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Abstract

Many works show that node-level predictions of Graph Neural Networks (GNNs)
are unrobust to small, often termed adversarial, changes to the graph structure.
However, because manual inspection of a graph is difficult, it is unclear if the
studied perturbations always preserve a core assumption of adversarial examples:
that of unchanged semantic content. To address this problem, we introduce a
more principled notion of an adversarial graph, which is aware of semantic con-
tent change. Using Contextual Stochastic Block Models (CSBMs) and real-world
graphs, our results uncover: i) for a majority of nodes the prevalent perturbation
models include a large fraction of perturbed graphs violating the unchanged se-
mantics assumption; ii) surprisingly, all assessed GNNs show over-robustness
- that is robustness beyond the point of semantic change. We find this to be a
complementary phenomenon to adversarial robustness related to the small degree
of nodes and their class membership dependence on the neighbourhood structure.

1 Introduction

Graph Neural Networks (GNNs) are seen as state of the art for various graph learning tasks (Hu et al.,
2021). However, there is strong evidence that GNNs are unrobust to changes to the underlying graph
(Zügner et al., 2018; Geisler et al., 2021). This has led to the general belief that GNNs are vulnerable
to adversarial examples and many works trying to increase their robustness through various defenses
(Günnemann, 2022). Originating from the study of deep image classifiers (Szegedy et al., 2014),
an adversarial example has been defined as a small perturbation, often measured using an ℓp-norm,
which does not change the semantic content (i.e. category) of an image, but results in a different
prediction. These perturbations are often termed unnoticeable relating to a human observer for
whom a normal and an adversarially perturbed image are nearly indistinguishable (Goodfellow et al.,
2015; Papernot et al., 2016). However, compared to visual tasks, it is difficult to visually inspect
(large-scale) graphs. This has led to a fundamental question:

What constitutes a small, semantics-preserving perturbation to a graph?

The de facto standard in the literature is to measure small changes to the graph’s structure using the
ℓ0-pseudonorm (Günnemann, 2022). Then, the associated threat models restrict the total number of
inserted and deleted edges globally in the graph and/or locally per node. However, if the observation
of semantic content preservation for these kind of threat models transfers to the graph domain can be
questioned: Due to the majority of low-degree nodes in real-world graphs, small ℓ0-norm restrictions
still allow to completely remove a significant number of nodes from their original neighbourhood.
Only few works introduce measures beyond ℓ0-norm restrictions. In particular, it was proposed to
additionally use different global graph properties as a proxy for unnoticability, such as the degree
distribution (Zügner et al., 2018), degree assortativity (Li et al., 2021), or other homophily metrics
(Chen et al., 2022) (for further related work, see Appendix G). While these are important first steps,
the exact relation between preserving certain graph properties and the graph’s semantic content
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Figure 1: Data from CSBM graphs. The seman-
tic boundary indicates when the semantic-content
(i.e., the most likely class) of a node of particular
degree changes on average. All GNNs show ro-
bustness beyond the point of semantic change.

(e.g. node categories) is unclear. For instance,
one can completely rewire the graph by itera-
tively exchanging nodes of two randomly se-
lected edges and preserve the global degree dis-
tribution. As a result, current literature lacks
a principled understanding of semantics preser-
vation in their employed notions of smallness
as well as robustness studies using threat mod-
els only including provable semantics-preserving
perturbations to a graph. We bridge this gap by
being the first to directly address the problem of
exactly measuring (node-level) semantic content
preservation in a graph under structure perturba-
tions. Surprisingly, using Contextual Stochastic
Block Models (CSBMs), this leads us to discover
a novel phenomenon: GNNs show strong robust-
ness beyond the point of semantic change (see Figure 1). This does not contradict the existence of
adversarial examples for the same GNNs. Related to the small degree of nodes, we find that common
perturbation sets include both: graphs which are truly adversarial as well as graphs with changed
semantic content. Our contributions are:

1. We define a semantics-aware notion of adversarial robustness (Section 3) for node-level predictions.
Using this, we introduce a novel concept: over-robustness - that is (unwanted) robustness against
admissible perturbations with changed semantic content (i.e. changed ground-truth labels).
2. Using CSBMs, we find: i) common perturbations sets, next to truly adversarial examples, include
a large fraction of graphs with changed semantic content (Section 4.1); ii) all examined GNNs
show significant over-robustness to these graphs (Section 4.2) and we observe similar patterns on
real-world datasets (Section 4.2.1). Using ℓ0-norm bounded adversaries on CSBM graphs, we find a
considerable amount of a conventional adversarial robustness to be in fact over-robustness.

2 Preliminaries

Let X ∈ Rn×d be the node feature matrix with n nodes having d features, A ∈ {0, 1}n×n the
(symmetric) adjacency matrix, and y ∈ {0, 1}n the node labels of which yL ∈ {0, 1}l, l ≤ n are
known. Due to the non-i.i.d data generation, a node-classifier f may depend its decision on the
whole known graph. Thus, we write f(X,A, yL)v to denote the classification of a node v. We study
(inductive) evasion attacks, i.e. an adversary A, given a clean graph, can choose a perturbed graph
from the perturbation set B(X,A) to change the predictions of a given node-classifier f . We focus
on direct structure attacks (Zügner et al., 2018), i.e. A can remove or add at most ∆ edges incident to
a target node v. We leverage Contextual Stochastic Block Models (CSBMs) (Deshpande et al., 2018)
to generate synthetic graphs with analytically tractable distributions. It defines edge-probabilities
p between same-class nodes and q between different-class nodes. Node-features are drawn from a
Gaussian mixture model. Sampling from a CSBM can be understood as an iterative process over
nodes i ∈ [n]: 1) Sample label yi ∼ Ber(1/2) (Ber denoting the Bernoulli distribution). 2) Sample
feature vector Xi,:|yi ∼ N ((2yi − 1)µ, σI) with µ ∈ Rd, σ ∈ R. 3) For all j ∈ [n], j < i sample
Aj,i ∼ Ber(p) if yi = yj and Aj,i ∼ Ber(q) otherwise, and set Ai,j = Aj,i. We denote this process
(X,A, y) ∼ CSBMµ,σ2

n,p,q. Inductively adding m nodes can be performed by repeating the above
process for i = n+1, . . . ,m. Fountoulakis et al. (2022) show that depending on the distance between
the class means δ, there is an easy regime, where a linear classifier ignoring A can perfectly separate
the data and a hard regime, defined by δ=Kσ, with 0 < K ≤ O(

√
log n), where this is not possible.

3 Revisiting adversarial perturbations

Given a clean graph (X,A, yL), target node v and perturbation set B(X,A). An adversary A tries
to choose a perturbed graph (X̃, Ã) ∈ B(X,A), with the goal to change the prediction of a node
classifier f , i.e., f(X̃, Ã, yL)v ̸= f(X,A, yL)v. The prevalent works implicitly assume that every
(X̃, Ã) ∈ B(X,A) preserves the node-level semantic content of the clean graph, i.e. the original
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ground-truth label of v. If we would have an oracle Ω telling us the semantic content, this assumption
can be made explicit by writing Ω(X̃, Ã, yL)v = Ω(X,A, yL)v . In practice, we do not have access
to Ω, but we can try to model its behaviour by introducing a reference or base node classifier g. Then,
the idea is to use g to indicate semantic content change and thereby, define the semantic boundary
(see Figure 1). Exemplary, g could be derived from knowledge about the data generating process. We
do so in Section 4, where we use the Bayes classifier for CSBMs as g (see also Section 3.1). Note
that labels themselves are often generated following a base classifier. Exemplary, this can be humans
labelling a dataset. Using a reference classifier g as a proxy for semantic content enables us to make a
refined definition of an adversarial graph, which makes the unchanged-semantics assumption explicit:
Definition 1. Let f be a node classifier and g a reference node classifier. Then the perturbed graph
(X̃, Ã) ∈ B(X,A) chosen by an adversary A is said to be adversarial for f at node v w.r.t. the
reference classifier g if the following conditions are satisfied:

i. f(X,A, yL)v = g(X,A, yL)v (correct clean prediction)

ii. g(X̃, Ã, yL)v = g(X,A, yL)v (perturbation preserves semantics)

iii. f(X̃, Ã, yL)v ̸= g(X,A, yL)v (node classifier changes prediction)

Definition 1 says that a perturbed graph (X̃, Ã) ∈ B(X,A) only then is adversarial, if (X̃, Ã) does
not only change the prediction of the node classifier f (iii), but also lets the original label unchanged
(ii). The first constraint (i) stems from the fact that if f and g disagree on the clean graph at node v
this should represent a case of misclassification captured by standard error metrics such as accuracy.

Suggala et al. (2019) use the concept of a reference classifier in similar spirit, to define semantics-
aware adversarial perturbations for i.i.d. data, with a focus on the image domain. However, what has
not been considered so far, is that the reference classifier allows us to characterize the exact opposite
behaviour of an adversarial example: If a classifier f does not change its prediction for a perturbed
graph (X̃, Ã) even though the semantic content has changed. This is undesirable, as this would mean
that f is robust beyond the point of semantic change. Thus, we call this behaviour over-robustness:
Definition 2. Let f be a node-classifier and g a reference classifier. Then the perturbed graph
(X̃, Ã) ∈ B(X,A) chosen by an adversary A is said to be an over-robust example for f at node v
w.r.t. the reference classifier g if the following conditions are satisfied:

i. f(X,A, yL)v = g(X,A, yL)v (correct clean prediction)

ii. g(X̃, Ã, yL)v ̸= g(X,A, yL)v (perturbation changes semantics)

iii. f(X̃, Ã, yL)v = g(X,A, yL)v (node classifier stays unchanged)
If there exists such an over-robust example, we call f over-robust at node v w.r.t. g.

Definition 2 may be of particular interest in the graph domain, where perturbation sets B(X,A)

often include graphs (X̃, Ã) which allow significant changes to the neighbourhood structure of v, but
do not allow easy manual content inspections. Indeed, Section 4 shows that all assessed GNNs are
over-robust for common choices of B(X,A) for many test nodes v in CSBM graphs. This may not
be as relevant in the image domain, where small ℓp-norm perturbations are visually imperceptible.

Figure 2: The decision bound-
ary of f follows base classifier
g except (wrongly) for the dot-
ted line. Finite perturbation
sets B(·) intersect only from
one side with the dashed area.

Now, we develop a deeper conceptual understanding of over- com-
pared to adversarial robustness. In Figure 2 the decision boundary
of a classifier f follows the one of a base classifier g except for the
dotted line. The dashed region between f ’s and g’s decision bound-
ary is a region of over-robustness for the blue class and a region of
adversarial examples for the red class. In practice, the perturbation
sets B(·) are bounded. As a result, it is only possible to measure the
right boundary of the dashed area using adversarial examples. The
concept of over-robustness allows us to additionally measure the left
boundary and hence, provides us with a more complete picture of
the robustness of f . Note that the blue data points, using conven-
tional adversarial robustness, are judged robust in the whole of B(·)
even though their true class changed. Semantic-aware adversarial
robustness (Definition 1) allows us to (correctly) cut off B(·) at the
decision boundary of g. We further conceptually and analytically
develop other interesting cases in Appendix A.
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3.1 Bayes optimal classifier as reference classifier

We derive a Bayes optimal classifier for inductive node classification to use as a reference classifier g.
This is a natural choice, because it provides us with the information, if another class is now more
likely based on the true data generating distribution. We assume that the training graph is fully
labeled, i.e. yL = y and focus on the most simple case of classifying an inductively sampled node.
We denote the conditional distribution over graphs with an inductively added node as D(X,A, y).
How well our classifier f generalizes to a newly added node v is captured by the expected 0/1-loss:

E
(X′,A′,y′)∼D(X,A,y)

[ℓ0/1(y
′
v, f(X

′,A′, y)v] (1)

To derive Bayes optimality, we have to find an optimal classifier f∗ for v, depending on (X′,A′, y),
minimizing (1). The following theorem shows that, similar to inductive classification for i.i.d. data,
f∗ should choose the most likely class based on the seen data (Proof in Appendix B.1):
Theorem 1. The Bayes optimal classifier, minimizing the expected 0/1-loss (1), is f∗(X′,A′, y)v =
argmaxŷ∈{0,1} P[y′v = ŷ|X′,A′, y].

4 Results

Table 1: Mean
accuracy of the
Bayes classifier on
test nodes v with
(X,A) and with-
out (X) structure
information.

Accuracy (Bayes)
K X (X,A)

0.1 50.8% 89.7%
0.5 59.0% 90.3%
1.0 68.4% 91.7%
1.5 76.5% 93.1%
2.0 83.4% 94.7%
3.0 92.6% 97.4%
4.0 97.5% 99.0%
5.0 99.3% 99.8%

Using Contextual Stochastic Block Models (CSBMs) we measure the extent of
semantic content violations in common threat models (Section 4.1). Then, we
study over-robustness in CSBMs (Section 4.2) and real-world graphs (Section
4.2.1). In CSBMs, we use the Bayes optimal classifier (Theorem 1), denoted
g, to measure semantic change. The robustness of the Bayes classifier defines
the maximal meaningful robustness achievable (see Section 3).

Experimental setup. We sample training graphs with n=1000 nodes from
several CSBMµ,σ2

n,p,q in the hard regime (Section 2). Each element of the class
mean vector µ ∈ Rd is set to Kσ/2

√
d, resulting in a distance between the

class means of Kσ. We set σ = 1 and vary K from close to no discriminative
features K =0.1 to making structure information unnecessary K =5 (see
Table 1). We choose p=0.63%, q=0.15% resulting in the expected number
of same-class and different-class edges for a given node to fit CORA (Sen
et al., 2008). We set d= ⌊n/ ln2(n)⌉=21 (Fountoulakis et al., 2022). We
use an 80%/20% train/validation split on the nodes. As usual in the inductive
setting, we remove the validation nodes from the graph during training. At test
time, we inductively sample 1000 times an additional node conditioned on the
training graph. For each K, we sample 10 different training graphs.

Models and attacks. We study a wide range of popular GNN architectures: Graph Convolutional
Networks (GCN) (Kipf & Welling, 2017), Simplified Graph Convolutions (SGC) (Wu et al., 2019a),
Graph Attention Networks (GAT) (Veličković et al., 2018), GATv2 (Brody et al., 2022), APPNP
(Gasteiger et al., 2019), and GraphSAGE (Hamilton et al., 2017). Furthermore, we study Label
Propagation (LP) (Zhou et al., 2003) and a Multi-Layer Perceptron (MLP). As adversarial attacks we
employ Nettack (Zügner et al., 2018) and DICE (Waniek et al., 2018) (random deletion of same-class
edges and addition of different-class edges). To find over-robust examples, we use a "weak" attack
we call ℓ2-weak: Connect to the closest different-class nodes in ℓ2-norm. Theorem 2 in Appendix B.2
shows that a strategy to change, with least structure changes, the true most likely class on CSBMs, i.e.
an "optimal attack" against the Bayes classifier g, is given by (arbitrarily) disconnecting same-class
edges and adding different-class edges to the target node. Therefore, the attacks DICE and ℓ2-weak
have the same effect on the semantic content of a graph. We vary local budgets ∆ from 1 up to the
degree (deg) of a node + 2, similarly to Zügner et al. (2018). We call the induced perturbation set
B∆(·). Further details, including the hyperparameter settings can be found in Appendix E.

Robustness metrics. To compare the robustness across different graphs and models, we develop
metrics summarizing the robustness properties of a model f on a given graph. To correct for the
different node degrees, we measure the adversarial robustness of f (w.r.t. g) at node v relative to
v’s degree and average over all test nodes V ′1: R(f, g) = 1

|V ′|
∑

v∈V ′ Robustness(f, g, v)/deg(v),

1Excluding degree 0 nodes. This is one limitation of this metric, however, these are non-existing in common
benchmark datasets such as CORA and very rare in the generated CSBM graphs (Figure 8 in Appendix F.1).
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where g represents the Bayes classifier and hence, Robustness(f, g, v) refers to the number of
semantics-preserving structure changes f is robust against (Definition 1). Exemplary, R(f, g) = 0.5
would mean that on average, node predictions are robust against changing 50% of the neighbourhood
structure. Using the labels y instead of a reference classifier g, yields the conventional (degree-
corrected) adversarial robustness, unaware of semantic change, which we denote R(f) := R(f, y).
To measure over-robustness, we take the fraction of conventional adversarial robustness R(f),
which cannot be explained by semantic-preserving robustness R(f, g): Rover = 1−R(f, g)/R(f).
Exemplary, Rover = 0.2 means that 20% of the measured robustness is robustness beyond semantic
change. In Appendix C we present a similar metric for semantic-aware adversarial robustness and
how to calculate an overall robustness measure using the harmonic mean of both metrics.

4.1 Extent of semantic content change in common perturbation models

Table 2: Percentage (%) of test nodes with per-
turbed graphs in B∆(·) violating semantic content
preservation. Calculated by connecting ∆ differ-
ent class nodes (ℓ2-weak) to every target node. For
K≥4.0 structure is not necessary for good gener-
alization (Table 1). Results using DICE or Nettack
are similar (see Appendix F.4). Standard devia-
tions are insignificant and hence, omitted.

Threat K
models 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

B1(·) 14.3 11.2 9.1 6.8 4.4 1.9 0.8 0.2
B2(·) 35.9 31.2 25.7 19.8 14.1 6.2 2.2 0.7
B3(·) 58.5 53.8 46.8 38.2 28.8 14.3 5.1 1.7
B4(·) 76.5 73.0 66.6 58.1 47.0 25.7 9.8 3.4
Bdeg(·) 75.7 60.0 55.4 49.1 39.6 21.9 9.0 3.2
Bdeg+2(·) 100 100 99.4 92.9 80.5 51.7 24.8 9.1

We investigate how prevalent perturbed graphs
with changed semantic content are for common
threat models. B∆(·) denotes the perturbation
set allowing a local budget of ∆ edge changes.
Table 2 shows the fraction of test nodes, for
which we find perturbed graphs in B∆(·) with
changed ground truth labels, as measured by g.
Surprisingly, even for very modest budgets, if
structure matters (K ≤ 3), this fraction is sig-
nificant. Exemplary, for K=1.0 and Bdeg+2(·),
we find perturbed graphs with changed seman-
tic content, for 99.4% of the target nodes. This
establishes a negative answer to a question for-
mulated in the introduction: If structure matters,
does completely reconnecting a node preserve
its semantic content? Similar to CSBMs, nodes
in real-world graphs have mainly low-degree
(Figure 8 in Appendix F.1). This provides evi-
dence that similar conclusion could be drawn for certain real-world graphs. The examined B∆(·)
subsume all threat models against edge-perturbations employing the ℓ0-norm to measure small
changes to the graph’s structure, as we investigate the lowest choices of local budgets possible (see
Appendix D for a discussion on global budgets). Table 2 reports lower bounds on the prevalence of
graphs in B∆(·) with changed semantic content, calculated by connecting ∆ different-class nodes
(ℓ2-weak) to every target node. Thus, the perturbed graphs G̃ are at the boundary of B∆(·). Then, we
count how many G̃ have changed the true most likely class using the Bayes classifier g. Exemplary,
if a classifier f is robust against B3(·) for CSBMs with K=1.0, f classifies the found graphs at the
boundary of B3(·) wrong in 47% of cases. Therefore, f shows high over-robustness Rover.

4.2 Over-robustness of graph neural networks

Figure 3: All GNNs show that a large
share of their conventional robustness
against Bdeg(·) (ℓ2-weak), can be at-
tributed to over-robustness (Rover). Net-
tack and DICE show similar results (Ap-
pendix F.5). Rover is much lower for LP.

Section 4.1 establishes the existence of perturbed graphs
with changed semantic content in common threat mod-
els. Now, we examine how much of the measured ro-
bustness of common GNNs can actually be attributed to
over-robustness (Rover), i.e. to robustness beyond seman-
tic change. As a qualitative example, we study a local
budget of the degree of the target nodes Bdeg(·). Figure 3
shows the over-robustness of GNNs when attacking their
classification of inductively added nodes. For K ≤ 3
the graph structure is relevant in the prediction (see Table
1). We find that in this regime, a significant amount of
the measured robustness of all GNNs can be attributed to
over-robustness. Exemplary, 30.3% of the conventional
adversarial robustness measurement of a GCN for K=0.5
turns out to be over-robustness, and similarly for other
GNNs. LP achieves lowest Rover while, for K≤1.5, hav-
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ing best test accuracy (Appendix F.2) and for K≤1, best adversarial robustness (Appendix F.6.1).
Stronger attacks (e.g. Nettack) also show that a significant part of the measured conventional ad-
versarial robustness is in fact over-robustness (see Appendix F.5). Exemplary, Nettack yields more
separation between the GNNs and performs strongest against SGC and GCN. However, for a GCN at
K = 0.5, still 11.4% of the measured robustness is in fact over-robustness. An MLP by achieving
maximal adversarial provides an upper bound on the measurable over-robustness for a particular K.
Exemplary, it has 43% over-robustness for K =0.1. This means that for a perfectly robust classifier
against Bdeg(·), 43% of the measured conventional adversarial robustness (ℓ2-weak) is undesirable
over-robustness. Note that all GNNs are close to this upper bound. An MLP for Nettack for K=2
still shows 19.2% Rover, indicating that here we can expect a model robust against Nettack in Bdeg(·)
to have at least 20% undesirable over-robustness. For bounded perturbation sets B∆(·), maximal
achievable over-robustness decreases if K increases, as the more informative features are, the more
structure changes it takes to change the semantic content (i.e. the Bayes decision, see Appendix F.3).

As a positive take-away for robustness measurements on real-world graphs, we find that if the attack
is strong enough conventional adversarial robustness is a good proxy for semantic-aware adversarial
robustness (see Appendix F.6.1). However, if the attack is weak, measured conventional robustness
can turn out to be over-robustness and hence, semantic-awareness can significantly change robustness
rankings (see Appendix F.6.2). The same holds if, using the harmonic mean, Rover is included for
an overall robustness ranking (see Appendix F.6.1). To deeper investigate the decision boundaries
learned, we apply ℓ2-weak until it changes a model’s prediction with no limited budget. This reveals
that most GNNs (but not LP) have vast areas of over-robustness in input space (see Appendix F.5.4).

4.2.1 Over-robustness on real-world graphs

1 2 3 4 5 6 7 8
Node degree

0
10
20
30
40
50
60
70
80
90

100

Structure perturbations until
GCN-prediction changes

Figure 4: (Inductive) Cora-ML.

We find for CSBMs that if structure matters (K≤3), there is a
large number of target nodes, which change their semantic con-
tent after only a few perturbations, mostly lower than their degree
(see Appendix F.3). In contrast GNN predictions, for a majority
of target nodes, are robust beyond exchanging the whole neigh-
bourhood. This is visualized in Figure 1 measured for K=1.5
and, in more detail, in Appendix F.3. On real-world graphs it is
difficult to derive a reference classifier and directly measure over-
robustness. However, we can investigate the degree-dependent
robustness of GNNs and see if we similarly find high robustness
beyond the degree of nodes. Figure 4 shows that a majority of
test node predictions of a GCN on (inductive) Cora-ML (Bo-
jchevski & Günnemann, 2018) are robust, by several multiples, beyond their degree. Even for degree
1 nodes, the median robustness lies at over 10 structure changes. Here, GCN’s degree-dependent
robustness substantially exceeds the one on CSBM-graphs with K=1.5 (see Figure 11b in Appendix
F.3), for which we already find high over-robustness. Results are obtained by applying a variant
of ℓ2-weak on a target node v. However, as Cora-ML has multiple classes, we ensure all inserted
edges connect to the same class c′, which is different to the class of v. The vulnerability of a GCN to
adversarial attacks likely stems from the lower quartile of robust node classifications in Figure 4. We
conjecture over-robustness for the upper quartile of highly robust node classifications. In Appendix
F.6.3 we show similar results on Citeseer (Sen et al., 2008) and that LP, while achieving only slightly
worse test accuracy, does not have such an upper quartile of highly robust node predictions.

5 Conclusion

We have shown that common threat models on CSBMs include a large share of graphs with changed
semantic content and that GNNs show significant over-robustness to these graphs, with similar
behaviour on real-world data. But we also found that the same threat models include truly adversarial
examples. This dichotomy is caused by the low-degrees of nodes and their class-membership being
dependent on their neighbourhood. Our results have multiple implications and we refer to Appendix
H for an extended discussion. One is that for CSBMs (full) conventional robustness would lead to
sub-optimal generalization and undesirable robustness beyond the point of semantic change. We
think this calls for more caution when applying ℓ0-norm restricted threat models in practice and that
these should not be an end to, but the beginning of an investigation into realistic graph perturbations.
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(a) (b) (c) (d)

Figure 5: Conceptual differences between over- and adversarial robustness. a) The decision boundary
of classifier f follows the one of a base classifier g except for the dotted line. b) Finite perturbation
budgets induce bounded perturbation sets B(·) intersecting only from one side with the dashed area.
c) The red class is not seen because it lies in a low data likelihood region. d) Zoomed: A node whose
perturbation set includes a region of adversarial and over-robust examples.

A Conceptual differences between over- and adversarial robustness

Figure 5a shows the decision boundary of a classifier f following the one of a base classifier g
except for the dotted line. The dashed region between f ’s and g’s decision boundary is a region of
over-robustness for the blue class and a region of adversarial examples for the red class.

In the main text, we discussed the case of bounded perturbation sets (Figure 5b). What would happen,
if we would lift the restriction of finite budgets? Then, for a given fixed graph and node v, over-
and (semantic-aware) adversarial robustness are clearly distinct phenomena: Denote G=(X,A)
and collect all over-robust examples in a set BO(G, v) ⊂ B(G) and adversarial examples in a set
BA(G, v) ⊂ B(G). Then, the following observation directly follows from Definition 1 and 2:
Proposition 1. The set of over-robust examples BO(G, v) and the set of adversarial examples
BA(G, v) are disjoint.

However, looking at Figure 5a, one could ask if a region of over-robust examples can always be
interpreted as an identical region of adversarial examples for different data points. In the following,
we will show that this is not true in general. To come to this result, we restate the question: For a
given over-robust example G̃ ∈ B(G) can we always find a corresponding clean graph G′ ̸= G not in
B(G) for which G̃ is an adversarial example? To answer this, it suffices to look at the case when the
node classifier f is constant:
Proposition 2. Given f is a constant classifier, then BA(G, v) is empty for every possible graph G.

This follows as f can never fulfill both, item (i) and item (iii) in Definition 1. However, over-robust
examples for f may exists. Every example in B(G) will be over-robust, for which g changes its label
for node v. This shows that over-robustness can differentiate two classifiers, which have the same
adversarial robustness, but one has learned a better decision boundary, while the other has not.

Now, we come to other interesting conceptual cases. In Figure 5a it is assumed that datapoints on
both sides of the decision boundary g have been sampled. This may be likely if every datapoint in the
input space has a comparable sampling probability. However, in practice there are regions of high
and low data likelihood and hence, it could be that datapoints on one side of the dashed regions have
not been sampled as exemplified in Figure 5c. There, the dashed line indicates the transition from
a high to low data likelihood area. As a result, only the concept of over-robustness can capture the
misbehaviour of the classifier f . The reverse scenario is also possible in which only the examples
of the right class are sampled and the left class is in a low likelihood region. Indeed, in our results
(see Section 4.2), there are some cases where we measure both high adversarial and over-robustness,
exactly fitting the scenario visualized in Figure 5c. Note that it makes sense to robustify a classifier
even against low-likelihood events as in safety-critical scenarios correct behaviour for unusual or rare
events is crucial (Hendrycks et al., 2021).

Figure 5d zooms in to a more intricate case. Disregarding the base classifier g would lead to wrongly
interpreting every example above the decision boundary of f as adversarial. With our refined notions,
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it is possible to correctly identify the adversarial region as above f until g, the over-robust region as
below the decision boundary of f but right of g and the correctly classified area in the top-right. Our
results show that this case is prevalent for GNNs using common threat models, as if structure matters,
we find over-robust examples (see Section 4.2 and Appendix F.3) as well as adversarial examples
(see Appendix F.6.1) in the examined perturbation sets.

B Proofs

B.1 Bayes optimal classifier

We proof Theorem 1 by deriving the Bayes classifier for multi-class node classification with C classes.
Theorem 1 then follows as special case by setting C = 2. We restate Theorem 1 for multiple classes:

Theorem 1. The Bayes optimal classifier, minimizing the expected 0/1-loss (1), is f∗(X′,A′, y)v =
argmax

ŷ∈{0,...,C−1}
P[y′v = ŷ|X′,A′, y].

Proof. Lets denote by x−i all elements of a vector x except the i-th one. First, note that D(X,A, y)
from which we sample (X′,A′, y′) defines a conditional joint distribution

P[X′,A′, y′|X,A, y] = P[y′v|X′,A′, y′−v,X,A, y] · P[X′,A′, y′−v|X,A, y]

= P[y′v|X′,A′, y] · P[X′,A′, y|X,A, y]

= P[y′v|X′,A′, y] · P[X′,A′|X,A, y] (2)

where the first line follows from the basic definition of conditional probability, the second lines from
the definition of the inductive sampling scheme (i.e., y′−v = y and similar for X′ and A′), and the
third line from P[y|X,A, y] = 1. Now, we can rewrite the expected loss (1) with respect to these
probabilities as

EX′,A′|X,A,y

[
Ey′

v|X′,A′,y[ℓ0/1(y
′
v, f(X

′,A′, y)v]
]

= EX′,A′|X,A,y

[
C−1∑
k=0

ℓ0/1(k, f(X
′,A′, y)v) · P[y′v = k|X′,A′, y]

]
(3)

The following argument is adapted from Hastie et al. (2009). Equation (3) is minimal for a classifier
f∗, if it is (point-wise) minimal for every (X′,A′, y). This means

f∗(X′,A′, y)v = argmin
ŷ∈{0,...,C−1}

C−1∑
k=0

ℓ0/1(k, ŷ) · P[y′v = k|X′,A′, y]

= argmin
ŷ∈{0,...,C−1}

C−1∑
k=0

(1− I[k = ŷ]) · P[y′v = k|X′,A′, y]

= argmax
ŷ∈{0,...,C−1}

C−1∑
k=0

I[k = ŷ] · P[y′v = k|X′,A′, y] (4)

= argmax
ŷ∈{0,...,C−1}

P[y′v = ŷ|X′,A′, y] (5)

where line (5) follows from fact that in the sum of line (4), there can only be one non-zero
term. Equation (5) tells us that the optimal decision is to choose the most likely class. Due to
f∗(X′,A′, y) = argmax

ŷ∈{0,...,C−1}
P[y′v = ŷ|X′,A′, y] minimizing (3) it also minimizes the expected

loss (1) and hence, is a Bayes optimal classifier.
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B.2 Optimal attack on CSBMs

Theorem 2. Given a graph generated by a CSBM. The minimal number of structure changes to
change the Bayes classifier (Theorem 1) for a target node v is defined by iteratively: i) connecting v
to another node u with yv ̸= yu or ii) dropping a connection to another node u with yv = yu.

Proof. Assume (X′,A′, y′) ∼ CSBMµ,σ2

1,p,q(X,A, y) with q < p (homophily assumption). Recall
the Bayes decision y∗ = argmaxŷ∈{0,1} P[y′v = ŷ|X′,A′, y]. We want to prove which structure
perturbations result in a minimally changed adjacency matrix Ã′, as measured using the ℓ0-norm, but
for which

y∗new = argmax
ŷ∈{0,1}

P[y′v = ŷ|X′, Ã′, y] ̸= y∗ (6)

Therefore, we want to change

P[y′v = y∗|X′,A′, y′] > P[y′v = 1− y∗|X′,A′, y′] (7)

to
P[y′v = y∗|X′, Ã′, y′] < P[y′v = 1− y∗|X′, Ã′, y′] (8)

To achieve this, first note that we can rewrite Equation (7) using Bayes theorem:

P[X′
v,:,A

′
v,:|y′v = y∗,X,A, y] · P[y′v = y∗|X,A, y]

P[X′
v,:,A

′
v,:|X,A, y]

>
P[X′

v,:,A
′
v,:|y′v = 1− y∗,X,A, y] · P[y′v = 1− y∗|X,A, y]

P[X′
v,:,A

′
v,:|X,A, y]

(9)

⇐⇒ P[X′
v,:,A

′
v,:|y′v = y∗,X,A, y] > P[X′

v,:,A
′
v,:|y′v = 1− y∗,X,A, y] (10)

where in Equation 9 we use (A′
v,:)

T = A′
:,v and Equation 10 follows from P[y′v = y∗|X,A, y] =

P[y′v = 1− y∗|X,A, y] = 1
2 by definition of the sampling process. Now, we take the logarithm of

both sides in (10) and call the log-difference ∆:

∆(A′) := logP[X′
v,:,A

′
v,:|y′v = y∗,X,A, y]− logP[X′

v,:,A
′
v,:|y′v = 1− y∗,X,A, y] (11)

Clearly, Equation 10 is equivalent to

∆(A′) ≥ 0 (12)

Using the properties of the sampling process of a CSBM (see Section 2), we can rewrite

P[X′
v,:,A

′
v,:|y′v = y∗,X,A, y] = P[X′

v,:|y′v = y∗] · P[A′
v,:|y′v = y∗, y] (13)

= P[X′
v,:|y′v = y∗] ·

∏
i∈[n]\{v}

P[A′
v,i|y′v = y∗, yi] (14)

and therefore

∆(A′) = log
P[X′

v,:|y′v = y∗]

P[X′
v,:|y′v = 1− y∗]

+
∑

i∈[n]\{v}

(
logP[A′

v,i|y′v = y∗, yi]− logP[A′
v,i|y′v = 1− y∗, yi]

)︸ ︷︷ ︸
∆i(A′)

(15)

12



Now, to achieve (8), we want to find those structure perturbations, which lead to ∆(Ã′) < 0 the
fastest (i.e., with least changes). First, note that the first term in Equation 15 does not depend on
the adjacency matrix and hence, can be ignored. The second term shows that the change in ∆(A′)
induced by adding or removing an edges (v, i) is additive and independent of adding or removing
another edge (v, j). Denote by Ã′(u) the adjacency matrix constructed by removing (adding) edge
(v, u) from A′ if (v, u) is (not) already in the graph. We define the change potential of node as u
as ∆̃u := ∆u(Ã

′(u)) − ∆u(A
′). Then, we only need find those nodes u with maximal change

potential |∆̃u| = |∆u(Ã
′(u))−∆u(A

′)| and ∆̃u < 0 and disconnect (connect) them in decreasing
order of |∆̃u| until ∆(Ã′) < 0. We will now show that any node u has maximal negative change
potential, who either satisfies i) yu = y∗ and A′

v,u = 1 or ii) yu ̸= y∗ and A′
v,u = 0.

To prove this, we make a case distinction on the existence of (v, u) in the unperturbed graph and the
class of yu:

Case A′
v,u = 0:

We distinguish two subcases:

i) yu ̸= y∗:

We can write

∆̃u = logP[A′
v,i = 1|y′v = y∗, yi]− logP[A′

v,i = 1|y′v = 1− y∗, yi]

− logP[A′
v,i = 0|y′v = y∗, yi] + logP[A′

v,i = 0|y′v = 1− y∗, yi]

= log q − log p− log(1− q) + log(1− p) (16)
< 0 (17)

Equation 16 follows from the sampling process of the CSBM. Equation 17 follows from q < p,
implying log q − log p < 0 and − log(1− q) + log(1− p) < 0.

ii) yu = y∗

We can write

∆̃u = log p− log q − log(1− p) + log(1− q) > 0 (18)

where the last > follows similarly from q < p.

Case A′
v,u = 1:

i) yu ̸= y∗:

We can write

∆̃u = logP[A′
v,i = 0|y′v = y∗, yi]− logP[A′

v,i = 0|y′v = 1− y∗, yi]

− logP[A′
v,i = 1|y′v = y∗, yi] + logP[A′

v,i = 1|y′v = 1− y∗, yi]

> 0 (19)

where Equation 19 follows by the insight, that ∆̃u is the same as for case A′
v,u = 0 except multiplied

with −1.

ii) yu = y∗

We can write

∆̃u = log q − log p− log(1− q) + log(1− p) < 0 (20)

where the first equality follows from the insight, that ∆̃u is again the same as for case A′
v,u = 0

except multiplied with −1. The last > follows again from q < p.
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The theorem follows from the fact that only the cases where we add an edge to a node of different
class, or drop an edge to a node with the same class have negative change potential and the fact, that
both cases have the same change potential.

C Robustness metrics

We restate the degree corrected robustness of a classifier f w.r.t. a reference classifier g:

R(f, g) =
1

|V ′|
∑
v∈V ′

Robustness(f, g, v)
deg(v)

(21)

Using the true labels y instead of a reference classifier g in (21), one can measure the maximal
achievable robustness (before semantic content changes) as R(g) := R(g, y), i.e. the semantic
boundary. Note that we can exactly compute R(g) due to knowledge of the data generating process.
We measure adversarial robustness as the fraction of optimal robustness R(g) achieved: Radv =
R(f, g)/R(g). Again, to correctly measure Radv , the identical attack is performed to measure R(f, g)
and R(g).

A model f can have high adversarial- but also high over-robustness (see Section 3). To have a metric,
which truly shows a complete picture of the robustness properties of a model, we take the harmonic
mean of Radv and the percentage of how much robustness is legitimate (1−Rover) and define an
F1-robustness score: F rob

1 (·, ·) = 2 (1−Rover)·Radv

(1−Rover)+Radv . Only a model showing perfect adversarial
robustness and no over-robustness achieves F rob

1 = 1.

Note that using F rob
β = (1 + β2) (1−Rover)·Radv

β2(1−Rover)+Radv , with β ≥ 0, one can weight the importance of
over- versus adversarial examples with Radv being β-times as important as (1−Rover).

D Global budget restrictions

Global budgets again result in local edge-perturbations, however, now commonly allowing for way
stronger perturbations than Bdeg+2(·) to individual nodes. The number of allowed perturbation is
usually set to a small one or two digit percentage of the total number of edges in the graph. For
CORA with 5278 edges, a relative budget of 5% leads to a budget of 263 edge-changes, which can
be distributed in the graph without restriction.

E Experiment details

Dataset.

We use Contextual Stochastic Block Models (CSBMs). The main setup is described in Section 4.
Table 3 summarizes some dataset statistics and contrasts them with CORA. The reported values are
independent of K, hence we report the average across 10 sampled CSBM graphs for one K.

Table 3: Dataset statistics.

Dataset # Nodes # Edges # Features # Classes Average
node degree

Average same-class
node degree

Average different-class
node degree

CSBM 1,000 1,964±25 21 2 3.92±0.05 3.25±0.05 0.67±0.02
CORA 2,708 5,278 1,433 7 3.90 3.16 0.74

Figure 6a shows that CSBM graphs mainly contain low-degree nodes.
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(a) (b)

Figure 6: (a) Degree distribution of a CSBM graph as parametrized in Section 4 (n = 1000). (b)
Validation accuracies of the best performing hyperparameters of the different models. Note that
GNNs for low K (high-structure relevance) underperform pure LP.

Graph neural networks and label propagation (LP).

We perform extensive hyperparameter search for each GNN model, LP and MLP for each individual
K and choose, for each K, the on average best performing hyperparamters on 10 graphs sampled
from the respective CSBM. Interestingly, we find that very different hyperparameters are optimal for
different choices of the feature-information defining parameter K. We also find that using the default
parameters from the respective model papers successful on the benchmark real-world datasets, don’t
work well for some choices of K, especially low K when structure is very important but features not
so.

We train all model for 3000 epochs with a patients of 300 epochs using Adam (Kingma & Ba, 2015)
and explore learning rates [0.1, 0.01, 0.001] and weight decay [0.01, 0.001, 0.001] and additionally
for

• MLP: We use a 1 (Hidden)-Layer MLP and test hidden dimensions [32, 64, 128, 256] and
dropout [0.0, 0.3, 0.5]. We employ the ReLU activation function.

• LP: We use label spreading (Zhou et al., 2003) as basic label propagation technique. We use
50 iterations and test α in the range between 0.00 and 1.00 in step sizes of 0.05. LP is the
only method having the same hyperparameters on all CSBMs, as it is independent of K.

• SGC: We explore [1, 2, 3, 4, 5] number of hops and additionally, a learning rate of 0.2. We
investigate dropouts of [0, 0.3, 0.5]. SGC was the most challening to train for low K.

• GCN: We use a two layer (ReLU) GCN with 64 filters and dropout [0.0, 0.3, 0.5]

• GAT: We use a two layer GAT with 8 heads and 8 features per head with LeakyReLU
having a negative slope of 0.2. We test dropout [0.0, 0.3, 0.6] and neighbourhood dropout
[0.0, 0.3, 0.6].

• GATv2: We use the best performing hyperparameters of GAT.

• APPNP: We use 64 hidden layers, K = 10 iterations, dropout [0.0, 0.3, 0.6] and
[0.0, 0.3, 0.5] and test α in [0.05, 0.1, 0.2]. Interestingly, the higher K, we observe higher
α performing better.

The (averaged) validation accuracies can be seen in Figure 6b.

Attacks.

• Nettack attacks a surrogate SGC model to approximately find maximal adversarial edges. As
a surrogate model, instead of using a direct SGC implementation as in the models section,
we use a 2-Layer GCN with the identity function as non-linearity and 64 filters and found it
trains easier on K = 0.1 and hence, provides better adversarial examples for K = 01 than
direct SGC implementation. For higher K, differences are neglectable. We use the same
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hyperparamter search as outlined for the conventional GCN. As CSBMs do not follow a
power-law in their degree distribution, we removed this distributional test from Nettack,
making it effectively stronger.

• DICE randomly disconnects d edges from the test node v to same-class nodes and connects b
edges from v to different-class nodes. For a given local budget ∆, we set d = 0 and b = ∆.

E.1 Real-world graphs

We introducing the experimental setup for evaluating overrobustness of GNNs on real-world graphs
in detail. This includes datasets, models and evaluation procedure.

Datasets. To explore overrobustness on real-world graphs, the citation networks Cora-ML (Bo-
jchevski & Günnemann, 2018) and Citeseer (Sen et al., 2008) are selected. Table 4 provides an
overview over the most important dataset characteristics. Figure 7 visualizes the degree distributions
up to degree 15. For both datasets, 40 nodes per class are randomly selected as validation and
test nodes. The remaining nodes are selected as labeled training set. On Cora-ML, this results in
approximately 80% training, 10% validation and 10% test nodes. Following the inductive approach
used in Section 4 for CSBMs, model optimization is performed using the subgraph spanned by all
training nodes. Early stopping uses the subgraph spanned by all training and validation nodes.

Table 4: Dataset statistics.

Dataset # Nodes # Edges # Features # Classes Average
node degree

Average same-class
node degree

Average different-class
node degree

Cora-ML 2,810 15,962 2,879 7 5.68 4.46 1.22
Citeseer 2,110 7,336 3,703 6 3.48 2.56 0.92
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Figure 7: Degree distribution by dataset.

Model Architectures. We evaluate the robustness of Graph Convolutional Networks (GCN), Label
Propagation (LP), and GCN followed by LP post-processing (GCN+LP). The GCN architecture
and optimization scheme follow Geisler et al. (2021). The GCN has two layers 64 filters. During
training, a dropout of 0.5 is applied. We optimize the model parameters for a maximum of 3000
epochs using Adam (Kingma & Ba, 2015) with learning rate 0.01 and weight decay 0.001. LP uses
the normalized adjacency as transition matrix and is always performed for ten iterations. This mirrors
related architectures like APPNP (Gasteiger et al., 2019). We additionally choose α = 0.7 on both
datasets by grid-search over {0.1, 0.3, 0.5, 0.7, 0.9}. For GCN+LP, it should be noted that LP is
applied as a post-processing routine at test-time only. It is not included during training.

Evaluating degree-depending robustness. We investigate degree-dependent robustness of GNNs
by following a similar strategy as the ℓ2-weak attack on CSBMs. However, real-world datasets are
multi-class. Therefore, we ensure to only connect the target nodes to nodes of one selected class.
More concretely, let v be a correctly classified test node with label c∗. We investigate for each class
c ̸= c∗, how many edges we can connect to v, until the model’s prediction changes and denote this
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number Nc(v). The attack then works as follows: First, we project the high-dimesional feature
vectors into lower dimensional space by applying the first weight matrix of the GCN. Then, we
iteratively add edges connecting v to the most similar nodes (after projection) in ℓ2-norm from c and
evaluate after how many insertions the model’s prediction changes. We present the results for the
class achieving lowest robustness, i.e. smallest Nc(v), and the results for the class achieving highest
robustness, i.e. largest Nc(v).

F Further results

F.1 Degree distribution CSBM vs CORA

Note that degrees in CSBM do not follow a power-law distribution. However, they are similar in a
different sense to common benchmark citation networks. The goal of this section is to show that the
large majority of nodes in both graphs have degrees 2, 3, 4 or 5. Low degree nodes are even more
pronounced in CORA than CSBMs.

(a) Graph sampled from a CSBM, using n = 2708 as
CORA. Note that the graph structure is of a CSBM is
independent of the K but only dependent on p, q which
have been set to fit CORA. Plot cut at node degree 15.

(b) CORA contains mainly low degree nodes. Plot cut
at node degree 15.

Figure 8: Degree distribution of the used CSBMs vs CORA, both distribution show that the graphs
mainly contain low-degree nodes. This is even more pronounced in CORA than CSBMs.

F.2 Test accuracy on CSBM

This section summaries the detailed performance of the different models on the CSBMs.

Figure 9: Test accuracy of models on test nodes on the CSBMs.
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Table 5: Average test accuracies of the models on the sampled test nodes on the CSBMs.

K 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

Bayes classifier (BC) 89.7% 90.3% 91.7% 93.1% 94.7% 97.4% 99.0% 99.8%
BC (Features Only) 50.8% 59.0% 68.4% 76.5% 83.4% 92.6% 97.5% 99.3%
BC (Structure Only) 89.8% 89.8% 89.8% 89.8% 89.8% 89.8% 89.8% 89.8%
MLP 50.4% 57.2% 64.6% 74.3% 83.0% 85.3% 96.6% 99.0%
GCN 64.6% 71.5% 81.2% 87.3% 90.8% 94.0% 95.3% 96.0%
SGC 61.3% 73.5% 82.9% 87.9% 91.5% 94.3% 95.3% 96.2%
APPNP 74.6% 76.7% 82.4% 87.7% 91.8% 96.4% 97.0% 95.5%
GAT 70.0% 77.6% 80.8% 85.2% 89.6% 93.7% 95.0% 95.5%
GATv2 72.8% 76.7% 81.5% 86.1% 90.7% 95.3% 98.1% 99.3%
GraphSAGE 66.2% 70.6% 79.9% 86.0% 89.8% 95.4% 97.9% 99.4%
LP 89.2% 89.2% 89.2% 89.2% 89.2% 89.2% 89.2% 89.2%

Table 6: Standard deviation of test accuracy of the models on the sampled test nodes on the CSBMs.

K 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

Bayes classifier (BC) 0.2% 0.2% 0.1% 0.1% 0.1% 0.2% 0.1% 0.1%
BC (Features Only) 1.5% 1.5% 1.7% 1.8% 1.6% 1.1% 0.6% 0.3%
BC (Structure Only) 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8% 0.8%
MLP 0.5% 0.6% 0.9% 0.9% 0.6% 5.2% 0.3% 0.1%
GCN 0.5% 0.5% 0.5% 0.3% 0.2% 0.2% 0.2% 0.1%
SGC 0.8% 0.8% 0.4% 0.2% 0.1% 0.2% 0.1% 0.1%
APPNP 0.9% 0.8% 1.2% 0.7% 0.3% 0.2% 0.7% 0.9%
GAT 1.5% 0.6% 1.1% 1.1% 0.4% 0.3% 0.3% 0.4%
GATv2 0.8% 0.4% 0.4% 0.5% 0.3% 0.5% 0.2% 0.1%
GraphSAGE 0.8% 0.5% 0.3% 0.3% 0.2% 0.1% 0.2% 0.1%
LP 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3% 0.3%

F.3 Average robustness of the Bayes classifier and the empirical cause of over-robustness

Figure F.3 shows that the average robustness of the Bayes classifier, increases with K and is linear in
the degree of the node. Furthermore, if structure matters (K ≤ 3), the (average) robustness of the
Bayes classifier rarely exceeds the degree of a node. Figure 11 shows a more detailed picture for
K = 1.5 and contrasts the number of structure changes until the Bayes classifier changes (Figure 11a)
with that of a GCN (Figure 11b). Over-robustness is caused by structure perturbations to a target node,
allowed by a threat model B∆(·), for which the Bayes decision changes before the GNN decision
changes. Figure 11 shows that there is a large portion of nodes, where the GCN is significantly more
robust than the Bayes classifier. This strongly suggests, together with the robustness of the Bayes
decision’s median being at most the degree of the node, that for any local budget ∆, we will find test
nodes with ≤ ∆ edge perturbations, where the Bayes decision changes before the GCN prediction
changes. Indeed, this is true for a significant fraction of nodes for any ∆ as presented in Table 7.
Robustness values for the Bayes classifier, i.e. the number of structure changes until semantic content
changes, are calculated using an "optimal" attack strategy outlined in Theorem 2 from Appendix B.2.
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Figure 10: Average robustness of the Bayes classifier on CSBMs. Robustness values are calculated
using an "optimal" attack strategy outlined in Theorem 2 from Appendix B.2.

(a) Bayes optimal classifier, K = 1.5 (b) GCN, K = 1.5, using ℓ2-weak

Figure 11: Structure perturbations until (a) Bayes optimal classifier or (b) GCN changes for K = 1.5
(as in Figure 1). Data collected over 10 sampled graphs from a CSBM with K = 1.5. The qualitative
picture is similar for other K, with slightly less robustness for K < 1.5 and more for K > 1.5.
Robustness values for the Bayes decision are calculated using an "optimal" attack strategy outlined in
Theorem 2 from Appendix B.2. For the GCN, ℓ2-weak is used.

Table 7: Percentage of test nodes for K = 1.5, for which a GCN is more robust than the Bayes
decision for perturbations from a threat model B∆(·) (using ℓ2-weak for attacking the GCN). These
nodes are responsible for the measured over-robustness, as each node is an over-robust example for
the GCN in B∆(·). Qualitative picture similar for other K and architectures.

Threat models GCN
B1(·) 4.73%
B2(·) 14.45%
B3(·) 27.86%
B4(·) 42.42%
Bdeg(·) 36.41%
Bdeg+2(·) 67.93%
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F.4 Extent of semantic content change in common perturbation models

The extent of semantic content change looks similar for DICE and Nettack to Table 2 (ℓ2-weak).

Nettack:

Note that for K = 0.1 the surrogate model SGC uses by Nettack has only mediocre test-accuracy
due to features not being very informative. Therefore, Nettack sometimes proposes to add same-class
edges or remove different-class edges.

Table 8: Percentage (%) of nodes for which we find perturbed graphs in B∆(·) violating semantic
content preservation, i.e. with changed ground truth labels. Calculated by adding or dropping ∆
edges suggested by Nettack to every target node. Note that for K=4.0 and K=5.0 structure is not
necessary for good generalization (Table 1). Standard deviation are insignificant and hence, omitted.

Threat models K=0.1 K=0.5 K=1.0 K=1.5 K=2.0 K=3.0 K=4.0 K=5.0

B1(·) 10.6 9.7 9.1 6.8 4.4 1.9 0.7 0.2
B2(·) 23.5 24.7 24.8 19.8 14.1 6.2 2.2 0.7
B3(·) 35.7 41.0 43.6 38.1 28.8 14.2 4.9 1.6
B4(·) 47.3 55.0 61.2 57.5 46.8 25.1 9.2 3.2
Bdeg(·) 45.4 42.9 50.0 47.6 39.4 21.9 8.9 3.1
Bdeg+2(·) 63.9 73.7 90.1 89.8 79.6 50.2 23.6 8.6

DICE:

Table 9: Percentage (%) of nodes for which we find perturbed graphs in B∆(·) violating semantic
content preservation, i.e. with changed ground truth labels. Calculated by randomly connecting ∆
different-class nodes (DICE) to every target node. Note that for K=4.0 and K=5.0 structure is not
necessary for good generalization (Table 1). Standard deviation are insignificant and hence, omitted.

Threat models K=0.1 K=0.5 K=1.0 K=1.5 K=2.0 K=3.0 K=4.0 K=5.0

B1(·) 14.9 10.9 9.0 6.2 4.3 2.1 0.6 0.2
B2(·) 36.8 31.4 26.2 19.7 13.8 6.4 2.0 0.6
B3(·) 58.6 52.9 46.4 37.7 28.8 13.9 5.0 1.3
B4(·) 77.1 72.6 66.6 57.0 45.8 25.8 9.6 2.9
Bdeg(·) 76.6 58.9 55.6 48.9 38.5 22.1 8.7 2.8
Bdeg+2(·) 100.0 100.0 99.2 92.2 79.9 50.8 24.0 8.2

F.5 Over-robustness of graph neural networks

F.5.1 ℓ2-weak
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Table 10: Over-robustness Rover measured using ℓ2-weak (see also Figure 3) with a budget of the
degree of the target node. Standard deviations never exceed 1%.

K 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

MLP 43.1% 35.6% 30.7% 25.5% 19.3% 9.9% 3.8% 1.3%
GCN 35.3% 30.3% 25.7% 19.8% 14.1% 5.2% 1.6% 0.4%
SGC 37.4% 29.6% 23.9% 20.1% 14.1% 5.2% 2.3% 0.6%
APPNP 32.5% 30.1% 24.3% 19.6% 16.8% 7.0% 2.4% 0.9%
GAT 33.3% 29.2% 26.6% 21.2% 15.7% 7.3% 2.9% 0.9%
GATv2 33.0% 29.4% 26.6% 21.2% 16.1% 7.5% 2.9% 0.9%
GraphSAGE 36.7% 32.3% 26.8% 22.2% 16.9% 8.3% 3.3% 1.2%
LP 16.0% 13.7% 11.3% 8.9% 6.7% 3.0% 1.0% 0.3%

F.5.2 Nettack

Figure 12 and Table 11 shows that over-robustness is not only occurring for weak attacks. Especially,
the MLP results show that if we would have a classifier perfectly robust against Nettack in the bounded
perturbation set, for all K ≤ 3 (where structure matters), this would result in high over-robustness.

Figure 12: Fraction of robustness beyond semantic change (Nettack, local budget ∆: degree of node).
A large part of the measured robustness against Bdeg(·) can be attributed to over-robustness.

Table 11: Over-robustness Rover measured using Nettack with a budget of the degree of the target
node. Standard deviations rarely exceed 1% notably for MLP at K = 0.1 with 4.8%.

K 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

MLP 26.5% 26.4% 28.4% 25.0% 19.2% 9.9% 3.8% 1.3%
GCN 13.5% 11.4% 6.0% 2.4% 0.8% 0.1% 0.0% 0.0%
SGC 7.7% 4.6% 2.9% 1.4% 0.4% 0.1% 0.1% 0.0%
APPNP 11.9% 10.1% 9.0% 3.8% 1.4% 0.1% 0.6% 0.6%
GAT 9.7% 15.1% 12.7% 11.0% 5.4% 3.3% 1.6% 0.5%
GATv2 14.0% 12.4% 13.3% 13.8% 8.8% 5.1% 2.7% 0.8%
GraphSAGE 14.6% 17.7% 15.7% 12.3% 9.9% 4.8% 2.1% 0.7%
LP 5.4% 5.4% 5.6% 5.4% 4.2% 1.9% 0.6% 0.2%
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F.5.3 DICE

Figure 13 and Table 12 shows, as for Nettack, that over-robustness is not only occurring for ℓ2-weak.
DICE shows very similar behaviour to ℓ2-weak. Especially, the MLP results show that if we would
have a classifier perfectly robust against DICE in the bounded perturbation set, for all K ≤ 3 (where
structure matters), this would result in high over-robustness.

Figure 13: Fraction of robustness beyond semantic change (DICE, local budget ∆: degree of node).
A large part of the measured robustness against Bdeg(·) can be attributed to over-robustness.

Table 12: Over-Robustness Rover measured using Nettack with a budget of the degree of the target
node. Standard deviations are insignificant and removed for brevity.

K 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

MLP 43.6% 35.0% 30.8% 25.0% 18.8% 10.0% 3.5% 1.1%
GCN 34.0% 29.2% 23.2% 16.8% 11.1% 3.4% 0.9% 0.3%
SGC 37.2% 28.9% 21.3% 16.5% 10.7% 3.3% 0.9% 0.2%
APPNP 31.1% 27.8% 22.7% 17.2% 13.6% 4.3% 1.7% 0.8%
GAT 32.9% 27.9% 25.7% 19.2% 13.1% 5.7% 2.2% 0.7%
GATv2 31.2% 27.8% 23.6% 18.7% 13.5% 6.6% 2.4% 0.8%
GraphSAGE 34.7% 29.9% 24.7% 19.4% 14.6% 7.0% 2.6% 0.9%
LP 16.0% 13.4% 10.8% 8.7% 6.4% 2.7% 0.9% 0.3%

F.5.4 ℓ2-weak: no budget constraints

Figure 14 shows that especially GAT, GATv2 and GraphSAGE and to a lesser extent APPNP have
vast areas of over-robustness in input space. This investigation is conceptually motivated by the cases
outline in Figure 5 in Appendix A. Note that for high K, GAT, GATv2 and GraphSAGE additionally
show high adversarial robustness (see Appendix F.6).
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Figure 14: Applying ℓ2-weak without budget restriction until it changes a classifiers prediction
reveals large over-robust regions in input space (compare conceptually with Figure 5 in Appendix A).
Note that label propagation has significantly smaller over-robustness while for K ≤ 1.5 not achieving
worse test accuracy (Appendix F.2) or adversarial robustness (Appendix F.6.1). Especially for high
K, some architectures additionally show high adversarial robustness (see Appendix F.6).

F.6 Adversarial robustness of graph neural networks

F.6.1 Nettack

Nettack is the strongest attack we employ, hence, it is the best heuristic we have to measure (semantic-
aware) adversarial robustness Radv (see Metric-Section C) and conventional, non-semantics aware,
adversarial robustness R(f) (see Section 4). Figure 15 shows that for K ≤ 1, LP has not only lowest
over-robustness but also best (semantic-aware) adversarial robustness. Some models, for K ≥ 3
achieve high adversarial robustness, even though they are also highly over-robust (compare with
Figure 3 and Appendix F.5.4).

Figure 15: Semantic aware robustness Radv measured using Nettack. Dashed lines are LP models.

Figure 16 shows that similar, albeit slightly less accurate adversarial robustness measurements are
obtained by not including the the semantic awareness. Rankings can indeed change, but only if these
models are already very close regarding Radv (e.g. LP in truth is more robust than GraphSAGE
(Figure 15), but Figure 16 indicates otherwise). This is evidence that if we use a strong attack on a
real-world graph, robustness rankings probably stay approximately correct and is good news for using
conventional adversarial robustness measures in practice. However, if two methods have very similar
robustness scores, conventional adversarial robustness is not accurate enough to differentiate them.
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Figure 16: Conventional (degree-corrected) robustness Radv measured using Nettack. Dashed lines
are LP models.

The harmonic mean of Radv and 1 − Rover (see Metric-Section C) shows a complete picture of
the robustness of the analysed models. To measure Rover, we use ℓ2-weak. Note that no GNN
achieves top placements using this ranking, but the best models, depending on the amount of feature
information, are LP or MLP. However, MLP does not have competitive test accuracy expect when
structure doesn’t matter (K ≥ 4) (see Appendix F.2).

Figure 17: The harmonic mean of Radv and 1−Rover, with Radv measured using Nettack and Rover

using ℓ2-weak.

F.6.2 DICE

DICE, as just randomly connecting to different class nodes, turns out to be a very weak attack similar
to ℓ2-weak. Hence, its adversarial robustness counts differ significantly from the stronger Nettack.
Here, we measure a significant difference between true (semantic-aware) adversarial robustness as
presented in Figure 18 and conventional adversarial robustness as shown in Figure 19. Indeed, a
conventional robustness measurement claims that LP is always the least robust method by significant
margins, however, correcting for semantic change uncovers that LP actually is the most robust method
for K ≤ 0.5 and has competitive robustness for K = 1 (even until K = 1.5 looking at overall
robustness 20). We find that with DICE we measure significantly higher over-robustness (Section F.5).
Therefore, having a weak attack can result in a significantly different picture of the true compared to
conventional adversarial robustness. This gives us insights for applying attacks on real-world graphs,
calling for the importance of always choosing a strong, best adaptive attack (Tramèr et al., 2020;
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Mujkanovic et al., 2022), if we want to gain insights into the true robustness of a defense and not be
"fooled" by over-robust behaviour.

Figure 18: Semantic Aware Robustness Radv measured using DICE. Dashed lines are LP models.

Figure 19: Conventional (Degree-Corrected) Robustness Radv measured using DICE. Dashed lines
are LP models.
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Figure 20: The harmonic mean of Radv and 1−Rover, with Radv measured using DICE and Rover

using ℓ2-weak.

F.6.3 Further results on real-world graphs

Table 13: Model test accuracy and standard deviation over eight data splits

Model GCN LP
dataset
Citeseer 69.4 ± 1.75 66.5 ± 2.12
Cora-ML 87.1 ± 2.12 84.0 ± 2.45
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Figure 21: Mean robustness per node degree on the Cora-ML dataset. Error bars indicate the standard
error of the mean over eight data splits.
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Figure 22: Distribution of maximal (per-class) node robustness by node degree on the Cora-ML
dataset for different models. Results are aggregated over eight data splits.
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Figure 23: Distribution of minimal (per-class) node robustness by node degree on the Cora-ML
dataset for different models. Results are aggregated over eight data splits.
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Figure 24: Mean robustness per node degree on the Citeseer dataset. Error bars indicate the standard
error of the mean over eight data splits.
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Figure 25: Distribution of maximal (per-class) node robustness by node degree on the Citeseer dataset
for different models. Results are aggregated over eight data splits.
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Figure 26: Distribution of minimal (per-class) node robustness by node degree on the Citeseer dataset
for different models. Results are aggregated over eight data splits.
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G Additional related work

The problem of semantic content preservation was theoretically studied by Suggala et al. (2019).
However, they only discuss i.i.d. data and focus on the image domain. To the best of our knowledge,
we are the first to study an (adversarial) notion of over-robustness.

We see us related to a new line of work using synthetic graph models to generate principled insights
into GNNs. Notably, Fountoulakis et al. (2022) show that in non-trivially CSBMs settings (hard
regime), GATs, with high probability, can’t distinguish same-class edges from different-class edges
and degenerate to GCNs. Baranwal et al. (2021) study GCNs on CSBMs and find graph convolutions
extent the linear separability of the data. Palowitch et al. (2022) generate millions of synthetic
graphs to explore the performance of common GNNs on graph datasets with different characteristics
to the common benchmark real-world graphs. However, their studied degree-corrected SBM is
fundamentally limited to transductive learning.

In the graph domain, Dai et al. (2018) note the possibility of measuring semantic content with a
gold standard classifier and generate semantic-preserving perturbations for graph-classification on
Erdős-Rényi graphs. Regarding sound perturbations models, distantly related is also the work of
Geisler et al. (2022), which apply GNNs to combinatorial optimization tasks and therefore, can
describe how the perturbations change or preserve the label and thereby, semantics. Although no
work has explicitly addressed semantic content preservation for node classification, we list works
going beyond ℓ2-norm restrictions: Zügner et al. (2018) proposed to approximate unnoticeability by
preserving a (power-law) degree distribution; a similar idea to approximatively preserve node-degree
distribution is also mentioned in Wang et al. (2018); Li et al. (2021) introduced a metric for degree
assortativity, but did not restrict perturbations; Chen et al. (2022) propose other homophily metrics
for unnoticeability, but focus on different perturbations to the graph, namely adding malicious nodes.

Regarding the bigger picture in robust graph learning, all works measuring small changes to the
graph’s structure using the ℓ0-norm can be seen as related. This is a large body of work and includes
but is not limited to i) the attack literature such as (Zügner et al., 2018; Dai et al., 2018; Waniek
et al., 2018; Chen et al., 2018; Zügner & Günnemann, 2019a; Jin et al., 2020; Geisler et al., 2021); ii)
various defenses ranging from detecting attacks (Wu et al., 2019b; Entezari et al., 2020), proposing
new robust layers and architectures (Zhu et al., 2019; Geisler et al., 2020) to robust training schemes
(Zügner & Günnemann, 2019b; Xu et al., 2019, 2020); iii) robust certification (Bojchevski et al.,
2020; Schuchardt et al., 2021). An overview of the adversarial robustness literature on GNNs is given
by Günnemann (2022). Zheng et al. (2021) provide a graph robustness benchmark.

H Discussion

We have shown that on CSBMs, a significant part of conventional robustness of GNNs can be
attributed to over-robustness, with similar patterns on real-world graphs. This raises the question,
what kind of robustness do defenses improve on in GNNs? As a positive take-away for robustness
measurements on real-world graphs, we have found that strong attacks lead to conventional adver-
sarial robustness measurements, which are a good proxy for semantic-aware adversarial robustness.
However, we also found that if the attack is weak, measured conventional robustness can turn out
to be over-robustness and hence, semantic-awareness can significantly change robustness rankings.
We think this calls to practitioners to always choose a strong, best adaptive attack to benchmark
robustness of their models and defenses.

Our concept of over-robustness allows to think of a new kind of attack, where the adversary overtakes
a clean node (e.g. social media user) and, with its malicious activity, tries to stay undetected. While
we have shown that GNNs are highly susceptible to these kind of threats, label propagation is not. As
visually inspecting graphs is difficult, we have shown that synthetic graph generation models can
be used as important tools to further a principled understanding of graph attacks and defenses. We
believe our work outlines a framework for others to build upon.
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