
Federated Learning for Predicting the Next Node in
Action Flows

Daniel Lopes
Instituto Superior Técnico, Universidade de Lisboa

daniel.f.lopes@tecnico.ulisboa.pt

João Nadkarni
OutSystems

joao.nadkarni@outsystems.com

Filipe Assunção
OutSystems

filipe.assuncao@outsystems.com

Miguel Lopes
OutSystems

miguel.gomes.lopes@outsystems.com

Luís Rodrigues
INESC-ID, Instituto Superior Técnico, Universidade de Lisboa

ler@tecnico.ulisboa.pt

Abstract

Federated learning is a machine learning approach that allows different clients to
collaboratively train a common model without sharing their data sets. Since clients
have different data and classify data differently, there is a trade-off between the
generality of the common model and the personalization of the classification results.
Current approaches rely on using a combination of a global model, common to all
clients, and multiple local models, that support personalization. In this paper, we
report the results of a study, where we have applied some of these approaches to a
concrete use case, namely the Service Studio platform from OUTSYSTEMS, where
Graph Neural Networks help programmers in the development of applications. Our
results show that the amount of data points of each client affects the personalization
strategy and that there is no optimal strategy that fits all clients.

1 Introduction

In this paper, we experimentally evaluate the performance of different personalization strategies
when Federated Learning (FL) is used to improve the productivity of the users of the Service Studio
platform developed by OUTSYSTEMS1. This platform, among other functionalities, allows the
creation of action flows, that is, sequences of actions that define the application logic. Each action
has one of several types, for example, it can be of the type “assign" (assigns a value to a variable),
“for" (performs a cycle of actions), “if" (conditional execution), and so on. In this context, Machine
Learning (ML) techniques are used to suggest to the user which action or actions can be added to
a given action flow. Specifically, in this service the suggestions presented to the programmer are
obtained from a model based in Graph Neural Networks (GNNs).

Our goal is to have a better understanding of how the model used to make recommendations to a given
client should be constructed: considering the client’s own data (local model), considering data from
several clients, which can be aggregated centrally (centralized model), or combined in a federated

1OUTSYSTEMS specializes in the development of a platform that enables visual programming which is used
by thousands of clients
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way using one of different personalization strategies. Each of these approaches has its advantages
and disadvantages when considering the quality of the recommendations provided.

Table 1: Comparison between model accuracies for different clients.

Number of
Action Flows

Accuracy (%)
Local Model

Accuracy (%)
Centralized Model

Client A 47,711 75.41 65.79
Client B 60 24.14 58.62

Table 1 highlights the advantages and disadvantages, in terms of the quality of the recommendations,
of the usage of local models in relation to the usage of a single global model, calculated from the
data of about 800 clients, resorting to two distinct clients. Client A has a long usage history of the
platform, therefore, it already has a large data set. As such, we have enough data points to construct a
local model which offers great accuracy and is specialized to its business model. For this client, the
usage of a centralized model does not amount to any benefits, on the contrary, it leads to some loss
of specialization. On the other hand, client B is relatively new to the platform, thus it has generated
a small data set. This client clearly benefits from the usage of a centralized model. One way of
avoiding this dichotomy is to resort to federated models with hybrid characteristics, that is, which
are composed of a shared global part and a local part, which is specialized to each client. Currently,
OUTSYSTEMS utilizes a model trained in a centralized environment. The goal of this study is to
explore the viability of using an approach based on personalized federation to generate ML models
for the OUTSYSTEMS use case which are able to maintain or improve the performance (measured in
accuracy) of local and centralized models while ensuring client data privacy.

In the literature, there are several proposals of these personalized federated models which try to
combine the advantages of both local and global models. However, these models have been proposed
and evaluated in completely different domains such as natural language and image classification. As
far as we are aware, there is no comparative study of these proposals of model personalization for
models based on GNNs. Furthermore, previous work about federated models on GNNs focused only
on the privacy of the client data[10]. Our work shows that for this use case, federated models can
achieve performances very similar to the centralized model for smaller clients and to the local models
for clients with a larger data set. Thus, federated approaches might be considered as an alternative to
these models when it is necessary to use private and sensitive data.

2 Context

2.1 Action Flows

Service Studio platform allows its users to develop applications in a simple way, without coding,
through the creation of action flows. The user simply needs to add actions of several types (each type
has its corresponding functionality) and connect the actions in order to create a flow that represents
the application logic.

Each action flow is represented by a directed graph. The nodes of the graph represent the actions and
are connected by directed edges which represent the flow between two actions. Each node has its
own attributes, for instance, the attribute “kind” which can be of one of several categories, such as,
“if”, “assign”, “for”, among others. The edges can also have attributes, for example, for a “switch”
action, each edge contains an attribute that indicates the condition of the flow. In an action flow, there
cannot be self-loops and there cannot be multiple edges between two nodes. Each flow also needs to
have a node of the kind “start”, where the flow begins, and it can end in nodes of the kind “end” or
“raise exception”, which cannot have outgoing edges.

Figure 1 shows an example of an OUTSYSTEMS Action Flow for splitting a string formatted in a
given naming convention. The flow leverages a “switch” action to select the initial string naming
convention format, either snake case (condition 1) or pascal case (condition 2), otherwise, it raises
an exception. For the snake case, it first uses a “server action”, which runs logic on the server, to
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Figure 1: Action flow to split a string in a naming convention.

split the string by “_” and sets the output with an “assign” action. For example, for the input string
“federated_learning” and the snake case naming convention, this flow outputs “Federated Learning”.
For the pascal case, first a “server action” is performed to split the string by capital letters and then
the output is set. For example, from “FederatedLearning” we would obtain “Federated Learning”.

2.2 Graph Neural Networks

As mentioned previously, each action flow is represented by a directed graph. GNNs allow the
development of models capable of performing predictions on graphs. In the case of OUTSYSTEMS,
the end goal of the model is to predict, from a finite set of kinds, the kind of one of the graph’s nodes,
marked as the target node. This task is classified as a node classification task. The prediction made is
used by the platform to recommend possible next actions to the user. The Neural Network used by
OUTSYSTEMS is based on the Message Passing architecture proposed by Battaglia et al. [1].

3 Studied Algorithms

3.1 Federated Learning

In its simplest form, the creation of ML models assumes that all the data of the clients is shared
during the training phase. FL allows different clients to collaborate so as to construct a shared model
without the need to share their private data, therefore preserving data privacy.

The most common approach to achieve FL consists in using a central server to orchestrate the
coordination among clients. This architecture is described by Bonawitz et al. [3]. The protocol
proceeds in rounds of communication where, in each round, the server selects a set of clients to
participate. When the round starts, the server sends the parameters of the current global model to
each participant. Afterwards, each participant independently trains the model received, using its own
data set, obtaining a local model. The client then sends an update back to the server which reflects
the changes that have been locally applied to the global model. Finally, the central server collects the
updates from different clients, performs a weighted aggregation considering the size of each client’s
training data set, and uses the resulting global update to derive the new global model to be used in the
following round. This aggregation method is defined as “Federated Averaging” (FedAvg) [8].

It is possible to define different FL categories, according to the way the data is partitioned, the way
clients communicate and the scale of federation [5, 6, 11]. In this work, we consider a horizontally
partitioned environment, with a centralized architecture and “cross-silo” federation, where the clients
are the organizations using the Service Studio platform.

3.2 Personalized Federated Learning

FL introduces several challenges in different areas, including privacy of client data, robustness against
attacks during the model training phase, communication efficiency and model performance. In this
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Figure 2: Models according to the algorithms LG-FedAvg and FedRep.

paper, we focus on the challenge of maximizing the performance of the model. This typically involves
using mechanisms of model personalization [9]. Namely, the necessity of creating specific models
for each client, which may include global components (which benefit from the contribution of all the
clients) and specialized components (adjusted to the data set of each client).

Concretely, we focus on algorithms based on the parameter decoupling technique, which divides
the model into two parts, the representation or “body” and the classifier or “head”. The body is
composed of the first layers of the model and is responsible for extracting the data features, the head
is composed of the last layers of the model and is responsible for classifying the data from its features.
Depending on the algorithm one of the parts is global and the other is local and specialized to each
client. Clients can train both parts but the updates exchanged with the server correspond only to
the global part. Two relevant examples of these approaches are “Local Global Federated Averaging”
(LG-FedAvg) [7] and “Federated Representation Learning” (FedRep) [4]. We provide in the next
paragraphs a brief description of these algorithms.

LG-FedAvg is an algorithm based on the parameter decoupling technique. In the specific case of this
algorithm, the classifier is shared with the server and the representation is specialized for each client.
Thus, this algorithm personalizes the body such that it can extract the features of the data for each
client and shares the head in order to obtain a classifier that works for every client. Therefore, after
receiving the head of the model from the server, the client associates its local body to obtain the local
model which is, afterwards, trained in a joint way, that is, performing a sequence of local epochs and
updating both the head and the body simultaneously. After training, the client sends to the server the
updates referring to the head. Figure 2a illustrates the training procedure and the role of each model
part.

FedRep is an algorithm which takes a different approach to the LG-FedAvg algorithm. The authors of
the algorithm argue that results from centralized ML indicate that data shares a common representation
of its features and that the heterogeneity resides in the classifications. Therefore, the representation
is shared with the server and the classifier is specialized for each client. By sharing the body, the
algorithm tries to obtain a global representation for all the clients while keeping the head local
allows for the classifications to be specialized. Another difference between FedRep and LG-FedAvg
resides in the way the training is performed. While in LG-FedAvg the body and the head are updated
simultaneously and the for the same number of rounds, in FedRep the head is fully trained first and
only afterwards is the body trained, furthermore, the number of training rounds between the head and
the body may differ. Figure 2b illustrates the training procedure of the algorithm FedRep.

3.3 Comparison

Analyzing both algorithms, we can verify that as mentioned previously they take different approaches
when it comes to the part of the model that is shared or personalized. In the case of LG-FedAvg, the
objective is to allow for each client to have its own type of data, for instance, one client can have
images while the other can have text. For that to happen, it needs the representation of the model to
be personalized to each client so that it can extract the features of the data. The classifier is shared
globally such that a classifier which works well for all clients can be obtained. However, a classifier
that works for all clients does not mean it is the best for each one of the clients.

In terms of the FedRep algorithm, the objective is to find a representation which is common to every
client, since the authors argue that centralized ML studies have shown that the data shares the same
representation, only the classification is variable, for example, an image of a dog is represented
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equally in two clients, however, one client can classify the dog as ugly while another can classify it
as beautiful. Thus, the body is shared with the server and the head is personalized and kept locally.

When it comes to the training procedure, the algorithm LG-FedAvg trains both the head and the
body simultaneously and for the same number of rounds, similarly to FedAvg. On the other hand, in
the FedRep algorithm, the head is fully trained first and only then the body is trained with the head
already specialized and both can be trained for a different number of rounds. The algorithm FedRep
is, therefore, more flexible since it allows the parts of the model to be trained for a different number
of rounds, which can be useful when we want to personalize the head further by performing more
training rounds than the body, which is not possible in the LG-FedAvg algorithm.

4 Experimental Study

4.1 Experimental Setup

In order to evaluate each one of the federated algorithms, we have implemented both LG-FedAvg
and FedRep algorithms using the Flower [2] framework (under the Apache License 2.0)2. We have
used a proprietary dataset from OUTSYSTEMS consisting of the code developed by 881 clients. From
this data set we selected 33 clients to be used in the study. Each client maintains the data relative
to one organization which uses the Service Studio platform, that is, it keeps all the action flows of
that organization. The data set splits were calculated in a per-client basis considering the following
fractions: 0.8% for the train data set; 0.1% for the validation data set and; 0.1% for the test data set.

The 33 clients have been selected as follows: The clients were partitioned according to their number
of action flows. The first partition includes all the clients with less than 64 flows and all the following
partitions increase exponentially in size by a factor of 2, creating 11 partitions in total. Afterwards, 3
clients were randomly selected from each partition. Appendix A provides some statistics regarding
the number of data points of the selected clients.

The evaluation was performed in the AWS cloud, where each client was run on a separate t3.xlarge
instance. For the federated algorithms, 30 communication rounds were performed and for each
one all the 33 clients participated in both training and testing, that is, there was no client selection
since in the case of OUTSYSTEMS we assume no communication or hardware restrictions. In
the case of the FedAvg and LG-FedAvg algorithms, a single local raining round was performed
(the same number of local rounds used in the experimental evaluations of the LG-FedAvg [7] and
FedRep [4] algorithms). For the FedRep algorithm, one local training round for the body (as used
in the experimental evaluation of the FedRep [4] algorithm) and one for the head (since we wanted
the head to have the same train conditions of the body) were performed. The local models were
obtained using the data of each one of the 33 clients and the centralized model using the data of
all the 33 clients in a single instance. Appendix C contains the used model parameters which were
determined by an empirical evaluation previously performed by OUTSYSTEMS. Appendix D contains
the experimental hyperparameters.

4.2 Model Accuracy

Since the data set is balanced (Appendix B contains the statistics on the distribution of classes for
the 33 selected clients), the performance of the obtained models was evaluated using the accuracy
of the models in each client’s test data set, that is, the percentage of correct predictions over the
total predictions. In the analysis of the results we split the clients into three groups, according to the
percentiles of the number of data points of the 881 total clients: clients with a small number of data
points (until 25% percentile, that is, 5300 data points); clients with an intermediate number of data
points (between percentiles 25% and 75%, that is, between 5300 and 31700 data points) and; clients

2The implemented code is available in the following GitHub repository: github.com/OS-
danielfranciscolopes/FL-Personalization
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Figure 3: Accuracy of the various models for clients of different sizes.

with a big number of data points (above 75% percentile, that is, above 31700 data points). Figure 3
contains the graphs of the evolution of the accuracy by round and algorithm for each one of the client
groups.

4.2.1 Performance for Small Clients

Figure 3a shows the evolution of the average accuracy for the small clients throughout the train-
ing/communication rounds for each one of the models and algorithms. In terms of the federated
models, we can see that the FedAvg algorithm is the one which obtains better accuracy, followed by
the FedRep algorithm, meaning that personalizing the head is preferable to personalizing the body.
The LG-FedAvg algorithm achieves the worst performance, a fact that can be justified by the few data
points of the clients which do not allow for proper personalization of the body.

We can also observe that the centralized model is the one which achieves the highest accuracy (about
0.5% higher than FedAvg’s highest accuracy). However, its results are very similar to the ones of the
FedAvg algorithm, even achieving worse accuracy than FedAvg in a considerable number of rounds.
Lastly, we see that the local models are far inferior to both the centralized model and the FedAvg and
FedRep algorithms, which shows the importance of client collaboration when clients have a small
amount of data.

4.2.2 Performance for Intermediate Clients

Figure 3b illustrates the evolution of the average test accuracy for the clients with an intermediate
number of data points. We can see greater proximity between the accuracies of the three federated
algorithms. Furthermore, the personalization algorithms are superior to FedAvg, in particular, the
LG-FedAvg algorithm has the best accuracy, meaning that for clients with more data personalizing the
body of the model is best since the greater amount of data allows for better personalization. Finally,
LG-FedAvg is the only federated algorithm with similar accuracy to the local models (even achieving
about 0,5% superior accuracy in some of the later rounds), and superior accuracy to the centralized
model (about 4% to 6% in accuracy).
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4.2.3 Performance for Big Clients

Figure 3c illustrates the evolution of the average accuracy for big clients. In this case, we can see
a tendency similar to the one of the intermediate clients, where the personalization algorithms are
superior to the FedAvg algorithm. Similarly, the LG-FedAvg algorithm is far superior to the FedRep
algorithm and reaches an accuracy which is similar to the one of the local model (in some of the later
rounds, LG-FedAvg is superior by 0.1% to 0.2% in accuracy) and superior to the centralized model
(difference of 7% to 8.5%).

4.3 Discussion

From the obtained results we can conclude that there is no strategy that is better than the others for
all types of clients. For clients with few data points, collaboration on the full model is preferable,
since the low amount of data makes personalization ineffective. The FedAvg algorithm, which trains
the whole model collaboratively, obtains results very close to those of the centralized model, being
superior in a considerable amount of rounds. Hence, it can be an alternative to the centralized model
because it allows collaboration without sharing the clients’ data (contrary to the centralized model).

As the number of data points increases (intermediate and big clients) the data becomes specific and
in sufficient quantity to train, individual client models. Therefore, the centralized model becomes
inferior to local models and personalization models are superior alternatives to the FedAvg algorithm.
Also, the personalization of the body offers greater results than that of the head and actually, in
some of the later rounds, slightly superior to local models by about 0.1% to 0.2% in accuracy, which
indicates that the collaboration on the head might help these larger clients classify some data points
which are more general and less specific to the client and that the local model fails to classify correctly.
As such, we can conclude that for these clients, personalizing the representation is preferable to
personalizing the classifier, which is somewhat surprising, since the literature mentions that it is
expected for the heterogeneity to reside in the classifier and not in the representation.

In environments where data privacy is a requirement, the development of a hybrid approach between
the FedAvg algorithm (for smaller clients) and the LG-FedAvg algorithm (for bigger clients) would
allow bigger clients to collaborate in the construction of a federated model which would benefit the
smaller clients without sharing their data and without needing to develop two models (one federated
and one local), while also receiving a small boost in model performance.

5 Conclusions

The Service Studio platform developed by OUTSYSTEMS leverages GNNs in order to recommend
possible next actions that the users might want to add to an action flow. In this paper, we presented the
results of an experimental study, performed with the intent of assessing the possibility of substituting
the current centralized model for federated algorithms which allow the creation of personalized
models for each client, since the quantity of data of each client influences the performance of the
algorithm. Therefore, the development of a mechanism which can combine the FedAvg algorithm
(which reaches results very similar to the centralized model for smaller clients) with the LG-FedAvg
algorithm (which by personalizing the body can reach similar results to the ones obtained using local
models and greatly superior to the centralized model, for clients with more data) can allow for a
good compromise between accuracy and data privacy. In the future, we intend to extend the study to
more algorithms based on the parameter decoupling technique, possibly even considering algorithms
where the model division is not restricted to only two parts (body and head). We also intend to test
different personalization techniques, for instance, clustering; to evaluate the performance in a more
complex problem with more possible classifications in order to see how each algorithm behaves with
a more complex model and; to test how different hyperparameters influence the performance of each
algorithm, such as the fraction of clients selected per communication round and the number of local
training rounds.
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A Experimental Clients Statistics

Table 2: Statistics of the number of data points of the 33 selected clients

min max mean median var std-dev Percentile
25 75 90 95 99

80 374,860 57,855 10,175 9,006,809,135 94,904 1,003 77,790 182,641 266,686 346,235

B Class Distribution

Table 3: Class distribution of the 33 selected clients.

Class Name Mean (%) Std-dev (%)
Nodes.AjaxRefresh 2.86 2.92
Nodes.Assign 18.33 4.56
Nodes.AttachEmailContent 0.01 0.03
Nodes.Comment 0.00 0.00
Nodes.DataSet 5.58 2.66
Nodes.Download 0.24 0.24
Nodes.End 22.93 3.18
Nodes.ErrorHandler 0.00 0.00
Nodes.ExcelToRecordList 0.28 0.46
Nodes.ExecuteAction 15.65 5.27
Nodes.ForEach 2.07 1.04
Nodes.If 10.77 2.28
Nodes.JSONDeserialize 0.13 0.18
Nodes.JSONSerialize 0.23 0.36
Nodes.Outcome 0.14 0.30
Nodes.RaiseError 0.77 1.36
Nodes.RecordListToExcel 0.13 0.16
Nodes.RefreshQuery 2.29 1.59
Nodes.SendEmail 0.10 0.15
Nodes.Start 0.00 0.00
Nodes.Switch 0.38 0.37
Nodes.WebDestination 3.64 2.86
NRNodes.ExecuteClientAction 6.14 7.02
NRNodes.FeedbackMessage 5.60 2.74
NRNodes.JavascriptNode 0.98 1.15
NRNodes.TriggerEvent 0.75 0.93

C Experimental Model Parameters

Table 4: Experimental Model Parameters

Parameter Value
GNN type FullGN

Input Dim [x, edge_attr, u] [117, 18, 163]
GN Layer Output dim 90

Number of GNN Layers 6
Share Layers Yes

Layer Normalization Yes
Output Dim 27

Activation Function ReLu
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D Experimental Hyperparameters

Table 5: Experimental Hyperparameters

Model Parameter Value

Centralized /
Local

Loss Cross Entropy
Batch Size 128
Optimizer SGD

Learning Rate 0.001
Training Epochs 30

FedAvg /
LG-FedAvg

Loss Cross Entropy
Batch Size 128
Optimizer SGD

Learning Rate 0.001
Communication Rounds 30
Local Training Epochs 1

FedRep

Loss Cross Entropy
Batch Size 128
Optimizer SGD

Learning Rate 0.001
Communication Rounds 30
Head Training Epochs 1
Body Training Epochs 1
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