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ABSTRACT

The natural gradient is a powerful method to improve the transient dynamics of
learning by considering the geometric structure of the parameter space. Many
natural gradient methods have been developed with regards to Kullback-Leibler
(KL) divergence and its Fisher metric, but the framework of natural gradient can
be essentially extended to other divergences. In this study, we focus on score
matching, which is an alternative to maximum likelihood learning for unnormal-
ized statistical models, and introduce its Riemannian metric. By using the score
matching metric, we derive an adaptive natural gradient algorithm that does not re-
quire computationally demanding inversion of the metric. Experimental results in
a multi-layer neural network model demonstrate that the proposed method avoids
the plateau phenomenon and accelerates the convergence of learning compared to
the conventional stochastic gradient descent method.

1 SCORE MATCHING AND ITS RIEMANNIAN METRIC

Score matching has been developed for training unnormalized statistical models and applied to var-
ious kinds of practical applications such as signal processing (Hyvärinen, 2005) and representation
learning for visual and acoustic data (Köster & Hyvärinen, 2010). We can also train single-layer
models (Swersky et al., 2011; Vincent, 2011) and a two-layer model with the analytically intractable
normalization constants (Köster & Hyvärinen, 2010), which are hard to train by maximum likelihood
learning. The objective function of score matching is given by the squared distance between deriva-
tives of the log-density, DSM [q : p] =

∫
dxq(x)

∑
i |∂i log q(x) − ∂i log p(x)|2, where we denote

the derivative with respect to the i-th probability variable as a partial derivative symbol ∂i = ∂
∂xi

.
In this paper, we refer to this objective function as score matching (SM) divergence.

In general, we can derive the Riemannian structure from any divergence (Eguchi, 1983; Amari,
2016). Let us consider a parametric probability distribution p(x; ξ). When we estimate the param-
eter ξ with a divergence D[q : p], its parameter space has the Riemannian metric matrix G defined
by D[p(x; ξ) : p(x; ξ + dξ)] =

∑
i,j Gijdξidξj . The metric matrix G can be obtained by the sec-

ond derivative, Gij = ∂2

∂ξ′i∂ξ
′
j
D[p(x; ξ) : p(x; ξ′)]

∣∣
ξ′=ξ

. In particular, when we consider the SM
divergence, its metric becomes the following positive semi-definite matrix,

G =
∑
i

< ∇∂i log p(x; ξ)∇∂i log p(x; ξ)T >p(x;ξ), (1)

where we denote the derivative with regard to a parameter vector ξ as ∇ = d
dξ and the av-

erage over a probability distribution p as < · >p. Note that when we consider KL diver-
gence, DKL[q : p] =

∫
dxq(x) log q(x)

p(x) , its metric becomes a Fisher information matrix, G =<

∇ log p(x; ξ)∇ log p(x; ξ)T >p(x;ξ). In contrast to the Fisher metric, the metric of SM divergence
is composed of the log-likelihood differentiated with respect to ∂i.
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2 ADAPTIVE NATURAL GRADIENT LEARNING

As is known in information geometry, taking the Riemannian structure of an objective function into
consideration, one can find the steepest direction of parameter space by natural gradient learning
(Amari, 1998; 2016; Ollivier, 2015). The natural gradient algorithm is written as

ξt+1 = ξt − ηtG−1t ∇Lt, (2)

where ξt is the parameter at time step t and ηt is a learning rate that may depend on t. The objective
function of score matching is defined by Lt = DSM [q(x) : p(x; ξt)], where we denote an input
data distribution as q(x) and a model distribution as p(x; ξ). After straightforward calculation,
this objective function can be transformed into Lt =< l(x; ξt) >q(x) +const. with l(x; ξ) =∑
i

{
1
2 (∂i log p(x; ξ))

2 + ∂2i log p(x; ξ)
}

(Hyvärinen, 2005). In this study, we compute the natural
gradient as the online learning algorithm such that Lt = l(xt; ξt), where each data sample xt is
independently generated from q(x).

The inversion of metric (1) at time step t defined byG−1t is approximately obtained as below. In gen-
eral, the exact analytical calculation of metric (1) may be intractable because it requires the average
over the unnormalized statistical model such that < · >p(x;ξt)

. Here, we approximate the average
over p(x; ξt) by empirical expectation, Gt ∼

∑
i < ∇∂i log p(x; ξt)∇∂i log p(x; ξt)T >q(x). If

the input data is generated by a true model distribution q(x) = p(x; ξ∗) and the learning param-
eter ξt converges to the true value ξ∗, the approximated metric over input data is asymptotically
equivalent to the exact metric.

In addition, we introduce an adaptive method to calculate the inversion of Gt, since the inversion
of matrix demands much computational time in practice. Similar to the derivation of the adaptive
natural gradient on KL divergence (Amari et al., 2000), we consider the online update of the SM
metric,

Gt+1 = (1− εt)Gt + εt
∑
i

∇∂i log p(xt; ξt)∇∂i log p(xt; ξt)T . (3)

When εt is small enough, we may approximate the inversion G−1t+1 by using an approximation for-
mula (A+ εtB)−1 ∼ A− εtB and obtain the adaptive update rule of the inverted metric,

G−1t+1 ∼ (1 + εt)G
−1
t − εtG−1t

∑
i

∇∂i log p(xt; ξt)∇∂i log p(xt; ξt)TG−1t . (4)

Note that, in the case where there are N variables vi (i = 1, ..., N ) and K parameters ξi (i =
1, ...,K), the computational complexity at every update step becomes O(NK2).

3 NUMERICAL EXPERIMENTS

To confirm the performance of the proposed methods, we trained the energy-based model of a two-
layer neural network for natural stimuli proposed by Köster & Hyvärinen (2010). This model is
defined by log p(x;W,V ) =

∑
h f(v

T
h g(Wx))− logZ(W,V ) (Köster & Hyvärinen, 2010), where

the nonlinear activation functions are given by f(u) = −
√
u+ 1 and element-wise square g(u) =

u2 . We denote anN -dimensional probability variable as x ∈ RN , anN×N weight matrix between
the input and the first hidden layers as W , an N ×N non-negative weight matrix between the first
and second hidden layers as V , and the rows of V as vTh . Note that since the normalization constant
Z(W,V ) is given by an intractable integral, it is difficult to train this model by maximum likelihood
learning and its natural gradient with a Fisher metric. This model trained with score matching learns
responses similar to simple cells and complex cells in the sensory cortex.

In this study, we set N = 8 and trained the model in an unsupervised manner with 5,000 samples of
8-dimensional data artificially generated by the Independent Subspace Analysis (ISA) model (Köster
& Hyvärinen, 2010). We set the data vector x to be composed from four subspace vectors si ∈ R2

(i = 1, ..., 4) such that x = A[s1 s2 s3 s4]
T , where each si is independently generated by a product

between a uniform random variable ui and a 2-dimensional random Gaussian variable, and A is a
random mixing matrix.

As shown in Fig. 1, we found that the proposed adaptive natural gradient (ANG) converges much
faster than the stochastic gradient descent (SGD). The update rule of SGD was given by ξt+1 =
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ξt − ηt∇Lt. More interestingly, we revealed that ANG avoids the plateau caused by the singularity
of the parameter space, where the transient dynamics of SGD learning become very slow. The
similar superiority of ANG to SGD has also been reported in the ANG based on KL divergence and
Fisher metric (Amari et al., 2000; Park et al., 2000). In Table 1, we list the averaged performances
of ANG and SGD over ten runs with different initial values of W and V . ANG learning achieved
the comparable test error to SGD learning. In addition, in terms of step number until convergence,
ANG learning was more than 10 times faster than SGD. In terms of processing time, ANG was also
faster than SGD.
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Figure 1: Transient dynamics of score matching learning in a two-layer network model: the conven-
tional stochastic gradient descent (SGD) method and the proposed adaptive natural gradient (ANG)
method. Test error means the object function on test data samples.

SGD ANG

Test error (avg. ± std) -33.21 ± 2.25 -32.14 ± 3.58
Step number for test error < -28 2.16× 105 1.93× 104

Processing time (relative to SGD) 1.00 0.34

Table 1: Averaged performance over 10 randomly chosen initial conditions. We set the learning rate
ηt = 5× 10−5 and εt = 1/t.

4 CONCLUSION

We have proposed a new natural gradient method for score matching and demonstrated that it can
avoid the plateau in learning of the multi-layer model and accelerate the convergence of learning.

In this study, we confirmed the effectiveness of our adaptive natural gradient method in the model
with a relatively small number of parameters. Recently, deep networks with many more parame-
ters have been developed and even our adaptive method may take much computational time and
memory space. Fortunately, we expect that implementations suited to large scale problems (Pascanu
& Bengio, 2013) such as metric-free optimization (Desjardins et al., 2013) inspired by Hessian-
free optimization (Martens, 2010), the block diagonal approximation of the Fisher metric (Roux
et al., 2008), or the method exploiting the structure of the metric on a graphical model (Grosse &
Salakhudinov, 2015) will also be applicable to the natural gradient with the score matching metric.
In addition, our framework to derive natural gradient will also be applicable to other divergences,
particularly, to ratio matching, which is the extension of the score matching for discrete probabilistic
variables (Hyvärinen, 2007; Dawid et al., 2012).
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