIPS-Plus

SS: 95,614 SS: 17,835,959 HSAAC: 121,943 HSAAC: 21,791,175
RSA: 121,591 RSA: 22,104,449 CN: 121,943 CN: 22,127,737
RD: 121,601 RD: 22,069,320 HMM: 121,943 HMM: 22,127,050
PI: 121,943 PI: 19,246,789 NV: 113,376 NV: 20,411,267

structure. Since we do not see any predictive value in including these as residue features, we left316

them out of both DIPS-Plus and DB5-Plus.317

3.5.8 Amide Normal Vector318

Each residue’s amide plane has a normal vector (NV) that we can derive by taking the cross product319

of the difference between the residue’s CA atom and beta-carbon (CB) atoms’ Cartesian coordinates320

and the difference between the coordinates of the residue’s CB atom and its nitrogen (N) atom. If321

users choose to encode the complexes in DIPS-Plus as pairs of graphs, these NVs can then be used322

to define rich edge features such as the angle between the amide plane NVs for two residues [23].323

Similar to how we impute other missing feature vectors, the default value for an underivable NV324

(e.g. for Glycine residues that do not have a beta-carbon atom) is a 1 x 3 vector consisting of NaNs.325

Further, since these vectors represent residues’ amide plane NVs, we leave them unnormalized for, at326

users’ discretion, additional postprocessing (e.g. custom normalization) of these NVs.327

3.6 Analysis328

Table 2 gives a brief summary of the datasets available for protein interface prediction to date and329

the number of residue features available in them. In it, we can see that our version of DIPS, labeled330

DIPS-Plus, contains many more residue features than its original version at the expense of minimal331

pruning to the number of complexes available for training. Complementary to Table 2, Table 3 shows332

how many features we were able to include for each residue in DB5-Plus and DIPS-Plus, respectively.333

Regarding DB5-Plus, we see that for relative solvent accessibility, residue depth, protrusion index,334

half-sphere amino acid composition, coordinate number, and profile HMM features, the majority of335

residues have valid (i.e. non-NaN) entries. That is, more than 99.7% of all residues in DB5-Plus336

have valid values for these features. In addition, secondary structures and amide plane normal337

vectors exist, respectively, for 78.4% and 93% of all residues. Concerning DIPS-Plus, relative338

solvent accessibilities, residue depths, half-sphere amino acid compositions, coordinate numbers, and339

profile HMM features exist for more than 98.5% of all residues. Also, we notably observe that valid340

secondary structures, protrusion indices, and normal vectors exist, respectively, for 80.6%, 87%, and341

92.2% of all residues.342

From the above analysis, we made a stand-alone observation. For both DB5-Plus and DIPS-Plus,343

residues’ secondary structure labels are available from DSSP for, on average, 80.6% of all residues344

in DIPS-Plus and DB5-Plus, collectively. This implies that there may be benefits to gain from345

varying how we collect secondary structures for each residue, possibly by using deep learning-driven346

alternatives to DSSP that predict the secondary structure to which a residue belongs, as in [27].347

Complementing DSSP in this manner may yield even better secondary structure values for DIPS-Plus348

and DB5-Plus. We defer the exploration of this idea to future work.349
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Table 4: The effect of our new feature set (i.e. DIPS-Plus) on a SOTA algorithm for PIP

Method MedAUROC

NGF [48] 0.865 (0.007)
DTNN [49] 0.867 (0.007)
Node and Edge Average [23] 0.876 (0.005)
BIPSPI [16] 0.878 (0.003)
SASNet* [2] 0.885 (0.009)
NeiA+HOPI [26] 0.902 (0.012)
NeiWA+HOPI [26] 0.908 (0.019)
NeiA+HOPI+DIPS-Plus 0.9473 (0.001)

4 Benchmarks350

To measure the effect that DIPS-Plus has on the performance of existing machine learning methods351

for PIP, we trained one of the latest SOTA methods, NeiA, for 10 epochs on our standardized 80%-352

20% cross-validation split of DIPS-Plus’ complexes to observe NeiA’s behavior on DB5-Plus’s test353

complexes thereafter. We ran this experiment three times, each with a random seed and a single GNN354

layer, for a fair comparison of the experiment’s mean and standard deviation (i.e. in parentheses) in355

terms of MedAUROC. Our results from this experiment are shown in the last row of Table 4. For the356

experiment, we used the following architecture and hyperparameters: (1) 1 NeiA GNN layer; (2) 3357

residual CNN blocks, each employing a 2D convolution module, ReLU activation function, another358

2D convolution module, followed by adding the block input’s identity map back to the output of the359

block (following a design similar to that of [26]); (3) an intermediate channel dimensionality of 212360

for each residual CNN block; (4) a learning rate of 1e-5; (5) a batch size of 32; (6) a weight decay of361

1e-7; and (7) a dropout (forget) probability of 0.3.362

All baseline results on the DB5 test complexes in Table 4 (i.e. complexes comprised of original DB5363

residue features) [48, 49, 23, 16, 26] are taken from [26], with the exception of SASNet’s results364

from training on the original DIPS dataset. These results are denoted by an asterisk in Table 4 to365

indicate that they were instead taken from [2]. The best performance is in bold. In this table, we see366

that a simple substitution of training and validation datasets enhances the MedAUROC of NeiA when367

adopting its accompanying high-order pairwise interaction (HOPI) module for learning inter-protein368

residue-residue interactions. For reference, to the best of our knowledge, the best performance of369

a machine learning model trained for PIP on only the atom-level features of protein complexes is370

SASNet’s MedAUROC of 0.885 averaged over three separate runs [2]. Such insights suggest the371

utility and immediate advantage of using DIPS-Plus’ residue feature set for PIP over the original372

DIPS’ atom-level feature set. Additionally, we deduce from Table 4 that the performance of previous373

methods for PIP is likely limited by the availability of residue-encoded complexes for training as all374

but one method [2] used DB5’s 230 total complexes for training, validation, as well as testing.375

5 Impact and Challenges376

5.1 Data Representation377

Over the last several years, geometric deep learning has surfaced as a powerful means of uncovering378

structural features in graph topologies [22]. To facilitate convenient processing of each DIPS-Plus379

and DB5-Plus complex to fit this and other paradigms, we include with DIPS-Plus’ source code the380

scripts necessary to convert each complex’s Pandas DataFrame into two stand-alone graph objects381

compatible with the Deep Graph Library (DGL) along with their corresponding residue-residue382

interaction matrix [50]. However, our data conversion scripts can easily be adapted to facilitate383

alternative data representation schemes for the complexes in DIPS-Plus and DB5-Plus. For example,384

one can choose to extract the graphs’ node and edge features as two separate PyTorch [51] tensors385

for 2D or 3D convolutions, representing either the atoms or residues of each complex (i.e. user’s386

choice) as entries in a 3D or 4D tensor, respectively. These default graph objects can then be used for387

a variety of graph-level tasks such as node classification (e.g. for interface region prediction) or link388

prediction (e.g. for inter-protein residue-residue interaction prediction). By default, each DGL graph389

contains for each node 86 features either one-hot encoded or extracted directly from the new feature390
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set described above. Further, each graph edge contains two distinct features after being min-max391

normalized, the angle between the amide plane NV for a given source and destination node as well as392

the squared relative distance between the source and destination nodes.393

5.2 Biases394

DIPS-Plus contains only bound protein complexes. On the other hand, our new PIP dataset for testing395

machine learning models, DB5-Plus, consists of unbound complexes. As such, the conformal state396

of DIPS-Plus’ complexes can bias learning algorithms to learning protein structures in their final,397

post-deformation state since the structures in a complex often undergo deviations from their natural398

shape after being bound to their partner protein. However, our benchmarks in Section 4, agreeing399

with those of Townshend et al. [2], show that networks well suited to the task of learning protein400

interfaces (i.e. those with suitable inductive biases for the problem domain) can generalize beyond401

the training dataset (i.e. DIPS) and perform well on unbound protein complexes (i.e. those in DB5).402

Hence, through our benchmarks, we provide designers of future PIP algorithms with an example of403

how to make effective use of DIPS-Plus’ structural bias for complexes.404

5.3 Associated Risks405

DIPS-Plus is designed to be used for machine learning of biomolecular data. It contains only publicly-406

available information concerning biomolecular structures and their interactions. Consequently, all407

data used to create DIPS-Plus does not contain any personally identifiable information or offensive408

content. As such, we do not foresee any negative societal impacts as a consequence of DIPS-Plus409

being made publicly available. Furthermore, future adaptions or enhancements of DIPS-Plus may410

benefit the machine learning community and, more broadly, the scientific community by providing411

meaningful refinements to an already-anonymized, transparent, and extensible dataset for geometric412

deep learning tasks in the life sciences.413

6 Conclusion414

We present DIPS-Plus, a comprehensive dataset for training and validating protein interface prediction415

models. Protein interface prediction is a novel, high-impact challenge in structural biology that can416

be vastly advanced with innovative algorithms and rich data sources. Several algorithms and even417

large atomic datasets for protein interface prediction have previously been proposed, however, until418

DIPS-Plus no single large-scale data source with rich residue features has been available. We expect419

the impact of DIPS-Plus to be a significantly enhanced quality of future models and community420

discussion in how best to design algorithmic solutions to this novel open challenge. Further, we421

anticipate that DIPS-Plus could be used as a template for creating new large-scale machine learning422

datasets tailored to the life sciences.423
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A Appendix596

A.1 Datasheet597

A.1.1 Motivation598

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap that599

needed to be filled? Please provide a description.600

DIPS-Plus was created for training and validating deep learning models aimed at predicting protein601

interfaces and inter-protein interactions. Without DIPS-Plus, deep learning algorithms that encode602

protein structures at the level of a residue would be limited either to the scarce protein complexes603

available in the Docking Benchmark 5 (DB5) dataset [1], to the original, feature-limited Database of604

Interacting Protein Structures (DIPS) dataset [2, 3], or to the smaller PDBBind or MaSIF dataset for605

training [29, 30].606

Who created this dataset (e.g., which team, research group) and on behalf of which entity (e.g., company,607

institution, organization)?608

DIPS-Plus was created by Professor Jianlin Cheng’s Bioinformatics & Machine Learning (BML) lab609

at the University of Missouri. The original DIPS was created by Professor Ron Dror’s Computational610

Biology lab at Stanford University and was enhanced to create DIPS-Plus with the original authors’611

permission.612

Who funded the creation of the dataset? If there is an associated grant, please provide the name of the613

grantor and the grant name and number.614

The project is partially supported by two NSF grants (DBI 1759934 and IIS 1763246), one NIH grant615

(GM093123), three DOE grants (DE-SC0020400, DE-AR0001213, and DE-SC0021303), and the616

computing allocation on the Andes compute cluster provided by Oak Ridge Leadership Computing617

Facility (Project ID: BIF132). In particular, this research used resources of the Oak Ridge Leadership618

Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science619

of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.620

A.1.2 Composition621

What do the instances that comprise the dataset represent (e.g., documents, photos, people, countries)?622

Are there multiple types of instances (e.g., movies, users, and ratings; people and interactions between them;623

nodes and edges)? Please provide a description.624

DIPS-Plus is comprised of binary protein complexes (i.e. bound ligand and receptor protein struc-625

tures) extracted from the Protein Data Bank (PDB) of the Research Collaboratory for Structural626

Bioinformatics (RCSB) [52]. Both protein structures in the complex are differentiable in that they are627

stored in their own Pandas DataFrame objects [28]. Each structure’s DataFrame contains informa-628

tion concerning the atoms of each residue in the structure such as their Cartesian coordinates and629

element type. For the alpha-carbon atoms of each residue (typically the most representative atom of a630

residue), each structure’s DataFrame also contains residue-level features like a measure of amino631

acid protrusion and solvent accessibility.632

How many instances are there in total (of each type, if appropriate)?633

There are 42,826 binary protein complexes in the original DIPS and 42,112 binary protein complexes634

in DIPS-Plus after additional pruning.635

Does the dataset contain all possible instances or is it a sample (not necessarily random) of instances from636

a larger set? If the dataset is a sample, then what is the larger set? Is the sample representative of the larger set637

(e.g., geographic coverage)? If so, please describe how this representativeness was validated/verified. If it is not638

representative of the larger set, please describe why not (e.g., to cover a more diverse range of instances, because639

instances were withheld or unavailable).640

The dataset contains all possible instances of bound protein complexes obtainable from the RCSB641

PDB for which it is computationally reasonable to generate residue-level features. That is, if it takes642

more than 48 hours to generate an RCSB complex’s residue features, it is excluded from DIPS-Plus.643

This results in us excluding approximately 100 complexes after our pruning of RCSB complexes.644
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What data does each instance consist of? “Raw” data (e.g., unprocessed text or images)or features? In either645

case, please provide a description.646

Each instance, consisting of a pair of Pandas DataFrames containing a series of alpha-carbon (CA)647

atoms and non-CA atoms with residue and atom-level features, respectively, is stored in a Python648

dill file for data compression and convenient file loading [53]. Each Pandas DataFrame contains a649

combination of numeric, categorical, and vector-like features describing each atom.650

Is there a label or target associated with each instance? If so, please provide a description.651

The dataset contains the labels of which pairs of CA atoms from opposite structures are within 6652

Å of one another (i.e. positives), implying an interaction between the two residues, along with an653

equally-sized list of randomly-sampled non-interacting residue pairs (i.e. negatives). For example,654

if a complex in DIPS-Plus contains 100 interacting residue pairs (i.e. positive instances), there will655

also be 100 randomly-sampled non-interacting residue pairs included in the complex’s dill file for656

optional downsampling of the negative class during training.657

Is any information missing from individual instances? If so, please provide a description, explaining why658

this information is missing (e.g., because it was unavailable). This does not include intentionally removed659

information, but might include, e.g., redacted text.660

All eight of the residue-level features added in DIPS-Plus are missing values for at least one residue.661

This is because not all residues have, for example, DSSP-derivable secondary structure (SS) values662

[39] or profile hidden Markov models (HMMs) that are derivable by HH-suite3 [35], the software663

package we use to generate multiple sequence alignments (MSAs) and subsequent MSA-based664

features. A similar situation occurs for the six other residue features. That is, not all residues have665

derivable features for a specific feature column, governed either by our own feature parsers or by666

the external feature parsers we use in making DIPS-Plus. We denote missing feature values for all667

features as NumPy’s NaN constant with the exception of residues’ SS value in which case we use ’-’668

as the default missing feature value [43].669

Are relationships between individual instances made explicit (e.g., users’ movie ratings, social network670

links)? If so, please describe how these relationships are made explicit. If so, please provide a description,671

explaining why this information is missing (e.g., because it was unavailable). This does not include intentionally672

removed information, but might include, e.g., redacted text.673

The relationships between individual instances (i.e. protein complexes) are made explicit by the674

directory and file-naming convention we adopt for DIPS-Plus. Complexes’ DataFrame files are675

grouped into folders by shared second and third characters of their PDB identifier codes (e.g.676

1x9e.pdb1_0.dill and 4x9e.pdb1_5.dill reside in the same directory x9/).677

Are there recommended data splits (e.g., training, development/validation, testing)? If so, please provide678

a description of these splits, explaining the rationale behind them.679

Since DIPS-Plus is relatively large (i.e. has more than 10,000 complexes), we provide a randomly-680

sampled 80%-20% dataset split for training and validation data, respectively, in the form of two text681

files: pairs-postprocessed-train.txt and pairs-postprocessed-val.txt. The file pairs-postprocessed.txt is682

a master list of all complex file names from which we derive pairs-postprocessed-train.txt and pairs-683

postprocessed-val.txt for cross-validation. It contains the file names of 42,112 complex DataFrames,684

filtered down from the original 42,112 complexes in DIPS-Plus to complexes having no more than685

17,500 CA and non-CA atoms, to match the maximum possible number of atoms in DB5-Plus686

structures and to create an upper-bound on the computational complexity of learning algorithms687

trained on DIPS-Plus. However, we also include the scripts necessary to conveniently regenerate688

pairs-postprocessed.txt with a modified or removed atom-count filtering criterion and with different689

cross-validation ratios.690

Are there any errors, sources of noise, or redundancies in the dataset? If so, please provide a description.691

As mentioned in the missing information point above, not all residues have software-derivable features692

for the feature set we have chosen for DIPS-Plus. In the case of missing features, we substitute693

NumPy’s NaN constant for the missing feature value with the exception of SS values which are694

replaced with the symbol ’-’. We also provide with DIPS-Plus postprocessing scripts for users to695

perform imputation of missing feature values (e.g. replacing a column’s missing values with the696
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column’s mean, median, minimum, or maximum value or with a constant such as zero) depending on697

the type of the missing feature (i.e. categorical or numeric).698

Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,699

tweets, other datasets)? If it links to or relies on external resources, a) are there guarantees that they will exist,700

and remain constant, over time; b) are there official archival versions of the complete dataset (i.e., including the701

external resources as they existed at the time the dataset was created); c) are there any restrictions (e.g., licenses,702

fees) associated with any of the external resources that might apply to a future user? Please provide descriptions703

of all external resources and any restrictions associated with them, as well as links or other access points, as704

appropriate.705

The dataset relies on feature generation using external tools such as DSSP and PSAIA. However, in706

our Zenodo data repository for DIPS-Plus, we provide either a copy of the external features generated707

using these tools or the exact version of the tool with which we generated features (e.g. version 3.0.0708

of DSSP for generating SS values using version 1.78 of BioPython). The most time-consuming and709

computationally-expensive features to generate, profile HMMs and protrusion indices, are included710

in our Zenodo repository for users’ convenience. We also provide the final, postprocessed version of711

each DIPS-Plus complex in our Zenodo data bank.712

Does the dataset contain data that might be considered confidential (e.g., data that is protected by legal713

privilege or by doctor-patient confidentiality, data that includes the content of individuals non-public714

communications)? If so, please provide a description.715

No, DIPS-Plus does not contain any confidential data. All data with which DIPS-Plus was created is716

publicly available.717

Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or might718

otherwise cause anxiety? If so, please describe why.719

No, DIPS-Plus does not contain data that, if viewed directly, might be offensive, insulting, threatening,720

or might otherwise cause anxiety.721

Does the dataset relate to people? If not, you may skip the remaining questions in this section.722

No, DIPS-Plus does not contain data that relates directly to individuals.723

A.1.3 Collection Process724

How was the data associated with each instance acquired? Was the data directly observable (e.g., raw text,725

movie ratings), reported by subjects (e.g., survey responses), or indirectly inferred/derived from other data (e.g.,726

part-of-speech tags, model-based guesses for age or language)? If data was reported by subjects or indirectly727

inferred/derived from other data, was the data validated/verified? If so, please describe how.728

The data associated with each instance was acquired from the RCSB’s PDB repository for protein729

complexes (https://ftp.wwpdb.org/pub/pdb/data/biounit/coordinates/divided/), where each complex730

was screened, inspected, and analyzed by biomedical professionals and researchers before being731

deposited into the RCSB PDB.732

What mechanisms or procedures were used to collect the data (e.g., hardware apparatus or sensor, man-733

ual human curation, software program, software API)? How were these mechanisms or procedures vali-734

dated?735

X-ray diffraction, nuclear magnetic resonance (NMR), and electron microscopy (EM) are the most736

common methods for collecting new protein complexes. These techniques are industry standard in737

biomolecular research.738

Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and how were739

they compensated (e.g., how much were crowdworkers paid)?740

Unknown.741

Over what timeframe was the data collected? Does this timeframe match the creation timeframe of the data742

associated with the instances (e.g., recent crawl of old news articles)? If not, please describe the timeframe in743

which the data associated with the instances was created.744

The protein structures in the RCSB PDB have been collected iteratively over the last 50 years.745
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Were any ethical review processes conducted (e.g., by an institutional review board)? If so, please provide746

a description of these review processes, including the outcomes, as well as a link or other access point to any747

supporting documentation.748

Unknown.749

Does the dataset relate to people? If not, you may skip the remaining questions in this section.750

No, DIPS-Plus does not contain data that relates directly to individuals.751

A.1.4 Preprocessing, Cleaning, and Labeling752

Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucketing, tokenization,753

part-of-speech tagging, SIFT feature extraction, removal of instances, processing of missing values)? If754

so, please provide a description. If not, you may skip the remainder of the questions in this section.755

All eight of the residue-level features added in DIPS-Plus are missing values for at least one residue.756

This is because not all residues have, for example, DSSP-derivable secondary structure (SS) values757

[39] or profile hidden Markov models (HMMs) that are derivable by HH-suite3 [35], the software758

package we use to generate multiple sequence alignments (MSAs) and subsequent MSA-based759

features. A similar situation occurs for the six other residue features. That is, not all residues have760

derivable features for a specific feature column, governed either by our own feature parsers or by761

the external feature parsers we use in making DIPS-Plus. We denote missing feature values for all762

features as NumPy’s NaN constant with the exception of residues’ SS value in which case we use ’-’763

as the default missing feature value [43]. In the case of missing features, we substitute NumPy’s NaN764

constant for the missing feature value. We also provide with DIPS-Plus postprocessing scripts for765

users to perform imputation of missing feature values (e.g. replacing a column’s missing values with766

the column’s mean, median, minimum, or maximum value or with a constant such as zero) depending767

on the type of the missing feature (i.e. categorical or numeric).768

Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support unantici-769

pated future uses)?770

The version of each complex prior to any postprocessing we perform for DIPS-Plus complexes is771

saved separately in our Zenodo data repository. That is, each pruned pair from DIPS is stored in our772

data repository prior to the addition of DIPS-Plus features. The raw complexes from which DIPS773

complexes are derived can be retrieved from the RCSB PDB individually or in batch using FTP or774

similar file-transfer protocols (from https://ftp.wwpdb.org/pub/pdb/data/biounit/coordinates/divided/).775

Is the software used to preprocess/clean/label the instances available? If so, please provide a link or other776

access point.777

Our GitHub repository with source code and instructions for generating DIPS-Plus from scratch can778

be found at https://github.com/amorehead/DIPS-Plus.779

A.1.5 Uses780

Has the dataset been used for any tasks already? If so, please provide a description.781

At the time of publication, DIPS-Plus has been used to benchmark the performance of existing782

methods for PIP in Section 4 of the manuscript by training a SOTA PIP algorithm (i.e. NeiA) on783

DIPS-Plus and achieving SOTA results on DB5-Plus’ test complexes.784

Is there a repository that links to any or all papers or systems that use the dataset? If so, please provide a785

link or other access point.786

We will be linking to all papers or systems that use DIPS-Plus (as we find out about them) in our787

GitHub repository for DIPS-Plus (https://github.com/amorehead/DIPS-Plus).788

What (other) tasks could the dataset be used for?789

This dataset can be used with most deep learning algorithms, especially geometric learning algorithms,790

for studying protein structures, complexes, and their inter/intra-protein interactions at scale. This791

dataset can also be used to test the performance of new or existing geometric learning algorithms for792

node classification, link prediction, object recognition, or similar benchmarking tasks.793
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Is there anything about the composition of the dataset or the way it was collected and prepro-794

cessed/cleaned/labeled that might impact future uses? For example, is there anything that a future user795

might need to know to avoid uses that could result in unfair treatment of individuals or groups (e.g., stereotyping,796

quality of service issues) or other undesirable harms (e.g., financial harms, legal risks) If so, please provide a797

description. Is there anything a future user could do to mitigate these undesirable harms?798

There is minimal risk for harm: the data DIPS-Plus was created from was already public.799

Are there tasks for which the dataset should not be used? If so, please provide a description.800

This data is collected solely in the proteomics domain, so systems trained on it may or may not801

generalize to other tasks in the life sciences.802

A.1.6 Distribution803

Will the dataset be distributed to third parties outside of the entity (e.g., company, institution, organiza-804

tion) on behalf of which the dataset was created? If so, please provide a description.805

Yes, the dataset’s source code is publicly available on the internet806

(https://github.com/amorehead/DIPS-Plus).807

How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Does the dataset have a808

digital object identifier (DOI)?809

The dataset is distributed on Zenodo (https://zenodo.org/record/5134732) with 10.5281/zen-810

odo.5134732 as its DOI.811

When will the dataset be distributed?812

The dataset has been distributed on Zenodo as of June 7th, 2021.813

Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under814

applicable terms of use (ToU)? If so, please describe this license and/or ToU, and provide a link or other access815

point to, or otherwise reproduce, any relevant licensing terms or ToU, as well as any fees associated with these816

restrictions.817

The dataset will be distributed under a CC-BY 4.0 license, and the code used to generate it will be818

distributed on GitHub under a GPL-3.0 license. We also request that if others use the dataset they cite819

the corresponding paper:820

DIPS-Plus: The Enhanced Database of Interacting Protein Structures for Interface Prediction. Alex821

Morehead, Chen Chen, Ada Sedova, and Jianlin Cheng. Datasets of Machine Learning Research,822

2021.823

Have any third parties imposed IP-based or other restrictions on the data associated with the instances?824

If so, please describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any825

relevant licensing terms, as well as any fees associated with these restrictions.826

No.827

Do any export controls or other regulatory restrictions apply to the dataset or to individual instances? If828

so, please describe these restrictions, and provide a link or other access point to, or otherwise reproduce, any829

supporting documentation.830

Unknown.831

A.1.7 Maintenance832

Who is supporting/hosting/maintaining the dataset?833

Alex Morehead (https://amorehead.github.io/) is supporting the dataset.834

How can the owner/curator/manager of the dataset be contacted (e.g., email address)?835

Alex Morehead’s email address is acmwhb@missouri.edu.836

Is there an erratum? If so, please provide a link or other access point.837

No. Since DIPS-Plus was released on June 7th, 2021, there have not been any errata discovered.838
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Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)? If so,839

please describe how often, by whom, and how updates will be communicated to users (e.g., mailing list,840

GitHub)?841

This will be posted on the dataset’s GitHub repository page.842

If the dataset relates to people, are there applicable limits on the retention of the data associated with the843

instances (e.g., were individuals in question told that their data would be retained for a fixed period of844

time and then deleted)? If so, please describe these limits and explain how they will be enforced.845

N/A.846

If the dataset relates to people, are there applicable limits on the retention of the data associated with the847

instances (e.g., were individuals in question told that their data would be retained for a fixed period of848

time and then deleted)? If so, please describe these limits and explain how they will be enforced.849

If and when the dataset is updated after its initial release, we will keep older versions of it around for850

consistency.851

If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do852

so? If so, please provide a description. Will these contributions be validated/verified? If so, please describe853

how. If not, why not? Is there a process for communicating/distributing these contributions to other users? If so,854

please provide a description.855

Others may do so and should contact the original authors about incorporating fixes/extensions.856

A.2 Hardware and Software Used857

The Oak Ridge Leadership Facility (OLCF) at the Oak Ridge National Laboratory (ORNL) is an open858

science computing facility that supports HPC research. The OLCF houses the Andes and Summit859

compute clusters. Andes is a (704)-node commodity-type Linux® cluster. Andes provides a conduit860

for large-scale scientific discovery via pre- and post-processing of simulation data. Each of Andes’s861

704 nodes contains two 16-core 3.0 GHz AMD EPYC processors and 256GB of main memory.862

Andes also has nine large memory GPU nodes. These nodes each have 1TB of main memory and two863

NVIDIA K80 GPUs with two 14-core 2.30 GHz Intel Xeon processors with HT Technology. Andes864

is connected to the OLCF’s high-performance GPFS® filesystem, Alpine.865

Summit, launched in 2018, delivers 8 times the computational performance of Titan’s 18,688 nodes,866

using only 4,608 nodes. Like Titan, Summit has a hybrid architecture, and each node contains867

multiple IBM POWER9 CPUs and NVIDIA Volta GPUs all connected together with NVIDIA’s868

high-speed NVLink. Each node has over half a terabyte of coherent memory (high bandwidth memory869

+ DDR4) addressable by all CPUs and GPUs plus 800GB of non-volatile RAM that can be used870

as a burst buffer or as extended memory. To provide a high rate of I/O throughput, the nodes are871

connected in a non-blocking fat-tree using a dual-rail Mellanox EDR InfiniBand interconnect.872

We compiled both DIPS-Plus and DB5-Plus with ORNL’s Andes compute cluster, using a single873

compute node for inherently-sequential operations in our data postprocessing pipeline and 16 compute874

nodes for concurrent operations. In addition, we used Summit for our PIP method benchmarking,875

utilizing a single Nvidia Tesla V100 GPU (16 GB) for each of our experiments (i.e. training each876

model using version 1.3.8 of PyTorch Lightning [54]). We also used version 3.8.5 of Python as877

well as Anaconda to manage our Python dependencies. A more in-depth description of the software878

environment we use for constructing DIPS-Plus can be found in our GitHub repository linked above.879
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