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ABSTRACT

As motion capture data collection becomes more accessible, efficient motion anno-
tation tools are increasingly needed to streamline dataset labeling. In this paper,
we propose a data-centric motion annotation method that leverages the inherent
representativeness of motion data. Specifically, we introduce Representation-based
Representativeness Ranking (R3), which ranks motion samples based on their
significance in a learned representation space. To enhance this space, we develop a
dual-level motion contrastive learning approach, improving the informativeness
of the learned representations. Our method is designed for high efficiency and
adaptability, making it particularly responsive to frequent requirement changes.
By employing unsupervised contrastive pre-training, we reduce the labeling time
for expert oracles while using a lightweight classifier to accelerate annotation
predictions. Additionally, we incorporate active learning to recommend more
representative data, minimizing the number of required expert annotations while
maintaining annotation quality. Experimental results on the HDM05 dataset demon-
strate that our approach outperforms state-of-the-art methods in both accuracy and
efficiency, enabling agile development of motion annotation models.

1 INTRODUCTION

Along with the recent AI boom, data-driven character animation has been revolutionized and dom-
inated by deep learning (25; 24; 69; 50; 52; 51). Despite its success, deep learning is known to
be data-hungry, which poses challenges for both academia and industry, as high-quality annotated
data are usually expensive and difficult to obtain. This is even more challenging for mocap (motion
capture) data due to the large amount of data frames obtained from dense captures and the complex
annotation procedure where multiple labels could be assigned to a single frame (i.e., an actor may
wave while walking). To minimize labor costs in annotation tasks, the best-performing methods resort
to machine learning solutions. For example, Müller et al. (37) proposed to use motion templates
and dynamic time warping (DTW) distance to segment and annotate motion data; Carrara et al. (8)
proposed to use long short-term memory (LSTM) network to predict motion labels. Despite their
differences, all these methods are model-centric and trained with expert-picked data that are not
normally accessible in practice.

In this paper, we follow the data-centric AI philosophy advocated by Andrew Ng (39) and argue that
the performance of motion annotation models can be significantly improved by simply using more
representative samples in the training. This could aid annotators in labeling only the most critical
motions and thereby reduce the overall cost, which is particularly important with the emergence
of large models. Specifically, inspired by the classic farthest point sampling strategy and cluster
representatives, we propose a Representation-based Representativeness Ranking (R3) method that
ranks all motion data in a given dataset according to their “representativeness” in a learned motion
representation spaceR. To learn a more informativeR, we propose a novel dual-level contrastive
learning method applied at both the motion sequence level and the frame level. In addition, the motion
representation space R learned by our method is independent of specific motion annotation tasks.
This generalizability suggests innate adaptability to a wide range of motion annotation objectives,
making it more responsive to frequent requirement changes and enabling agile development of motion
annotation models.
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Figure 1: Overview of Motion-R3. Our method selects a small number of highly representative data
through a representation-based representative ranking then significantly improves the efficiency
of action annotation via a coordinated workflow between annotators and annotation models. *Our
method achieves over 0.85 micro-F1 score on the HDM05-15 dataset using only 21.57% selected
high representative data for training.

Our Motion-R3 method is the first to achieve fast and accurate motion annotation without expert
guidance.

Extensive experimental results on the HDM05 and BABEL datasets demonstrate the superiority of
our method against the state-of-the-art. In summary, our main contributions include:

• We propose Motion-R3, the first approach to achieve fast and accurate motion annotation
without expert guidance, thereby significantly reducing labor costs.

• We propose a novel dual-level motion contrastive learning method that automatically learns
a representation space for motion data that is more informative than expert knowledge. This
representation space is independent of specific motion annotation tasks, thus demonstrating
generalizability across frequent requirement changes.

• We propose a novel representativeness ranking method based on density and distance
heuristics, featuring a robust ranking initialization scheme that enables consistently near-
optimal annotation accuracy, right from the selection of the very first sample (i.e., seed).

2 RELATED WORK

2.1 MOTION ANNOTATION

Motion annotation aims to annotate raw and unsegmented motion data with action labels, which is a
complex and tedious task as multiple action labels can be assigned to the same piece of data (5; 73).
To address its challenges, a straightforward idea is to first divide the raw mocap data into action
segments and then classify them respectively. For example, the sliding window method was employed
to divide raw mocap data into overlapping action segments (37; 35; 62; 65) or non-overlapping
semantic segments (41; 6; 15). The classification of segmented action segments is usually referred to
as an action recognition task, which aims to classify each action segment to the correct action category
across different spatio-temporal configurations (e.g., velocity, temporal or spatial location) (9; 46;
74; 17; 18; 28; 4; 34; 40; 49). Compared to traditional model-based methods (64; 59; 28) and
classifiers (45; 68; 57), state-of-the-art action recognition methods resort to deep convolutional neural
networks (29; 46) and LSTM neural networks (74; 40; 48) to effectively model spatial and temporal
motion features, as deep learning has demonstrated its power in identifying complex patterns in
multimedia data (2; 3). On the other hand, frame-based motion annotation methods have recently
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gained popularity as they are more fine-grained and can predict the probabilities of each action
per frame directly. The classification tasks in these methods are usually implemented by vector
machines (47), linear classifiers (72), structured streaming skeletons (71), LSTM networks (32; 49; 8),
etc. Furthermore, flow-based methods can identify motion before the motor behavior ends (31) and
even predict future action (27; 61).

In this work, we investigate an important but under-explored problem in motion annotation, i.e., the
representativeness of mocap data points. We demonstrate that the performance of motion annotation
can be significantly improved by simply picking more representative samples for training.

2.2 CONTRASTIVE LEARNING

Contrastive learning is an unsupervised representation learning method that can learn high-quality
feature spaces from unlabeled data (54; 55; 63; 23; 10; 12). Contrastive Learning has made great
progress in the field of computer vision (58; 70; 22; 63; 21; 54; 7; 10; 23; 12; 11; 13). And Momentum
Contrastive Paradigm (MoCo) (23; 12) facilitates contrastive unsupervised learning through a queue-
based dictionary lookup mechanism and momentum-based updates.

Contrastive learning has already been applied and achieved promising results in motion-related
tasks. MS2L (33) integrates contrastive learning into a multi-task learning framework; AS-CAL
(44) uses different backbone sequence augmentations to generate positive and negative pairs; Thoker
et al. (53) perform representation learning in a graph-based and sequence-based mode using two
different network architectures in a cross-contrasted manner. Recently, SkeletonCLR (30) learns
skeleton sequence representations through a momentum contrast framework. In a concurrent work,
AimCLR (20) extends SkeletonCLR with an energy-based attention-guided casting module and
nearest neighbor mining. BYOL (36) extends representation learning for skeleton sequence data and
proposes a new data augmentation strategy, including two asymmetric transformation pipelines.

In this work, we propose a novel dual-level motion contrastive learning approach which extends
MoCo (23; 12) to motion data and implements contrastive learning at both sequence and frame levels,
which works as the basis of the proposed Motion-R3 method.

2.3 MOTION REPRESENTATION

Motion representation can be used in many applications for indexing, temporal segmentation, retrieval,
and synthesis of motion clips, using methods such as weighted PCA (19) and comparative learning (1).
Bernard et al. (5) operates a combination of hierarchical algorithms to create search groups and extract
motion sequences. Zhou et al. (73) applies alignment clustering analysis to action segmentation
and expands standard kernel k-means clustering through dynamic time warping (DTW) kernel to
achieve temporary variance. Holden et al. (26) utilizes an automatic convolutional encoder to learn
a variety of human motion manifolds as a motion priori to resolve ambiguity. Choi and Kwon (14)
converts raw motion data into animated short films called motion clips, which involve temporal
segmentation, emphasizing the main motion, minimizing data size, and utilizing a ranking algorithm
for query retrieval. Won et al. (60) represents motion as a high-level scene specification by manually
constructing or automatically extracting it, which consists of sentence-like structures involving verbs,
subjects, and objects, in order to recommend a small and diverse selection of the highest quality
scenes.

3 OUR MOTION-R3 METHOD

Let D = (x1, x2, ..., xN ) be a motion dataset consisting of N motion sequences, xi =
(si,1, si,2, ..., si,T ) be a motion sequence consisting of T consecutive skeleton pose frames, si,j ∈
RJ×3 (j = 1, 2, ..., T ) be the 3D coordinates of the J body joints of a skeleton pose, we aim to assign
a binary label vector ci,j = {0, 1}m to each skeleton pose si,j where ci,j,k = 1 (k = 1, 2, ...,m)
if si,j belongs to the k-th class of m pre-defined motion types. To minimize labour costs, we as-
sume only a small portion of D are manually annotated as Dtrain and the rest can be automatically
annotated by a machine learning model trained with Dtrain as the training set.

3
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Figure 2: Overview of our Representation-based Representativeness Ranking (R3) method. 1) We
first utilize Dual-level Motion Representation Learning to provides effective motion representationR,
then 2) apply Representation Ranking onR to pick few amount of high representativeness samples
for manual annotation. Finally, the annotation model trained with manual annotated data will finish
the remains work.

3.1 OVERVIEW

Our method aims to learn a representativeness ranking of motion sequences xi ∈ D in an unsupervised
manner, for the task of fast and accurate motion annotation (Fig. 2). Unlike previous methods (8)
which select Dtrain by expert visual inspection, we argue that picking the more representative ones
for manual annotation not only reduces the labour and time costs but also increases the model’s
accuracy. Alg. 1 shows the pseudo-code of our R3 method.

Representation Learning We first train a feature encoder E which learns a representation spaceR
for xi in an unsupervised manner. For the learning of feature encoder E and motion representation
spaceR, we adopt one of the latest contrastive learning approach: Momentum Contrast (MoCo) (23;
12), which has recently demonstrated superior performance and generalization abilities in computer
vision tasks. Nevertheless, MoCo was designed for computer vision tasks and only works on the 2D
grid-like image data. Thus, it is non-trivial to acclimatize it to motion sequences. Addressing this
issue, we propose a dual-level motion contrastive learning approach which extends MoCo to motion
data and implements contrastive learning at both sequence and frame levels, which is depicted in the
next subsection.

Representativeness Ranking We next map motion sequence toR. Inspired by the classic farthest
point sampling strategy, we implement our R3 method by progressively including xi ∈ D to a ranked
motion dataset D̂, where xi is the median of a small proportion (i.e., 10%) of “farthest” (i.e., the
most representative) motion sequences to the ranked ones in D̂. The ranking is then determined
by the order in which xi is included into D̂. Note that we search the “farthest“ points via binary
classification to avoid the high computational costs of traditional farthest point sampling methods
that consume O(n2) time and decrease it to O(n). Additionally, using the median instead of directly
using the “farthest” data enables our method to more effectively sample from high-density regions
rather than selecting outliers.

Motion Annotation with R3 For motion annotation, we first assign motion sequences to human
annotators according to the ranking D̂ and get D̂train. Then, we train a low-cost and simple classifier
Csimple using the learned representationR and D̂train to annotate the remaining motion sequences
automatically.
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3.2 DUAL-LEVEL MOTION REPRESENTATION LEARNING

In a nutshell, contrastive learning assumes that a good data representation has two properties: similar
data points should be close to each other in the feature space, while different data points should be far
from each other. Accordingly, it proposes to fulfil the two properties by minimizing the distances
among positively augmented samples and maximizing those among negatively augmented samples.
Building on this idea, MoCo (23; 12) shows that the performance of contrastive learning can be
boosted by maintaining a large and consistent dictionary of negatively augmented samples, which is
implemented by the incorporation of a queue and a momentum encoder.

Thus, the extension of MoCo to motion data boils down to three questions: i) how to select a proper
backbone network for feature encoding? ii) how to design the positive and negative data augmentation
methods? iii) how to measure the distances between samples in the feature spaces (i.e., the contrastive
loss)? Fig. 2 (1) shows a data flow diagram of our solution, which is detailed as follows.

3.2.1 DILATED (MOMENTUM) FEATURE ENCODER.

Since motion data are usually captured at a high sampling rate (e.g., 120 FPS), the differences between
adjacent frames are tiny, which causes ambiguities that confuse the model in identifying the action
of a single frame. To clarify such ambiguity, we borrow the idea of dilated convolution (66) and
enhance each input frame with its context information (i.e., dilated joint trajectory) in a time window
t centered at the current frame. Specifically, assuming the sampling rate is r = 120 FPS, we employ
a dilation factor l that enhances input frame si,j with its context information as

s′i,j = (si,j − si,j−nl, ..., si,j − si,j−l, si,j , si,j+l − si,j , ..., si,j+nl − si,j) (1)

where n = ⌊t · r/l⌋, ⌊·⌋ is a flooring function, ±(si,j − si,j+kl) denotes the dilated joint trajectory,
k = {−n,−n + 1, ..., 0, ..., n}. We use x′

i = (s′i,1, s
′
i,2, ..., s

′
i,T ) as the input to our (momentum)

feature encoders. We replace the Vision Transformer (16) with a similar method as Spatial Temporal
Transformer (42) as our feature encoder, for its success in modeling the dependencies among skeleton
joints. Specifically, after being embedded in a two-layer MLP network, its models the relationships
among joints of a single skeleton in each frame with the so-called Spatial Transformer (EST ) module
and those among the same joints across different frames in x′

i with its Temporal Self-Transformer
(ETT ) module.

Since our motion data is a motion sequence consisting of consecutive frames of skeleton poses, we
propose to implement contrastive learning at both levels as follows.

3.2.2 SEQUENCE-LEVEL CONTRASTIVE LEARNING

We show the data augmentation methods and loss design of the proposed sequence-level contrastive
learning method below.

Sequence-level Data Augmentation. Similar to those in computer vision tasks (23; 10; 12), the
key challenge of motion data augmentation is to disentangle the inherent patterns of a skeleton from
its different sequences, i.e., the different appearances of the same pattern. To create such different
sequences:

i) We propose a perturbation data augmentation strategy with the rationale that motion semantics are
robust against small perturbations. Specifically, we apply two stochastic perturbations, data missing
and disorder, to each input frame s′i according to pi ∼ U [0, 1] as:

pb(s′i, pi) =

{
0, pi < tpb · tmd

s′j , tpb · tmd ≤ pi < tpb
, j ∼ U{1, T} (2)

where tpb = 0.15 ∈ [0, 1] is the probability threshold that s′i is perturbed, tmd = 0.9 ∈ [0, 1] is the
probability threshold that missing data perturbation is applied, tpb · tmd means that s′i is perturbed
with missing data perturbation, the replacement of s′i with s′j denotes the disorder perturbation,
U{1, T} denotes a discrete Uniform distribution from 1 to T . Let p = {pi}Ti=1, we have

Dpb(x
′, p) = (pb(s′1, p1), pb(s

′
2, p2), ..., pb(s

′
T , pT )) (3)

5
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ii) Inspired by the fact that human beings can successfully recognize motions at different playback
speeds (i.e., the motion semantics are largely independent of the playback speeds), we propose a novel
downsampling augmentation technique that creates novel sequences of motion data by downsampling
them at random rates and offsets:

Dds(x
′, a, δ) = (s′a, s

′
a+δ, s

′
a+2δ, ..., s

′
a+(nds−1)δ) (4)

where a denotes the offset, δ denotes the downsampling interval, nds = 512 denotes the number of
resulting samples. Note that a+ (nds − 1)δ ≤ T .

iii) We also propose the reverse augmentation that works as a negative augmentation method:

Dre(x
′) = (s′T , s

′
T−1, ..., s

′
1) (5)

With the aforementioned data augmentation methods, we generate two positively augmented se-
quences v+1 , v

+
2 and a negatively augmented sequence v−r as: v+1 = Dpb(Dds(x

′, a1, δ1), p1), v+2 =
Dpb(Dds(x

′, a2, δ2), p2), v−r = Dre(Dpb(Dds(x
′, a3, δ3), p3)), where ai, δi, pi denote different pa-

rameters generated randomly.

We encode these augmented sequences and get their normalized features with dilated (momentum)
feature encoder E:

f+
1 =

E(v+1 )

∥E(v+1 )∥
, f+

2 =
E(v+2 )

∥E(v+2 )∥
, f−

r =
E(v−r )

∥E(v−r )∥
. (6)

Sequence-level Contrastive Loss. We design our loss function based on an InfoNCE loss:

Ls = − log
exp(f+

1 · f
+
2 /τ)

exp(f+
1 · f

+
2 /τ) +

∑K
i=1 exp(f

+
1 · f

−
i /τ)

(7)

where · denotes the measurement of cosine similarity, τ is a temperature softening hyper-parameter
and i denotes the indices of the negative samples f−

i maintained in the queue Q of size K that
Q = f−

r
⌢{f−

1 , f−
2 } where ⌢ denotes the enqueue operation, {f−

1 , f−
2 } denotes the positive samples

generated previously but are used as negative samples for f+
1 as they are generated from different x′.

3.2.3 FRAME-LEVEL CONTRASTIVE LEARNING

Frame-level Data Augmentation. Leveraging the local consistency among consecutive frames in
a motion sequence (i.e., the actions in a small neighbourhood share similar motion semantics), for the
feature f+

1,i of each frame s′i, we define f+
2,j are its positive samples if j ∈ Ω+ and Ω+ = {j|tnb >

|i− j|}, where tnb = 12 is the size of the neighbourhood. It is worth noting that contrastive learning
only encourages positive samples to be close in the representation space and does not include negative
samples in the loss calculation.

Frame-level Contrastive Loss. Accordingly, we design our frame-level local consistency loss as:

Lf = − log
∑
i

∑
j∈Ω+

exp
(
f+
1,i · f

+
2,j/τ

)
(8)

Combining the sequence-level loss Ls and the frame-level loss Lf, the overall training loss is
L = Ls + Lf.

3.3 RANKING WITH DENSITY AND DISTANCE HEURISTICS

Quantifying representativeness directly is challenging as it is an abstract concept. To enable represen-
tativeness ranking, we propose to measure representativeness in the informative representation space
R obtained in Sec. 3.2 from two aspects:

• Density. Data points located in high-density regions tend to have high representativeness as
they can accurately represent the characteristics of their neighbours; and vice versa.

• Distance. The most representative samples should have a large inter-class distance, so as to
cover the complete data distribution with as few samples as possible.

6
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Leveraging the above two heuristics, we propose an unsupervised representativeness ranking method
as follows. The method consists of an initialization step to select a good seed, followed by an
iterative ranking process to expand the set of representative data points (Fig. 2). The pseudocode of
Representative Ranking is given in the Appendix.

Density-guided Initialization. We aim to identify a highly representative sample (i.e., seed) from
among the unlabeled motion sequences D to initialize the ranking. As discussed, such samples
generally reside in high-density regions (i.e., clusters) when mapped to R. Accordingly, we first apply
k-means clustering to D’s embeddings in R, segmenting D into k distinct clusters D(1), ..., D(k),
and then select the largest cardinality (indicating high density) cluster as the primary cluster :Dm =
argmaxD(i) |D(i)|, i ∈ {1, 2, ..., k}. Then we choose the sample closest to the center of Dm as the
initial sample.

Distance-guided Ranking with Density-based Regularization. After initialization, subsequent
ranking iterations require distance-based guidance to promote diversity among the representatives,
so as to enable a swift coverage of the entire data distribution. However, the density heuristic used
in initialization must be retained to preserve local representativeness at the same time. To achieve
this, we propose a novel representative ranking method compromising two steps: i) we train a binary
classifier C to distinguish between the set of to-be-ranked motion data D (labeled 0) and ranked
motion data D̂ (labeled 1). In this way, data with a lower predicted value (closer to 0) is considered
more representative to D̂. ii) We apply density-based regularization by marking a small portion (i.e.,
10%) of samples with the lowest predicted values as candidates and selecting their median as the next
representative, avoiding picking outliers from low-density areas (see Fig. 4).

4 EXPERIMENTS & RESULTS

4.1 IMPLEMENTATION DETAILS

We conduct experiments on a PC with an Intel i7-7700 CPU and a Nvidea TESLA P40 GPU.
We implement our method with PyTorch. We have included more experimental details in the
supplementary materials. Following (8), we evaluate our method on the three variants of the HDM05
dataset (38):

• HDM05-15: 102 motion sequences, 15 classes, 68 minutes (491,847 frames);

• HDM05-65: 2,345 motion sequences, 65 classes, 156 minutes (1,125,652 frames);

• HDM05-122: 2,238 motion sequences, 122 classes, 156 minutes (1,125,652 frames).

Note that HDM05-65 and HDM05-122 contain the same data but have different labels. We use the
global joint positions as the raw motion representation. This is because joint position representation
is easier to transfer to different skeleton (e.g. world-aligned skeletons and axis-aligned skeletons)
than rotation representation.

Motion Data Preprocessing We follow (46) to preprocess the motion data, normalizing the
skeleton size, root position and orientation. This ensures that joint positions and angle values are
effectively equivalent. Thus, we use joint positions in all our experiments.

4.2 EFFECTIVENESS OF MOTION REPRESENTATION LEARNING

To justify the effectiveness of our motion representation, we first compare our method with two
state-of-the-art motion representation methods, namely Convolutional Autoencoders (CA) (26) and
Deep Motifs and Motion Signatures (DMMS) (1), on the HDM05 dataset under the same conditions.
As Table 1 shows, i) our method outperforms both baselines and achieves the highest accuracy;
ii) DMMS suffers from a significant performance drop when being applied to relatively complex
scenarios (HDM05-65 and HDM65-122).

We also justify the necessity of motion representation learning by comparing our method with its
naive variant which applies the proposed representativeness ranking algorithm to the raw motion

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Comparison with Expert (used in (8)) and ran-
dom selection on the HDM05-15 dataset.
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(b) BABEL60 dataset.
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(c) BABEL120 dataset.

Figure 3: Comparison with Carrara (8) and Qingyu (67) on the BABEL60 and BABEL120 datasets.

Table 1: Comparison between ours and two state-of-the-art motion representation: CA (26) and
DMMS (1). All experiments use the same 20% high-representativeness data for training, and then
test the annotation accuracy on the remaining 80% of the data.

Method HDM05-15 HDM05-65 HDM05-122
CA 72.23 75.08 71.88
DMMS 42.17 2.39 1.43
Ours 84.37 83.77 82.06

data directly. Experimental results on the HDM05-15 dataset show that the micro-F1 accuracy on
the raw data is 61.62%, which is significantly lower than the 84.37% achieved when using motion
representation. This confirms the necessity of motion representation learning in better extracting
motion features for the subsequent tasks of ranking and annotation.

4.3 MOTION-R3 V.S. STATE-OF-THE-ART MOTION ANNOTATION

As shown in Fig. 3, the proposed representativeness ranking consistently outperforms expert ranking.
In addition, our method requires significantly less training data to reach strong annotation accuracy
(micro-F1 > 0.85), using only 21.57% of labels versus 38.24% for random selection - nearly halving
the annotation effort. This substantial reduction in motion annotation workload signifies the potential
of our method in creating larger motion datasets for downstream tasks.

We also evaluate the performance our method and SOTA methods under different annotation require-
ments. The experimental results in Table 2 highlight the minimum amount of data required by our
methods (Ours+Carrara and Ours+R+MLP) to surpass the accuracy of (8) (Expert+Carrara), as well
as their performance when using the same amount of training data as (8). Interestingly, Ours+R+MLP
outperforms Ours+Carrara on the HDM05-65 and HDM05-122 datasets, further demonstrating the
effectiveness of our data-centric approach and the learned motion representation. The perceived “lim-
ited” improvement is due to (8) utilizing significantly more data than necessary to reach performance
saturation. Even with reduced data, our method still achieves superior performance.

We also evaluate our method on the BABEL (43) dataset, please refer to appendix for detailed results.

4.4 ABLATION STUDY

4.4.1 DESIGN OF DUAL-LEVEL MOTION REPRESENTATION LEARNING

As Table 3 shows, the experimental results justify the effectiveness of the algorithmic designs of our
dual-level contrastive learning method.

The results show that applying contrastive learning at both the sequence and frame levels contributes
to the final performance. The four designs on the sequence level play a more important role in
boosting the performance of our method, compared with the one on the frame level. The results with
the native Moco method show that it is not directly applicable to the task of motion annotation.
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Table 2: Comparison with state-of-the-art motion annotation methods: Müller et al. (37) and Carrara
et al. (8). Ours1: the accuracy when using the same amount of training data as “Expert + Carrara”;
Ours2: the minimum amount of data required to achieve higher accuracy than “Expert + Carrara”;
R+MLP: train a simple Multi-layer perceptron using the learned motion representation space R.
Müller∗: we did not test “Ours1,2 + Müller” as the source code of (37) was not publicly released.

Method HDM05-15 HDM05-65 HDM05-122
Sampling Annotation Train (%) ↓ micro-F1 (%)↑ Train (%) micro-F1 (%) Train (%) micro-F1 (%)
Expert Müller∗ 28.57 75.00 - - -
Expert Carrara 19.61 78.78 44.12 64.82 44.12 57.66
Ours1 Carrara 19.61 80.50 44.12 67.00 44.12 60.70
Ours2 Carrara 15.69 79.20 40.76 65.00 42.02 58.42
Ours1 R+MLP 19.61 84.37 44.12 71.13 44.12 68.69
Ours2 R+MLP 15.69 79.05 25.21 65.56 22.68 59.94
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Figure 4: Ablation Study on the design of our representativeness ranking method. (b & c) Visualiza-
tion of top-20 ranking results of the “Median” and “Farthest” ranking strategy on HDM05-15 dataset.

Table 3: Ablation Study on our Dual-level Contrastive Learning. MoCo baseline∗: naive adaptation of
MoCo (23) to our task. The motion data are annotated in the ranked order generated by our strategy.

Method micro-F1(%) macro-F1(%)
MoCo baseline∗ 59.31 39.54
+Sequence Level 82.07 77.09
+Frame Level 84.37 77.55

4.4.2 DESIGN OF REPRESENTATIVENESS RANKING

As shown in Fig. 4a, without initialization, the ranking does not start from highly representative
samples, which affects the quality of subsequent ranking; without Density-based Regularization (i.e.,
”Median” in the figure), even starting from highly representative samples, the absence of density
constraints can introduce outliers samples, prevents this advantage from being sustained during the
ranking.

5 CONCLUSION

In this paper, we propose a novel motion annotation method, namely Motion-R3, which shows that
the performance of motion annotation can be significantly improved by using the more representative
training samples extracted by our Representation-based Representativeness Ranking (R3) method.
Our R3 method relies on an informative representation space learned by the proposed novel dual-
level motion contrastive learning method. Thanks to its high efficiency, our Motion-R3 method is
particularly responsive to frequent requirement changes and enables agile development of motion
annotation models, which sheds light on a new working paradigm for both academia and the industry.
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8 APPENDIX

8.1 USER STUDY

Train Annotation Model

① Annotate ‘jump’ motion ② Next jump motion is automatically annotated

Figure 5: Illustration of Our Motion-R3 Driven Annotation Tool. Once trained with high representa-
tiveness samples, the annotation model can accurately annotate subsequent samples.

We developed a prototype motion annotation toolkit in Unity3D powered by our Motion-R3 for
semi-automated motion annotation. In each round of annotation, three motion sequences will be
pushed to the annotator according to Density-guided Initialization Representativeness Ranking. The
annotated data were used to update the annotation model, then preliminary annotations were made
for subsequent motion sequences, thereby reducing the labor costs.

We conducted annotation experiment on HDM05-15 dataset with our annotation tool. We recruited
10 volunteers with an average age of 23.6. They are all graduate students majoring in software engi-
neering. All volunteers provided informed consent by signing the consent form prior to participation.
Volunteers were compensated with a reasonable stipend for their participation. The study protocol
underwent and was approved by the institutional ethics review board.

The volunteers were evenly divided into two groups:

• Experimental group: Using Motion-R3.
• Control group: Pushed three random motion sequences to the volunteers each time, no

preliminary annotation with annotation model.

Table 4: Average annotation time per sequence for Experimental vs. Control groups

Group Average time per sequence (s)reduction

Experimental 103.2 (35.82% ↓)
Control 160.8

The results show that the average annotation time per sequence in the experimental group is 103.2
seconds, representing a 35.82% reduction from the control group’s 160.8 seconds. Furthermore,
100% of experimental participants reported that fatigue during annotation decreased as the
annotation model’s accuracy improved, since they mainly needed to verify annotation model’s
outputs and correct small number of errors.

8.2 EXPERIMENT ON BABEL DATASET

To demonstrate the superiority of our Motion-R3 method, we quantitatively compare it with two
state-of-the-art motion annotation methods (67; 8) on both BABEL60 and BABEL120 datasets. We
divide train, test and validation dataset according to BABEL. We pretrained our model on the train
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Table 5: Results on BABEL (43): We report our Motion-R3 on both BABEL60 and BABEL120.

Motion-R3 (Ours) Carrara (8) Qingyu (67)
Train (%) BABEL60 (%) BABEL120 (%) BABEL60 (%) BABEL120 (%) BABEL60 (%) BABEL120 (%)
1 13.23 ± 2.33 13.51 ± 0.34 14.61 ± 1.66 12.10 ± 0.35 11.50 ± 0.53 11.81 ± 1.76
2 14.58 ± 1.26 15.36 ± 0.71 14.27 ± 1.38 12.15 ± 0.50 11.28 ± 0.52 10.73 ± 0.68
3 14.90 ± 2.30 13.99 ± 1.84 15.81 ± 2.47 12.55 ± 0.01 11.94 ± 1.08 11.21 ± 0.48
4 16.72 ± 1.15 15.93 ± 0.74 16.44 ± 1.41 12.94 ± 0.41 12.45 ± 0.36 12.26 ± 0.73
5 18.97 ± 1.83 17.80 ± 0.98 16.38 ± 1.06 13.72 ± 0.54 13.41 ± 0.99 10.98 ± 0.06
10 23.30 ± 2.79 22.30 ± 1.57 17.79 ± 0.94 18.79 ± 1.55 15.51 ± 1.60 13.71 ± 1.35
20 29.37 ± 0.60 28.95 ± 1.09 22.84 ± 1.04 19.67 ± 1.38 16.92 ± 0.21 17.00 ± 1.58
30 33.04 ± 0.95 31.14 ± 1.05 22.88 ± 1.20 22.52 ± 2.01 21.94 ± 4.36 19.89 ± 1.56
40 35.54 ± 0.80 34.74 ± 0.47 25.19 ± 0.86 22.20 ± 3.46 19.81 ± 3.19 23.11 ± 1.91
50 38.25 ± 0.60 36.53 ± 1.37 26.12 ± 0.72 23.45 ± 0.47 24.83 ± 2.03 20.54 ± 1.71
60 39.43 ± 0.45 37.86 ± 0.50 28.05 ± 0.84 22.11 ± 1.43 24.97 ± 0.63 22.67 ± 3.36
70 40.42 ± 0.17 37.05 ± 0.12 27.03 ± 1.12 22.57 ± 1.38 28.05 ± 1.12 20.93 ± 1.01

Figure 6: Comparison of sample representativeness of our Motion-R3 method against expert selec-
tion (8) in the feature space.

dataset and tested our method on the validation dataset. The results show that our method can achieve
24.74% when using half of the train dataset.

8.3 MOTION-R3 V.S. EXPERT RANKING

To qualitatively evaluate the representativeness of samples identified by our Motion-R3 method, we
first extracted features from all data in the HDM05-15 dataset to construct the representation space.
Subsequently, we employed t-SNE (56) to reduce the dimensionality of the representation space
to 2D for visualization purposes. As Fig. 6 shows, the samples selected by our Motion-R3 method
are more evenly distributed according to the entire data distribution and are more representative
than those selected by the expert (8), which justifies the effectiveness of our Motion-R3 method. In
contrast, expert sampling suffers from overlapping samples (e.g., the four sample pairs in the top right
corner of Fig. 6-middle). As the skeletons on the right illustrate, these samples share similar motion
sequences (Move-Grab-Turn), resulting in redundancy for motion annotation tasks. An important
side effect of such redundancy is the emergence of under-represented areas, highlighted by the two
bounded regions in Fig. 6-middle (Exercise and Move-Turn, which differ significantly from other
motion categories). These coverage gaps also impact motion annotation negatively. Another major
limitation of Carrara et al. (8) is its reliance on expert sampling, which requires exhaustive manual
examination of all data beforehand. This approach is very time-consuming and highly dependent on
the skills and experiences of the expert.

8.4 IMPACT OF FRAME RATE

In most motion recognition tasks, researchers will reduce the frame rate of motion data to reduce
motion blur or accelerate computation. We attempted to use this method in our research.

We conducted experiments on the HDM05-15 dataset using the same experimental settings as
(Ours+R+Conv), but we pre reduced the frame rate of the motion data to 24 fps during training.
Compared to (Ours+R+Conv, micro-F1 = 84.37%), while change to 24 fps, the micro-F1 is only
77.83%
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While reducing the frame rate by 24 fps is practical for most motion recognition tasks, motion
annotation requires annotating every frame, which demands richer temporal information. Reducing
the frame rate may disrupt potential temporal information.
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Figure 7: Annotation performance under different cluster Number settings on HDM05-15 dataset. n
is the number of annotated motion sequence

8.5 IMPACT OF CLUSTER NUMBER ON RANKING INITIALIZATION

The number of clusters k in k-means is a hyperparameter that affects the initialization results. As
shown in Fig. 7, let n be the number of annotated motion sequences, the micro-F1 scores of our
method are insensitive to the choices of k between 3 and 60. Thus, without loss of generality, we use
k=3 in all our experiments.

8.6 PSEUDOCODE OF REPRESENTATIVENESS RANKING

Algorithm 1: R3: Representation-based Representative Ranking

Data: Motion representation subspaceR∗, motion dataset D = [x1, x2, ..., xT ] and D̂ = [],
binary classifier C.

Result: Ranked motion dataset D̂.
1 Separate D into k clusters {D(1), ..., D(k)} via k-means clustering;
2 i← argmaxi|D(i)|;
3 Di ← cluster center of D(i) inR∗;
4 a← argmina||xa −Di||22 inR∗;
5 D̂ ← D̂.append(xa), D ← D.remove(xa);
6 while D ̸= [] do
7 Train C to distinguish between elements of D̂ and D inR∗;
8 xa ← the median of top representative samples xi ∈ D w.r.t. C;
9 D̂ ← D̂.append(xa), D ← D.remove(xa);

10 end
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