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ABSTRACT

The automated design of high-performance algorithms, particularly for NP-
hard optimization problems, remains a significant challenge. While Large
Language Models (LLMs) demonstrate remarkable code generation capabili-
ties, their reliance on internalized, general-purpose knowledge often limits their
efficacy in crafting sophisticated, domain-specific heuristics. This paper in-
troduces Knowledge-Augmented Evolutionary Algorithm Design (KA-EAD), a
novel framework that synergistically integrates LLMs with evolutionary compu-
tation and dynamic knowledge retrieval from scientific literature. KA-EAD or-
chestrates a co-evolutionary process where LLMs act as intelligent generative and
mutative operators. Crucially, at strategic junctures, the system formulates queries
based on intermediate evolutionary artifacts (e.g., LLM-generated reflections) to
retrieve pertinent ‘knowledge chunks’ from a curated, domain-specific corpus.
This retrieved, verifiable knowledge is then injected into the LLM’s context, guid-
ing it to generate more informed and effective algorithmic solutions. By explicitly
grounding the LLM’s creative process in external scientific insights, KA-EAD
transcends the limitations of relying solely on pre-trained knowledge, enabling a
more targeted and robust exploration of the heuristic design space. It showcases
a step towards Al systems that can actively learn from and build upon human
scientific progress. Code is available at Supplement.

1 INTRODUCTION

The pursuit of efficient algorithms has perennially driven computer science, laying the groundwork
for transformative advancements across diverse disciplines (Cormen et al., [2022). Crafting novel
solutions, especially for NP-hard optimization problems, has traditionally been a human-centric
endeavor reliant on deep expertise and arduous iterative refinement, a paradigm facing inherent
scalability limits when exploring vast algorithmic design spaces (Garey & Johnsonl [1979; Falke-
nauer, |1996; | Anken & Beasleyl 2012} |(Chakhlevitch & Glass, [2009; Taillard, [1993;; Beasley, |1988)).
The advent of Large Language Models (LLMs) offers unprecedented potential for automating and
augmenting this process, given their remarkable ability to translate specifications into code (Chen
et al.l 2021b; L1 et al., 2022b). However, when faced with the de novo design of sophisticated
high-performance heuristics, LLMs—trained on general corpora—often lack the specialized under-
standing, nuanced implementation insights (e.g., for tensor-based metaheuristics), and the crucial
empirically-grounded iterative loop characteristic of expert algorithm design (Brown et al., 2020).

Pioneering efforts have sought to bridge this gap by integrating LLMs with Evolutionary Com-
putation (EC), demonstrating that LLMs can act as powerful variation operators or facilitate co-
evolution of heuristic concepts and code (Romera-Paredes et al., [2024; [Liu et al., 2024} [Ye et al.,
2024). These approaches mark a significant shift towards a collaborative LLM-EC paradigm for
heuristic discovery. However, a fundamental limitation of these methods is their primary reliance
on the LLM’s internalized knowledge. While formidable, this knowledge can be static, incomplete,
or lack the fine-grained, up-to-date details crucial for cutting-edge heuristic design, especially in
specialized or rapidly advancing algorithmic sub-domains. Consequently, guiding LLMs to explore
truly novel and high-quality regions of the vast heuristic design space without explicit grounding in
external, verifiable knowledge remains a significant impediment, potentially hindering the discov-
ery of groundbreaking or highly optimized solutions. This paper addresses the critical challenge of



Under review as a conference paper at ICLR 2026

infusing LLM-driven evolutionary algorithm design with explicit, dynamic, and targeted knowl-
edge harvested from domain-specific scientific literature. We posit that the full potential of LLMs
in algorithm design can be realized by enabling them to ‘consult’ and integrate insights from a cu-
rated knowledge base of relevant research throughout the evolutionary process. Our core aim is to
transcend the LLM’s inherent knowledge boundaries, transforming its creative generation from an
often unguided exploration into a more informed, evidence-backed synthesis.

To this end, we introduce a novel framework that orchestrates a synergistic co-evolutionary pro-
cess deeply integrated with dynamic knowledge retrieval and augmentation. As illustrated in Fig-
ure [I] our approach centers on an iterative evolutionary loop where LLMs generate, evaluate, and
refine candidate algorithmic heuristics. The pivotal innovation is a dynamic knowledge-augmented
generation operator. This operator, activated at critical junctures, uses intermediate evolutionary
artifacts (e.g., LLM-generated reflections or improvement hypotheses) as queries to retrieve the
most pertinent ‘knowledge chunks’ from a pre-curated, problem-relevant scientific literature cor-
pus. These retrieved textual segments are then injected directly into the LLM’s prompt, enriching
its context beyond immediate evolutionary history or internal knowledge. Thus equipped, the LLM
is guided to generate new or substantially modified heuristic code, with meticulous prompt engi-
neering ensuring implementation correctness and computational efficiency, particularly for complex
structures like tensor-based operations. This knowledge-infused process iteratively steers the search
towards increasingly sophisticated and effective algorithmic solutions.

This work makes three primary contributions:

@® A New Paradigm for Heuristic Discovery that Overcomes LLM Knowledge Limitations. We
introduce and validate a novel framework, Knowledge-Augmented Evolutionary Algorithm
Design (KA-EAD), which directly addresses the fundamental bottleneck of LLM-based algo-
rithm design: its reliance on static, pre-trained knowledge. As foundational work, we establish
an automated pipeline for literature screening, knowledge chunking, and vectorized indexing.
This provides a robust foundation for dynamically grounding the LLM in an external, verifiable
corpus of scientific literature, enabling it to generate heuristics that are not only syntactically
correct but also informed by cutting-edge, domain-specific insights, thereby transcending the
inherent boundaries of the model’s internalized knowledge.

® An Innovative Method for Transforming ‘Internal Reflection’ into ‘Active Knowledge Seek-
ing’. We transform the reflection mechanism from a closed-loop tool for fine-tuning existing
solutions into an engine that drives the evolutionary process to actively seek breakthrough
knowledge from external sources. Specifically, our method leverages reflection (psr, pr7) to
identify the current population’s ‘knowledge gaps’ and performance bottlenecks. These deep
insights are then intelligently converted into exploratory queries for external scientific litera-
ture. By establishing this seamless link of ‘internal reflection — active knowledge seeking —
external knowledge injection’, we empower the evolutionary algorithm with an unprecedented
capability: when trapped in a local optimum, it can, like a human researcher, consult literature
with a specific goal to acquire novel ideas, thus achieving knowledge-driven innovation.

® State-of-the-Art Performance and In-depth Analysis through Rigorous Empirical Validation.
We provide extensive empirical evidence for the superiority of KA-EAD. Our results demon-
strate that the framework not only dramatically enhances classical metaheuristics (e.g., achiev-
ing a 30.8% performance improvement for Genetic Algorithm on TSP50) but also significantly
optimizes complex, SOTA Neural Combinatorial Optimization (NCO) solvers, for instance,
slashing the optimality gap of the LEHD solver on TSP1000 from 27.70% to a mere 10.71%.

2 RELATED WORK

» Evolutionary Computation for Algorithm Design. Evolutionary Computation (EC) encom-
passes a family of population-based metaheuristics inspired by biological evolution, which have long
been applied to automated algorithm design and hyper-heuristic discovery |[Eiben & Smith| (2015)).
Genetic Programming (GP), a prominent EC branch, directly evolves programs or executable struc-
tures, making it a natural fit for generating heuristics or even complete algorithms (Koza,|1992; |Poli
et al., 2008). GP has been utilized to design dispatching rules for scheduling (Koza, [1992), routing
heuristics (Mei et al.,[2016), and components for metaheuristics. Traditional hyper-heuristics often
search a space of predefined heuristic components or select from a fixed set of low-level heuristics
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(Burke et al.,|2019). While successful in various domains, these approaches can be limited by the
human effort required to define the initial set of building blocks or search operators, potentially con-
straining the novelty of the discovered solutions. Our work extends this lineage by leveraging LLMs
to define and manipulate the individuals (algorithmic heuristics) within an evolutionary framework,
thereby vastly expanding the search space beyond manually predefined components.

» Large Language Models (LLMs) for Algorithm Design. The advent of LLMs with strong
code generation capabilities has opened new avenues for automating aspects of algorithm design
(Chen et al.l 2021a; |Li et al., |2022a}; |Achiam et al., [2023). LLMs can translate natural language
descriptions into code, implement known algorithms from specifications, and even assist in debug-
ging or suggesting algorithmic improvements (Nye et al.| 2021} |Austin et al.| 2021)). Recent efforts
have begun to explore LLMs not just as code implementers but as active participants in the design
process itself. Some works focus on using LLMs for program synthesis under constraints or for
few-shot generation of algorithmic solutions (Scholak et al., 2021} Romera-Paredes et al.| [2024).
More directly related to our work are approaches that integrate LLMs with iterative search or opti-
mization frameworks. FunSearch (Romera-Paredes et al., |2024) demonstrated that an LLM, acting
as a sophisticated mutation operator within an evolutionary search, can discover novel and effec-
tive functions in mathematical domains by evolving programs. Evolution of Heuristics (EoH) (Liu
et al.| [2024) and ReEvo |Ye et al|(2024) further pushed this boundary by explicitly incorporating
LLM-driven ‘reflection’ or co-evolving natural language ‘thoughts’ with code to guide the heuristic
discovery process. These methods highlight the potential of LLMs to move beyond mere imple-
mentation towards creative problem-solving in algorithmic contexts. However, these approaches
primarily rely on the LLM’s internalized knowledge. Our work seeks to overcome this limitation by
dynamically grounding the LLM’s generative and reflective processes in external, domain-specific
scientific literature.

3 METHOD

Our Knowledge-Augmented Evolutionary Algorithm Design (KA-EAD) framework introduces a
novel paradigm for automated algorithm discovery. Large Language Models (LLMs) act as in-
telligent generative and mutative operators within an evolutionary computation loop, dynamically
guided by insights retrieved from a curated, domain-specific knowledge base. An overview of the
KA-EAD framework, illustrating its two main components—Knowledge Base Construction and
Evolutionary Framework—is presented in Figure 1]

3.1 PROBLEM FORMULATION

We address the challenge of designing high-performance algorithmic components, particularly
heuristics for NP-hard optimization problems. Let P represent a specific computational problem,
such as designing the pick_move heuristic within an Ant Colony Optimization (ACO) framework
for the Traveling Salesman Problem (TSP). The solution space S comprises all syntactically valid
and semantically plausible code implementations for this target component. Our objective is to dis-
cover an optimal implementation s* € S that minimizes an objective function f : S — R. This
function f(s) quantifies the quality of a solution s (represented by its code c), typically measured
by its performance (e.g., average tour length achieved by the ACO system using heuristic s) on a set
of benchmark problem instances, evaluated within an execution environment £.

§* = argmin f(s) (1)

sES

The inherent complexity and vastness of S necessitate intelligent search strategies beyond random
exploration or purely human-driven design.

3.2 KNOWLEDGE BASE CONSTRUCTION AND AUGMENTATION

A cornerstone of KA-EAD, depicted on the left of Figure[T] is the construction and utilization of a
rich, domain-specific knowledge base K. This repository serves as an external, verifiable source of
information, empowering the LLM with targeted insights throughout the evolutionary process.

» Literature Corpus Curation and Semantic Filtering (Cj;). We begin by assembling a corpus
of relevant scientific literature Cly = {dy,ds,...,dn}. An initial set of candidate documents is
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Figure 1: Overview of the Knowledge-Augmented Evolutionary Algorithm Design (KA-EAD)
framework. Left: Knowledge Base Construction involves collecting and filtering literature, seg-
menting it into chunks, and embedding these chunks for retrieval. Summaries (D) may also be gen-
erated. Right: Co-Evolutionary Framework starts with LLM-driven Population Initialization for
problem P, using summaries D. The loop includes Evaluation & Selection, standard Crossover &
Mutation (Scross, Smutate)> and Reflection Mechanisms (T'sport, Tong) analyzing solutions s;, s;. Reflec-
tions and a focused suggestion ((Q) guide Knowledge-Augmented Generation, where the LLM uses
retrieved knowledge to create new solutions Spey.

retrieved from academic databases using keywords pertinent to the problem P (e.g., ‘Traveling
Salesman Problem’, ‘Ant Colony Optimization’, ‘heuristic design’). To refine this set, we employ a
sentence embedding model E, (e.g., Sentence Transformers’ a11-MiniLM-L6-v2) to generate
vector representations for the abstract of each candidate document d; and for a language description
of the problem P. Documents whose abstract embeddings exhibit a cosine similarity score above a
predefined threshold 0orpyus With the problem description embedding are selected for Cy:

Ciiv = {d; | sim(Eenc(abstract(d;)), Eent(desc(P))) > Ocorpus }- )
This ensures semantic alignment with the target algorithmic design task.

» Knowledge Chunking, Embedding, and Indexing (/Cchunk, Zic). The full textual content T; of
each document d; € Cj; is extracted. To facilitate fine-grained retrieval and manage LLM context
windows, each T; is segmented into smaller, semantically coherent ‘knowledge chunks’ k; ; using
a tokenizer T'ok (e.g., from al1-MiniLM-L6-v2), constraining each chunk’s token length to ap-
proximately Lchynk tokens (e.g., 512). The union of all such chunks forms the core retrievable knowl-
edge base Cehunk = |J; y {ki ;}. Each knowledge chunk k € Kcpunk is then transformed into a dense

vector representation v, € R4 using an embedding model E¢pynx (.., a11-MiniLM-L6-v2):
Uk = Fehunk (k). The resulting set of embedding vectors {v, } is organized into a searchable vector
index Zx using FAISS, enabling rapid k-nearest neighbor searches. This indexed knowledge forms
the operational retrieval system.

3.3 KNOWLEDGE-AUGMENTED EVOLUTIONARY ALGORITHM

The Knowledge-Augmented Evolutionary Algorithm (KA-EA) framework, detailed in the right
panel of Figure [I] iteratively refines a population of candidate algorithmic solutions Pop; =
{51, 82,...,8m} at evolutionary iteration ¢, where M is the population size. Each solution sy, is
primarily defined by its source code cy.

» Initial Population Generation (Popg). The evolutionary search commences with the generation
of an initial population Popg by a generator LLM, LL Mg, (e.g., gpt-3.5-turbo). To provide ini-
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Figure 2: Detailed overview of the Retrieval-Augmented Generation (RAG) operator. The process
begins with the large language model generating a random suggestion, followed by querying the
knowledge base to retrieve the two most similar content chunks. These chunks serve as additional
context, enhancing the model’s ability to produce optimized algorithms.

tial grounding, a comprehensive summary of domain-specific knowledge, Summ(Kcpunk ), derived
from Kcnunk (and potentially illustrated as D in Figure [I)), is incorporated into the initial prompt.
Let mgeq be a seed prompt outlining problem P and the desired solution structure (e.g., Python
function signature), and pr7 o be the initial (typically empty) long-term reflection string. The
full initial prompt is prompt;,;, = SystemPrompt,,, © UserPrompt(mseed; pL1,0, Summ(Kenunk) )
where @ denotes concatenation. LLM,., then samples M distinct code snippets {ci,...,car}
based on prompt. .., often with a slightly elevated temperature 7, to encourage diversity: ci ~
L L Mje, (prompt;;, , temperature = Tinit)- Each ¢y, is instantiated as s, € Popy, and its fitness f(sy)
is determined by execution in environment £.

init>

» Evolutionary Operators and Loop. For each subsequent iteration ¢ > 0, KA-EA employs
a sequence of core operators as shown in Figure Firstly, Selection identifies parent solutions
Pop,_; C Pop;—1 based on fitness f(s), typically via tournament selection. Secondly, the
Reflection mechanism, utilizing an LLM denoted L L Mege, analyzes pairs of high-performing
(Sbetter) and low-performing (Syorse) solutions from Pop,_;. This process yields natural lan-
guage short-term reflections pgr; concerning effective versus ineffective algorithmic constructs:
pstTt = LLMienect (PrOmPteqec (Chetter, Cworse, f (Stetter)s f(Sworse))). The long-term reflection prr,¢
is then updated by accumulating new insights from pgr ¢ with the previous pz7 (1. Thirdly, Stan-
dard Variation Operators, such as crossover and mutation, are applied. These conventional EC
operators, which might involve LLM-prompted code combination or modification, act on solutions
in Pop}_, and can be guided by pgr,; to produce a set of offspring Popyar,;.

The fourth and pivotal operator is the Dynamic Knowledge-Augmented Generation Operator
(RAG-Operator), which dynamically infuses external knowledge through a three-stage process. A
detailed schematic of this RAG-Operator, illustrating the flow from an initial suggestion to knowl-
edge retrieval and subsequent augmented code generation, is provided in Figure[2] The stages are:

O Query Formulation (qrac): An LLM, LLMgu.ry, synthesizes a focused query grag for the
knowledge base. This query is conditioned on the current reflections psr:, prr,, and a
specific problem_focus (e.g., ‘how to improve exploration in ACO for TSP’), as defined by
qraG = LLMauery (Promptyyery form (PSTt> PLT,t, Problem _focus)). This query or suggestion is
analogous to the ‘Suggestion’ input shown in Figure 2]

® Knowledge Retrieval (K etrievea): The formulated query grag is embedded into a vector v, =
Echunk(grac). This vector is then used to perform a k-nearest neighbor search within the
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indexed knowledge base Zx, yielding a set of relevant knowledge chunks Kiegievea = {/sj |
kj = NN;j(Zx,vq),j = 1,. .., ki }. These are the ‘content chunks’ depicted in Figure 2]

® Augmented Generation: A highly contextualized prompt, prompty, = SystemPrompt,, &
UserPrompt(task_spec, Kretieved, improvement_suggestion), is constructed. This prompt inte-
grates system instructions, the specific task description (e.g., Python function signature for
pick_move including type and tensor constraints), the retrieved knowledge KCregieved, and an
improvement suggestion (which could be grag itself). LLM,., then generates new candidate
solutions Poprag,¢, similar to the ‘Code’ output in Figure E} An iterative refinement loop is
employed if the initial code fails syntactic or semantic checks, by re-prompting the LLM with
error feedback to ensure code correctness.

» Evaluation, Population Update, and Termination. All newly generated solutions (s €
Popyart U Poprag,¢) are compiled and evaluated in £ to obtain fitness f(s); the function evalu-
ation counter F'F is incremented. The next population Pop; is formed by selecting the M best
individuals from Pop;_1 U Popyar,: U Poprag,t, often using elitism. The process continues until a
termination criterion (F'E > F E,,, fitness convergence, or time limit) is met. The best solution s*
found is returned.

This comprehensive framework allows KA-EAD to leverage the broad generative capabilities of
LLMs while grounding their outputs in specific, relevant, and verifiable knowledge from scientific
literature, thereby fostering the discovery of novel and effective algorithmic solutions.

4 EXPERIMENTS

» Datasets. For the more complex NCO solvers, we used larger-scale benchmarks. Our evalua-
tion spans both classical and modern optimization paradigms. For classical algorithms—Genetic
Algorithm (GA), Ant Colony Optimization (ACO), and Kernighan-Lin Heuristic with Local Search
(KGLS)—we generated TSP instances with node coordinates uniformly distributed in [0, 1)%. The
training set comprised 5 instances of size 50, providing a focused environment for heuristic evolu-
tion. The test set included 64 instances for each of three sizes (20, 50, and 100) to assess generaliza-
tion. For the more complex NCO solvers, we used larger-scale benchmarks. For Path-Optimization
with Multi-Objective (POMO), we used instances of sizes 200, 500, and 1000. For the Learning-
based Euclidean Heuristic Decomposition (LEHD) algorithm, we utilized the publicly available TSP
benchmark dataset from the CIAM-Group on instances of the same large sizes. This dual-dataset
strategy ensures our evaluation is robust across different problem scales and types.

» Implementation Details. For all LLM-driven operations within KA-EAD and the baselines,
we consistently used the gpt-4o-mini model to ensure a fair comparison of the frameworks’
methodologies. The evolutionary process, unless otherwise noted, used an initial population of 30,
an evolving population of 10, and was run for a maximum of 100 function evaluations (max_fe).
Specific key configurations include: For ACO, the population size was set to 30 for both initializa-
tion and evolution. For NCO solvers, the heuristic evolution was performed on size 500 instances,
with the neural models trained for 50 epochs. For complete reproducibility, a comprehensive de-
scription of all hyperparameters, specific algorithm configurations, and the LLM prompt structures
(see exemplars in Appendix 4) are provided in Appendix 1.

» Baselines. Our evaluation framework is built upon a comprehensive set of baselines to rigorously
assess the contributions of KA-EAD.

@ C(lassical Solvers: Standard implementations of GA, ACO, and KGLS serve as our foundational
baselines, representing widely-accepted, human-designed algorithmic structures.

® NCO Solvers: We include POMO and LEHD as representatives of modern, learning-based
approaches to combinatorial optimization, providing a testbed for KA-EAD’s ability to enhance
complex neural components.

® LLM-based Heuristic Generation: To isolate the benefit of external knowledge retrieval, we
compare directly against EOH (Liu et al., [2024) and ReEvo (Ye et al., [2024). These meth-
ods represent the SOTA in using LLMs for heuristic discovery, relying solely on the model’s
internalized knowledge and reflection mechanisms.
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Table 1: Performance of different heuristic methods on various algorithms for optimizing the solu-
tion to TSP. All reported objective values and time ratios are the average of three independent runs.

Type TSP20 TSP50 TSP100
Obj | Gap(%)1T Timeratiol Obj] Gap(%)1T Timeratiol Obj) Gap(%)1T Time ratio |

GA 6.1 0.0 1.3 18.2 0.0 1.625 40.8 0.0 1.1
GA + EOH 6.0 1.6 1.0 17.8 2.2 1.0 40.5 0.7 1.0
GA + ReEvo 6.0 1.6 1.0 17.9 1.6 1.0 40.6 0.5 1.0
GA + KA-EAD 4.8 21.3 1.9 12.6 30.8 1.5 30.0 26.5 1.4
ACO 39 0.0 0.7 5.9 0.0 0.8 8.7 0.0 0.7
ACO + EOH 3.9 0.0 1.4 5.9 0.0 1.2 8.5 2.3 1.4
ACO + ReEvo 39 0.0 1.0 5.9 0.0 1.0 8.5 2.3 1.0
ACO + KA-EAD 34 12.8 1.1 54 8.5 1.1 7.9 9.2 1.3
KGLS 44 0.0 0.7 6.7 0.0 0.7 9.3 0.0 1.3
KGLS + EOH 44 0.0 0.9 6.8 -1.5 0.9 9.2 0.1 1.4
KGLS + ReEvo 44 0.0 1.0 6.8 -1.5 1.0 9.3 0.0 1.0
KGLS + KA-EAD 3.9 114 2.5 5.7 14.9 1.5 7.8 16.1 0.6

Table 2: Evaluation results for NCO solvers with and without different attention-reshaping heuris-
tics. All reported objective values and optimality gaps are the average of three independent runs.

M n =200 n =500 n = 1000
ethod
Obj | Opt. gap (%)| Obj | Opt. gap (%) Obj | Opt. gap (%)

POMO 15.35 43.59 25.58 54.84 38.79 67.63
POMO + EOH 15.68 46.67 25.36 53.51 38.79 67.63
POMO + ReEvo 15.39 43.96 25.43 53.93 38.79 67.63
POMO + KA-EAD 14.68 37.32 23.36 41.40 34.86 50.64
LEHD 14.79 38.35 20.78 25.78 29.55 27.70
LEHD + DAR 14.88 39.19 19.79 19.79 27.85 20.35
LEHD + ReEvo 14.77 38.16 19.78 19.73 27.62 19.36
LEHD + KA-EAD 13.33 24.69 18.52 12.10 25.62 10.71

4.1 RESULTS AND ANALYSIS

We present the performance results of KA-EAD on classical and NCO solvers for the Traveling
Salesman Problem (TSP), followed by ablation studies and qualitative analysis to dissect the frame-
work’s components and behavior. To demonstrate the general applicability, we also report results on
other NP-hard problems.

» Performance on Classical TSP Solvers. Table [I| summarizes the performance of GA, ACO,
and KGLS when augmented with different heuristic generation methods. The results unequivocally
demonstrate the superiority of our knowledge-augmented approach. Across all three classical al-
gorithms and all problem sizes, KA-EAD consistently achieves the lowest objective values (Obj
1) and, consequently, the largest improvement gaps (Gap (%) 1) over the vanilla baselines. For
instance, when applied to GA on TSP50, KA-EAD yields an objective of 12.6 and an improvement
gap of 30.8%, substantially outperforming EOH (17.8 Obj, 2.2% Gap) and ReEvo (17.9 Obj, 1.6%
Gap). Similar significant gains are observed for ACO and KGLS. This highlights that grounding the
LLM’s search in scientific literature unlocks performance levels unattainable by methods relying
only on internal knowledge.

» Enhancement of Neural Combinatorial Optimization Solvers. Table [2| details the results of
applying KA-EAD to improve components within NCO solvers on large-scale TSP instances. KA-
EAD again demonstrates remarkable efficacy. For both POMO and LEHD, integrating KA-EAD
leads to the lowest objective values and the smallest optimality gaps (Opt. gap (%) |) across
all tested problem sizes. A standout result is with LEHD on TSP1000 instances, where KA-EAD
reduces the optimality gap from 27.70% (vanilla LEHD) to a mere 10.71%. This improvement
significantly surpasses other methods, including the specialized DAR baseline. These findings un-
derscore KA-EAD’s capability to effectively guide the design of sophisticated components within
complex learning-based systems.

» Ablation and Component Analysis. To understand the contributions of KA-EAD’s core com-
ponents, we conducted extensive ablation studies. As shown in the left panels of Figure |3} the
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Figure 3: Ablation and Efficiency Analysis of KA-EAD. Left: Ablation study on GA, ACO, and
LEHD. The full method (‘Ours’) outperforms variants without Reflection (‘w.o. R’) or Scientific
Knowledge (‘w.o. S’), demonstrating the synergy of its components. Right: Average response time
of the RAG operator. Higher call probabilities lead to faster generation, suggesting that knowledge

infusion improves search efficiency.

full KA-EAD framework consistently outperforms ablated versions that lack either the reflection
mechanism (‘Ours w.o. R’) or the scientific knowledge retrieval (‘Ours w.o. S’). This performance
drop underscores the critical and synergistic roles of both internal reflection and external knowledge
infusion. The right panel of Figure [3] also reveals an interesting efficiency aspect: more frequent
knowledge retrieval can surprisingly reduce the average code generation time. A more detailed
breakdown of these ablation results can be found in Appendix 2.

» Generalization to Other NP-Hard
Problems. To demonstrate the broader
applicability and robustness of KA-
EAD, we evaluated its performance on a
diverse suite of 15 well-known NP-hard
problems, comparing it against LLM-
based baselines, EOH and ReEvo. The

Table 3: Detailed performance comparison on a broad
set of 15 NP-hard problems. Values represent the per-
formance ratio to known optimal solutions. ‘Comp.’
denotes composite performance across all datasets, and
“Test’ refers to performance on the test set. Full problem
names and citations are provided below.

detailed results are presented in Table E} Task EOH (%) ReEvo (%) Ours (%)

The data unequivocally shows the supe- Comp. Test Comp. Test EEETEENNES
riority of our knowledge-augmented ap- BPlIb)a 88.37 89.21 8940 89.04 96.03 96.36
pach Ki£AD o combenly . B0 48 216 53 27 2
f.nd SUbStamlallyloutﬁirf(ﬁmfrll’;’th bése' OpSS! 7540 7248 7827 7848 90.77 90.17
mnes across nearly all tasks. Lhe perior- — ygwypoce 9821 9772 98.10 97.69 99.84 98.82
mance gap is particularly pronounced in - yGcu' 8077 8250 93.02 9388 9139 94.19
complex domains requiring specialized AL 80.76 80.57 81.38 80.23 82.89 82.22
heuristics. For instance, in Flow Shop ~ CWLoc" 7352 73.59 66.97 67.09 74.07 74.17
Scheduling (FSS), our method achieves ~ CDDS'  77.99 77.69 8139 81.01 8235 83.43
an 84.83% performance ratio on the test ~ €L~ 7193 71.54 7288 7248 73.32 7394
set, whereas ReEvo and EOH only reach CSC]h 15.12  11.17 40.60 44.57 52.07 57.87
53.92% and 30.65%. r tivelv. Sim FSS 32.83  30.65 56.79 5392 8492 84.83
22.7270 a 9270, TESPECIVEly. SIM-— Gapn 6709 6575 7446 72.83 8649 87.38
ilarly, for the Generalized Assignment  jss 66.14 6489 73.14 7186 7439 73.78
Problem (GAP), KA-EAD surpasses the SP° 30.50 2333 4745 40.00 76.27 73.33

next-best baseline by nearly 15 percent-
age points. This consistent outperfor-
mance across a wide variety of prob-
lem structures underscores the critical
advantage of dynamically grounding the
heuristic search in external scientific lit-
erature, rather than relying solely on a
model’s static, internalized knowledge.

Task Definitions: a:

BP1D (Falkenauer, 1996); b: CStr
(Anken & Beasleyl [2012); ¢: HRSS (Chakhlevitch & Glass|
2009); d: OpSS (Taillard, |1993); e: UWLoc (Beasley, [1988));
f: UGCut (Beasley,|1985); g: AL (Beasley et al.,|2000); h:
CWLoc (Beasley,|1988)); i: CDDS (Biskup & Feldmann,
2001); j: CL (Bischoff & Ratcliff} |1995)); k: CSch (Beasley &
Cao,|1996); I: FSS (Taillard,|1993); m: GAP (Osman,|1995);
n: JSS (Taillard, [1993); o: SP (Chu & Beasleyl [1998).

» Qualitative Analysis and Evolutionary Trajectory. The quantitative superiority of KA-EAD is
rooted in its ability to generate higher-quality heuristics and sustain a more effective search. Quali-
tatively, this is evident in the final generated code; for instance, the final pick_move function gen-
erated by KA-EAD for ACO (presented in Figure [8|in the Appendix) incorporates more nuanced
logic compared to baselines, likely reflecting a synthesis of insights from the retrieved literature.
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This is further substantiated by the evolutionary trajectory analysis in Figure dp. The plot reveals
that KA-EAD exhibits a consistent and sustained improvement trajectory, achieving better ob-
Jective values over generations. In stark contrast, the ReEvo baseline stagnates quickly after the
initial iterations, its performance plateauing at a suboptimal level. This divergence is a typi-
cal manifestation of premature convergence, which for ReEvo results directly from its reliance on
static, internalized knowledge. Conversely, the dynamic infusion of external knowledge via our
RAG-Operator (detailed in Figure [2| and Appendix 3) empowers KA-EAD to navigate the search
space more effectively, successfully avoiding this pitfall to discover superior solutions.

» Analysis of the RAG Operator’s Behavior. We conducted an in-depth analysis of the RAG op-
erator’s behavior to quantify its contribution to the evolutionary process. Figuredp visually demon-
strates the direct impact of the RAG operator’s activation probability on performance. A clear trend
is observable: as the probability of invoking the RAG operator (p-value) increases, the algorithm
not only achieves lower objective values more rapidly, but the distribution of solution quality also
becomes more concentrated. For instance, with p=0. 75, the algorithm not only reaches the lowest
median objective value but also exhibits significantly less variance in later iterations compared to
scenarios with lower probabilities or with p=0 (no knowledge infusion). This provides strong evi-
dence that frequently grounding the search process in external scientific knowledge is a key mecha-
nism for enhancing both solution quality and search efficiency.

6.8 a b 7
o p=0 o p=0.25 6o p=05 o p=075 Ours Reevo
° 6
6.6 < >
N 5

Obj

S
I
$
w =
Iteration

. : 2

6.01 o S @ é @ % 1

o ° O

1 2 3 4 5 6 7 7.5 7.0 6.5 6.0 55
Iteration Obj

Figure 4: Analysis of the RAG operator’s impact and evolutionary trajectory. This figure illustrates
the critical role of the Knowledge-Augmented Generation (RAG) operator in the optimization pro-
cess. Left (a) shows the distribution of objective values (Obj) across evolutionary iterations under
different activation probabilities (p) for the RAG operator. Higher activation probabilities (e.g.,
p=0.75) consistently lead to lower (better) and more stable objective values. This indicates that
frequently grounding the search in external scientific knowledge via the RAG operator significantly
helps the evolutionary process escape local optima and discover higher-quality solutions. Right (b)
compares the evolutionary trajectories of our proposed KA-EAD method (‘Ours’, red circles ) and

the baseline ReEvo (‘Reevo’, blue squares ) on the ACO algorithm.

5 CONCLUSION

This paper introduced KA-EAD, a framework that enables LLMs to transcend their static knowledge
boundaries by actively integrating insights from scientific literature. It transforms an LLM’s internal
reflections into targeted queries for external knowledge, creating a powerful search dynamic that
emulates the cycle of scientific inquiry. By demonstrating that this synergy consistently discovers
superior algorithmic solutions, KA-EAD establishes a new paradigm for building AI systems that
can learn from, and build upon, the cumulative progress of human scientific knowledge.
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Appendix
Fusing LL.Ms with Scientific Literature for Heuristic Discovery

This appendix provides supplementary material to accompany the main paper. It is organized as
follows:

* Section A: A comprehensive description of the experimental setup, including datasets, algorithm
configurations, and evaluation metrics.

* Section B: Additional experimental results, including detailed ablation studies.

* Section C: Pseudocode detailing the inner workings of the RAG operator.

* Section D: Exemplar prompt structures used to guide the Large Language Models.

* Section E: Use of LLMs.

A EXPERIMENTAL DETAILS

This section provides a comprehensive overview of the experimental setup, detailing the datasets,
baseline algorithms, evaluation metrics, and specific configurations employed in our study, corre-
sponding to the main paper’s experiments.

A.1 DATASETS AND PROBLEM SPECIFICATION

For the evaluation of classical algorithms, namely Genetic Algorithm (GA), Ant Colony Optimiza-
tion (ACO), and Kernighan-Lin Heuristic with Local Search (KGLS), we generated TSP instances
where node coordinates were uniformly distributed in the interval [0, 1) using the NumPy library.
The training set for these algorithms consisted of 5 instances, each with 50 nodes. For testing, we
utilized 64 instances for each of the problem sizes: 20, 50, and 100 nodes.

For Neural Combinatorial Optimization (NCO) solvers, specific datasets were used. Path-
Optimization with Multi-Objective (POMO) was evaluated on problem sizes of 200, 500, and 1000
nodes. Its training dataset contained 10 instances per problem size, while both validation and test
sets comprised 64 instances per size. For the Learning-based Euclidean Heuristic Decomposition
(LEHD) algorithm, we employed the publicly available TSP benchmark dataset from the CIAM-
Group code library, focusing on test instances of 200, 500, and 1000 nodes, where node coordinates
are also uniformly distributed in [0, 1)2.

A.2 ALGORITHM CONFIGURATIONS AND SETTINGS

A consistent Large Language Model (LLM), gpt-40-mini, was utilized for all LLM operations
within our KA-EAD framework—encompassing initial population generation, reflection, query for-
mulation, and code generation—as well as for implementing the LLM-based baselines EOH (Liu
et al [2024) and ReEvo (Ye et al., [2024). Unless otherwise specified, evolutionary experiments
shared general parameters: an initial population of 30 individuals, an evolving population of 10
individuals, and a maximum of 100 function evaluations (max_fe).

A.2.1 CLASSICAL SOLVERS AND LLM-BASED AUGMENTATION

We used classic solver baselines - GA, ACO, and KGLS - as the base comparison, and enhanced
them by integrating heuristics designed or improved by KA-EAD, EOH, and ReEvo.

* For GA, the LLM-generated components are crossover heuristics. If not generated by
LLM, basic parameters such as ‘elite_rate=0.2’, ‘n_iter=80’, and ‘n_pop=80’ are applied.
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» For ACO, the main target of LLM-based enhancement is the pick_move heuristic. The
initial and evolution population sizes are both set to 30. Other standard ACO parameters
include ‘n_ants=30’, ‘evaporation_rate=0.1’, and alpha/beta factors both set to 1, used when
not implicitly handled by the LLM-generated heuristic.

» For KGLS, the LLM targets the core heuristic algorithm. Basic KGLS parameters include
‘n_starts=10’, ‘n_perturbations=30’, and an iteration limit of 1000.

A.2.2 NCO SOLVERS AND LLM-BASED COMPONENT ENHANCEMENT

For modern learning-based NCO solvers (POMO and LEHD), the LLM-based approach aims to
incorporate the training process into the evaluation operator of the outer evolutionary algorithm.

* For POMO, the evolutionary process for component enhancement uses 8 evolution pop-
ulations, and its neural model is trained for 50 epochs on a problem of size 500. Neural
components were initialized with pre-trained weights from the official codebase.

* For LEHD, the neural network is similarly trained for 50 epochs, followed by an evolution-
ary search with heuristic improvements on a TSP instance with 500 nodes. As mentioned
in the main paper (Table [2), we also include the Differentiable Attention Reorganization
(DAR) method as a specialized baseline.

A.3 TARGETED ALGORITHMIC COMPONENTS

The specific algorithmic components targeted by KA-EAD and other LLM-based methods for de-
sign or enhancement varied by algorithm:

¢ For ACO: The pick_move heuristic function.
¢ For GA: The crossover function.
e For KGLS: The core heuristic function.

* For POMO and LEHD: The training process is integrated into the evaluation operator of
the outer algorithm.

A.4 EVALUATION METRICS

Algorithm performance was assessed using several metrics, as defined in the main paper. The pri-
mary metric was the Objective value (]). We also computed the Improvement Gap (%) 1 against
vanilla baselines and the Optimality Gap (%) | for NCO solvers relative to known optimal or best-
known solutions. The Time ratio | reported in Table ] indicates the computation time relative to
the ReEvo baseline.

A.5 EXECUTION ENVIRONMENT

All experiments were conducted on a machine with an AMD Ryzen 9 7940HX CPU, 32GB RAM,
and an NVIDIA RTX 4060 Laptop GPU (8GB VRAM). The software stack included Windows 11,
Python 3.12, and PyTorch 2.7.0. LLM access was managed via the agicto platform.

B ADDITIONAL RESULTS AND ABLATION STUDIES

B.1 ABLATION ANALYSIS OF KA-EAD COMPONENTS

To rigorously evaluate the contribution of each key component in our framework, we conducted
comprehensive ablation studies. Figure [5]shows a detailed ablation analysis on NCO solvers, corre-
sponding to the summarized discussion in the main paper. The results consistently demonstrate that
the full KA-EAD framework (‘Ours’) achieves the lowest objective values. The performance degra-
dation in the ablated versions—without the Reflection mechanism (‘Ours w.o. R’) and without the
scientific knowledge retrieval (‘Ours w.0. S’)—underscores the critical and synergistic contributions
of these components.
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Figure 5: Ablation Analysis of KA-EAD on NCO Solvers (Detailed View). This figure presents a
comprehensive ablation study comparing the performance of ReEvo (baseline) with three variants of
our KA-EAD framework on the POMO and LEHD NCO solvers across TSP instances of size 200,
500, and 1000. The variants include our full method (‘Ours’), our method without the Reflection
mechanism (‘Ours w.o. R’), and our method without the scientific knowledge retrieval operator
(‘Ours w.o. S’). The results consistently demonstrate that the full KA-EAD framework achieves the
lowest objective values (lower is better) in all settings. The performance degradation observed in
the ablated versions underscores the critical contributions of both reflection and dynamic knowledge
retrieval.

C ALGORITHMIC DETAIL OF THE RAG OPERATOR

This section provides a focused conceptual description of the Knowledge-Augmented Generation
(RAG) Operator, which is central to the KA-EAD framework. A detailed visual representation is
provided in the main paper in Figure 2] The operator’s procedure is as follows:

1. Input: The operator takes as input the current short-term (pg7) and long-term (pr7) reflections
from the evolutionary process.

2. Query Formulation: An LLM is prompted to synthesize these reflections into a concise,
forward-looking ‘suggestion’ or query. This query is designed to seek novel information that
addresses current performance bottlenecks or explores new strategic directions.

3. Knowledge Retrieval: The generated query is embedded into a vector representation. This
vector is used to perform a semantic search (e.g., k-nearest neighbors) against a pre-indexed
knowledge base of scientific literature chunks. The top-k most relevant chunks are retrieved.

4. Augmented Generation: A new prompt is constructed for the generative LLM. This prompt
includes the original task, the retrieved knowledge chunks as context, and the focused suggestion
from step 2.

5. Output: The LLM generates a new heuristic solution (code), which is now informed by both the
internal evolutionary history (reflections) and external scientific knowledge. This knowledge-
infused generation aims to produce more sophisticated and effective solutions.

D PROMPT STRUCTURES FOR LLLM OPERATORS

This section illustrates the prompt structures employed to guide LLMs within the KA-EAD frame-
work. Effective prompting is key to leveraging the LLM’s capabilities for structured code genera-
tion.
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( l' Common Jl \
(et )
{user_generator} {user_generator}
[Worse code] [Prior reflection]
{func_signature0} {reflection}
{worse_code}
[Code]
[Better code] {func_signaturel}
{func_signaturel} {elitist_code}

{better_code}
[Improved code]

[Reflection] Please write a mutated function “{func_name}’, according

{reflection} to the reflection. Output code only and enclose your code
with Python code block: **python ... ™.

[Improved code]

Please write an improved function ‘{func_name}’, according

to the reflection.Output code only and enclose your code

with Python code block: *“python ... ™.

N J

Figure 6: Exemplar prompt structures for the LLM-based Crossover and Mutation operators. The
prompts typically include placeholders for user generator instructions, existing code (e.g., worse
or better code for crossover, elitist code for mutation), and reflections, followed by a directive to
generate improved or mutated code.

D.1 PROMPTS FOR CROSSOVER AND MUTATION

For standard evolutionary operators like crossover and mutation, we use specific prompt templates
that provide context to the LLM. Figure[6] depicts the general structure of these prompts. They typ-
ically include placeholders for parent solutions, reflective insights, and a clear directive to generate
a new, improved code segment. For these common operators, we adopted prompt strategies similar
to those established in prior work, such as ReEvo.

D.2 PROMPT FOR ALGORITHM-SPECIFIC COMPONENT: ACO p1ckx_MOVE FUNCTION

When targeting a specific, complex algorithmic component like the pick_move function in ACO, a
highly detailed and domain-specific prompt is crucial. Figure[7]showcases the comprehensive func-
tion description provided to the LLM. This prompt specifies the function’s purpose, optimization
goals, precise definitions of input parameters (including type and tensor shapes), and the expected
output format. This level of detail enables the LLM to generate code that is not only syntacti-
cally correct but also contextually relevant and functionally effective. The placeholders within these
prompts are dynamically populated based on the current state of the evolutionary process.

E USE OoF LLMS.

LLM is the key part of the method in this paper. In addition, we used LLM for writing polish to
improve readability.
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 fr oo )
{_ func_desc }

Inant colony optimization algorithm (ACO), the pick_move function is used to determine the next movement of
ants. This function calculates the probability of movement and samples the next city based on pheromone
concentration and heuristic information, combined with the mask of the visited city.

The function should optimize the following points:

1. Balance the weights of pheromone and heuristic information (alpha and beta parameters)

2. Always include * from torch.distributions import Categorical® when using the Categorical distribution for
sampling. This is critical - failure to include this import will cause runtime errors.

3. Implement individualized decision strategies for each ant to improve solution diversity

4. Use tensor-based operations to efficiently apply different sampling strategies per ant

5. Additional heuristic rules may be introduced to guide ants to make better decisions

The function takes the following parameters:

- prev: A tensor of shape (n_ants,) representing the current position of all ants

- mask: Boolean tensor of shape (n_ants, p_size), marked with O for visited cities

- require_prob: Boolean value indicating whether logarithmic probability needs to be returned
- pheromone: The pheromone matrix with shape (p_size, p_size)

- heuristic: The heuristic information matrix with shape (p_size, p_size)

- alpha: Parameter controlling the influence of pheromone trails

- beta: Parameter controlling the influence of heuristic information

Function returns:

- actions: Tensor with shape (n_ants,) representing the next action chosen by ants
- log_probs: If require_prob is True, return a tensor with shape (n_ants,) representing the logarithmic
probability of the actions

Figure 7: Detailed function description prompt provided to the LLM for the ACO pick_move
function. This prompt specifies the function’s role, optimization goals, precise parameter definitions
(name, type, shape, description), and the structure of its return values, enabling the LLM to generate
code that is contextually relevant and functionally correct.

KA-EAD aYa ‘l Reevo ll ~
def (prev, mask, require_prob, pheromone, heuristic, alpha, beta): def (distance_matrix: np.ndarray) -> np.ndarray:
n_ants = prev.shape[0]
p_size = pheromone.shape[0]
pheromone_vals = pheromone[prev].clone() # (n_ants, p_size)
heuristic_vals = heuristic[prev].clone() # (n_ants, p_size)
T= ﬂ(#sattempermreﬁzrsulmnx

ch. exp({rumh/w(phemmane vals}nardr/ng{heunsﬂc vals)) / T) * mask

def heuristics_v2(distance_matrix: np.ndarray) -> np.ndarray:

num_nodes = len(distance_matrix)

distance_matrix

_ants,
actions = torch. zeros(n_ants, dtype=torch.long, device=prev.device)
greedy_mask = {9DSA/ﬂ"<UI75} # 5% probability for greedy selection
if greedy_mask.any():
greedy_actions = heuristic_val dim=1) # Select the city with the hig heuristic
soore
actions[greedy r mask) greedy_actions[greedy_mask]
if (~greedy_mask).any()
dist = L‘mg'unmi{pmbablhues)
sampled_actions = dist.sample()
actions[-greedy_mask] = sampled_actions[-greedy_mask]
log_probs = None
ifrequire_prob:
dist = Categorical(probabilities)
log_probs = dist.log_prob(actions)

return actions, log_probs

ibility = np.min visibility [np.nonzero(visibility)])
vmbnny (visibility - min_visibility) / np.ptp(visibility)
# Global information

pheromones = I/(dtstance matrix ** 2)
min =p.

= - min /p.

# Intensity-based trail pheromones
=0. 75

+0.25* np.

return visibility * pheromones

num_nodes = len(distance_matrix)

min_visibility = np.min{visibility[np.nonzero(visibility)])
visibility = (visibility - min_visibility) / np.ptp(visibility)

# Global information - Utilizing both pheromones and attr

attractiveness = 1/ distance_matrix

min_attractiveness = np.min(attractiveness{np. tiveness)])
" " min otracth 2

s

# Balance of pheromones ant /eness - weighted com
balance_factor = 0.6

pheromones =1/ (ms!ance matrix ** 2)

mm h =Mp.

/np.
cﬂmbmed heuristic = bm‘ance fnmr pheromones + (1- balance_factor) * attractiveness

return visibility * combined_heuristic

.

J\

 aco )
AEL ~N/ 1 ACO )
def (distance_matrix: np.ndarray) -> np.ndarray: def

num_nodes = len(distance_matrix)

/dmwlce _matrix

max_visibility = np.max(visibility)

visibility = visibility / max _visibility

# Global information

pheromones = 1/ (distance_matrix ** 2)

max_pheromones = np.max(pheromones)
= /max

# Combined heuristic
combined = 0.6 * visibility + 0.4 * pheromones

return combined

def (distance_matrix: np.ndarray) -> np.ndarray:

J

Figure 8: The final code of the aco algorithm is shown. We compared the algorithms generated
by KA-EAD, Reevo, and AEL on the ACO algorithm and found that KA-EAD can generate better

functions.
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