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Abstract001

Zero-shot Event Detection (ED), the task of002
identifying event mentions in natural language003
text without any training data, is critical for doc-004
ument understanding in specialized domains.005
Understanding the complex event ontology, ex-006
tracting domain-specific triggers from the pas-007
sage, and structuring them appropriately over-008
loads and limits the utility of Large Language009
Models (LLMs) for zero-shot ED. To this end,010
we propose DICORE, a divergent-convergent011
reasoning framework that decouples the task012
of ED using Dreamer and Grounder. Dreamer013
encourages divergent reasoning through open-014
ended event discovery, which helps to boost015
event coverage. Conversely, Grounder intro-016
duces convergent reasoning to align the free-017
form predictions with the task-specific instruc-018
tions using finite-state machine guided con-019
strained decoding. Additionally, an LLM-020
Judge verifies the final outputs to ensure high021
precision. Through extensive experiments on022
six datasets across five domains and nine LLMs,023
we demonstrate how DICORE consistently out-024
performs prior zero-shot, transfer-learning, and025
reasoning baselines, achieving 4–7% average026
F1 gains over the best baseline – establishing027
DICORE as a strong zero-shot ED framework.028

1 Introduction029

Event Detection (ED) is the task of identifying030

events by extracting and labeling event triggers031

(Sundheim, 1992; Doddington et al., 2004). ED032

aids in various downstream applications, including033

news monitoring (Tanev et al., 2008), biomedical034

literature mining (Pyysalo et al., 2012), epidemic035

forecasting (Parekh et al., 2024a,b), and legal un-036

derstanding (Francesconi et al., 2010). Training037

effective ED models requires large amounts of038

expert-annotated domain-specific data, which is039

highly costly and labor-intensive. This underlines040

the need to develop zero-shot systems that can per-041

form ED robustly without using any training data.042

The family was heading to New Hampshire from Lakeland.

[] [(“Transport”, “heading”)]

His friend, Martha Stewart, pleaded not guilty last week.

[(“Charge”, “pleaded”), 
(“Hearing”, “pleaded”)] []

Refusing access would mean Turkey would lose USD $15 
billion U.S. aid package.

{[“Loss”, “lose”]}
[(“Refusal”, “Refusing”), 
(“Loss”, “lose”)]
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Sentence Llama3-70B Gold

[] []

Qwen2.5-72B GPT4o

[(“Charge”, 
“pleaded”)]

[(“Acquit”, 
“not guilty”)]

[(“Refusal”, 
“Refusing”), 
(“Loss”, “$15 
billion USD”)]

[(“Refusing”, 
“Refusal”)]

Figure 1: (top) Illustration of how prompting LLMs
directly for Event Detection (ED) with all the task con-
straints can lead to precision, recall, and constraint vio-
lations (incorrect JSON, trigger not in sentence) across
various LLMs. The errors are highlighted in bold.
(bottom) Highlighting the superior model performance
(green bars) of our proposed DICORE with minimal
inference cost (red bars) relative to reasoning baselines.

Recently, large language models (LLMs) have 043

shown strong zero-shot performance across vari- 044

ous tasks (Ouyang et al., 2022a; Li et al., 2023b). 045

However, their effectiveness on ED remains lim- 046

ited (Gao et al., 2023; Huang et al., 2024), due to 047

the requirement of extensive domain knowledge 048

and the complex structural nature of ED. ED re- 049

quires deep reasoning and imposes several inter- 050

twined constraints: study of the large, closed event 051

ontology and ensuring the event types must be cho- 052

sen from it; semantic understanding of the input 053
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passage and precisely identifying domain-specific054

triggers within it; and conforming the output to a055

strict, machine-parsable structured format. Encod-056

ing these constraints as natural language instruc-057

tions in the prompt overloads the LLM cognitively,058

making it harder to effectively apply its reasoning059

skills (Tam et al., 2024). This increased difficulty in060

reasoning causes failures, such as missing relevant061

events, predicting irrelevant ones, and struggling to062

follow the expected format, as shown in Figure 1.063

To this end, we propose DICORE, a novel064

pipeline introducing Divergent-Convergent065

Reasoning, that facilitates better ED performance066

by reducing the cognitive burden of constraint067

adherence on the LLM. DICORE comprises two068

major components in a pipeline: Dreamer and069

Grounder. (1) Dreamer fosters divergent reasoning070

by prompting in an unconstrained, open-ended071

manner. This encourages broad semantic explo-072

ration of potential event mentions by removing073

rigid task constraints and, in turn, boosts the recall.074

(2) Grounder introduces convergent reasoning by075

mapping Dreamer’s free-form predictions to the076

task-specific closed event ontology. To alleviate077

the constraint adherence burden on the LLM, we078

employ a finite-state machine (FSM) to encode079

structural and task-specific constraints. This FSM080

guides the generation process through constrained081

decoding, ensuring that the output adheres to the082

task requirements. Finally, we add an LLM-Judge083

to verify the grounded predictions against the084

original task instructions, ensuring high precision085

by filtering irrelevant predictions.086

We conduct extensive experiments on six087

datasets from five domains across nine LLMs.088

Compared with various existing LLM inference089

works (Gao et al., 2023; Wang et al., 2023; Parekh090

et al., 2025), we show how DICORE performs the091

best with average improvements of 4-5% F1 Trig-092

ger Classification and 5.5-6.5% F1 Event Identifica-093

tion over the best baselines. DICORE, without any094

training, also consistently improves over transfer-095

learning baselines (Hsu et al., 2022; Sainz et al.,096

2023) fine-tuned on 15-30k datapoints by at least097

5-12% F1. Furthermore, we demonstrate that DI-098

CORE provides 1-2% F1 gains while using 15-55x099

fewer inference tokens relative to strong thinking-100

based models and chain-of-thought (CoT), high-101

lighting the significance of our proposed divergent-102

convergent reasoning.103

In summary, we make the following contribu-104

tions: (1) We propose Dreamer, introducing di-105

There should not be any demonstration in times of war.

Event Type: Demonstrate Event Type: Attack

Figure 2: Illustration example for the task of Event
Detection. Here, the blue box is the input sentence, and
the green boxes are the event mentions. The underlined
words indicate the event triggers.

vergent reasoning to improve event coverage. (2) 106

We develop Grounder, performing convergent rea- 107

soning to align free-form predictions to the event 108

ontology. (3) We design FSM-guided decoding 109

to enforce task-specific structure during inference. 110

Through extensive evaluations across six datasets, 111

five domains, and nine LLMs, we demonstrate the 112

generalizability and efficacy of DICORE, establish- 113

ing it as a robust zero-shot ED framework.1 114

2 Background and Related Works 115

Event Detection (ED) is the task of identifying 116

event mentions from input text/document X based 117

on a pre-defined ontology (Sundheim, 1992; Gr- 118

ishman and Sundheim, 1996; Doddington et al., 119

2004). We follow previous works (Doddington 120

et al., 2004) to define an event as something that 121

happens or describes a change of state. Each event 122

is labeled by an event type e and the list of pre- 123

defined event types constitutes an event ontology 124

E . An event trigger t is defined as the most distinc- 125

tive word/phrase that indicates the event’s presence 126

in the text X . The trigger-event type pair (t, e) is 127

jointly referred to as the event mention. The extrac- 128

tion of trigger words from the text and classifying 129

them into one or more event types from the event 130

ontology is the task of Event Detection, described 131

by f below. 132

[(e1, t1), ...(en, tn)] = f(X; E) 133

We provide an illustration of the task in Figure 2, 134

wherein demonstration and war indicate the men- 135

tions of Demonstrate and Attack events, respec- 136

tively, in the sentence. 137

Event Detection: Traditionally, ACE05 (Dod- 138

dington et al., 2004) and ERE (Song et al., 2015) 139

have been traditionally utilized for developing 140

various sequence-tagging (Wadden et al., 2019; 141

Hsu et al., 2023a) and generative (Li et al., 2021; 142

Hsu et al., 2023b) models. However, procuring 143

1We will release our code upon acceptance.
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expert-annotated data in specialized domains like144

biomedicine, law, cybersecurity, etc. is an ex-145

pensive and labor-intensive task, leading to explo-146

rations in zero-shot and low-resource ED.147

Zero-shot Event Detection: Recently, various148

diverse datasets such as MAVEN (Wang et al.,149

2020), FewEvent (Deng et al., 2019), GENEVA150

(Parekh et al., 2023) in general domain, GE-151

NIA2011 (Kim et al., 2011), GENIA2013 (Kim152

et al., 2013) in biomedical, CASIE (Satyapanich153

et al., 2020) in cybersecurity, PHEE (Sun et al.,154

2022) in pharmacovigilance, SPEED (Parekh et al.,155

2024b), SPEED++ (Parekh et al., 2024a) in epi-156

demiology, etc. have been developed. To explore157

generalizability across these domains/datasets, ini-158

tial works posed ED as a question-answering (Du159

and Cardie, 2020) or machine-reading comprehen-160

sion problem (Liu et al., 2020). Various works161

explored transfer and joint learning across various162

IE tasks to build more universal IE models (Lu163

et al., 2022; Fei et al., 2023; Li et al., 2024). Some164

works have explored posing ED as a generative165

text-to-text approach with event-based templates166

(Lu et al., 2021; Li et al., 2021; Hsu et al., 2022),167

even for zero-shot cross-lingual transfer (Huang168

et al., 2022; Parekh et al., 2024b). However, these169

works require source data training for zero-shot170

transfer, limiting their utility. Recent works have171

also explored the utility of zero-shot prompting172

with LLMs - concluding their sub-par performance173

(Gao et al., 2023; Li et al., 2023a). Other works174

have explored utilizing LLMs for data generation175

(Ma et al., 2024; Zhang et al., 2024b; Parekh et al.,176

2025) to aid better generalizability. In our work,177

we focus on improving LLMs’ zero-shot task gen-178

eralizability to ED without any model fine-tuning.179

Unconstraining LLMs for Better Reasoning:180

LLMs show immense language understanding and181

generation capabilities, but they need instructions182

and constraints to aid in meaningful human tasks183

(Ouyang et al., 2022b). However, imposing con-184

straints also reduces LLM reasoning capabilities185

(Tam et al., 2024; Banerjee et al., 2025). To this186

end, works have explored constrained decoding by187

altering the output probability distribution (Willard188

and Louf, 2023; Netz et al., 2024; Zhang et al.,189

2024a). Some works explore grammar-aligned de-190

coding strategies (Geng et al., 2023; Park et al.,191

2024). However, such strict enforcement has been192

shown to hurt LLMs’ generations. Recently, Tam193

et al. (2024) explored better prompt design on math194

reasoning to unburden the constraints on the LLM. 195

With similar inspiration, we explore decoupling 196

LLMs from constraints to improve reasoning for 197

IE tasks, specifically Event Detection, in our work. 198

3 Methodology 199

In our work, we frame ED through a generative 200

outlook fgen (Paolini et al., 2021; Huang et al., 201

2022) as they provide stronger zero-shot perfor- 202

mance (Hsu et al., 2022) and are better suited for 203

LLMs. We consider a structured list of tuples as 204

the output generation as they provide stronger per- 205

formance (§ C.1) and are easy to parse (Wang et al., 206

2023). However, these considerations introduce 207

constraints (encoded as task instructions in LLM 208

prompt) like the predicted event is from the pro- 209

vided list, the predicted trigger phrase is in the 210

input text, and the output generation follows the 211

JSON format, as technically described below. 212

Y = fgen(X; E) where 213

Y = “[(e1, t1), ...(en, tn)]” (1) 214

t ∈ X ∀t ∈ {t1, ...tn} (2) 215

e ∈ E ∀e ∈ {e1, ...en} (3) 216

We argue that these structured constraints inher- 217

ent to ED (Eq. 1-3) increase the cognitive load 218

on LLMs, making reasoning more difficult (Tam 219

et al., 2024). This is one of the contributing fac- 220

tors to LLMs’ subpar performance for ED (Huang 221

et al., 2024). To address this, we propose DICORE, 222

a novel pipeline that decouples and reduces con- 223

straint adherence through divergent open-ended 224

discovery, convergent alignment, and constrained 225

decoding. DICORE is lightweight, does not require 226

additional training, and can be seamlessly applied 227

to any LLM. Specifically, DICORE comprises a 228

three-stage pipeline of a Dreamer-Grounder-Judge, 229

as illustrated in Figure 3, and described below. 230

3.1 Dreamer 231

Our first component, Dreamer aka Divergent open-
ended thinker, is designed to promote open-ended
divergent discovery, encouraging the LLM to
achieve high recall by freely identifying potential
events without being constrained by the predefined
event ontology. Specifically, the Dreamer compo-
nent fd removes the task-specific event constraint
(Eq. 3), relaxes the trigger constraint (Eq. 2), and
prompts the LLM to extract event mentions directly
from the input sentence X as

Yd = “[(e′1, t1), ...(e
′
n, tn)]” = fd(X)
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DREAMER
Divergent open-ended thinker

GROUNDER
Convergent constraint aligner

JUDGE
High precision verifier

Cabinet has advised people who 
experience symptoms of fever, flu, or 
rashes, to report to their nearest facility

LLM

[(“Advice”, “advised”),
(“symptom reporting”, “experience”), 
(“disease reporting”, “report”)]

Verbs

Fever 
flu …

cabinet

reporting

Event Ontology:
Control – collective 
efforts to impede the 
spread of a pandemic
…

LLM

[(“Control”, “advised”),
(“Symptom”, “experience”), 
(“Control”, “report”)]

LLMFSM

[(“Control”, “advised”),
(“Symptom”, “experience”)]

Control = collective 
efforts to impede the 
spread of a pandemic

Cabinet has 
advised people 
who experience …

Figure 3: Illustration of our DICORE pipeline. First, the Dreamer reasons divergently in an open-ended uncon-
strained manner about all potential events in the text and generates free-form event names. Next, the Grounder reads
the event ontology and convergently grounds the free-form predictions to one of the event types. It uses finite-state
machine (FSM) guided constrained decoding to enforce task-specific constraints. Finally, the Judge evaluates each
prediction and verifies its validity at a holistic scale.

where each e′i is a free-form LLM-generated nat-232

ural language event name. Notably, e′i need not233

adhere to the event ontology E . We provide an234

illustration of the LLM prompt in Figure 5.235

By removing explicit references to the event on-236

tology, the instructions become less restrictive and237

more semantically intuitive for the LLM. This sim-238

plification enables the model to divergently reason239

on the underlying semantics of the text, rather than240

rigidly aligning with predefined categories. This241

open-ended setup encourages broader event dis-242

covery, improving recall by allowing the model to243

identify diverse or implicit event types. Though it244

may lower precision, it produces a rich candidate245

set for downstream refinement.246

3.2 Grounder247

The second component, Grounder aka Conver-248

gent constraint aligner, convergently aligns the249

Dreamer’s open-ended predictions Yd with the250

closed, task-specific event ontology E , while filter-251

ing the events that are not mappable. Technically,252

the Grounder component fg infuses the original253

task-specific constraints into the prompt to gener-254

ate the grounded event mentions Yg as255

Yg = “[(e1, t1), ...(em, tm)]” = fg(X; E , Yd)256

An illustration of the Grounder prompt and ex-257

pected output is shown in Figure 6.258

FSM-guided decoding for constraint enforce-259

ment: To reduce the burden of constraint-260

following on the LLM and ensure strict adherence261

JSON
Format

Empty / 
Non-zero 

List

Select 
Event 
Type

Select 
Trigger

End / Next 
Event 

Mention

End
State

[(“

[]

𝑒1

𝑒|𝜀|

. .
 .

𝑤1

𝑤|𝑋|

. . .

”, “”), (“

”)]

A B

CD

Figure 4: Finite state machine (FSM) illustration
for guiding decoding to enforce constraints. Here
e1, . . . , e|E| ∈ E represent all the possible event types
and w1, . . . , w|X| ∈ X represent the atomized phrases
in the sentence X .

to the task format, we incorporate a constrained de- 262

coding mechanism guided by a finite-state machine 263

(FSM). Inspired by recent work (Willard and Louf, 264

2023; Zhang et al., 2024a), the FSM is designed to 265

encode key constraints (Eq. 1–3) within the decod- 266

ing process. We construct and demonstrate an FSM 267

to encode constraints for our ED task in Figure 4. 268

The states of the FSM represent possible deci- 269

sion points (e.g., choice of event type, choice of 270

trigger word, etc.). The state transitions denote pos- 271

sible LLM generations/choices (e.g., list of event 272

types in the ontology E) and are guided by their 273

corresponding LLM generation probabilities. In 274

our FSM in Figure 4, we first decide if there is any 275

event or if it is an event-free sentence (state A). 276

Next, we decide our first event type e ∈ E (state B) 277
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LLM Prompt MAVEN (168) FewEvent (100) ACE (33) GENIA (9) SPEED (7) CASIE (5) Average
Style TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI

Llama3-8B

ChatIE 33.7 7.3 13.8 20.8 10.2 27.6 30.6 24.9 46.8 8.6 3.2 11.3 28.4 15.5 43.3 10.8 3.6 20.4 22.2 10.8 27.2
GEE 19.1 1.9 6.8 11.7 5.9 14.0 30.0 21.3 27.4 25.4 15.8 26.7 35.9 27.7 38.7 11.5 9.2 45.8 22.3 13.6 26.6
DEE 33.7 6.0 9.2 21.1 10.6 17.8 26.9 19.8 36.1 25.3 16.9 32.5 29.1 20.3 39.2 8.7 7.6 48.3 24.1 13.5 30.5
BD 54.5 10.7 12.3 22.3 9.9 15.0 34.2 19.5 31.4 28.1 11.2 30.2 35.3 24.7 37.2 16.8 7.4 44.5 31.9 13.9 28.4
MD 45.9 2.8 4.0 25.2 9.5 15.2 35.6 22.4 30.1 22.8 15.3 25.4 34.9 27.8 42.4 10.3 8.8 47.9 29.1 14.4 27.5
MS 46.2 10.3 11.2 20.2 10.2 17.0 26.7 17.6 23.1 27.6 19.7 30.5 34.1 27.3 40.6 11.9 10.3 48.3 27.8 15.9 28.4
DICORE 53.5 14.4 17.4 26.1 15.7 25.0 40.3 36.3 47.9 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 33.3 20.4 36.9

Llama3-70B

ChatIE 47.9 19.8 24.8 33.3 20.8 40.6 45.5 37.9 47.0 14.6 6.4 17.3 41.8 31.0 50.9 12.9 10.2 48.9 32.7 21.0 38.3
GEE 28.3 15.7 17.5 26.2 16.3 31.1 47.0 42.3 52.2 32.5 24.2 38.5 43.7 34.7 46.0 11.1 10.7 43.2 31.5 24.0 38.1
DEE 60.8 14.8 16.4 34.0 21.3 33.6 47.4 38.3 45.4 39.2 30.5 46.0 41.7 32.2 44.7 16.6 16.4 63.1 40.0 25.6 41.5
BD 63.0 13.9 15.2 34.0 14.5 22.6 49.1 36.6 41.7 39.4 26.5 45.4 49.2 33.6 45.7 16.5 11.7 48.8 41.9 22.8 36.6
MD 63.5 14.2 14.7 34.0 20.9 32.6 51.2 40.2 46.8 36.8 28.9 43.0 45.4 36.8 49.0 13.9 13.7 64.4 40.8 25.8 41.8
MS 33.9 21.6 22.3 35.3 24.9 39.9 49.9 42.8 46.9 37.4 31.0 45.0 43.8 35.5 49.6 14.0 14.0 59.5 35.7 28.3 43.9
DICORE 62.5 27.8 30.6 40.4 25.1 36.1 57.2 49.5 55.1 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 43.5 32.8 48.1

Table 1: Main results comparing the zero-shot ED performance of our proposed DICORE with all other baselines
for the Llama3-8B-Instruct and Llama3-70B-Instruct LLMs. TI: Trigger Identification, TC: Trigger Classification,
EI: Event Identification. bold = best performance. (XX) = number of distinct event types.

and then the corresponding trigger w ∈ X (state278

C). Finally, we decide if we want to list another279

event mention or end the predictions (state D). To280

ensure that the generations are natural, the FSM281

states are partitioned in alignment with the LLM282

tokenizer, i.e., the states are chosen such that the283

sequence of transition tokens is the most probable284

tokenization of the output text Yg.285

At each FSM state, we generate using the LLM286

while constraining its output space by zeroing out287

the probability mass of all tokens not correspond-288

ing to valid state transitions. This enforces that the289

LLM can only generate tokens permitted by the290

FSM at each step, effectively guiding the genera-291

tion process according to the task-specific grammar.292

As a result, all structural constraints are directly en-293

forced during decoding, ensuring well-formed and294

ontology-compliant outputs.295

3.3 Judge296

The final component of our pipeline, Judge aka297

High precision verifier, serves to ensure each pre-298

dicted event mention adheres to the original task299

instructions. Specifically, for each candidate pair300

(ei, ti), the Judge fj evaluates the hypothesis that301

the trigger ti expresses the event type ei in the con-302

text of the input sentence X as303

yij = “Y es/No” = fj(ei, ti, X; E)304

All predictions with yij = “Y es” are accepted into305

the final output, while the others are rejected. We306

provide an illustration of the prompt in Figure 7.307

This verification step plays a crucial role in en-308

suring the semantic validity and task alignment of309

predictions at a holistic level. By filtering out irrel- 310

evant or uncertain outputs, the Judge substantially 311

improves the precision of the overall system with- 312

out requiring additional supervision or training. 313

4 Experimental Setup 314

In this section, we describe our experimental setup 315

comprising the datasets, baselines, evaluation met- 316

rics, and implementation details. Additional setup 317

and implementation details are provided in § B. 318

Datasets: We benchmark our model across six 319

ED datasets spanning five diverse domains, listed 320

as: (1) MAVEN (Wang et al., 2020) and (2) Few- 321

Event (Deng et al., 2019) from the general do- 322

main, (3) ACE (Doddington et al., 2004) from 323

the news domain, (4) GENIA (Kim et al., 2011), 324

from the biomedical domain, (5) SPEED (Parekh 325

et al., 2024b), from the epidemiological/social me- 326

dia domain, (6) CASIE (Satyapanich et al., 2020), 327

from the cybersecurity domain. To avoid any dis- 328

tributional biases, following TextEE (Huang et al., 329

2024), we uniformly sample 250 datapoints from 330

the complete dataset for evaluation.2 331

Baselines: We consider two major baselines, de- 332

scribed below: (1) Multi-event Direct (MD) (Gao 333

et al., 2023) directly prompts the LLM to provide 334

the final output in a single pass, and (2) Multi-event 335

Staged (MS) (Parekh et al., 2025) decomposes the 336

task into two stages, where the first stage identifies 337

the event and the second stage extracts the cor- 338

responding triggers. We also compare with other 339

works like: (3) Binary-event Direct (BD) (Lyu et al., 340

2We will release the test splits for reproduction.
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LLM Prompt MAVEN (168) FewEvent (100) ACE (33) GENIA (9) SPEED (7) CASIE (5) Average
Style TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI

Qwen2.5-14B
MD 53.0 17.6 20.9 28.8 21.1 34.2 28.3 24.5 42.1 24.8 18.8 26.7 37.7 33.0 51.2 15.8 15.8 61.5 31.4 21.8 39.5
MS 46.5 20.8 24.6 24.8 18.9 32.1 33.6 26.3 32.5 25.4 19.2 27.7 38.9 34.3 46.1 16.3 16.1 54.5 30.9 22.6 36.2
DICORE 53.1 23.3 27.6 29.7 19.3 30.4 38.4 37.7 48.8 29.9 22.6 38.6 42.9 35.3 46.5 19.7 19.5 58.8 35.8 26.1 41.8

Qwen2.5-72B
MD 49.4 21.6 24.1 17.0 12.3 21.0 28.8 25.8 30.3 30.5 27.0 36.3 41.4 37.4 45.4 11.0 10.4 57.9 29.7 22.4 35.8
MS 39.9 23.6 25.4 25.0 21.0 34.2 42.5 40.4 42.5 26.7 23.6 34.1 40.6 35.5 45.2 10.5 10.5 49.1 30.9 25.8 38.4
DICORE 54.1 27.5 30.2 30.8 22.3 32.9 46.8 44.8 47.8 33.6 29.8 43.9 40.6 34.7 41.4 15.9 15.8 59.3 37.0 29.2 42.6

GPT3.5-turbo
MD 50.9 17.4 20.4 23.2 14.6 27.0 40.9 36.2 42.5 27.0 19.9 31.4 36.5 30.6 41.8 10.0 9.9 51.1 31.4 21.4 35.7
MS 48.2 15.5 17.2 23.7 15.9 29.8 40.7 37.4 42.3 23.2 19.0 26.3 33.0 23.7 35.5 7.7 7.1 44.4 29.4 19.8 32.6
DICORE 48.1 21.6 26.1 25.3 15.6 31.1 41.7 41.7 48.9 26.2 19.5 36.3 32.4 27.2 49.0 11.4 10.6 55.7 30.9 22.7 41.2

GPT4o
MD 61.8 28.9 31.9 30.6 23.9 35.4 52.3 52.3 52.3 41.0 36.5 49.5 44.1 40.2 48.0 10.1 10.1 55.7 40.0 32.0 45.5
MS 49.4 30.8 33.3 25.6 20.6 32.2 36.2 36.2 38.3 36.6 33.2 45.0 45.7 40.4 50.1 13.4 13.4 46.9 34.5 29.1 41.0
DICORE 58.5 32.2 35.6 36.1 28.4 38.5 54.9 54.9 56.6 40.7 35.4 51.2 43.3 37.3 46.1 16.7 16.7 58.8 41.7 34.2 47.8

Table 2: Generalization results for zero-shot ED performance comparing DICORE with the best baselines for four
other LLMs of Qwen2.5-14B-Instruct, Qwen2.5-72B-Instruct, GPT3.5-turbo, and GPT4o. bold = best performance.
(XX) = number of distinct event types.

2021; Li et al., 2023c) prompts the LLM to do bi-341

nary classification for each event, (4) Decompose-342

Enrich-Extract (DEE) (Shiri et al., 2024) utilizes343

instruction enrichment with schema information344

for ED, (5) GuidelineEE (GEE) (Srivastava et al.,345

2025), similar to Code4Struct (Wang et al., 2023),346

converts ED into a code-generation problem using347

Python classes and instantiations, and (6) ChatIE348

(Wei et al., 2023) decomposes ED via multi-turn349

conversations. We ensure consistent, structured out-350

puts for each baseline to maintain fair comparisons351

(analysis in § C.1). Furthermore, we add the Judge352

component to each baseline, if not already present,353

to ensure robust benchmarking of DICORE.354

Base LLMs: We use the following LLMs for our355

base experiments: Llama3-8B-Instruct and Llama3-356

70b-Instruct from the Llama3 family (Dubey et al.,357

2024) and Qwen2.5-14B-Instruct; Qwen2.5-72B-358

Instruct from the Qwen2.5 (Yang et al., 2024) LLM359

family; and GPT3.5-turbo and GPT-4o (Brown360

et al., 2020; OpenAI, 2023) from OpenAI.361

Evaluation Metrics: Following Ahn (2006);362

Parekh et al. (2025) we report the F1 scores for363

the following three metrics: (1) Trigger Identifica-364

tion (TI) - correct identification of triggers, and (2)365

Event Identification (EI) - correct classification of366

event types, and (3) Trigger Classification (TC) -367

correct identification of the trigger-event pair (event368

mention). To maintain consistency with traditional369

span-based evaluations, we used string matching to370

map the generated outputs to input spans.371

Implementation Details: We use TextEE372

(Huang et al., 2024) for our benchmarking,373

datasets, and evaluation setup. To restrict LLM’s374

generation choices for the FSM-guided constrained 375

decoding, we utilize Outlines (Willard and Louf, 376

2023) over vLLM inference (Kwon et al., 2023). 377

We use Curator (Marten et al., 2025) for querying 378

the GPT family LLMs. We deploy a temperature 379

of 0.4 and top-p of 0.9 for decoding. We report 380

the averaged results over three runs for robust 381

benchmarking. 382

5 Results and Analysis 383

In this section, we provide our main results and 384

findings, and later provide supporting evidence 385

through our analyses. 386

5.1 Main Results 387

We present the main zero-shot results for all base- 388

lines on the six datasets for Llama3 LLMs in Ta- 389

ble 1. As seen from the average results (last three 390

columns), DICORE performs the best, surpassing 391

the best baseline of multi-event staged (MS) by a 392

significant margin of 5.5-8% TI, 4-8.5% EI, and 4- 393

5% TC. The performance disparity across different 394

task decomposition methods of ChatIE, MS, and 395

DICORE highlights how our divergent-convergent 396

decomposition of Dreamer-Grounder provides a 397

stronger inductive bias. Other baselines perform 398

relatively better on the fewer-event and simpler 399

datasets like GENIA/SPEED, but DICORE shows 400

strong dominance on the larger event datasets like 401

MAVEN/FewEvent/ACE. 402

Generalization across LLMs: To demonstrate 403

the generalizability of DICORE, we benchmark 404

it with the top-performing baselines on four addi- 405

tional LLMs from the Qwen and GPT families and 406

show our results in Table 2. We note how DICORE 407
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Model Setting Average F1
TI TC EI

Test on GENIA, SPEED, CASIE

GOLLIE-7B 6.0 5.3 15.3
GOLLIE-34B 15.6 11.7 29.4
Llama3-8B DICORE 26.6 18.6 43.7
Llama3-70B DICORE 33.6 28.0 55.6

Test on all but ACE dataset

ACE-trained DEGREE 20.9 11.0 21.3
Llama3-8B DICORE 31.9 17.2 34.7
Llama3-70B DICORE 40.8 27.4 46.7

Test on all but MAVEN dataset

MAVEN-trained DEGREE 31.8 25.0 38.6
Llama3-8B DICORE 29.2 21.6 40.8
Llama3-70B DICORE 39.7 31.7 51.6

Table 3: Comparison of pure zero-shot DICORE with
fine-tuned transfer-learning baselines. Underline indi-
cates scenarios of DICORE improvements.

performs the best across all LLMs with an overall408

average improvement of 5.5% TI, 6.5% EI, 4% TC409

over the multievent-staged baseline and 3.3% TI,410

5.4%, 4.6% TC over the multievent-direct base-411

line. Across different LLMs, we note the strongest412

performance on GPT4o, followed by Llama3-70B-413

Instruct and Qwen2.5-72B, indicating how more414

parameters help better reasoning with DICORE.415

5.2 Comparison with Fine-tuned416

Transfer-learning Methods417

Various works utilize transfer-learning and univer-418

sal Information Extraction (IE) training for zero-419

shot cross-dataset ED (Cai et al., 2024; Li et al.,420

2024). These works train on selected IE datasets421

and show performance on unseen IE datasets. We422

provide a comparison of DICORE with two such423

transfer-learning approaches: (1) DEGREE (Hsu424

et al., 2022), a generative framework utilizing text-425

based event templates to generalize, (2) GOLLIE426

(Sainz et al., 2023), a universal IE framework, fine-427

tuning LLMs on various IE instruction datasets.428

For DEGREE, we consider two versions where the429

source data is ACE and MAVEN, respectively. For430

GOLLIE, we consider the fine-tuned GOLLIE-7B431

and GOLLIE-34B models. We provide the aver-432

aged results across target datasets (not included in433

the source data) in Table 3, with detailed results in434

§ C.2. Through these results, we demonstrate how,435

despite no fine-tuning, DICORE consistently out-436

performs the fine-tuned transfer-learning baselines437

across all settings. On average, DICORE improves438

by 3-10% F1 using Llama3-8B-Instruct and 10-439

Base LLM Prompt Average F1
Style TI TC EI

Chain-of-thought Baselines

Llama3-8B MD + CoT 25.0 13.5 27.1
Llama3-8B MS + CoT 28.4 17.6 31.9
Llama3-70B MD + CoT 41.0 30.9 48.0
Llama3-70B MS + CoT 40.5 31.6 47.1
Qwen2.5-72B MD + CoT 34.9 27.1 43.6
Qwen2.5-72B MS + CoT 36.2 28.8 40.8

Thinking-based model Baselines

DS-Qwen-32B MD 39.2 30.0 46.3
DS-Qwen-32B MS 39.5 30.4 45.2
DS-Llama3-70B MD 29.0 23.3 36.1
DS-Llama3-70B MS 33.3 27.0 37.8
O1-mini MD 40.2 32.5 44.7

DICORE base model results

Llama3-8B DICORE 33.3 20.4 36.9
Llama3-70B DICORE 43.5 32.8 48.1
Qwen2.5-72B DICORE 37.0 29.2 42.6
GPT4o DICORE 41.7 34.2 47.8

DICORE improvements with reasoning

Llama3-8B DICORE+ CoT 33.1 21.1 36.2
Llama3-70B DICORE+ CoT 43.0 33.1 49.8
Qwen2.5-72B DICORE+ CoT 37.0 29.1 43.5
DS-Qwen-32B DICORE 43.1 33.3 49.5
DS-Llama3-70B DICORE 41.4 33.0 48.3

Table 4: Comparison of DICORE with reasoning-based
baselines like Chain-of-thought (CoT) and thinking-
based models. Underline indicates DICORE improve-
ments over reasoning baselines.

22% F1 using Llama3-70B-Instruct and GPT4o. 440

5.3 Comparison with Reasoning baselines 441

Reasoning by verbalizing thoughts using addi- 442

tional tokens has commonly helped improve perfor- 443

mance across a wide range of tasks (Kojima et al., 444

2022; Latif et al., 2024). We evaluate the utility 445

of reasoning, specifically Chain-of-thought (CoT) 446

(Wei et al., 2022), along with thinking-based mod- 447

els like Deepseek-R1-Distilled-Qwen-32B (DS- 448

Qwen-32B), Deepseek-R1-Distilled-Llama3-70B 449

(DS-Llama3-70B) (DeepSeek-AI et al., 2025) and 450

O1-mini (Jaech et al., 2024) on our task of zero- 451

shot ED in Table 4 (complete results in § C.3). We 452

demonstrate how the baselines improve with addi- 453

tional reasoning; however, DICORE with the base 454

models (Llama3-70B) consistently outperforms all 455

these reasoning baselines (even O1-mini) while us- 456

ing 15-55x fewer tokens on average (§ C.3). We 457

also show how our method is complementary to 458

reasoning by demonstrating further improvements 459

up to 1-2% F1 using reasoning with DICORE. 460
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Sentence Best Baseline Dreamer Grounder Judge
Prediction Prediction Prediction Prediction

cass apd ra gave birth to
her first daughter.

[("Life:Be-Born",
"gave")]

[("Birth", "gave"),
("Birth", "birth")]

[("Life:Be-Born",
"birth")]

[("Life:Be-Born",
"birth")]

After passing the island,
the hurricane turned to
the northeast, and be-
came extratropical on
September 8, before dis-
sipating two days later.

[("Change",
"turned"),
("Change",
"became"), ("Dis-
sipating", "dissi-
pating")]

[("Movement",
"turned"), ("Tran-
sition", "became"),
("Dissipation", "dissi-
pating")]

[("Change_event_time",
"turned"), ("Becom-
ing_a_member",
"became"), ("Disper-
sal", "dissipating")]

[("Dispersal",
"dissipating")]

Covid-19 has led to so-
cial distancing, but we
can still be together
through the quarantine
with online gaming!

[] [("Social_Distancing",
"distancing"), ("Quar-
antine", "quarantine"),
("Gaming", "gam-
ing")]

[("prevent", "dis-
tancing"), ("control",
"quarantine")]

[("prevent",
"distancing"),
("control", "quar-
antine")]

Table 5: Qualitative examples comparing DICORE’s predictions (per component) with the best baseline. We
highlight the correct predictions in green and incorrect ones in red.

Component TI TC
P R F P R F

Llama3-8B-Instruct

Dreamer 8.5 64.3 15.0 0.0 0.0 0.0
+ Grounder 20.4 47.9 28.6 15.5 37.1 21.9
+ FSM Decoding 22.3 56.8 32.1 16.2 42.3 23.4
+ Judge 41.8 39.0 40.3 37.5 35.2 36.3

MD Baseline 48.4 28.2 35.6 30.2 17.8 22.4
MS Baseline 22.0 33.8 26.7 14.4 22.5 17.6

Llama3-70B-Instruct

Dreamer 15.5 77.5 25.8 0.0 0.0 0.0
+ Grounder 28.6 65.7 40.4 22.5 53.4 31.8
+ FSM Decoding 32.3 66.7 43.5 26.2 54.0 35.3
+ Judge 52.8 62.5 57.2 45.7 54.0 49.5

MD Baseline 57.2 46.5 51.2 44.0 37.1 40.2
MS Baseline 66.4 39.9 49.9 57.0 34.3 42.8

Table 6: Ablation Study on the ACE dataset highlighting
the significance and contribution of each component of
DICORE. P: Precision, R: Recall, F: F1 score.

5.4 Ablation Study461

To demonstrate the role of each component of our462

pipeline, we ablate and show the model perfor-463

mance as we add each component in DICORE for464

the ACE dataset for Llama3-8B and Llama3-70B465

LLMs in Table 6. For reference, we also show the466

precision/recall splits of the baselines. Dreamer467

achieves a high recall for TI (albeit a low preci-468

sion) - demonstrating the utility of divergent un-469

constrained reasoning. Grounder helps align the470

predictions, causing a slight drop in recall while im-471

proving the precision. FSM Decoding helps largely472

improve the recall for Llama3-8B-Instruct by im-473

proving the mapping, and precision for Llama3-474

70B-Instruct by fixing any constraint violations.475

Finally, Judge largely boosts the precision of the 476

model. Analysis of the baselines reveals that they 477

are conservative, making a low number of high- 478

precision predictions. In comparison, DICORE 479

makes many more predictions, largely improving 480

recall while maintaining reasonably high precision. 481

Qualitative Study: We provide some qualitative 482

examples for each component of DICORE, while 483

comparing the best baseline across the datasets in 484

Table 5 (more examples in § D). We see how the 485

best baseline often reasons incorrectly, leading to 486

precision loss, or remains conservative, predicting 487

nothing, leading to recall errors. The split across 488

the three components shows how Dreamer gen- 489

erates many plausible event mentions, Grounder 490

aligns and removes some, while Judge verifies and 491

filters irrelevant ones. These examples provide the 492

internal workings of DICORE, highlighting the sig- 493

nificance of divergent-convergent reasoning. 494

6 Conclusion and Future Work 495

In our work, we introduce DICORE, a novel 496

divergent-convergent reasoning pipeline of 497

Dreamer-Grounder-Judge, aimed at decoupling the 498

LLM from task-specific constraints, and indirectly 499

better exploiting LLMs’ reasoning. Through 500

experimentation on six ED datasets from five 501

domains across nine LLMs, we confirm how 502

DICORE provides a stronger inductive bias, im- 503

proving over other zero-shot baselines, fine-tuned 504

transfer learning methods, and reasoning-focused 505

approaches. Future works can explore this 506

paradigm on broader tasks and study to better elicit 507

divergent-convergent reasoning. 508
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Limitations509

In our work, we focus on improving zero-shot LLM510

inference for Event Detection. This work is easily511

extendable to other low-resource settings as well512

as other Information Extraction (IE) tasks - but513

we leave these for future explorations. To keep514

experimentation consistent with prior works, we515

utilized/sampled 250 datapoints from each dataset516

as our test set. If working with a different data517

split, one might get different absolute model per-518

formance, but we believe the general trends should519

remain the same. Finally, there are various lines520

of work on improving the use of retrieval to select521

good in-context examples, or teaching the LLM522

to learn the schema. We believe these works are523

orthogonal and complementary to our work, and524

we do not compare/include them in our study.525

Ethical Considerations526

Our work focuses on using LLMs through the in-527

ductive bias of our method DICORE. Since we do528

not train the LLM, there could be inherent biases in529

the LLM that can crop up when using our pipeline.530

We do not study or provide methods to mitigate531

such biases, as it’s not in the scope of our work.532

We would like to acknowledge that we used AI533

assistants and chatbots for writing some parts of the534

paper, helping with coding up plots, and searching535

for related works. For each application, a human536

expert verified to ensure we do not add any spuri-537

ous/harmful content.538
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A DICORE Prompts985

We described our modeling paradigm of divergent-986

convergent reasoning through the Dreamer-987

Grounder-Judge paradigm in § 3. Here we provide988

some additional details and also share the prompts989

that we used for each component.990

Dreamer: The Dreamer component induces di-991

vergent thinking, encouraging the model to think992

more widely. We induce this behavior by removing993

the event-based constraints from the task instruc-994

tions and adding additional inductive bias to pro-995

vide this encouragement inthe form of additional996

task instructions asking the model to be super lib-997

eral. We provide an illustration of this prompt in998

Figure 5. Specifically, sentences like "Try to be lib-999

eral and increase the coverage as much as possible.1000

I will filter and improve the precision in the next1001

step." and "Be very open and output all possible1002

events that are potentially mentioned." provide this1003

stronger divergent reasoning inductive bias.1004

Grounder: The Grounder component aligns the1005

open-ended predictions of the Dreamer with the1006

closed event ontology using convergent reasoning.1007

To this end, we add the various task-specific con-1008

straints in the form of natural language instructions1009

as well as use a finite-state machine (FSM) guided1010

generation to aid with this convergent reasoning.1011

Here, we describe the prompt and the inductive1012

biases in it, as illustrated in Figure 6. Specifically,1013

we first add all the verbalized constraints, including1014

the ontology details in the form of event names and1015

information. To provide more inductive bias, we1016

also add a sentence like "Be conservative in your1017

outputs - If a trigger word cannot be mapped, skip1018

the trigger word. If the mapped event does not1019

happen in the sentence, skip the trigger word.".1020

Judge: The Judge is tasked with the evaluation1021

of the prediction to ensure that the trigger word1022

triggers the specific event in the given sentence.1023

We run the Judge for each prediction separately. To1024

make this lightweight, we ensure that the output1025

space is simple "Yes" or "No" without any explana-1026

tion, which makes the parsing easier as well. We1027

provide an illustration of this prompt in Figure 7.1028

This component is very generic and can be easily1029

applied to other methods/LLMs as well.1030

You are an event extraction model, looking to 
extract events from a sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. A structured 
event contains an event trigger word and an event 
type.
Below is a sentence from which you need to extract 
the events if any. Only output a list of tuples in the 
form [(\"event_type_1\", \"event_trigger_word_1\"), 
(\"event_type_2\", \"event_trigger_word_2\"), ...] for 
each event in the sentence. Try to be liberal and 
increase the coverage as much as possible. I will 
filter and improve the precision in the next step. Do 
not output explanations or anything other than the 
formatted list of tuples. If there are no events in the 
sentence, output empty list []. Be very open and 
output all possible events that are potentially 
mentioned.

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 5: Illustration of the prompt utilized for Dreamer.
To encourage divergent thinking, we remove event-
based constraints from the model instructions. Further-
more, we add sentences that encourage the model to be
liberal and open in its predictions.

B Additional Experimental Details 1031

In § 4, we provided brief details about our experi- 1032

mental and implementation details. Here, we pro- 1033

vide more intricate details about our different ex- 1034

perimental setups and baseline models. 1035

B.1 Dataset Statistics 1036

Our experimental setup is a pure zero-shot setup 1037

where we do not use any training data. We pro- 1038

vide statistics about the evaluation splits of the 1039

different datasets in Table 7. We follow TextEE 1040

(Huang et al., 2024) for the evaluation setup and 1041

consider a uniform random split of 250 test sam- 1042

ples from each dataset to avoid any train-test split 1043

bias. Since CASIE is a smaller dataset, we only 1044

use 50 test samples for this dataset. The table high- 1045

lights the domain diversity of the datasets covering 1046

common domains like news and general, while also 1047

focusing on technical domains like biomedical and 1048

epidemiology. The datasets also show variation 1049

in the density, with ACE, FewEvent, and SPEED 1050

being sparse with 1 event mention/sentence. On 1051

the other hand, MAVEN, CASIE, and GENIA are 1052
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You are an event extraction model, looking to map 
provided trigger words to potential event types.

This is an event extraction task where the goal is to 
extract structured events from the text. Given the 
sentence and possible event triggers, map these 
triggers to corresponding events from the provided 
event list. Omit triggers which are not mappable or if 
the mapped event is not mentioned in the sentence.
The event list comprises 7 events. These events are:
Infect … Spread … 
…
Below is the sentence and the list of trigger words. 
Map each trigger word from this list to a single event 
from above and output a list of tuples in the form 
[(\"event_type_1\", \"event_trigger_word_1\"), 
(\"event_type_2\", \"event_trigger_word_2\"), ...]. Be 
conservative in your outputs - If a trigger word cannot 
be mapped, skip that trigger word. If the mapped 
event does not happen in the sentence, skip that 
trigger word. Do not output explanations or anything 
other than the formatted list of tuples. If no triggers 
can be mapped, output empty list [].

Sentence: I hope this pandemic ends soon …
Trigger List: ['ends']"

System Prompt User Instructions User Query

Figure 6: Illustration of the prompt utilized for
Grounder. To encourage convergent thinking and align-
ment, we add event-based constraints in the model in-
structions. Furthermore, we add sentences that encour-
age the model to be more conservative in its predictions.

denser with 2.5-10 event mentions/passage. Fi-1053

nally, we also show the variation in token length,1054

with ACE being the lowest with 13 average tokens,1055

while GENIA and CASIE are longer with 250-2801056

average tokens per document.1057

B.2 Additional Implementation Details1058

In this section, we provide additional implementa-1059

tion details for DICORE and the various baselines.1060

For open-source models, we ran them locally on1061

NVIDIA RTX A6000/A100 machines with support1062

for 8 GPUs.1063

B.2.1 DICORE1064

Trigger Atomization Adaptation for FSM-1065

guided Decoding: Different datasets have var-1066

ied annotation instructions and definitions for the1067

trigger spans. Some datasets are strictly adhering1068

to only single-word triggers (e.g., SPEED), while1069

others are largely loose and support multi-word1070

triggers (e.g., CASIE). We provide a small study1071

of measuring multi-word triggers in Table 8, high-1072

lighting this disparity across datasets. To account1073

You are an event extraction verification model, 
looking to verify the provided trigger word triggers 
the event type in the given sentence.

This is an event extraction verification task where 
the goal is to verify if the extracted structured event 
is mentioned in the text. Given the sentence, a 
possible event mention with its trigger, verify if the 
event mention is correct or not.
Event Definition: The event of interest is infect. The 
event is related to the process of a 
disease/pathogen invading host(s).
Event Trigger: infection
Below is the sentence. Verify if the above trigger 
word triggers the above mentioned event in this 
given sentence. If yes, then output 'Yes' else output 
'No'. Do not output explanations or anything other 
than 'Yes/No'.

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 7: Illustration of the prompt utilized for Judge.
To encourage convergent thinking and alignment, we
add event-based constraints in the model instructions.
Furthermore, we add sentences that encourage the
model to be more conservative in its predictions.

Dataset Domain # Doc # Event Avg. Doc
Mentions Length

MAVEN General 250 623 24.5
FewEvent General 250 250 30.5
ACE News 250 71 13.2
GENIA Biomedical 250 2472 251.3
SPEED Epidemiology 250 258 32.4
CASIE Cybersecurity 50 291 283.1

Table 7: Data Statistics of the various ED datasets used
in our experimental setup.

for these varied definitions, we infuse a customiz- 1074

able atomization unit in our FSM-guided decoding. 1075

Specifically, state C from Figure 4 is customiz- 1076

able wherein for stricter datasets (SPEED, ACE, 1077

FewEvent), we impose an additional constraint 1078

of single-word trigger, while for other datasets 1079

(CASIE, GENIA, MAVEN), we apply a looser con- 1080

straint of substring match with the query sentence. 1081

B.2.2 Multi-event Direct (MD) 1082

Multi-event direct (MD) (Gao et al., 2023; Huang 1083

et al., 2024; Chen et al., 2024) is the most common 1084

and simplest prompting technique used for ED. It 1085

prompts the model directly to reason across all the 1086

events and provide the relevant triggers based on 1087
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Dataset % Multi-word Triggers

MAVEN 8%
FewEvent 3%
ACE 2.8%
GENIA 8.5%
SPEED 0%
CASIE 54.6%

Table 8: Measuring the percentage of multi-word trig-
gers across the different ED datasets.

You are an event extraction model, looking to 
extract events from a sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. A structured 
event contains an event trigger word and an event 
type.
Here are 7 events that we are interested in:
Infect … Spread … 
…
Below is a sentence from which you need to extract 
the events if any. Only output a list of tuples in the 
form [(\"event_type_1\", \"event_trigger_word_1\"), 
(\"event_type_2\", \"event_trigger_word_2\"), ...] for 
each event in the sentence. Do not output 
explainations or anything other than the formatted 
list of tuples. If there are no events in the sentence, 
output empty list [].

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 8: Illustration of the prompt utilized for multi-
event direct baseline.

the query text. We try various prompt versions and1088

illustrate the best engineered prompt based on a1089

small study in Figure 8. Majorly, we include all1090

task-specific instructions and constraints in a single1091

verbalized prompt, which can overload the LLM’s1092

reasoning capability.1093

B.2.3 Multi-event Staged (MS)1094

Multi-event staged (MS) (Parekh et al., 2025) was1095

introduced as a way of forward generation to en-1096

sure higher trigger quality. We extend that in our1097

work to build a strong task decomposition baseline.1098

Simply, this model first extracts the event types1099

from the texts in Stage 1 and then extracts triggers1100

specific to these event types in Stage 2. We provide1101

an illustration of the two stages of MS in Figures 91102

and 10. In this case, the first stage majorly only1103

focuses on the event-specific constraints, while the1104

You are an event extraction model, looking to 
extract events from a sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. Given the 
sentence, figure if you find any event mention of the 
possible events.
Here are 7 events that we are interested in:
Infect … Spread … 
…
Below is a sentence from which you need to extract 
the events if any. Only output a list of events in the 
form [\"event_type_1\", \"event_type_2\", ...] that 
you find in the sentence. Do not output 
explanations or anything other than the formatted 
list. If there are no events in the sentence, output 
empty list [].

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 9: Illustration of the Stage-1 prompt utilized for
multi-event staged baseline.

You are an event extraction model, looking to 
extract event triggers for given events from a 
sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. Given the 
sentence and possible events, find corresponding 
event triggers for the event. Event triggers are 
usually one word, many times verbs, and most 
indicative of the event presence.
Here are 1 events that are possibly present in the 
sentence: ['infect’]
The event of interest is infect. The event is related to 
the process of a disease/pathogen invading host(s).
Below is a sentence. Identify the trigger word for the 
above listed events and output a list of tuples in the 
form [(\"event_type_1\", \"event_trigger_word_1\"), 
(\"event_type_2\", \"event_trigger_word_2\"), ...] for 
all the events mentions. Omit events which are not 
present or do not have a prominent trigger. Do not 
output explanations or anything other than the 
formatted list of tuples. If there are no events in the 
sentence, output empty list [].

Children can catch COVID - 19 .

System Prompt User Instructions User Query

Figure 10: Illustration of the Stage-2 prompt utilized for
multi-event staged baseline.
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You are an event extraction model, looking to 
extract event triggers for the given event from a 
sentence.

This is an event extraction task where the goal is to 
extract structured events from the text. Given the 
sentence and the event definition, find 
corresponding event triggers for the event. Event 
triggers are usually one word, many times verbs, 
and most indicative of the event presence.
The event of interest is infect. The event is related to 
the process of a disease/pathogen invading host(s).
Below is a sentence. Identify the trigger word for the 
above event of interest. Output a list in the form 
[\"trigger1\", \"trigger2\" ...] for all the events 
mentions. If the event is not present, output a 
empty list []. Do not output explanations or anything 
other than the output list.

Children can catch COVID - 19 .

System Prompt User Instructions User Query

Figure 11: Illustration of the prompt utilized for binary-
event direct baseline.

second stage is focused on the trigger-specific ones.1105

B.2.4 Binary-event Direct (BD)1106

Binary-event direct (BD) (Lyu et al., 2021; Li et al.,1107

2023c) has been a popular paradigm pre-dating1108

LLMs when smaller generative text-to-text mod-1109

els were used. It drastically reduces the LLM’s1110

constraints by making the LLM focus on a single1111

event type at a time, i.e., it prompts the LLM in a1112

multi-event direct manner, but for each event type1113

separately. Finally, the predictions are aggregated1114

and output as the final prediction. We provide an1115

illustration of the prompt in Figure 11. Overall,1116

this is a highly expensive method, especially for1117

larger event datasets.1118

B.2.5 Decompose-Enrich-Extract (DEE)1119

Decompose-Enrich-Extract (DEE) (Shiri et al.,1120

2024) is a variation of the multi-event direct (MD)1121

model, wherein it prompts the model to make pre-1122

dictions while enhancing the input schema. It also1123

puts down additional rules to make the extraction1124

more accurate, but we posit this also adds more1125

constraints, restricting the model’s reasoning. We1126

provide an illustration of the prompt for this base-1127

line in Figure 12.1128

B.2.6 GuidelineEE (GEE)1129

GuidelineEE (GEE) (Srivastava et al., 2025) is the1130

method focused on providing extensive guidelines1131

You are an event extraction model, looking to 
extract events from a sentence.

Task Description: You are an assistant that helps 
extract the list of event types and their trigger words 
from input text.
Extraction Rules:
- The instance can contain any number of events.
- Limit responses to event types and their triggers 

only.
- Refrain from providing additional explanations.
- Do not enumerate the list.
Event Type Definitions: The possible event types 
and their definitions are as follows:
Infect … Spread … 
…
Output Format: Output a list of events 
[{'event_type': <event_type_1>, 'trigger': 
<event_trigger_1>}, {'event_type': <event_type_2>, 
'trigger': <event_trigger_2>}, ...]. Each event 
contains an event type and its trigger.

People who live in crowded or poorer areas are 
more likely to test positive for Covid - 19 , according 
to a ( url ) study of infection in the general 
population ( url )

System Prompt User Instructions User Query

Figure 12: Illustration of the prompt utilized for
Decompose-Enrich-Extract baseline.

You are an event extraction model, looking to extract events 
from a sentence.

This is an event extraction task where the goal is to extract 
structured events from the text. A structured event contains 
an event trigger word and an event type. For each different 
event type, please output the instances of the corresponding 
classes with the appropriate trigger i.e. 
<Event_Name>(trigger='<Trigger_name>’)
#  The following lines describe the events as python classes:
@dataclass
class infect():
""" The event of interest is infect. The event is related to the 
process of a disease/pathogen invading host(s)."""
def __init__(self, trigger: str):
        self.trigger = trigger
…

# This is the text to analyze
text = “Children can catch COVID - 19 .”

System Prompt User Instructions User Query

# The list called result should contain the instances for the 
events in the above text according to the guidelines above 
(i.e. [ event_name1(trigger='trigger1'), 
event_name2(trigger='trigger2'), ...]):
result = 

Figure 13: Illustration of the prompt utilized for Guide-
lineEE baseline.
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to the LLM to improve its task understanding capa-1132

bility. This work is similar to Code4Struct (Wang1133

et al., 2023), wherein the input and output are more1134

code-oriented using Python class-like structures.1135

The definition is provided as a docstring, and the1136

trigger is extracted as an attribute of the class. The1137

output is mainly instantiations of the right set of1138

classes. We provide an illustration of the prompt1139

for this baseline in Figure 13.1140

B.2.7 ChatIE1141

ChatIE (Wei et al., 2023) is a simple variation of1142

multi-event staged (MS), but uses multi-turn con-1143

versation with the LLM. Specifically, stage-1 (Fig-1144

ure 9) is used as the initial prompt, and based on the1145

output, stage-2 (Figure 10) is used as the second1146

turn of the prompt.1147

B.2.8 GPT Runs1148

For the GPT models (i.e., GPT3.5-turbo, GPT4o,1149

O1-mini), we utilized Curator (Marten et al., 2025)1150

for the API calls. We noticed how the GPT models1151

are already super conservative in their predictions,1152

even when explicitly asked not to be. The Judge1153

component was indeed hurting model performance1154

by making the pipeline more conservative. Thus,1155

we removed the Judge from all runs of the GPT1156

LLMs.1157

C Additional Experimental Results1158

Here we provide additional and complementary1159

results to the ones discussed in the main paper.1160

C.1 Structured v/s Unstructured Output1161

In our work, we largely maintain the output to be1162

structured to ensure easy parsing and get stronger1163

model performance as noted in Wang et al. (2023).1164

To provide more evidence, we conducted a small1165

experiment with different output formats: (1) Struc-1166

tured JSON output (the base version that we have1167

currently) using a JSON list of tuples as the out-1168

put, (2) Structured text wherein we ask the LLM1169

to produce natural language text but in a structured1170

way, and (3) Free-form text and re-structuring (Tam1171

et al., 2024), wherein the LLM generates free-form1172

text in the first generation and later restructures into1173

JSON format using an additional LLM generation.1174

We provide an illustration of these output formats1175

in Figure 14.1176

We ablate these three output formats using the1177

Multi-event Direct (MD) prompt setting for the1178

Below is a sentence from which you need to extract the events if 
any. Only output a list of tuples in the form [(\"event_type_1\", 
\"event_trigger_word_1\"), (\"event_type_2\", 
\"event_trigger_word_2\"), ...] for each event in the sentence. Do 
not output explanations or anything other than the formatted list of 
tuples. If there are no events in the sentence, output empty list [].

Below is a sentence from which you need to extract the events if 
any. Output the event and trigger information as natural sentences 
like “The event <event_name> is triggered by the trigger <trigger>.” 
for each event type on a new line. Do not output explanations. If 
there are no events in the sentence, output “No events found.”.

Below is a sentence from which you need to extract the events if 
any. Output the event and trigger information in natural language 
as you wish. Do not output any explanations.

Structured JSON Structured Text Free-form & Restructuring

Below is the text from which you need to extract the structured 
event-related information. Only output a list of tuples in the form 
[(\"event_type_1\", \"event_trigger_word_1\"), (\"event_type_2\", 
\"event_trigger_word_2\"), ...] for each event in the sentence. Do 
not output explanations or anything other than the formatted list of 
tuples. If there are no events in the sentence, output empty list [].

Figure 14: Illustration of the prompts utilized for the
different output formats for ablating why the structured
output format is better.

Output Format TI TC EI

Structured JSON 35.6 22.4 30.1
Stuctured Text 14.9 11.0 31.8
Free-form & Restructuring 16.7 12.7 20.8

Table 9: Ablation Study on the ACE dataset using
Llama3-8B-Instruct, highlighting the significance of
utilizing structured JSON output compared to text out-
puts.

ACE dataset using Llama3-8B-Instruct. We pro- 1179

vide the results of the average of 3 runs in Table 9. 1180

As clearly evidenced, any kind of text-based output 1181

format is quite poor for TI and TC metrics, high- 1182

lighting the significance of JSON-based output. 1183

C.2 Complete Results for Transfer Learning 1184

Baselines 1185

We discussed and compared DICORE with exist- 1186

ing zero-shot cross-dataset transfer-learning ap- 1187

proaches in § 5.2. We provide complete results 1188

for each dataset in Table 12 for a deeper analysis. 1189

We exclude results for MAVEN and FewEvent for 1190

GOLLIE as the generations were degenerate and 1191

led to 0 F1 performance. Across the three settings 1192

of various source-target datasets, we see how our 1193

pure zero-shot DICORE consistently outperforms 1194

all the fine-tuned transfer learning baselines by a 1195

considerable margin. In fact, DICORE, based on 1196

the smaller Llama3-8B-Instruct LLM is stronger 1197

than most of these transfer-learning baselines. This 1198

highlights the superior zero-shot generalization of 1199
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LLM Prompt Style Avg. Words

Llama3-8B MD + CoT 36.8
MS + CoT 82.4

Llama3-70B MD + CoT 87.4
MS + CoT 107.9

Qwen2.5-72B MD + CoT 96.3
MS + CoT 184.4

DS-Qwen-32B MD 247.8
MS 525.5

DS-L3-70B MD 258.9
MS 484.4

Llama3-8B DICORE 11.6
Llama3-70B DICORE 6.6
Qwen2.5-72B DICORE 5.1

Table 10: Efficiency analysis in terms of average number
of words per query (Avg. Words) of DICORE with other
reasoning-based baselines on the ACE dataset.

our proposed method.1200

C.3 Complete Results for Reasoning Baselines1201

In § 5.3, we discuss and compare DICORE with1202

reasoning-based approaches and models. Here, we1203

provide complete results of that comparison across1204

datasets in Table 14. In comparison to the non-1205

CoT numbers, we note how CoT provides gains1206

for the baseline models, and larger gains for the1207

larger LLMs. This indicates how reasoning im-1208

proves model performance, but also requires more1209

parameters and longer context handling. Thinking-1210

based models somehow show poorer performance1211

compared to CoT, and our observations align with1212

Li et al. (2025). Next, we show how the base non-1213

CoT performance of DICORE is better than the1214

CoT-based baselines. This can also be seen when1215

comparing thinking-based model baselines. This1216

strongly indicates how the strong inductive bias of1217

DICORE beats the reasoning-based improvements.1218

Additionally, we also infuse reasoning with DI-1219

CORE, specifically only in the Grounder stage.1220

Reasoning in the Dreamer stage makes the model1221

more conservative and harms the divergent reason-1222

ing we want to encourage. We note how this addi-1223

tional reasoning provides further improvements of1224

up to 1-2% F1 over the base DICORE performance.1225

Efficiency analysis: Apart from performance,1226

we also analyze the effectiveness in terms of ef-1227

ficiency of the various methods. We measure effi-1228

ciency by the average number of output words gen-1229

erated per query (which should be equivalent to the1230

average number of output tokens). We provide this1231

comparison for the different methods and LLMs1232

for the ACE dataset in Table 10. As evident, CoT1233

Component/LLM EI
P R F

Llama3-8B-Instruct

Dreamer 0.0 0.0 0.0
+ Grounder 19.1 45.6 26.9
+ FSM Decoding 21.1 54.9 32.3
+ Judge 49.5 46.5 47.9

MD Baseline 40.5 23.9 30.1
MS Baseline 18.9 29.6 23.1

Llama3-70B-Instruct

Dreamer 0.0 0.0 0.0
+ Grounder 25.4 61.5 36.0
+ FSM Decoding 29.1 60.1 39.2
+ Judge 50.8 60.1 55.1

MD Baseline 51.2 43.2 46.8
MS Baseline 62.5 37.5 46.9

Table 11: Ablation Study using Trigger Identification
(TI) on the ACE dataset highlighting the significance
and contribution of each component of DICORE. P:
Precision, R: Recall, F: F1 score.

and thinking-based models expend a large amount 1234

of tokens on token-based reasoning, which is zero 1235

in the case of DICORE. On average, DICORE re- 1236

duces the output words by 15x compared to CoT 1237

and by up to 55x compared to the thinking-based 1238

models. This highlights the practical utility of DI- 1239

CORE where it can provide higher performance at 1240

vastly reduced token generation cost. 1241

C.4 Additional results for Ablation Study 1242

We provided an ablation study for DICORE’s com- 1243

ponents in § 5.4. Here we provide additional re- 1244

sults for the same study, specifically for the Event 1245

Identification (EI) evaluation metric in Table 11. 1246

We conclude observations similar to those noted in 1247

the main paper, highlighting how DICORE helps 1248

increase the recall without much decreasing the pre- 1249

cision of the model. Dreamer has a 0% score since 1250

the event names are free-form text generations in 1251

this stage. 1252

D Broader Qualitative Study 1253

We provided a brief qualitative study eliciting some 1254

common errors of previous baselines and how 1255

DICOREfixes them in § 5.4. Here, we provide 1256

some more examples to highlight the various er- 1257

rors made by previous baselines in Table 13. Next, 1258

we also show some more examples to elicit the 1259

internal component-wise predictions of DICORE 1260

in Table 15. Overall, these examples demonstrate 1261

the utility of the divergent-convergent reasoning 1262
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LM/LLM Prompt MAVEN (168) FewEvent (100) ACE (33) GENIA (9) SPEED (7) CASIE (5) Average
Style TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI

Trained on ACE data* → Tested on other datasets

BART-large DEGREE 29.4 11.0 13.8 42.6 22.5 27.2 - - - 5.1 3.5 11.6 23.4 16.2 26.7 3.8 2.0 27.0 20.9 11.0 21.3
Llama3-8B DICORE 53.5 14.4 17.4 26.1 15.7 25.0 - - - 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 31.9 17.2 34.7
Llama3-70B DICORE 62.5 27.8 30.6 40.4 25.1 36.1 - - - 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 40.8 27.4 46.7
GPT4o DICORE 58.5 32.2 35.6 36.1 28.4 38.5 - - - 40.7 35.4 51.2 43.3 37.3 46.1 16.7 16.7 58.8 39.1 30.0 46.0

Trained on MAVEN data* → Tested on other datasets

BART-large DEGREE - - - 31.1 18.7 25.0 43.3 36.6 38.2 33.9 27.6 46.2 44.8 37.1 44.8 6.1 5.2 38.6 31.8 25.0 38.6
Llama3-8B DICORE - - - 26.1 15.7 25.0 40.3 36.3 47.9 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 29.2 21.6 40.8
Llama3-70B DICORE - - - 40.4 25.1 36.1 57.2 49.5 55.1 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 39.7 31.7 51.6
GPT4o DICORE - - - 36.1 28.4 38.5 54.9 54.9 56.6 40.7 35.4 51.2 43.3 37.3 46.1 16.7 16.7 58.8 38.3 34.5 50.2

Trained on ACE data* → Tested on GENIA, SPEED, CASIE

GOLLIE-7B GOLLIE - - - - - - - - - 3.2 2.2 7.1 12.6 11.6 24.3 2.1 2.1 14.4 6.0 5.3 15.3
GOLLIE-34B GOLLIE - - - - - - - - - 26.5 22.8 40.4 15.9 10.9 19.1 4.5 1.5 28.6 15.6 11.7 29.4
Llama3-8B DICORE - - - - - - - - - 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 26.6 18.6 43.7
Llama3-70B DICORE - - - - - - - - - 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 33.6 28.0 55.6
GPT4o DICORE - - - - - - - - - 40.7 35.4 51.2 43.3 37.3 46.1 16.7 16.7 58.8 33.6 29.8 52.0

Table 12: Complete results for comparison of DICORE with other fine-tuned transfer-learning approaches for
zero-shot ED. *Training done for models other than DICORE. DICORE results are pure zero-shot, i.e., without any
training. "-" indicates training data or where results were degenerate. (XX) = number of distinct event types.

paradigm for ED.1263

Sentence Baseline Prediction

Precision Errors

In the near future we will be
expanding this to include all
the other organizations that we
can contact, but we are just
keeping things safe for now.

[("Phone-Write",
"contact")]

The Holocaust of the Jews
and Zigeuner was motivated
by racial prejudices.

[("Attack", "Holo-
caust")]

My friend, an ER physician
has said over 70% of people
who test positive for covid
NEVER have a fever.

[("symptom",
"fever")]

On 4 April 2013, a build-
ing collapsed on tribal land in
Mumbra.

[("Destroying", "col-
lapsed")]

Recall Errors

Pasko was released in January
for good behavior after serv-
ing more than two-thirds of the
sentence.

[("Release-Parole",
"released")]
Missed: ("Sentence",
"sentence")

People who live in crowded or
poorer areas are more likely to
test positive for Covid - 19

[]
Missed: ("infect",
"positive")

WOW debuted on January 18
as part of AXS’s Friday Night
Fights schedule

[]
Missed: ("Pro-
cess_start", "de-
buted")

He is got it pretty easy Id
say even with the international
travel

[]
Missed: ("Transport-
person", "travel")

Table 13: Qualitative examples highlighting the various
errors by zero-shot LLM baselines. We highlight the
correct predictions in green and incorrect ones in red.
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LLM Prompt MAVEN (168) FewEvent (100) ACE (33) GENIA (9) SPEED (7) CASIE (5) Average
Style TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI TI TC EI

Chain-of-thought

Llama3-8B

MD 45.9 2.8 4.0 25.2 9.5 15.2 35.6 22.4 30.1 22.8 15.3 25.4 34.9 27.8 42.4 10.3 8.8 47.9 29.1 14.4 27.5
+ CoT 35.4 3.2 4.8 15.4 6.8 13.8 30.6 18.7 27.6 24.3 15.9 26.9 34.6 27.8 42.1 9.8 8.7 47.1 25.0 13.5 27.1

MS 46.2 10.3 11.2 20.2 10.2 17.0 26.7 17.6 23.1 27.6 19.7 30.5 34.1 27.3 40.6 11.9 10.3 48.3 27.8 15.9 28.4
+ CoT 35.9 7.2 8.2 20.5 11.1 19.3 34.3 23.4 32.9 27.2 20.1 29.6 39.4 31.9 46.6 13.1 12.2 54.8 28.4 17.6 31.9

DICORE 53.5 14.4 17.4 26.1 15.7 25.0 40.3 36.3 47.9 25.8 15.4 30.0 35.5 23.6 42.4 18.5 16.8 58.8 33.3 20.4 36.9
+ CoT 53.6 15.5 17.9 27.5 15.4 24.7 39.8 36.6 45.0 25.8 16.4 31.9 35.1 26.6 41.5 16.7 15.9 56.0 33.1 21.1 36.2

Llama3-70B

MD 63.5 14.2 14.7 34.0 20.9 32.6 51.2 40.2 46.8 36.8 28.9 43.0 45.4 36.8 49.0 13.9 13.7 64.4 40.8 25.8 41.8
+ CoT 56.0 29.4 32.5 37.1 25.3 37.2 54.9 48.5 57.1 35.4 28.2 45.5 47.1 39.5 50.3 15.7 14.8 65.4 41.0 30.9 48.0

MS 33.9 21.6 22.3 35.3 24.9 39.9 49.9 42.8 46.9 37.4 31.0 45.0 43.8 35.5 49.6 14.0 14.0 59.5 35.7 28.3 43.9
+ CoT 55.7 29.5 32.6 34.9 25.4 38.6 56.1 51.3 56.5 31.8 26.4 37.7 49.7 42.5 56.6 14.8 14.6 60.6 40.5 31.6 47.1

DICORE 62.5 27.8 30.6 40.4 25.1 36.1 57.2 49.5 55.1 38.6 31.0 48.5 45.0 36.5 51.8 17.3 16.6 66.6 43.5 32.8 48.1
+ CoT 61.2 34.1 36.4 40.9 27.3 37.5 55.4 51.7 58.5 37.9 31.7 48.1 44.3 36.5 50.8 18.0 17.4 67.1 43.0 33.1 49.8

Qwen2.5-72B

MD 49.4 21.6 24.1 17.0 12.3 21.0 28.8 25.8 30.3 30.5 27.0 36.3 41.4 37.4 45.4 11.0 10.4 57.9 29.7 22.4 35.8
+ CoT 54.0 27.9 33.8 26.7 20.5 33.3 46.1 41.6 47.3 29.5 26.1 38.9 42.6 36.8 48.1 10.3 9.9 60.0 34.9 27.1 43.6

MS 39.9 23.6 25.4 25.0 21.0 34.2 42.5 40.4 42.5 26.7 23.6 34.1 40.6 35.5 45.2 10.5 10.5 49.1 30.9 25.8 38.4
+ CoT 54.2 28.0 31.1 28.3 21.5 33.6 48.5 46.3 48.9 30.7 26.5 38.7 44.9 39.7 47.9 10.6 10.6 44.5 36.2 28.8 40.8

DICORE 54.1 27.5 30.2 30.8 22.3 32.9 46.8 44.8 47.8 33.6 29.8 43.9 40.6 34.7 41.4 15.9 15.8 59.3 37.0 29.2 42.6
+ CoT 54.2 29.7 33.8 31.7 23.5 35.5 45.4 42.2 45.4 34.2 29.2 43.6 40.5 34.6 44.8 16.8 16.7 60.0 37.1 29.3 43.8

Thinking-based models

DS-Qwen-32B
MD 55.3 26.7 30.1 34.0 23.7 36.8 56.3 51.8 60.2 33.2 27.5 41.2 45.5 39.0 54.5 11.1 11.1 54.9 39.2 30.0 46.3
MS 55.0 25.8 29.6 33.8 23.3 38.5 50.6 48.9 59.6 30.5 25.0 36.6 52.7 44.7 54.7 14.6 14.6 51.9 39.5 30.4 45.2
DICORE 60.1 30.2 32.6 38.5 26.1 36.8 56.3 53.9 60.5 36.3 30.4 47.6 48.6 41.1 55.2 18.5 17.8 64.4 43.1 33.3 49.5

DS-L3-70B
MD 48.3 31.2 32.5 13.7 9.6 17.3 31.5 27.8 34.5 24.5 21.6 31.9 45.3 38.9 50.6 10.5 10.5 50.0 29.0 23.3 36.1
MS 50.3 28.3 31.3 23.9 18.5 28.3 36.8 33.7 38.0 27.8 24.6 35.3 48.2 44.2 49.2 12.6 12.6 44.7 33.3 27.0 37.8
DICORE 59.5 34.7 37.2 36.2 25.9 35.0 53.0 51.3 55.8 32.3 28.6 42.7 49.3 39.8 53.4 18.0 17.9 65.9 41.4 33.0 48.3

O1-mini MD 59.1 32.8 35.7 36.8 28.0 40.3 53.9 48.5 53.0 35.8 33.7 43.8 44.2 40.2 48.1 11.5 11.5 47.5 40.2 32.5 44.7

Table 14: Complete results for comparison of DICORE with reasoning approaches like Chain-of-thought (CoT) and
thinking-based models for zero-shot ED. bold = best performance. (XX) = number of distinct event types.

Sentence Dreamer Grounder Judge
Prediction Prediction Prediction

Police also arrested two Moroc-
can men suspected of traffick-
ing in human beings and nav-
igating the Zodiac boat across
from Africa, Efe said.

[("arrest", "arrested"),
("trafficking", "trafficking"),
("navigating", "navigating"),
("said", "said")]

[("Arrest-Jail", "arrested"),
("Charge-Indict", "traffick-
ing")]

[("Arrest-Jail", "ar-
rested")]

Only 4 men have competed
without eliminating a single
opponent Fire, Mini Maximo,
Sombrita and Stukita.

[("compete", "competed"),
("eliminate", "eliminating")]

[("Competition", "com-
peted")]

[("Competition",
"competed")]

Weird as hell: the Covid-19 pa-
tients who have symptoms for
months | Coronavirus outbreak |
The Guardian (url)

[("Disease_Spread", "out-
break"), ("Infection", "pa-
tients"), ("Symptom_Show",
"symptoms")]

[("symptom", "symptoms"),
("spread", "outbreak")]

[("symptom", "symp-
toms"), ("spread",
"outbreak")]

The time he has spent inside
roughly equates to 2 years per
woman he killed

[("Kill", "killed"), ("Spend",
"spent"), ("Equate",
"equates")]

[("Life.Die", "killed")] [("Life.Die",
"killed")]

Table 15: Qualitative examples eliciting DICORE’s predictions per component for various input sentences. We
highlight the correct predictions in green and incorrect ones in red.
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