
Published as a conference paper at ICLR 2021

EXPRESSIVE POWER OF INVARIANT AND
EQUIVARIANT GRAPH NEURAL NETWORKS

Waïss Azizian
ENS, PSL University, Paris, France
waiss.azizian@ens.fr

Marc Lelarge
INRIA & ENS, PSL University, Paris, France
marc.lelarge@ens.fr

ABSTRACT

Various classes of Graph Neural Networks (GNN) have been proposed and shown
to be successful in a wide range of applications with graph structured data. In
this paper, we propose a theoretical framework able to compare the expressive
power of these GNN architectures. The current universality theorems only apply to
intractable classes of GNNs. Here, we prove the first approximation guarantees for
practical GNNs, paving the way for a better understanding of their generalization.
Our theoretical results are proved for invariant GNNs computing a graph embedding
(permutation of the nodes of the input graph does not affect the output) and
equivariant GNNs computing an embedding of the nodes (permutation of the input
permutes the output). We show that Folklore Graph Neural Networks (FGNN),
which are tensor based GNNs augmented with matrix multiplication are the most
expressive architectures proposed so far for a given tensor order. We illustrate our
results on the Quadratic Assignment Problem (a NP-Hard combinatorial problem)
by showing that FGNNs are able to learn how to solve the problem, leading to
much better average performances than existing algorithms (based on spectral,
SDP or other GNNs architectures). On a practical side, we also implement masked
tensors to handle batches of graphs of varying sizes.

1 INTRODUCTION

Graph Neural Networks (GNN) are designed to deal with graph structured data. Since a graph is
not changed by permutation of its nodes, GNNs should be either invariant if they return a result that
must not depend on the representation of the input (typically when building a graph embedding) or
equivariant if the output must be permuted when the input is permuted (typically when building an
embedding of the nodes). More fundamentally, incorporating symmetries in machine learning is a
fundamental problem as it allows to reduce the number of degree of freedom to be learned.

Deep learning on graphs. This paper focuses on learning deep representation of graphs with network
architectures, namely GNN, designed to be invariant to permutation or equivariant by permutation.
From a practical perspective, various message passing GNNs have been proposed, see Dwivedi et al.
(2020) for a recent survey and benchmarking on learning tasks. In this paper, we study 3 architectures:
Message passing GNN (MGNN) which is probably the most popular architecture used in practice,
order-k Linear GNN (k-LGNN) proposed in Maron et al. (2018) and order-k Folklore GNN (k-
FGNN) first introduced by Maron et al. (2019a). MGNN layers are local thus highly parallelizable
on GPUs which make them scalable for large sparse graphs. k-LGNN and k-FGNN are dealing with
representations of graphs as tensors of order k which make them of little practical use for k ≥ 3.

In order to compare these architectures, the separating power of these networks has been compared to
a hierarchy of graph invariants developed for the graph isomorphism problem. Namely, for k ≥ 2,
k-WL(G) are invariants based on the Weisfeiler-Lehman tests (described in Section 4.1). For each
k ≥ 2, (k + 1)-WL has strictly more separating power than k-WL (in the sense that there is a pair of
non-isomorphic graphs distinguishable by (k + 1)-WL and not by k-WL). GIN (which are invariant
MGNN) introduced in Xu et al. (2018) are shown to be as powerful as 2-WL. In Maron et al. (2019a),
Geerts (2020b) and Geerts (2020a), k-LGNN are shown to be as powerful as k-WL and 2-FGNN is
shown to be as powerful as 3-WL. In this paper, we extend this last result about k-FGNN to general
values of k. So in term of separating power, when restricted to tensors of order k, k-FGNN is the

1

Published as a conference paper at ICLR 2021

most powerful architecture among the ones considered in this work. This means that for a given
pair of graphs G and G′, if (k + 1)-WL(G) 6= (k + 1)-WL(G′), then there exists a k-FGNN, say
GNNG,G′ such that GNNG,G′(G) 6= GNNG,G′(G′).

Approximation results for GNNs. Results on the separating power of GNNs only deal with pairwise
comparison of graphs: we need a priori a different GNN for each pair of graphs in order to distinguish
them. Such results are of little help in a practical learning scenario. Our main contribution in this
paper overcomes this issue and we show that a single GNN can give a meaningful representation for
all graphs. More precisely, we characterize the set of functions that can be approximated by MGNNs,
k-LGNNs and k-FGNNs respectively. Standard Stone-Weierstrass theorem shows that if an algebra
A of real continuous functions separates points, then A is dense in the set of continuous function on
a compact set. Here we extend such a theorem to general functions with symmetries and apply it to
invariant and equivaraint functions to get our main result for GNNs. As a consequence, we show that
k-FGNNs have the best approximation power among architectures dealing with tensors of order k.

Universality results for GNNs. Universal approximation theorems (similar to Cybenko (1989) for
multi-layers perceptron) have been proved for linear GNNs in Maron et al. (2019b); Keriven & Peyré
(2019); Chen et al. (2019). They show that some classes of GNNs can approximate any function
defined on graphs. To be able to approximate any invariant function, they require the use of very
complex networks, namely k-LGNN where k tends to infinity with n the number of nodes. Since we
prove that any invariant function less powerful than (k + 1)-WL can be approximated by a k-FGNN,
letting k tends to infinity directly implies universality. Universality results for k-FGNN is another
contribution of our work.

Equivariant GNNs. Our second set of results extends previous analysis from invariant functions
to equivariant functions. There are much less results about equivariant GNNs: Keriven & Peyré
(2019) proves the universality of linear equivariant GNNs, and Maehara & Hoang (2019) shows the
universality of a new class of networks they introduced. Here, we consider a natural equivariant
extension of k-WL and prove that equivariant (k + 1)-LGNNs and k-FGNN can approximate any
equivariant function less powerful than this equivariant (k + 1)-WL for k ≥ 1. At this stage, we
should note that all universality results for GNNs by Maron et al. (2019b); Keriven & Peyré (2019);
Chen et al. (2019) are easily recovered from our main results. Also our analysis is valid for graphs of
varying sizes.

Empirical results for the Quadratic Assigment Problem (QAP). To validate our theoretical con-
tributions, we empirically show that 2-FGNN outperforms classical MGNN. Indeed, Maron et al.
(2019a) already demonstrate state of the art results for the invariant version of 2-FGNNs (for graph
classification or graph regression). Here we consider the graph alignment problem and show that
the equivariant 2-FGNN is able to learn a node embedding which beats by a large margin other
algorithms (based on spectral method, SDP or GNNs).

Outline and contribution. After reviewing more previous works and notations in the next section,
we define the various classes of GNNs studied in this paper in Section 3 : message passing GNN,
linear GNN and folklore GNN. Section 4 contains our main theoretical results for GNNs. First in
Section 4.2 we describe the separating power of each GNN architecture with respect to the Weisfeiler-
Lehman test. In Section 4.3, we give approximation guarantees for MGNNs, LGNNs and FGNNs at
fixed order of tensor. They cover both the invariant and equivariant cases and are our main theoretical
contributions. For these, we develop in Section D a fine-grained Stone-Weierstrass approximation
theorem for vector-valued functions with symmetries. Our theorem handles both invariant and
equivariant cases and is inspired by recent works in approximation theory. In Section 6, we illustrate
our theoretical results on a practical application: the graph alignment problem, a well-known NP-hard
problem. We highlight a previously overlooked implementation question: the handling of batches of
graphs of varying sizes. A PyTorch implementation of the code necessary to reproduce the results is
available at https://github.com/mlelarge/graph_neural_net

2 RELATED WORK

The pioneering works that applied neural networks to graphs are Gori et al. (2005) and Scarselli et al.
(2009) that learn node representation with recurrent neural networks. More recent message passing
architectures make use of non-linear functions of the adjacency matrix (Kipf & Welling, 2016),

2

https://github.com/mlelarge/graph_neural_net

Published as a conference paper at ICLR 2021

for example polynomials (Defferrard et al., 2016). For regular-grid graphs, they match classical
convolutional networks which by design can only approximate translation-invariant functions and
hence have limited expressive power. In this paper, we focus instead on more expressive architectures.

Following the recent surge in interest in graph neural networks, some works have tried to extend the
pioneering work of Cybenko (1989); Hornik et al. (1989) for various GNN architectures. Among the
first ones is Scarselli et al. (2009), which studied invariant message-passing GNNs. They showed that
such networks can approximate, in a weak sense, all functions whose discriminatory power is weaker
than 1-WL. Yarotsky (2018) described universal architectures which are invariant or equivariant
to some group action. These models rely on polynomial intermediate layers of arbitrary degrees,
which would be prohibitive in practice. Maron et al. (2019b) leveraged classical results about the
polynomials invariant to a group action to show that k-LGNN are universal as k tends to infinity
with the number of nodes. Keriven & Peyré (2019) derived a similar result, in the more complicated
equivariant case by introducing a new Stone-Weierstrass theorem. Similarly to Maron et al. (2019b),
they require the order of tensors to go to infinity. Another route towards universality is the one of
Chen et al. (2019). In the invariant setting, they show for a class of GNN that universality is equivalent
to being able to discriminate between (non-isomorphic) graphs. However, the only way to achieve
such discriminatory power is to use tensors of arbitrary high order, see also Ravanbakhsh (2020).
Our work encompass and precise these results using high-order tensors as it yields approximation
guarantees even at fixed order of tensor.

CPNGNN in Sato et al. (2019) and DimeNet in Klicpera et al. (2020) are message passing GNN
incorporating more information than those studied here. Partial results about their separating power
follows from Garg et al. (2020) which provides impossibility results to decide graph properties
including girth, circumference, diameter, radius, conjoint cycle, total number of cycles, and k-cliques.
Chen et al. (2020) studies the ability of GNNs to count graph substructures. Though our theorems are
much more general, note that their results are improved by the present work. Note also, that if the
nodes are given distinct features, MGNNs become much more expressive Loukas (2019) but looses
their invariant or equivariant properties. Averaging i.e. relational pooling (RP) has been proposed
to recover these properties Murphy et al. (2019a). However, the ideal RP, leading to a universal
approximation, cannot be used for large graphs due to its complexity of O(|V |!). Regarding the other
classes of RPGNN i.e. the k-ary pooling (Murphy et al., 2019b), we will show how our general
theorems in the invariant case can be applied to characterize their approximation power (see Section
5).

Note that for neural networks on sets, the situation is a bit simpler. Efficient architectures such as
DeepSets (Zaheer et al., 2017) or PointNet (Qi et al., 2017) have been shown to be invariant universal.
Similar results exist in the equivariant case (Segol & Lipman, 2020; Maron et al., 2020), whose
proofs rely on polynomial arguments. Though this is not our main motivation, our approximation
theorems could also be applied in this context see Sections D.3 and D.4.

2.1 NOTATIONS: GRAPHS AS TENSORS

We denote by F,F0,F1/2,F1, . . . arbitrary finite-dimensional spaces of the form Rp (for various
values of p) typically representing the space of features. Product of vectors in Rp always refer to
component-wise product. There are two ways to see graphs with features. First, graphs can be seen
as tensors of order k: G ∈ Fnk . The classical representation of a graph by its (weighted) adjacency
matrix for k = 2 is a tensor of order 2 in Rn2

. This case allows for features on edges by replacing
Rn2

with Fn2

where F is some Rp. Second, graphs can also be represented by their discrete structure
with an additional feature vector. More exactly, denote by Gn the set of discrete graphs G = (V,E)
with n nodes V = [n] and edges E ⊆ V 2 (with no weights on edges). Such a G ∈ Gn with a vector
h0 ∈ Fn represents a graphs with features on the vertices.

2.2 DEFINITIONS: INVARIANT AND EQUIVARIANT OPERATORS

Let [n] = {1, . . . , n}. The set of permutations on [n] is denoted by Sn. For G ∈ Fnkand σ ∈ Sn,
we define: (σ ? G)σ(i1),...,σ(ik) = Gi1,...,ik . Note that the ? operation is valid between a permutation
in Sn and a graph G as soon as the number of nodes of G is n, i.e. it is valid for any order k tensor

3

Published as a conference paper at ICLR 2021

representation of the graph. Two graphs G1, G2 are said isomorphic if they have the same number of
nodes and there exists a permutation σ such that G1 = σ ? G2.

Definition 1. A function f : Fnk0 → F1 is said to be invariant if f(σ ? G) = f(G) for every
permutation σ ∈ Sn and every G ∈ Fnk0 . A function f : Fnk0 → Fn`1 is said to be equivariant if
f(σ ? G) = σ ? f(G) for every permutation σ ∈ Sn and every G ∈ Fnk0 .

Note that composing an equivariant function with an invariant function gives an invariant function.
For k ≥ 1, we define the invariant summation layer Sk : Fnk → F by Sk(G) =

∑
i∈[n]k Gi for

G ∈ Fnk . We also define the equivariant reduction layer Sk1 : Fnk → Fn as follows: Sk1 (G)i =∑
1≤i2...ik≤nGi,i2,...ik . For message passing GNN, we will use the equivariant layer Id +λS1 :

Fn → Fn defined by, (Id +λS1)(G)i = Gi + λS1(G), where λ ∈ R is a learnable parameter.

In the sequel, we will need a mapping Ik lifting the input graph to a higher order tensor. We denote by
Ik : Fn2

0 → Fnk1 the initialization function mapping for a given graph each k-tuple to its isomorphism
type. We refer to the appendix Section C.3 for a precise description of this linear equivariant function.
Note at this stage that I2 is given by, for G ∈ Fn2

, I(G)i,j = (Gi,j , δi,j) where δi,j is 0 if i 6= j
and 1 otherwise. Indeed for a pair of nodes i, j in a graph (without features), there are only three
isomorphism types: i = j; i 6= j and (i, j) is an edge; i 6= j but (i, j) is not an edge.

3 GNN DEFINITIONS

In this section, we define the various GNN architectures studied in this paper. In all architectures,
there is a main building block or layer mapping Fnkt to Fnkt+1 where Fnkt can be seen as the space for
the representation of the graph at layer t. We will define three different types of layers for message
passing GNN, linear GNN and folklore GNN.The case k = 2 is probably the most interesting case
from a practical point view and corresponds to a case where a layer takes as input a graph (with
features on nodes and edges) and produces as output a graph (with new features on nodes and edges).
For each type of GNNs, there will be an invariant and an equivaraint version. All architectures
will share the last function: mI : FT+1 → F for the invariant case and mE : FnT+1 → Fn for the
equivariant case which are continuous functions. It is typically modeled by a Multi Layer Perceptron,
which is applied on each component for the equivariant case. In words, each network takes as input a
graph G ∈ Fn2

0 , produces in the invariant case a graph embedding in FT+1 and in the equivaraint
case a node embedding in FnT+1, then these embeddings are passed through the function mI or mE

respectively to get a feature in F or Fn for the learning task.

3.1 MESSAGE PASSING GNN

Message passing GNN (MGNN) are defined for classical graphs G with features on the nodes. More
exactly they take as input a discrete graph G = (V,E) ∈ Gn and features on the nodes h0 ∈ Fn.
MGNN are then defined inductively as follows: let h`i ∈ F` denote the feature at layer ` associated

with node i, the updated features h`+1
i are obtained as: h`+1

i = f
(
h`i ,
{{
h`j
}}
j∼i

)
, where j ∼ i

means that nodes j and i are neighbors in the graphG, i.e. (i, j) ∈ E, and the function f is a learnable
function taking as input the feature vector of the center vertex h`i and the multiset of features of the
neighboring vertices

{{
h`j
}}
j∼i. Indeed, it follows from Lem. 33 in Appendix, that any such function

f can be approximated by a layer of the form,

h`+1
i = f0

h`i ,∑
j∼i

f1
(
h`i , h

`
j

) , (1)

where f0 : F` × F`+1/2 → F`+1 and f1 : F` × F` → F`+1/2, so that F` is the field for the features
at the `-th layer. We call such a function a message passing layer and denote it by F : Fn` → Fn`+1
(note that F depends implicitly from the graph). Then an equivariant message passing GNN is simply
obtained by the composition of message passing layers: FT ◦ . . . F2 ◦F1, where each Fi is a message
passing layer. Clearly since each Fi is equivariant, this message passing GNN is also equivariant
and produces features on each node in the space FT . In order to obtain an invariant GNN, we apply

4

Published as a conference paper at ICLR 2021

an invariant function from FnT → FT+1 on the output of an equivariant message passing GNN. In
practice, a symmetric function is applied on the vectors of features indexed by the nodes, typically
the sum of the features

∑
i(FT ◦ . . . F2 ◦ F1(G))i is taken as an invariant feature for the graph G.

With our notation, S1 ◦ FT ◦ . . . F2 ◦ F1 (where S1 was defined in Section2.2) defines an invariant
message passing GNN.

Hence, we define the sets of message passing GNNs as follows:
MGNNI = {mI ◦ S1 ◦ FT ◦ . . . F2 ◦ F1,∀T}
MGNNE = {mE ◦ (Id +λS1) ◦ FT ◦ . . . F2 ◦ F1,∀T}

where Ft : Fnt → Fnt+1 are message passing layers.

3.2 LINEAR GNN

We define the linear graph layer of order k as F : Fnk` → Fnk`+1, where for all G ∈ Fnk` , F (G) =

f (L[G]) where L : Fnk` → Fnk` is a linear equivariant function, and f : F` → F`+1 is a learnable
function applied on each of the nk features and F` is the field for the features at the `-th layer.

We then define the sets of linear GNNs as follows:
k-LGNNI = {mI ◦ Sk ◦ FT ◦ . . . F2 ◦ F1 ◦ Ik,∀T}
k-LGNNE = {mE ◦ Sk1 ◦ FT ◦ . . . F2 ◦ F1 ◦ Ik,∀T}

where Ik : Fn2

0 → Fnk1 is defined in §2.2 and for t ≥ 1, Ft : Fnkt → Fnkt+1 are linear equivariant
layers.

3.3 FOLKLORE GNN

The main building block of Folklore GNN (FGNN) is what we call the folklore graph layer (FGL) of
order k defined as follows: for k ≥ 1, F : Fnk` → Fnk`+1 where for all G ∈ Fnk` and all i ∈ [n]k,

F (G)i = f0

Gi,

n∑
j=1

k∏
w=1

fw
(
Gi1,...,iw−1,j,iw+1,...,ik

) , (2)

where f0 : F`×F`+1/2 → F`+1 and fk : F` → F`+1/2 are learnable functions. As shown in Lem. 33
in Appendix, FGL is an equivariant function which is indeed very expressive.

For classical graphs G ∈ Fn2

0 , we can now define 2-FGNN by composing folklore graph layers
Ft : Fn2

t → Fn2

t+1, so that FT ◦ . . . F1 ◦ F0 is an equivariant GNN producing a graph in Fn2

T+1. To
obtain an invariant feature of the graph, we use the summation layer S2 defined in Section 2.2 so that
S2 ◦ FT ◦ . . . F1 ◦ F0 is now an invariant 2-FGNN. In order to define general k-FGNN, we first need
to lift the classical graph to a tensor in Fnk , then we apply folklore graph layers of order k and finally
we need to project the tensor in Fnk to a tensor in Fn for the equivariant version and to a tensor in F
for the invariant version. The first step is done with the linear equivariant function Ik : Fn2

0 → Fnk1
defined in Section 2.2. The last step is done with the reduction layer Sk1 for the equivariant case and
the summation layer Sk for the invariant case, both defined in Section 2.2.

We define the sets of folklore GNNs as follows:
k-FGNNI = {mI ◦ Sk ◦ FT ◦ . . . F2 ◦ F1 ◦ Ik,∀T}
k-FGNNE = {mE ◦ Sk1 ◦ FT ◦ . . . F2 ◦ F1 ◦ Ik,∀T}

where Ft : Fnkt → Fnkt+1 are FGLs.

4 THEORETICAL RESULTS FOR GNNS

4.1 WEISFEILER-LEHMAN INVARIANT AND EQUIVARIANT VERSIONS

We introduce a family of functions on graphs parametrized by integers k ≥ 2 developed for the graph
isomorphism problem and working with tuples of k vertices. Each k-tuple i ∈ V k = [n]k is given

5

Published as a conference paper at ICLR 2021

a color c0(i) corresponding to its isomorphism type (see Section B.2). The k-WL test relies on the
following notion of neighborhood, defined by, for any w ∈ [k], and i = (i1, . . . , ik) ∈ V k, Nw(i) =
{(i1, . . . , iw−1, j, iw+1, . . . , ik) : j ∈ V }. Then, the colors of the k-tuples are refined as follows,
ct+1(i) = Lex (ct(i), (Ct1(i), . . . , Ctk(i))) where, for w ∈ [k], Ctw(i) =

{{
ct(̃i) : ĩ ∈ Nw(i)

}}
and

the function Lex means that all occuring colors are lexicographically ordered and replaced by an
initial segment of the natural numbers.

For a graphG, let k-WLTI (G) denote the multiset of colors of the k-WL algorithm at the T th iteration.
After a finite number of steps (which depends on the number of vertices in the graph), the algorithm
stops because a stable coloring is reached (no color class of k-tuples is further divided). We denote
by k-WLI(G) the multiset of colors in the stable coloring. This is a graph invariant that is usually
used to test if graphs are isomorphic. The power of this invariant increases with k Cai et al. (1989).

We now define an equivariant version of k-WL test to express the discriminatory power of equivariant
architectures For this, we construct a coloring of the vertices from the coloring of the k-tuples given by
the standard k-WL algorithm. Formally, define k-WLTE : Fn2

0 → Fn by, for i ∈ V : k-WLTE(G)i ={{
cT (i) : i ∈ V k, i1 = i

}}
. Similarly, define k-WLE(G) =

{{
c(i) : i ∈ V k, i1 = i

}}
where c(i) is

the stable coloring obtained by the algorithm.

4.2 SEPARATING POWER OF GNNS

We formulate our results using the equivalence relation introduced by Timofte (2005), which charac-
terizes the separating power of a set of functions.

Definition 2. Let F be a set of functions f defined on a set X , where each f takes its values in some
Yf . The equivalence relation ρ (F) defined by F on X is: for any x, x′ ∈ X ,

(x, x′) ∈ ρ (F) ⇐⇒ ∀f ∈ F , f(x) = f(x′) .

Given two sets of functions F and E , we say that F is more separating (resp. strictly more separating)
than E if ρ (F) ⊆ ρ (E) (resp. ρ (F) (ρ (E)). Note that all the functions in F and E need to be
defined on the same set but can take values in different sets. For example, we can easily see that for
the k-WL algorithm defined above, the equivariant version is more separating than the invariant one.

Some properties of the WL hierarchy of tests can be rephrased with the notion of separating power.
In particular, Cai et al. (1989) showed that (k + 1)-WLI distinguishes strictly more than k-WLI ,
which can be rewritten simply as (for a function f , we write ρ (f) for ρ ({f}))

ρ ((k + 1)-WLI) (ρ (k-WLI) . (3)

This notion of separating power enables us to concisely summarize the current knowledge about the
discriminatory power of classes of GNN.

Proposition 3. We have, for k ≥ 2,

ρ (MGNNI) = ρ (2-WLI) ρ (MGNNE) = ρ (2-WLE) (4)
ρ (k-LGNNI) = ρ (k-WLI) ρ (k-LGNNE) ⊆ ρ (k-WLE) (5)
ρ (k-FGNNI) = ρ ((k + 1)-WLI) ρ (k-FGNNE) = ρ ((k + 1)-WLE) (6)

Only results about the invariant cases were previously known: (4) comes from Xu et al. (2018), (5)
from Maron et al. (2018) Geerts (2020a) and one inclusion of (6) comes from Maron et al. (2019a).
The equality in (6) for general k ≥ 2 is proved in Section C.

Note that for k = 2, all GNNs are dealing with tensors of order 2 i.e. with the adjacency matrix of the
graph. However, the complexities of the various layers are quite different: for the message passing
GNN, all computations are local (scaling with the maximum degree in the graph) and can be done in
parallel; for the linear layer, there are only 15 linear functions from Rn2 → Rn2

for all values of n
(Maron et al., 2018); the folklore layer involves a (dense) matrix multiplication of shape n× n. If
2-FGNN is the most complex architecture, we see that it has the best separating power among all
architectures proposed so far dealing with tensors of order 2.

6

Published as a conference paper at ICLR 2021

4.3 APPROXIMATION RESULTS FOR GNNS

For X,Y finite-dimensional spaces, let us denote by CI(X,Y), CE(X,Y), , the set of invariant,
respectively equivariant, continuous functions from X to Y . The closure of a class of function F
for the uniform norm is denoted by F . Our result extend easily to graphs of varying sizes but this is
deferred to Section F.2 for clarity.

The theorem below states in particular that the class k-FGNN can approximate any continuous
function that is less separating than (k + 1)-WL in the invariant and in the equivariant cases.

Theorem 4. Let Kdiscr ⊆ Gn × Fn0 , K ⊆ Fn2

0 be compact sets. For the invariant case, we have:

MGNNI = {f ∈ CI(Kdiscr,F) : ρ (2-WLI) ⊆ ρ (f)}
k-LGNNI = {f ∈ CI(K,F) : ρ (k-WLI) ⊆ ρ (f)}
k-FGNNI = {f ∈ CI(K,F) : ρ ((k + 1)-WLI) ⊆ ρ (f)}

For the equivariant case, we have:
MGNNE = {f ∈ CE(Kdiscr,Fn) : ρ (2-WLE) ⊆ ρ (f)}
k-LGNNE = {f ∈ CE(K,Fn) : ρ (k-LGNNE) ⊆ ρ (f)} ⊃ {f ∈ CE(K,Fn) : ρ (k-WLE) ⊆ ρ (f)}
k-FGNNE = {f ∈ CE(K,Fn) : ρ ((k + 1)-WLE) ⊆ ρ (f)}

In the invariant case for k = 2,we have MGNNI = 2-LGNNI (2-FGNNI where the strictness of
the last inclusion comes from (3). In other words, 2-FGNNI has a better power of approximation
than the other architectures working with tensors of order 2. We already knew by Proposition 3 that
2-FGNNI is the best separating architecture among those studied in this paper, dealing with tensor of
order 2 and our theorem implies that this is also the case for the approximation power.

To clarify the meaning of these statements, we explain why the inclusions “⊆” are actually straightfor-
ward. For concreteness, we focus on k-FGNNI ⊆ {f ∈ CI(K,F) : ρ ((k + 1)-WLI) ⊆ ρ (f)}.
Take h ∈ k-FGNNI , this means that there is a sequence GNNj ∈ k-FGNNI such that,
supG∈K ‖h(G)−GNNj(G)‖ goes to zero when j goes to infinity.

Therefore, h is continuous and constant on each ρ (k-FGNNI)-class. Indeed, for any (G,G′) ∈
ρ (k-FGNNI), GNNj(G) = GNNj(G

′) so that h(G) = limiGNNj(G) = limjGNNj(G
′) =

h(G′). Hence we have ρ (k-FGNNI) ⊆ ρ (h) and by Prop. 3, ρ (k-FGNNI) = ρ ((k + 1)-WLI),
allowing us to get the inclusion above.

On the contrary, the reverse inclusions “⊃” are much more intricate but they are also the most valu-
able. For instance, consider the inclusion k-FGNNI ⊃ {f ∈ CI(K,F) : ρ ((k + 1)-WLI) ⊆ ρ (f)}.
If one wishes to learn a function h ∈ CI(K,F) with k-FGNNI , this function must at least be
approximable by the class of k-FGNNI . Our theorem precisely guarantees that if h is less separating
that k-WLI , it can be approximated by k-FGNNI :

∀ε > 0, ∃GNN ∈ k-FGNNI , sup
G∈K

‖h(G)−GNN(G)‖ ≤ ε .

For this, we show a much more general version of the famous Stone-Weierstrass theorem (see Section
D) which relates the separating power with the approximation power. Following the elegant idea
of Maehara & Hoang (2019), we augment the input space to transform vector-valued equivariant
functions into scalar invariant maps. Then, we apply a fine-grained approximation theorem from
Timofte (2005).We also provide specialized versions of our abstract theorem in Section 5, which can
be easily used to determine the approximation capabilities of any deep learning architecture.

Our theorem has also implications for universality results like Maron et al. (2019b); Keriven & Peyré
(2019). A class of GNN is said to be universal if its closure on a compact set K is the whole CI(K,F)
(or CE(K,Fn)). In particular, Thm. 4 implies that n-LGNN and n-FGNN are universal as n-WL
distinguishes non-isomorphic graphs of size n. This recovers a result of Ravanbakhsh (2020) for
LGNN. Moreover, we can leverage the extensive literature on the WL tests to give more subtle
results. For instance, Cai et al. (1989, §8.2) show that, for planar graphs, O(

√
n)-WL can distinguish

non-isomoprhic instances. Therefore, O(
√
n)-LGNN or O(

√
n)-FGNN achieve universality in the

particular, yet common, case of planar graphs. On a more practical side, Fürer (2010, Thm. 4.5)
shows that the spectrum of a graph is less separating than 3-WL so that functions of the spectrum can
actually be well approximated by 2-FGNN.

7

Published as a conference paper at ICLR 2021

5 EXPRESSIVENESS OF GNNS

We now state the general theorems which are our main tools in proving our approximation guarantees
for GNNs. Theirs proofs are deferred to Section D.9 which contains our generalization of the Stone-
Weierstrass theorem with symmetries. We need to first introduce more general definitions: If G is a
finite group acting on some topological space X , we say that G acts continuously on X if, for all
g ∈ G, x 7→ g · x is continuous. If G is a finite group acting on some compact set X and some
topological space Y , we define the sets of equivariant and invariant continuous functions by,

CE(X,Y) = {f ∈ C(X,Y) : ∀x ∈ X, ∀g ∈ G, f(g · x) = g · f(x)}
CI(X,Y) = {f ∈ C(X,Y) : ∀x ∈ X, ∀g ∈ G, f(g · x) = f(x)}

Note that these definitions extend Definition 1 to a general group.
Theorem 5. Let X be a compact space, F = Rp be some finite-dimensional vector space, G be a
finite group acting (continuously) on X .

Let F0 ⊆
⋃∞
h=1 CI(X,Rh) be a non-empty set of invariant functions, stable by concatenation, and

consider,

F = {m ◦ f : f ∈ F0 ∩ C(X,Rh), m : Rh → F MLP, h ≥ 1} ⊆ C(X,F) .

Then the closure of F is,

F = {f ∈ CI(X,F) : ρ (F0) ⊆ ρ (f)} .

We can apply Theorem 5 to the class of k-ary relational pooling GNN introduced in Murphy et al.
(2019a). As a result, we get that this class of invariant k-RP GNN can approximate any continuous
function f with ρ(k − RPGNN) ⊆ ρ(f) but to the best of our knowledge, ρ(k − RPGNN) is not
known and only ρ(k − RPGNN) ⊂ ρ(2−WLI) is proved in Murphy et al. (2019a). We now state
our general theorem for the equivariant case:
Theorem 6. Let X be a compact space, F = Rp and G = Sn the permutation group, acting
(continuously) on X and acting on Fn by, for σ ∈ Sn, x ∈ Fn,

∀i ∈ {1, . . . , p}, (σ · x)i = xσ−1(i) ,

Let F0 ⊆
⋃∞
h=1 CE

(
X, (Rh)n

)
be a non-empty set of equivariant functions, stable by concatenation,

and consider,

F = {x 7→ (m(f(x)1), . . . ,m(f(x)n)) : f ∈ F0 ∩ C
(
X, (Rh)n

)
, m : Rh → F MLP, h ≥ 1}

Assume, that, if f ∈ F0, then,

x 7→

(
n∑
i=1

f(x)i,

n∑
i=1

f(x)i, . . . ,

n∑
i=1

f(x)i

)
∈ F0 .

Then the closure of F is,

F = {f ∈ CE(X,Fn) : ρ (F0) ⊆ ρ (f)} .

Applications of these theorems fo the case of Pointnet Qi et al. (2017) are provided in Section D.9

6 QUADRATIC ASSIGNMENT PROBLEM

To empirically evaluate our results, we study the Quadratic Assignment Problem (QAP), a classical
problem in combinatorial optimization. For A,B n× n symmetric matrices, it consists in solving

maximize trace(AXBX>), subject to X ∈ Π,

where Π is the set of n× n permutation matrices. Many optimization problems can be formulated as
QAP. An example is the network alignment problem, which consists in finding the best matching

8

Published as a conference paper at ICLR 2021

between two graphs, represented by their adjacency matrices A and B. Though QAP is known to
be NP-hard, recent works such as Nowak et al. (2018) have investigated whether it can be solved
efficiently w.r.t. a fixed input distribution. More precisely, Nowak et al. (2018) studied whether
one can learn to solve this problem using a MGNN trained on a dataset of already solved instances.
However, as shown below, both the baselines and their approach fail on regular graphs, a class of
graph considered as particularly hard for isomorphism testing.

To remedy this weakness, we consider 2-FGNNE . We then follow the siamese method of (Nowak
et al., 2018): given two graphs, our system produces an embedding in Fn for each graph, where n is
the number of nodes, which are then multiplied together to obtain a n× n similarity matrix on nodes.
A permutation is finally computed by solving a Linear Assignment Problem (LAP) with this resulting
n × n as cost matrix. We tested our architecture on two distribution: the Erdős–Rényi model and
random regular graphs. The accuracy in matching the graphs is much improved compare to previous
works. The experimental setup is described more precisely in Section A.1.

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Noise level

A
cc

ur
ac

y

Erdős–Rényi graph model

0 0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Noise level

A
cc

ur
ac

y

Regular graph model

This work SDP (Peng et al., 2010)
LowRankAlign (Feizi et al., 2016) GNN (Nowak et al., 2018)

Figure 1: Fraction of matched nodes for pairs of correlated graphs (with edge density 0.2) as a
function of the noise, see Section A.1 for details.

7 CONCLUSION

We derived the expressive power of various practical GNN architectures: message passing GNN,
linear GNN and folklore GNN; both for their invariant and equivariant counterparts. Our results unify
and extend the recent works in this direction. In particular, we are able to recover all the universality
results proved for GNNs so far. Similarly to existing results in the literature, we do not deal here with
the sizes of the embeddings constructed at different layers, i.e. the sizes of the spaces F`, and these
sizes are supposed to grow to infinity with the number of nodes n in the graph. Obtaining bounds on
the scaling of the sizes of the features to ensure that the results presented here are still valid is an
interesting open question. We show that folklore GNNs have the best power of approximation among
all GNNs studied here dealing with tensors of order 2. From a practical perspective, we demonstrate
their improved performance on the QAP with a significant gap in performances compared to other
approaches.

ACKNOWLEDGMENTS

This work was supported in part by the French government under management of Agence Nationale
de la Recherche as part of the “Investissements d’avenir” program, reference ANR19-P3IA-0001
(PRAIRIE 3IA Institute). M.L. thanks Google for Google Cloud Platform research credits and
NVIDIA for a NVIDIA GPU Grant.

9

Published as a conference paper at ICLR 2021

REFERENCES

J.-Y. Cai, M. Furer, and N. Immerman. An optimal lower bound on the number of variables for
graph identification. In Proceedings of the 30th Annual Symposium on Foundations of Computer
Science, SFCS ’89, pp. 612–617, USA, 1989. IEEE Computer Society. ISBN 0818619821. doi:
10.1109/SFCS.1989.63543.

Zhengdao Chen, Soledad Villar, Lei Chen, and Joan Bruna. On the equivalence between graph
isomorphism testing and function approximation with gnns. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada, pp. 15868–15876,
2019.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? CoRR, abs/2002.04025, 2020.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In Advances in neural information processing systems,
pp. 3844–3852, 2016.

Brendan L Douglas. The weisfeiler-lehman method and graph isomorphism testing. arXiv preprint
arXiv:1101.5211, 2011.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982, 2020.

Soheil Feizi, Gerald T. Quon, Mariana Recamonde Mendoza, Muriel Médard, Manolis Kellis, and
Ali Jadbabaie. Spectral alignment of networks. CoRR, abs/1602.04181, 2016.

Martin Fürer. On the combinatorial power of the weisfeiler-lehman algorithm. In International
Conference on Algorithms and Complexity, pp. 260–271. Springer, 2017.

Martin Fürer. On the power of combinatorial and spectral invariants. Linear Algebra and its
Applications, 432(9):2373 – 2380, 2010. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2009.
07.019. Special Issue devoted to Selected Papers presented at the Workshop on Spectral Graph
Theory with Applications on Computer Science, Combinatorial Optimization and Chemistry (Rio
de Janeiro, 2008).

Vikas K Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational limits of
graph neural networks. arXiv preprint arXiv:2002.06157, 2020.

Floris Geerts. The expressive power of kth-order invariant graph networks. arXiv preprint
arXiv:2007.12035, 2020a.

Floris Geerts. Walk message passing neural networks and second-order graph neural networks. arXiv
preprint arXiv:2006.09499, 2020b.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

Martin Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory. Lecture
Notes in Logic. Cambridge University Press, 2017. doi: 10.1017/9781139028868.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359 – 366, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90020-8.

10

Published as a conference paper at ICLR 2021

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019,
Vancouver, BC, Canada, pp. 7090–7099, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Johannes Klicpera, Janek Groß, and Stephan Günnemann. Directional message passing for molecular
graphs. arXiv preprint arXiv:2003.03123, 2020.

Andreas Loukas. What graph neural networks cannot learn: depth vs width. arXiv preprint
arXiv:1907.03199, 2019.

Takanori Maehara and NT Hoang. A simple proof of the universality of invariant/equivariant graph
neural networks. ArXiv, abs/1910.03802, 2019.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. arXiv preprint arXiv:1812.09902, 2018.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. In Advances in Neural Information Processing Systems, pp. 2153–2164, 2019a.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. arXiv preprint arXiv:1901.09342, 2019b.

Haggai Maron, Or Litany, Gal Chechik, and Ethan Fetaya. On learning sets of symmetric elements.
CoRR, abs/2002.08599, 2020.

J.R. Munkres. Topology. Featured Titles for Topology. Prentice Hall, Incorporated, 2000. ISBN
9780131816299.

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao, and Bruno Ribeiro. Relational pooling for
graph representations. In International Conference on Machine Learning, pp. 4663–4673. PMLR,
2019a.

Ryan L. Murphy, Balasubramaniam Srinivasan, Vinayak A. Rao, and Bruno Ribeiro. Janossy pooling:
Learning deep permutation-invariant functions for variable-size inputs. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019,
2019b.

Alex Nowak, Soledad Villar, Afonso S. Bandeira, and Joan Bruna. Revised note on learning quadratic
assignment with graph neural networks. 2018 IEEE Data Science Workshop (DSW), pp. 1–5, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Jiming Peng, Hans D. Mittelmann, and Xiaoxue Li. A new relaxation framework for quadratic
assignment problems based on matrix splitting. Mathematical Programming Computation, 2:
59–77, 2010.

Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pp. 77–85. IEEE
Computer Society, 2017. doi: 10.1109/CVPR.2017.16.

Siamak Ravanbakhsh. Universal equivariant multilayer perceptrons. arXiv preprint arXiv:2002.02912,
2020.

11

Published as a conference paper at ICLR 2021

W. Rudin. Functional Analysis. International series in pure and applied mathematics. McGraw-Hill,
1991. ISBN 9780070542365.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural networks
for combinatorial problems. In Advances in Neural Information Processing Systems, pp. 4081–
4090, 2019.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
Computational capabilities of graph neural networks. IEEE Trans. Neural Networks, 20(1):81–102,
2009. doi: 10.1109/TNN.2008.2005141.

Nimrod Segol and Yaron Lipman. On universal equivariant set networks. ArXiv, abs/1910.02421,
2020.

Vlad Timofte. Stone–weierstrass theorems revisited. Journal of Approximation Theory, 136(1):45 –
59, 2005. ISSN 0021-9045. doi: https://doi.org/10.1016/j.jat.2005.05.004.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Dmitry Yarotsky. Universal approximations of invariant maps by neural networks. CoRR,
abs/1804.10306, 2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhutdinov, and
Alexander J. Smola. Deep sets. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pp. 3391–3401, 2017.

12

Published as a conference paper at ICLR 2021

A Experimental results 14

A.1 Details on the experimental setup . 14

A.2 Experimental results on graphs of varying size . 14

A.3 Generalization for regular graphs . 15

B Weisfeiler-Lehman tests 16

B.1 Weisfeiler-Lehman test on vertices . 16

B.2 Isomorphism type . 16

B.3 Weisfeiler-Lehman and Folklore Weisfeiler-Lehman tests of order k ≥ 2 17

C Separating power of GNN 18

C.1 Mutli-linear perceptrons . 18

C.2 Augmented separating power . 18

C.3 Initialization layer . 19

C.4 Known results about the separating power of some GNN classes 20

C.5 Bounding the separating power of k-FGNN . 20

C.6 Conclusion . 21

D Stone-Weierstrass theorem with symmetries 21

D.1 General notations . 22

D.2 Separating power . 22

D.3 Approximation theorems for real-valued functions 23

D.4 The equivariant approximation theorem . 24

D.5 A preliminary version of the equivariant approximation theorem 26

D.6 Characterizing the subalgebras of Rp . 27

D.7 Proof of the main equivariant approximation theorem 29

D.8 Practical reductions . 30

D.9 Reductions for GNNs . 33

E Proofs for expressiveness of GNNs 34

E.1 Expressivity of GNN layers . 34

E.2 Approximation theorems for GNNs . 35

F Extension to graphs of varying sizes 37

F.1 Extension to disconnected input spaces . 37

F.2 Approximation theorem with varying graph size 39

13

Published as a conference paper at ICLR 2021

A EXPERIMENTAL RESULTS

A.1 DETAILS ON THE EXPERIMENTAL SETUP

We consider a 2-FGNNE and train it to solve random planted problem instances of the QAP. Given
a pair of graphs G1, G2 with n nodes each, we consider the siamese 2-FGNNE encoder producing
embeddings E1, E2 ∈ Rn×k. Those embeddings are used to predict a matching as follows: we
first compute the outer product E1E

T
2 , then we take a softmax along each row and use standard

cross-entropy loss to predict the corresponding permutation index. We used 2-FGNNE with 2 layers,
each MLP having depth 3 and hidden states of size 64. We trained for 25 epochs with batches of size
32, a learning rate of 1e-4 and Adam optimizer. The PyTorch code is available in the supplementary
material.

For each experiment, the dataset was made of 20000 graphs for the train set, 1000 for the validation
set and 1000 for the test set. For the experiment with Erdős–Rényi random graphs, we consider G1 to
be a random Erdős–Rényi graph with edge density pe = 0.2 and n = 50 vertices. The graph G2 is a
small perturbation of G1 according to the following error model considered in Feizi et al. (2016):

G2 = G1 � (1−Q) + (1−G1)�Q′, (7)

where Q and Q′ are Erdős–Rényi random graphs with edge density p1 and p2 = p1pe/(1 − pe)
respectively, so that G2 has the same expected degree as G1. The noise level is the parameter p1. For
regular graphs, we followed the same experimental setup but now G1 is a random regular graph with
degree d = 10. Regular graphs are interesting example as they tend to be considered harder to align
due to their more symmetric structure.

A.2 EXPERIMENTAL RESULTS ON GRAPHS OF VARYING SIZE

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.2

0.4

0.6

0.8

1

Noise level

A
cc

ur
ac

y

Regular graph model

This work

Figure 2: Fraction of matched nodes for pairs of correlated graphs (with edge density 0.2) as a
function of the noise, see Section A.1 for details.

We tested our models on dataset of graphs of varying size, as this setting is also encompassed by our
theory.

However, contrary to message-passing GNN, GNN based on tensors do not work well with batches of
graphs of varying size. Previous implementations, such as the one of Maron et al. (2019a), group the
graphs in the dataset by size, enabling the GNN to only deal with batches of graphs on the same size.

14

Published as a conference paper at ICLR 2021

Figure 3: Each line corresponds to a model trained at a given noise level and shows its accuracy
across all noise levels.

Instead, we use masking, which is a standard practice in recurrent neural networks. A batch of b
tensors of sizes n1 × n1, n2 × n2, . . . , nb × nb is represented as a tensor b× nmax × nmax where
nmax = maxi=1,...,b ni. A mask is created at initialization and is used to ensure that the operations
on the full tensor translates to valid operations on each of the individual tensor.

We implemented this functionnality as a class MaskedTensors. Thanks to the newest improve-
ments of PyTorch (Paszke et al., 2019), MaskedTensors act as a subclass of fundamental Tensor
class. Thus they almost seamlessly integrate into standard PyTorch code. We refer the reader to the
code for more details: https://github.com/mlelarge/graph_neural_net

Results of our architecture and implementation with graphs of varying size are shown below on Figure
2. The only difference with the setting described above is that the number of nodes is now random.
The number of vertices of a graph is indeed chosen randomly according to binomial distribution of
parameters n = 50 and pn = 0.9.

A.3 GENERALIZATION FOR REGULAR GRAPHS

We made the following experiment with the same general setting as in Section A.1 with regular
graphs. We trained different models for all noise levels between 0 and 0.22 but in Figure 3, we plot
the accuracy of each model across all noise levels. We observe that a majority of the models actually
generalize to settings with noise level on which they were not trained. Indeed, the model trained with
noise level ≈ 0.1 is performing best among all models across all noise levels!

15

https://github.com/mlelarge/graph_neural_net

Published as a conference paper at ICLR 2021

B WEISFEILER-LEHMAN TESTS

Here we describe more precisely this hierarchy of tests, which will be used extensively to characterize
the discirminatory power of classes of GNN. See Douglas (2011); Grohe (2017); Fürer (2017) for
graph-theoretic introductions to these algorithms.

B.1 WEISFEILER-LEHMAN TEST ON VERTICES

We now present the initial vertex coloring algorithm.

Input. This algorithm takes as input a discrete graph structure G = (V,E) ∈ Gn with V = [n],
E ⊆ V 2 and h ∈ Fn0 features on the vertices.

Initialization. Each vertex s ∈ V is given a color c0WL(G, h)s = hs corresponding to its features
vector.

Refining the coloring. The colors of the vertices are updated as follows,

ct+1
WL (G, h)s = Lex

(
ctWL(G, h)s,

{{
ctWL(G, h)(s̃) : s̃ ∼ s

}})
,

and the function Lex means that all occuring colors are lexicographically ordered.

For each graph G ∈ Gn and each vector of features h ∈ Fn0 , there exists a time T (G, h) from which
the sequence of colorings (ctWL(G, h))t≥0 is stationary. More exactly, the colorings are not refined
anymore: for any t ≥ T (G, h), s, s′ ∈ V ,

ctWL(G, h)s = ctWL(G, h)s′ ⇐⇒ c
T (G,h)
WL (G, h)s = c

T (G,h)
WL (G, h)s′ .

Denote the resulting coloring cT (G,h)
WL (G, h) by simply cWL(G, h). cWL is now a mapping from

Gn × Fn0 → Zn for some space of colors Z.

Invariant tests The proper Weisfeiler-Lehman test is invariant and is defined by, for t ≥ 0 and
(G, h) ∈ Gn × Fn0 a graph,

WLtI(G) =
{{
ctWL(G)s : s ∈ V

}}
WLI(G) = {{cWL(G)s : s ∈ V }}

Equivariant tests For the vertex coloring algorithm, cWL is already an equiavriant mapping so we
define, for t ≥ 0 and (G, h) ∈ Gn × Fn0 a graph,

WLtE = ctWL

WLE = cWL

B.2 ISOMORPHISM TYPE

The initialization of the higher-order variants of the Weisfeiler-Lehman test is slightly more intricate.
For this we need to define the isomorphism type of a k-tuple w.r.t. a graph described by a tensor Fn2

0 .

A k-tuple (i1, . . . , ik) ∈ [n]k in a graph G ∈ Fn2

0 and a k-tuple (j1, . . . , jk) ∈ [n]k in a graph
H ∈ Fn2

0 are said to have the same isomoprhism type if the mapping iw 7→ jw is a well-defined
partial isormophism. Explicitly, this means that,

• ∀w,w′ ∈ [k], iw = iw′ ⇐⇒ jw = jw′ .
• ∀w,w′ ∈ [k], Giw,iw′ = Hjw,jw′ .

Denote by iso(G)i1,...,ik the isomorphism type of the k-tuple (i1, . . . , ik) ∈ [n]k in a graph G ∈ Fn2

0 .

16

Published as a conference paper at ICLR 2021

B.3 WEISFEILER-LEHMAN AND FOLKLORE WEISFEILER-LEHMAN TESTS OF ORDER k ≥ 2

We now present the folklore version of the Weisfeiler-Lehman test of order k (k-FWL), for k ≥ 2,
along with k-WL for clarity. For both, we follow the presentation of Maron et al. (2019a) (except for
the equivariant tests).

Input. These algorithms take as input a graph G ∈ Fn2

0 which can be seen as a coloring on the pair
of nodes.

Initialization. Each k-tuple s ∈ V k is given a color c0k-WL(G)s = c0k-FWL(G)s corresponding to its
isomorphism type.

k-WL. The k-WL test relies on the following notion of neighborhood, defined by, for any w ∈ [k],
and s = (i1, . . . , ik) ∈ V k,

Nw(s) = {(i1, . . . , iw−1, j, iw+1, . . . , ik) : j ∈ V } . (WL)

Then, the colors of the k-tuples s ∈ V k are refined as follows,

ct+1
WL (G)s = Lex

(
ctk-WL(G)s, (C

t
1(s), . . . , Ctk(s))

)
.

where, for w ∈ [k],
Ctw(s) =

{{
ctk-WL(G)s̃ : s̃ ∈ Nw(s)

}}
.

For each graph G ∈ Fn0 , there exists a time T (G) from which the sequence of colorings
(ctk-WL(G))t≥0 is stationary. More exactly, the colorings are not refined anymore: for any t ≥ T (G),
s, s′ ∈ V k,

ctk-WL(G)s = ctk-WL(G)s′ ⇐⇒ c
T (G)
k-WL (G)s = c

T (G)
k-WL (G)s′ .

Denote the resulting coloring cT (G)
k-WL (G) by simply ck-WL(G).

k-FWL. For k-FWL, the corresponding notion of neighborhood is defined by, for any j ∈ V , and
s = (i1, . . . , ik) ∈ V k,

NF
j (s) = {(j, i2, . . . , ik), (i1, j, i3, . . . , ik), . . . , (i1, i2, . . . , ik−1, j)} (FWL)

Then, the colors of the k-tuples s ∈ V k are refined as follows,

ct+1
k-WL(G)s = Lex

(
ctk-FWL(G)s,

{{
Ctj(s) : j ∈ V

}})
,

where, for j ∈ V ,

Ctj(s) =
(
ctk-FWL(G)s̃ : s̃ ∈ NF

j (s)
)
.

Like k-WL, for each graph G ∈ Fn0 , there exists a time T (G) from which the sequence of colorings
(ctk-WL(G))t≥0 is stationary. Similarly, denote the resulting coloring cT (G)

k-WL (G) by simply ck-WL(G).

The colors ctk-FWL and ctk-FWL at iteration t define a mapping from Fn2

0 to space of colorings of
k-tuples, Zn

k

for some space Z.

Invariant tests The standard versions of the Weisfeiler-Lehman tests are invariant and can be
defined by, for t ≥ 0 and G ∈ Fn2

0 a graph,

k-WLtI(G) =
{{
ctk-WL(G)s : s ∈ V k

}}
k-WLI(G) =

{{
ck-WL(G)s : s ∈ V k

}}
k-FWLtI(G) =

{{
ctk-FWL(G)s : s ∈ V k

}}
k-FWLI(G) =

{{
ck-FWL(G)s : s ∈ V k

}}
.

17

Published as a conference paper at ICLR 2021

Equivariant tests We now introduce the equivariant version of these tests. Many extensions are
possible, we chose this one for its simplicity. For t ≥ 0, G ∈ Fn2

0 a graph, i ∈ V ,

k-WLtE(G)i =
{{
ctk-WL(G)s : s ∈ V k, s1 = i

}}
k-WLE(G)i =

{{
ck-WL(G)s : s ∈ V k, s1 = i

}}
k-FWLtE(G)i =

{{
ctk-FWL(G)s : s ∈ V k, s1 = i

}}
k-FWLE(G)i =

{{
ck-FWL(G)s : s ∈ V k, s1 = i

}}
.

C SEPARATING POWER OF GNN

The goal of this section is to prove,
Proposition 3. We have, for k ≥ 2,

ρ (MGNNI) = ρ (2-WLI) ρ (MGNNE) = ρ (2-WLE) (4)
ρ (k-LGNNI) = ρ (k-WLI) ρ (k-LGNNE) ⊆ ρ (k-WLE) (5)
ρ (k-FGNNI) = ρ ((k + 1)-WLI) ρ (k-FGNNE) = ρ ((k + 1)-WLE) (6)

C.1 MUTLI-LINEAR PERCEPTRONS

In the following we will use extensively multi-linear perceptrons (MLP) and their universality
properties. Yet, for the sake of simplicity, we do not define precisely what we mean by MLP.

Given two finite-dimensional feature spaces F0 and F1, we only assume we are given a class of
(continuous) MLP from F0 to F1 which is large enough to be dense in C(F0,F1). See for instance
Hornik et al. (1989); Cybenko (1989) for precise conditions for MLP to be universal.

C.2 AUGMENTED SEPARATING POWER

To factor the proof, we introduce another notion of separating power.
Definition 7. For n,m ≥ 1 fixed, let X be a set, F be a some space and F be a set of functions from
X to Y = Fn×m. Then, the augmented separating power of F is,

ρaugmn,m (F) = ρ ({(x, i, j) ∈ X × {1, . . . , n} × {1, . . . ,m} 7→ f(x)i,j : f ∈ F}) .

Explicitly, for x, y ∈ X , i, j ∈ {1, . . . , n},
(x, i, j, y, k, l) ∈ ρaugmn,m (F) ⇐⇒ ∀f ∈ F , f(x)i,j = f(y)k,l .

Note that when n = m = 1, the augmented separating power is exactly the same as the original
separating power, so we identify ρ (.) with ρaugm1,1 (.). We also identify ρaugmn,1 (.) with ρaugm1,n (.), that
we denote by ρaugmn (.).

First, it is easy to see that this notion is more precise than the separating power.
Lemma 8. If F and G are set of functions from X to Fn×m,

ρaugmn,m (F) ⊆ ρaugmn,m (G) =⇒ ρ (F) ⊆ ρ (G) ,

and, in particular,
ρaugmn,m (F) = ρaugmn,m (G) =⇒ ρ (F) = ρ (G) ,

The interest in this notion is justified by the following lemma, which shows that this notion behaves
well under composition with “reduction layers”.
Lemma 9. For n,m ≥ 1 fixed, let X be a compact topological space, Y = Fn×m, F some finite-
dimensional space, F ⊆ C(X,Y), and τ : X → Zn×m a function for some space Z. Define
F̃ ⊆ C(X,Fn) by,

F̃ =

x ∈ X 7−→
 m∑
j=1

h(f(x)1,j),

m∑
j=1

h(f(x)2,j), . . . ,

m∑
i=1

h(f(x)n,j)

 : h : F→ F MLP, f ∈ F

 .

18

Published as a conference paper at ICLR 2021

and τ̃ : X → Z̃n by, for x ∈ X ,

∀i ∈ {1, . . . , n}, τ̃(x)i = {{τ(x)i,j : 1 ≤ j ≤ m}} .
Then,

ρaugmn,m (F) ⊆ ρaugmn,m (τ) =⇒ ρaugmn,m

(
F̃
)
⊆ ρaugmn,m (τ̃)

ρaugmn,m (F) ⊃ ρaugmn,m (τ) =⇒ ρaugmn,m

(
F̃
)
⊃ ρaugmn,m (τ̃) .

Note that, in the statement, we implicitly see F̃ as a set of functions from X to Fn×1 to fit the
definition of augmented separating power.

Proof. We show the two inclusions independently.

(⊆) We first show that,

ρaugmn,m (F) ⊆ ρaugmn,m (τ) =⇒ ρaugmn,m

(
F̃
)
⊆ ρaugmn,m (τ̃)

Take (x, i, y, k) ∈ ρaugmn,m

(
F̃
)

. This means that, for any h : F→ F, f ∈ F ,

m∑
j=1

h(f(x)i,j) =

m∑
j=1

h(f(y)k,j) .

By Lem. 31 and the universality of MLP, there exists a permutation σ ∈ Sm such that
(f(x)i,σ(1), . . . , f(x)i,σ(m)) = (f(y)k,1, . . . , f(y)k,m). By definition of the augmented
separating power, this means that, for any j ∈ {1, . . . ,m}, (x, i, σ(j), y, k, j) ∈ ρaugmn,m (F).
Hence, by assumption, for any j ∈ {1, . . . ,m}, (x, i, σ(j), y, k, j) ∈ ρaugmn,m (τ), i.e.
τ(x)i,σ(j) = τ(y)k,j . But this exactly means that τ̃(x)i = τ̃(y)k so that (x, i, y, k) ∈
ρaugmn,m (τ̃) as required.

(⊃) We now show the other inclusion,

ρaugmn,m (F) ⊃ ρaugmn,m (τ) =⇒ ρaugmn,m

(
F̃
)
⊃ ρaugmn,m (τ̃) .

Take (x, i, y, k) ∈ ρaugmn,m (τ̃). By definition of τ̃ , this means that there exists σ ∈ Sm such
that τ(x)i,σ(j) = τ(y)k,j so that (x, i, σ(j), y, k, j) ∈ ρaugmn,m (τ) ⊆ ρaugmn,m (F). Hence,
for any f ∈ F , (f(x)i,σ(1), . . . , f(x)i,σ(m)) = (f(y)k,1, . . . , f(y)k,m), and so, for any
h : F→ F,

m∑
j=1

h(f(x)i,j) =

m∑
j=1

h(f(y)k,j) .

Therefore, (x, i, y, k) ∈ ρaugmn,m

(
F̃
)

, which concludes the proof.

C.3 INITIALIZATION LAYER

We use the same initialization layer as Maron et al. (2019a); Chen et al. (2020) and recall it below. The
initial graph is a tensor of the form G ∈ Fn2

0 with F0 = Re+2; the last channel of G:,:,e+1 encodes
the adjacency matrix of the graph and the first e channels G:,:,1:e are zero outside the diagonal and
Gi,i,1:e ∈ Re is the color of vertex vi ∈ V . We then define Ik : Fn2

0 → Fnk1 with F1 = Rk2×(e+2) as
follows:

Ik(G)i,r,s,w = Gir,is,w, w ∈ [e+ 1],

Ik(G)i,r,s,e+2 = 1(ir = is),

for i ∈ [n]k and r, s ∈ [k]. This linear equivariant layer has the same separating power as the
isormorphism type, which is defined in Section B.2.

19

Published as a conference paper at ICLR 2021

Lemma 10 ((Maron et al., 2019a, C.1)). For k ≥ 2, p0 ≥ 1, F0 = Rp0 , F1 = Rk2×(p0+1), there
exists Ik : Fn2

0 → Fnk1 such that,

ρaugm
n,nk−1

(
Ik
)

= ρaugm
n,nk−1 (iso) .

C.4 KNOWN RESULTS ABOUT THE SEPARATING POWER OF SOME GNN CLASSES

First, we need to define some classes of GNN from which both the invariant and equivaraint GNN we
considered are built. See Section 3 for details about the different layers.

MGNNemb = {FT ◦ . . . F2 ◦ F1 : Ft : Fnt → Fnt+1 message passing layer, t = 1, . . . , T, T ≥ 1}
k-LGNNemb = {FT ◦ . . . F2 ◦ F1 ◦ Ik : Fnt → Fnt+1 linear equivariant layer, t = 1, . . . , T, T ≥ 1}
k-FGNNemb = {FT ◦ . . . F2 ◦ F1 ◦ Ik : Fnt → Fnt+1 FGL, t = 1, . . . , T, T ≥ 1} .

Then, the precise results from the literature can be rephrased as,

Lemma 11 (Xu et al. (2018),Maron et al. (2018),Maron et al. (2019a)). For k ≥ 2,

ρaugmn (MGNNemb) = ρaugmn (cWL) (8)

ρaugm
n,nk−1 (k-LGNNemb) ⊆ ρaugmn,nk−1 (ck-WL) (9)

ρaugm
n,nk−1 (k-FGNNemb) ⊆ ρaugmn,nk−1 (ck-FWL) (10)

(8) comes from Xu et al. (2018, §A, §B), (9) and (10) from Maron et al. (2019a, §C, §D).

C.5 BOUNDING THE SEPARATING POWER OF k-FGNN

We complete the results of the literature with a bound on the separating power of k-FGNN. Note that
the particular case of k = 2 is already proven in Geerts (2020a).

Lemma 12. For any k ≥ 2,

ρaugm
n,nk−1 (k-FGNNemb) ⊃ ρaugmn,nk−1 (ck-FWL) ,

so that
ρaugm
n,nk−1 (k-FGNNemb) = ρaugm

n,nk−1 (ck-FWL) .

Proof. Define,

k-FGNNTemb = {FT ◦ . . . F2 ◦ F1 ◦ Ik : Fnt → Fnt+1 FGL, t = 1, . . . , T} ,

the set of functions defined by exactly T FGL layers. We show by induction that, for any T ≥ 0,

ρaugm
n,nk−1

(
k-FGNNTemb

)
⊃ ρaugm

n,nk−1

(
cTk-FWL

)
.

For T = 0, this is immediate by the definition of Ik in Section C.3.

Assume now that this inclusion holds at T−1 ≥ 0. We show that it also holds at T . TakeG,G′ ∈ Fnk0
and s, s′ ∈ [n]k such that,

cTk-FWL(G)s = cTk-FWL(G′)s′ .

We need to show that, for any f ∈ k-FGNNTemb,

f(G)s = f(G′)s′ .

But, by definition of the update rule k-FWL, the equality of the colors of s and s′ above implies that,

cT−1k-FWL(G)s = cT−1k-FWL(G′)s′ , (11)

and that there exists σ ∈ Sn such that, for any j ∈ [n],(
cT−1k-FWL(G)s̃ : s̃ ∈ NF

j (s)
)

=
(
cT−1k-FWL(G′)s̃ : s̃ ∈ NF

σ(j)(s
′)
)
.

20

Published as a conference paper at ICLR 2021

Let s = (i1, . . . , ik) and s′ = (j1, . . . , jk). Then this implies that, for any w ∈ [k], j ∈ [n],

cT−1k-FWL(G)i1,...,iw−1,j,iw+1,...,ik = cT−1k-FWL(G′)j1,...,jw−1,σ(j),jw+1,...,jk . (12)

We now use the induction hypothesis, i.e. that,

ρaugm
n,nk−1

(
k-FGNNT−1emb

)
⊃ ρaugm

n,nk−1

(
cT−1k-FWL

)
.

Take any fT−1 ∈ k-FGNNT−1emb . By (11),

fT−1(G)s = fT−1(G′)s′ .

By (12), for any w ∈ [k], j ∈ [n],

fT−1(G)i1,...,iw−1,j,iw+1,...,ik = fT−1(G′)j1,...,jw−1,σ(j),jw+1,...,jk .

By the definition of FGL Section 3.3, for any FT : FnkT → FnkT+1 FGL, FT ◦ fT−1(G)s = FT ◦
fT−1(G′)s′ . Therefore, for any f ∈ k-FGNNTemb,

f(G)s = f(G′)s′ ,

which concludes the proof.

C.6 CONCLUSION

Proposition 13. We have, for k ≥ 2,

ρ (MGNNI) = ρ (2-WLI) ρ (MGNNE) = ρ (2-WLE) (13)
ρ (2-LGNNI) = ρ (2-WLI) (14)
ρ (k-LGNNI) ⊆ ρ (k-WLI) ρ (k-LGNNE) ⊆ ρ (k-WLE) (15)
ρ (k-FGNNI) = ρ (k-FWLI) ρ (k-FGNNE) = ρ (k-FWLE) (16)

Proof. Most of the statements come from the literature or are direct consequences of the lemmas
above.

• Proof of (13). The invariant case is proven in Xu et al. (2018, Lem. 2, Thm. 3). The
equivariant case comes from Lem. 11, Lem. 8, the fact that the layers mE ◦ (Id +λS1) does
not change the separating power and recalling that simply WLE = cWL.

• (14) is the exact result Chen et al. (2020, Thm. 6).

• Proof of (15). The invariant case is exactly Maron et al. (2019a, Thm. 1). The equivariant
case comes from Lem. 11, Lem. 9, Lem. 8 and the fact that the layer mE does not change
the separating power.

• Proof of (16). The direct inclusion of the invariant case corresponds to Maron et al. (2019a,
Thm. 2). The other cases are a consequence of Lem. 11, Lem. 9, Lem. 8 and the fact that the
layers mI and mE does not change the separating power.

D STONE-WEIERSTRASS THEOREM WITH SYMMETRIES

This section presents our extension of the Stone-Weierstrass theorem dealing with functions with
symmetries. The scope of this section is not restricted to graphs or even tensors and we will deal with
general spaces and general symmetries. To illustrate it, we will present applications for the PointNet
architecture Qi et al. (2017). Our approximation results for GNNs (Theorems Thm. 5 and Thm. 6)
are then obtained from these theoretical results applied to tensors and the symmetric group in Section
D.9

21

Published as a conference paper at ICLR 2021

D.1 GENERAL NOTATIONS

As explained above, we are dealing in this section with a much larger scope than graphs and
permutations. We first need to extend the notations introduced above. The notations introduced below
will make this section self-contained.

If X is some topological space, and F ⊆ X , denote by F its closure.

If X is a topological space and Y = Rp some finite-dimensional space, denote by C(X,Y) the set of
continuous functions from X to Y .

Moreover, if X is compact, we endow C(X,Y) with the topology of uniform convergence, which is
defined by the norm, f 7→ supx∈X ‖f(x)‖ for some norm ‖.‖ on Y .

If G is a finite group acting on some topological space X , we say that G acts continuously on X if,
for all g ∈ G, x 7→ g · x is continuous.

If G is a finite group acting on some compact set X and some topological space Y , we define the sets
of equivariant and invariant continuous functions by,

CE(X,Y) = {f ∈ C(X,Y) : ∀x ∈ X, ∀g ∈ G, f(g · x) = g · f(x)}
CI(X,Y) = {f ∈ C(X,Y) : ∀x ∈ X, ∀g ∈ G, f(g · x) = f(x)}

Note that these definitions extend Definition 1 to a general group.

If Y = Rp, we denote the coordinate-wise multiplication, or Hadamard product of y, y′ ∈ Y simply
by yy′ = (y1y

′
1, . . . , ypy

′
p) ∈ Y . We say that a subset A ⊆ Rp is a subalgebra of Rp if it is both a

linear space and stable by multiplication.

This product in turn defines a product on C(X,Y) with Y = Rp by, for f, g ∈ C(X,Y), fg : x 7→
f(x)g(x).

In addition, we also extend the scalar-vector product of Y = Rp to functions: if g ∈ C(X,R) and
f ∈ C(X,Y), their product gf is the function gf : x 7→ g(x)f(x). Given a set of scalar functions
S ⊆ C(X,R) and a set of vector-valued functions F ⊆ C(X,Y), the set of products of functions of
these two sets will be denoted by,

S · F = {gf : g ∈ S, f ∈ F} .

Moreover, we denote by 1 the continuous function from some X to Rp defined by x 7→ (1, . . . , 1).
In particular, if f is a function from X to R, f1 denotes the function x 7→ (f(x), . . . , f(x)) which
goes from X to Y = Rp. Finally, we say that F ⊆ C(X,Y) with Y being some Rp is a subalgebra if
it is a linear space which is also stable by multiplication.

D.2 SEPARATING POWER

We recall the definition of separating power that we introduced above:
Definition 14. Let F be a set of functions f defined on a set X , where each f takes its values in
some Yf . The equivalence relation ρ (F) defined by F on X is: for any x, x′ ∈ X ,

(x, x′) ∈ ρ (F) ⇐⇒ ∀f ∈ F , f(x) = f(x′) .

For a function f , we write ρ (f) for ρ ({f}).

Separating power is stable by closure:
Lemma 15. Let X be a compact topological space, Y be some finite-dimensional and F ⊆ C(X,Y).
Then,

ρ (F) = ρ
(
F
)

Proof. As F ⊆ F , F is more separating than F , i.e. ρ
(
F
)
⊆ ρ (F).

Conversely, take (x, y) /∈ ρ
(
F
)
. By definition, there exists h ∈ F such that h(x) 6= h(y) so that if

ε = ‖h(x) − h(y)‖, ε > 0 (for some norm ‖.‖ on Y). As h ∈ F , there is some f ∈ F such that

22

Published as a conference paper at ICLR 2021

supX ‖h− f‖ ≤ ε
3 . Therefore, by the triangular inequality,

ε = ‖h(x)− h(y)‖ ≤ ‖f(x)− h(x)‖+ ‖f(x)− f(y)‖+ ‖f(y)− h(y)‖ ≤ 2

3
ε+ ‖f(x)− f(y)‖ .

It follows that ‖f(x)− f(y)‖ ≥ ε
3 > 0 so that f(x) 6= f(y) and (x, y) /∈ ρ (F).

D.3 APPROXIMATION THEOREMS FOR REAL-VALUED FUNCTIONS

We start by recalling Stone-Weierstrass theorem, see Rudin (1991, Thm. 5.7).

Theorem 16 (Stone-Weierstrass). Let X be a compact space, and F be a subalgebra of C(X,R)
the space of real-valued continuous functions of X , which contains the constant function 1. If F
separates points, i.e. ρ (F) = {(x, x) : x ∈ X}, then F is dense in C(X,R).

We now prove an extension of this classical result due to Timofte (2005) allowing us to deal with
much smaller F by dropping the requirement that F separates points.

Corollary 17. LetX be a compact space, andF be a subalgebra of C(X,R) the space of real-valued
continuous functions of X , which contains the constant function 1. Then,

F = {f ∈ C(X,R) : ρ (F) ⊆ ρ (f)} .

Note that if F separates points, we get back the classical result as every function satisfies {(x, x) :
x ∈ X} ⊆ ρ (f).

Example 18. The invariant version of PointNet is able to learn functions of the form
∑
i f(xi) for

f ∈ C(Rp,R). We can apply Corollary 17 to this setting. Consider the case where X is a compact
subset of Rp and F = {x 7→ g (

∑n
i=1 f(xi)) , f ∈ C(X,Rh), g ∈ C(Rh,R)}. F is a subalgebra

of C(X,R) (indeed of CI(X,R)) which contains the constant function 1. Then, it easy to see that
ρ (F) = {(x, σ ? x), σ ∈ Sn}, where σ ? x is defined by (σ ? x)σ(i) = xi for all i (see Lem. 31 for a
formal statement).

Now note that for a function f ∈ C(X,R), the condition {(x, σ ? x), σ ∈ Sn} ⊆ ρ (f) is equivalent
to f ∈ CI(X,R). So that Corollary 17 implies that F = CI(X,R) which means that PointNet is
universal for approximating invariant functions. This was already proved in Qi et al. (2017) .

We now provide a proof of Corollary 17 for completeness.

Proof. The first inclusion F ⊆ {f ∈ C(X,R) : ρ (F) ⊆ ρ (f)} follows from the same argument as
the one given below Theorem 4 so we focus on the other one.

For every x ∈ X , let xF denote its ρ (F)-class. The quotient set and the canonical surjection are:
XF = X/ρ (F) = {xF , x ∈ X} and πF : X → XF , πF (x) = xF .

A function g : X → R factorizes as g = ĝ ◦ πF for some ĝ : XF → R if and only if ρ (F) ⊆ ρ (g).
In this case ĝ is unique, since πF is a surjection. In particular. every f ∈ F factorizes uniquely
as f = f̂ ◦ πF , f̂ : XF → R, and F̂ = {f̂ , f ∈ F} clearly separates points on XF . We refer to
Munkres (2000, §22) for the properties of the quotient topology. In particular, by the properties of
the quotient topology on XF , F̂ is a subalgebra of C(XF ,R) and XF is compact. Hence, we can
apply Theorem 16 to F̂ and F̂ is dense in C(XF ,R).

Now take f ∈ C(X,R) with ρ (F) ⊆ ρ (f) and we show that f ∈ F . Again, ρ (F) ⊆ ρ (f) implies
that f = f̂ ◦ πF . Let ε > 0. By density of F̂ , there is some ĥ ∈ F̂ such that supxF |ĥ(xF)) −
f̂(xF)| ≤ ε. But, by construction of F̂ , there exits h ∈ F such that ĥ ◦ πF = h. Thus,

sup
x∈X
|h(x)− f(x)| = sup

x∈X
|ĥ(πF (x))− f̂(πF (x))| = sup

xF∈XF
|ĥ(xF))− f̂(xF)| ≤ ε .

As this holds for any ε > 0, we have proven that f ∈ F .

23

Published as a conference paper at ICLR 2021

D.4 THE EQUIVARIANT APPROXIMATION THEOREM

We first need to extend Corollary 17 to vector-valued functions. For this, we need to have a vector-
valued version of the Stone-Weierstrass theorem and as shown by the example below additional
assumptions have to be made.
Example 19. We consider now the equivariant version of PointNet corresponding to the particular
case where X is a compact subset of (Rp)n, Y = Rn and F = {x 7→ (f(x1), . . . , f(xn)), f ∈
C(R,R)}. Then clearly F is a subalgebra of CE(X,Y) containing the constant function 1 and
ρ (F) = {(x, x), x ∈ X}. Hence if Corollary 17 would be true with vector-valued functions instead
of real-valued functions, we would have that F is dense in C(X,Y). But this can clearly not be true
as F ⊆ CE(X,Y) which is clearly not dense in C(X,Y).

We now present an extension of Corollary 17 also due to Timofte (2005):
Proposition 20. Let X be a compact space, Y = Rp for some p ≥ 1. Let F ⊆ C(X,Y). If there
exists a nonempty subset S ⊆ C(X,R) such that:

S · F ⊆ F and, ρ (S) ⊆ ρ (F) . (17)

Then we have

F =
{
f ∈ C(X,Y), ρ (F) ⊆ ρ (f) , f(x) ∈ F(x)

}
, (18)

where F(x) = {f(x), f ∈ F}. Moreover in (18), we can replace ρ (F) by ρ (S).

Note that in the particular case Y = R and if F is a subalgebra of C(X,R), then we can take S = F
in (17) and if the constant function 1 is in F , then F(x) = R, so that we recover Corollary 17.

Now consider the case where F is a subalgebra of C(X,Rp). We need to find a set S ∈ C(X,R)
satisfying (17) i.e. with a better separating power than F but containing real-valued functions
such that sf ∈ F for all s ∈ S and f ∈ F . In the sequel, we will consider the set Fscal =
{f ∈ C(X,R) : f1 ∈ F}. We clearly have Fscal · F ⊆ F since F is a subalgebra. Hence, in this
setting, Prop. 20 can be rewritten as follows:
Corollary 21. Let X be a compact space, Y = Rp for some p, G be a finite group acting (continu-
ously) on X and F ⊆ CI(X,Y) a (non-empty) set of invariant functions associated to G.

Consider the following assumptions,

1. F is a sub-algebra of C(X,Y) and the constant function 1 is in F .

2. The set of functions Fscal ⊆ C(X,R) defined by,

Fscal = {f ∈ C(X,R) : f1 ∈ F}

satisfy,
ρ (Fscal) ⊆ ρ (F) .

3. For any x ∈ X , there exists f ∈ F such that f(x) has pairwise distinct coordinates, i.e., for
any indices i, j ∈ {1, . . . , p} with i 6= j, f(x)i 6= f(x)j .

Then the closure of F (for the topology of uniform convergence) is,

F = {f ∈ CI(X,Y) : ρ (F) ⊆ ρ (f)} .

Note that Assumptions 1 and 2 ensures that (17) is valid, while Assumption 3 ensures thatF(x) = Rp.
Unfortunately, in the equivariant case, the condition ρ (Fscal) ⊆ ρ (F) is too strong and we now
explain how we will relax it.

For the sake of simplicity, we consider here the particular setting adapted to graphs: let n ≥ 1 be
a fixed number (corresponding to the number of nodes), X be a compact set of graphs in Rn2

and
Y = Fn with F = Rp for some p ≥ 1. We define the action of the symmetric group Sn on X by
(σ ? x)σ(i),σ(j) = xi.j and on Y by (σ ? y)σ(i) = yi ∈ Rp. Hence the set of continuous equivariant
functions CE(X,Y) agrees with Definition 1.

24

Published as a conference paper at ICLR 2021

Now consider the case where F ⊆ CE(X,Y) is a subalgebra of equivariant functions. Then,
f ∈ Fscal needs to be invariant in order for f1 to be equivariant and hence in F . As a result, we
see that Fscal will not separate points of X in the same orbit, i.e. x and σ ? x. But these points will
typically be separated by F , since for any f ∈ F , we have f(σ ? x) = σ ? f(x) which is not equal to
f(x) unless f is invariant.

We see that we need somehow to require a weaker separating power for F . More formally, two
isomorphic graphs will have permuted outputs through an equivariant function, but should not be
considered as separated. Let Orb(x) = {σ ? x, σ ∈ Sn} and Orb(y) = {σ ? y, σ ∈ Sn}. For
any equivariant function f ∈ CE(X,Y), for any z ∈ Orb(x), we have f(z) ∈ Orb(f(x)). Then let
π : Y → Y/Sn be the canonical projection π(y) = Orb(y). We define

(x, x′) ∈ ρ (π ◦ F) ⇔ ∀f ∈ F , Orb(f(x)) = Orb(f(x′))

⇔ ∀f ∈ F ,∃σ ∈ Sn, f(σ ? x) = f(x′).

In particular, we see that if x′ ∈ Orb(x) then (x, x′) ∈ ρ (π ◦ F) for any F ∈ CE(X,Y). Moreover,
two graphs x and x′ are ρ (π ◦ F)-distinct if there exists a function f ∈ F such that ∀σ, f(σ ? x) 6=
f(x′), i.e. the function f discriminates Orb(x) from Orb(x′) in the sense that for any z ∈ Orb(x)
and z′ ∈ Orb(x′), we have f(z) 6= f(z′).

To obtain an equivalent of Proposition 20 with CE(X,Y) replacing C(X,Y), we are able to relax
assumption (17) to ρ (Fscal) ⊆ ρ (π ◦ F). Our main general result in this direction is the following
theorem (proved in Section D.7) which might be of independent interest:

Theorem 22. Let X be a compact space, Y = Rp for some p, G be a finite group acting (continu-
ously) on X and Y and F ⊆ CE(X,Y) a (non-empty) set of equivariant functions.

Denote by π : Y −→ Y/G the canonical projection on the quotient space Y/G. Consider the
following assumptions,

1. F is a sub-algebra of C(X,Y) and the constant function 1 is in F .

2. The set of functions Fscal ⊆ C(X,R) defined by,

Fscal = {f ∈ C(X,R) : f1 ∈ F}

satisfy,
ρ (Fscal) ⊆ ρ (π ◦ F) .

Then the closure of F (for the topology of uniform convergence) is,

F = {f ∈ CE(X,Y) : ρ (F) ⊆ ρ (f) , ∀x ∈ X, f(x) ∈ F(x)} ,

where F(x) = {f(x), f ∈ F}. Moreover, if I(x) = {(i, j) ∈ [p]2 : ∀y ∈ F(x), yi = yj}, then we
have:

F(x) = {y ∈ Rp : ∀(i, j) ∈ I(x), yi = yj} .

Example 23. We now demonstrate how Theorem 22 can be used to recover the universality results
in Segol & Lipman (2020). In this paper, the authors study equivariant neural network architectures
working with unordered sets, corresponding in our case to X = Y = Rn and the group being the
symmetric group Sn. They show that the PointNet architecture cannot approximate any (continuous)
equivariant function and that adding a single so-called transmission layer is enough to make this
architecture universal.

Indeed, PointNet can only learn maps of the form x ∈ Rn 7→ (f(x1) . . . f(xn)), which are not
universal in the class of equivariant functions, as shown by Segol & Lipman (2020, Lem. 3). Now, their
transmission layer is a map of the form x ∈ Rn 7→ (1Tx)1. Therefore, in PointNetST, adding such a
layer precisely adds a large class of functions to F = {(f(x1,

∑
i g(xi)), . . . , f(xn,

∑
i g(xi))), f ∈

C(R× Rh,R), g ∈ C(R,Rh), h ≥ 1}. F is still an algebra and as shown in Example 19, we have
ρ (F) = {(x, x), x ∈ X}. Moreover, we have Fscal = CI(X,R) by Lem. 33 in particular, we get
ρ (Fscal) = {(x, σ ? x), x ∈ X}, so that we obviously have ρ (Fscal) ⊆ ρ (π ◦ F). In summary,
Theorem 22 implies the universality of PointNetST in CE(X,Y).

25

Published as a conference paper at ICLR 2021

D.5 A PRELIMINARY VERSION OF THE EQUIVARIANT APPROXIMATION THEOREM

We start by proving a version of Theorem 22 with a slightly weaker condition:

Proposition 24. Let X be a compact space, Y = Rp for some p, G be a finite group acting
(continuously) on X and Y and F ⊆ CE(X,Y) a (non-empty) set of equivariant functions.

Consider the following assumptions,

1. F is a subalgebra CE(X,Y).

2. The set of real-valued functions Fscal ⊆ C(X,R) defined by,

Fscal = {f ∈ C(X,R) : f1 ∈ F}

satisfies,

ρ (Fscal) ⊆ {(x, x′) ∈ X ×X : ∃g ∈ G, (g · x, x′) ∈ ρ (F)} .

Then the closure of F (for the topology of uniform convergence) is,

F =
{
f ∈ CE(X,Y) : ρ (F) ⊆ ρ (f) , ∀x ∈ X, f(x) ∈ F(x)

}
, (19)

where F(x) = {f(x), f ∈ F}.

The proof of this theorem relies on two main ingredients. First, following the elegant idea of Maehara
& Hoang (2019), we augment the input space to transform the vector-valued equivariant functions
into scalar maps. Second, we apply the fine-grained approximation result Cor. 17.

Proof. As uniform convergence implies point-wise convergence, the first inclusion is immediate,

F ⊆
{
f ∈ CE(X,Y) : ρ (F) ⊆ ρ (f) , ∀x ∈ X, f(x) ∈ F(x)

}
.

The rest of the proof is devoted to the other direction.

For convenience, denote by Φ the family of linear forms associated to the canonical basis of Rp, i.e.,

Φ = {y 7→ yi : 1 ≤ i ≤ p} ⊆ C(Y,R) .

Define our augmented input space as X̃ = X × Φ. As Φ is finite and X is compact, X̃ is still a
compact space. We now transform F , a class of equivariant functions from X to Y , into F̃ a class of
maps from X̃ to R. Define

F̃ = {(x, ϕ) 7→ ϕ(f(x)) : f ∈ F} .

We check that F̃ is indeed a subset of C(X̃,R). Indeed, as Φ is finite, it is equipped with the discrete
topology. Hence, each singleton {ϕ} for ϕ ∈ Φ is open in Φ and it suffices to check the continuity
in the first variable with ϕ fixed. But, if f ∈ F , x 7→ ϕ(f(x)) is continuous as a composition of
continuous maps.

We can now apply Cor. 17 to F̃ ⊆ C(X̃,R). Therefore, the closure of F̃ in C(X̃,R) is,

F̃ =
{
v ∈ C(X̃,R) : ρ

(
F̃
)
⊆ ρ (v) , ∀(x, ϕ) ∈ X̃, v(x, ϕ) ∈ F̃(x, ϕ)

}
.

We now show the equality of (19). Take h in the right-hand side of (19), i.e. h ∈ CE(X,Y) such that
ρ (F) ⊆ ρ (h) and h(x) ∈ F(x) for all x ∈ X . We show that h̃, defined by h̃ : (x, ϕ) 7→ ϕ(h(x)),
belongs to F̃ using the result above.

• As h is continuous, by the same argument as above, (x, ϕ) 7→ ϕ(h(x)) is continuous on X̃ .

26

Published as a conference paper at ICLR 2021

• We check that ρ
(
F̃
)
⊆ ρ

(
h̃
)

.

Take (x, ϕ), (y, ψ) ∈ X̃ such that, for all f ∈ F ,

ϕ(f(x)) = ψ(f(y)) , (20)

and we aim at showing that ϕ(h(x)) = ψ(h(y)).

To gain more information from (20), we apply it to functions of the form f1 with f ∈ Fscal.
By definition of Φ, this translates to f(x) = f(y), for any f ∈ Fscal. Therefore (x, y) ∈
ρ (Fscal) and so there exists g ∈ G such that (g · x, y) ∈ ρ (F). Plugging this into (20) and
using the equivariance of f ,

∀f ∈ F , ϕ(f(x)) = ψ(g · f(x)) .

As G acts continuously on Y , both ϕ and z 7→ ψ(g ·z) are continuous and, as a consequence
of the equality above, coincide on F(x). But we assumed that h(x) ∈ F(x) and therefore
the equality also holds for h, i.e. ϕ(h(x)) = ψ(g · h(x)).

Finally, recalls that, by assumption, ρ (F) ⊆ ρ (h). Therefore (g · x, y) ∈ ρ (F) implies
that h(g · x) = h(y) and, combined with the result above, ϕ(h(x)) = ψ(h(y)).

• We verify that, for x ∈ X , ϕ ∈ Φ, ϕ(h(x)) belongs to F̃(x). Indeed, recall that h(x) ∈
F(x). Therefore, as ϕ is continuous, ϕ(h(x)) is in ϕ(F(x)) which is included in F̃(x).

This shows that h̃ : (x, ϕ) 7→ ϕ(h(x)) is in F̃ . Consequently, for any ε > 0, there exists f ∈ F such
that,

∀x ∈ X, ∀ϕ ∈ Φ, |ϕ(h(x))− ϕ(f(x))| ≤ ε .
If Y = Rp is endowed with the infinity norms on coordinates, by definition of Φ, this means that,

∀x ∈ X, ‖h(x)− f(x)‖ ≤ ε .

Remark 25. In the particular case of G ⊆ Sn being a group of permutations acting on Rp by, for
g ∈ G, x ∈ Rp,

∀i ∈ {1, . . . , p}, (g · x)i = xg−1(i) ,

the functions of F̃ are indeed invariant, as shown by Maehara & Hoang (2019). For this, a left action
on Φ is defined by, for g ∈ G, ϕ ∈ Φ,

∀x ∈ Rp, (g · ϕ)(x) = ϕ(g−1 · x) .

In other words, the action of g on the linear form associated to the ith coordinate yields the linear
form associated to the g(i)th coordinate. One can now check that the functions F̃ are invariant.

D.6 CHARACTERIZING THE SUBALGEBRAS OF Rp

Before moving to our general result, we need to study the structure of the subalgebras of Rp. For this,
we will use the following simple lemma.

In the following lemma, R[X1, . . . , Xp] denotes the set of multivariate polynomials with p indetermi-
nates (and real coefficients).

Lemma 26. Let C ⊆ Rp be a finite subset of Rp. There exists P ∈ R[X1, . . . , Xp] such that P|C ,
the restriction of P to C, is an injective map.

Proof. Let x1, . . . , xm ∈ Rp be distinct vectors such that {x1, . . . , xm} = C. Similarly to Lagrange
polynomials, define,

P (X1, . . . , Xp) =

m∑
i=1

i
∏
j 6=i

∑p
l=1(Xl − xjl)2

‖xi − xj‖22
, (21)

27

Published as a conference paper at ICLR 2021

which is a well-defined multivariate polynomial. Note that, seeing X = (X1, . . . , Xp) as a vector in
Rp, it can also be written as,

P (X1, . . . , Xp) =

m∑
i=1

i
∏
j 6=i

‖X − xj‖22
‖xi − xj‖22

. (22)

By construction, P (xi) = i and therefore P is an injective map on C

Lemma 27. For a subalgebra A of Rp, we define:

J = {j ∈ {1, . . . , p} : ∀x ∈ A, xj = 0}
I = {(i, j) ∈ (JC)2 : ∀x ∈ A, xi = xj} .

Then, we have :
A = {x ∈ Rp : ∀(i, j) ∈ I, xi = xj , ∀j ∈ J, xj = 0} .

Proof. Before proving the general case, we focus on the situation where A will turn out to be the
whole Rp.

Assume that the two following conditions holds,

∀i 6= j, ∃x ∈ A, xi 6= xj (23)
∀i, ∃x ∈ A, xi 6= 0 (24)

Our goal is to show that, under these additional assumptions, A = Rp. We divide the proof in three
parts, first we show that 1 ∈ A using (24), giving us that A is closed under polynomials, then that
there is x ∈ A with pairwise distinct coordinates thanks to (23) and finally that this implies that A is
the whole space.

Note that if p = 1, (24) and the linear space property of A immediately give the result.

• Here we prove that (24) implies that 1 ∈ A.

– First, we construct by induction x ∈ A such that xi 6= 0 for any index i. More precisely,
our induction hypothesis at step j ∈ {1, . . . , p} is,

∃x ∈ A, ∀1 ≤ i ≤ j, xi 6= 0 . (25)

By (24), this holds for j = 1.
Now, assume that it holds at j−1 for some p ≥ j ≥ 2 and take x ∈ A such that xi 6= 0
for any 1 ≤ i ≤ j − 1 and y ∈ A such that jj 6= 0 by (24).
By definition of x, the set,

{λ ∈ R : ∃1 ≤ i ≤ j − 1, λxi + yi = 0} ,
is finite. Thus, there exists λ ∈ R such that λxi + yi 6= 0 for any 1 ≤ i ≤ j− 1 and for
i = j too as xj = 0 and yj 6= 0. As A is a subalgebra, λx+ y ∈ A and this concludes
the induction step.

– Let x ∈ A be the vector constructed, i.e. such that xi 6= 0 for every index i. We prove
that 1 ∈ A by constructing 1 from x.
Indeed, using Lagrange interpolation, take P ∈ R[X] such that P (xi) = 1

xi
for every i.

(Note that this noes not matter if some xi are equal, as the 1
xi

would also be the same.)
Finally, as A is a subalgebra, xP (x), which is to be understood coordinate-wise, is in
A and so is 1 = xP (x).

• We show that the previous point and (23) imply that there exists a vector in A with pairwise
distinct coordinates, i.e. that there exists x ∈ A such that, for any i 6= j, xi 6= xj . Using
(23), for any i < j, there exists xij ∈ A such that xiji 6= xijj . We wish to combine the family
(xij)i<j into a single vector.

For this we use Lem. 26. Seeing each collection (xijk)i<j as vector of Rp(p−1)/2, we define
C = {(xijk)i<j : 1 ≤ k ≤ p}, which is a finite subset (of cardinal p) of Rp(p−1)/2. By
Lem. 26, there exists P ∈ R[X1, . . . , Xp(p−1)/2] such that P is an injective map on C.

28

Published as a conference paper at ICLR 2021

As A is a subalgebra and 1 ∈ A, the vector,

P
(
(xij)i<j

)
=

P
(

(xij1)i<j

)
...

P
(
(xijp)i<j

)
 ,

is in A too.

We now check that this vector has pairwise distinct coordinates. Let l < k, then xlkl 6= xlkk

and therefore (xijl)i<j 6= (xijk)i<j . By construction of P , P
(

(xijl)i<j

)
6= P

(
(xijk)i<j

)
,

i.e. P
(
(xij)i<j

)
l
6= P

(
(xij)i<j

)
k
. Thus, P

(
(xij)i<j

)
∈ A has pairwise distinct coordi-

nates as required.

• Finally, we show that A = Rp. This is a direct consequence of the point above and of
Lagrange interpolation. Indeed, take any y ∈ Rp and denote by x ∈ A the vector that we
just constructed with pairwise distinct coordinates. Therefore, by Lagrange interpolation,
there exists P ∈ R[X] such that P (xi) = yi for every i ∈ {1, . . . , p}. As A is a sublagebra
and 1 ∈ A, P (x) ∈ A and hence y ∈ A.

Finally, we return to the general case. We introduce the set of indexes of I and J which appear in the
result and use them to reduce the situation to the previous case. Define,

J = {j ∈ {1, . . . , p} : ∀x ∈ A, xj = 0}
I = {(i, j) ∈ (JC)2 : ∀x ∈ A, xi = xj} .

and denote by A′ = {x ∈ Rp : ∀(i, j) ∈ I, xi = xj , ∀j ∈ J, xj = 0}, which is also a subalgebra.
By definition, it holds that A ⊆ A′.
By construction, I is an equivalence relation on JC and denote by JC/I its equivalence classes. Let
p′ = |JC/I| and choose i1, . . . , ip′ representatives of the equivalence classes. Consider the map,

ϕ :

{
Rp −→ Rp

′

x 7−→ (xi1 , . . . , xip′) .

ϕ is an algebra homomoprhism so that ϕ(A) is a subalgebra of Rp′ . But, by construction of I and J ,
ϕ(A) satisfies (23) and (24). Whence, by our result in this particular case, ϕ(A) = Rp′ .

However, A ⊆ A′ implies that ϕ(A) ⊆ ϕ(A′) ⊆ Rp′ . Therefore, Rp′ = ϕ(A) = ϕ(A′). But, by
construction of ϕ, ϕ is actually an injective map on A′. Therefore, we deduce from ϕ(A) = ϕ(A′)
that A = A′, concluding the proof.

D.7 PROOF OF THE MAIN EQUIVARIANT APPROXIMATION THEOREM

We can now fully exploit the structure of subalgebra of F thanks to the results above, and in particular
relax the second assumption of Prop. 24 to give our main theorem 22. We first prove the following
lemma.
Lemma 28. Under the assumptions of Thm. 22, for any H ⊆ G subgroup, for any x, y ∈ X ,

∀f ∈ F , ∃g ∈ H, f(g · x) = f(y) ⇐⇒ ∃g ∈ H, ∀f ∈ F , f(g · x) = f(y) .

In particular,
(x, y) ∈ ρ (π ◦ F) ⇐⇒ ∃g ∈ G, (g · x, y) ∈ ρ (F) .

Proof. The reverse implication is immediate so we focus on the direct one and prove its contraposition,
i.e.,

∀g ∈ H, ∃f ∈ F , f(g · x) 6= f(y) =⇒ ∃f ∈ F , ∀g ∈ H, f(g · x) 6= f(y) .

To prove this, we take advantage of F being a subalgebra and H being finite. Let H = {g1, . . . , gh}
and define,

A = {(f(g1 · x), . . . , f(gh · x), f(y)) : f ∈ F} .

29

Published as a conference paper at ICLR 2021

As F is a subalgebra of C(X,Rp), A is a subalgebra of Rp′ with p′ = p(h+ 1). By Lem. 27,

A = {z ∈ Rp
′

: ∀(i, j) ∈ I, zi = zj , ∀j ∈ J, zj = 0} .
where I and J can be chosen to be,1

J = {j ∈ {1, . . . , p} : ∀z ∈ A, zj = 0}
I = {(i, j) ∈ {1, . . . , p}2 : ∀z ∈ A, zi = zj} .

As I is an equivalence relation, an element of A is uniquely defined by its coordinates on equivalence
classes of I . Therefore, one can choose z ∈ A such that zi = zj ⇐⇒ (i, j) ∈ I . By definition
of A, there exists f∗ ∈ F such that (f∗(g1 · x), . . . , f∗(gh · x), f∗(y)) = z. We now check that
f∗ is indeed appropriate. Take l ∈ {1, . . . , h}, we want to show that f∗(gl · x) 6= f∗(y). By
assumption, there exists f ∈ F such that f(gl · x) 6= f(y), i.e. there exists i ∈ {1, . . . , p} such that
f(gl · x)i 6= f(y)i. Therefore, ((l − 1)p+ i, hp+ i) cannot be in I so that z(l−1)p+i 6= zhp+1, i.e.
f∗(gl · x)i 6= f∗(y)i.

We now prove our main abstract theorem.
Theorem 22. Let X be a compact space, Y = Rp for some p, G be a finite group acting (continu-
ously) on X and Y and F ⊆ CE(X,Y) a (non-empty) set of equivariant functions.

Denote by π : Y −→ Y/G the canonical projection on the quotient space Y/G. Consider the
following assumptions,

1. F is a sub-algebra of C(X,Y) and the constant function 1 is in F .

2. The set of functions Fscal ⊆ C(X,R) defined by,

Fscal = {f ∈ C(X,R) : f1 ∈ F}
satisfy,

ρ (Fscal) ⊆ ρ (π ◦ F) .

Then the closure of F (for the topology of uniform convergence) is,

F = {f ∈ CE(X,Y) : ρ (F) ⊆ ρ (f) , ∀x ∈ X, f(x) ∈ F(x)} ,
where F(x) = {f(x), f ∈ F}. Moreover, if I(x) = {(i, j) ∈ [p]2 : ∀y ∈ F(x), yi = yj}, then we
have:

F(x) = {y ∈ Rp : ∀(i, j) ∈ I(x), yi = yj} .

Proof of Thm. 22. By Lem. 28, the second assumption of Prop. 24 is also satisfied. To get the
conclusion of Thm. 22, note that F(x) is now a linear subspace of a finite-dimensional vector space
and therefore it is closed. Thus, F(x) = F(x) which is a subalgebra. Applying Lem. 27 to F(x)
and noting that, necessarily J = ∅ as 1 ∈ F(x) by assumption, gives the result of Thm. 22.

D.8 PRACTICAL REDUCTIONS

Though the results we proved above were formulated using classic hypotheses, such as requiring F
to be a subalgebra, we can give much more compact versions for our setting. We also reduce the
assumption that ρ (Fscal) ⊆ ρ (π ◦ F) to a more practical one.

We start with the invariant case.
Corollary 29. Let X be a compact space, Y = F = Rp be some finite-dimensional vector space,
G be a finite group acting (continuously) on X and F ⊆ CI(X,Y) a (non-empty) set of invariant
functions.

Assume that, for any h ∈ C(F2,F) and f, g ∈ F ,

x 7→ h(f(x), g(x)) ∈ F .
Then the closure of F is,

F = {f ∈ CI(X,Y) : ρ (F) ⊆ ρ (f)} .
1We slightly change the definition of I compared to the statement of the lemma to add J2, which does not

change the result.

30

Published as a conference paper at ICLR 2021

Proof. We wish to apply Thm. 22 but for this we need G to act on Y . Define a (trivial) action of G
on Y by,

∀g ∈ G, ∀y ∈ Y, g · y = y .

With this action on Y , CE(X,Y) = CI(X,Y). Moreover, Y/G = Y , π : Y → Y/G is the identity
so that ρ (π ◦ F) = ρ (F).

Our assumption clearly ensure that F is indeed a subalgebra and contains the constant function 1.

All that is left to show to apply Thm. 22 is that the set of functions Fscal ⊆ C(X,R) defined by,

Fscal = {f ∈ C(X,R) : f1 ∈ F}

satisfies,
ρ (Fscal) ⊆ ρ (F) .

Take (x, y) /∈ ρ (F) and we show that (x, y) /∈ ρ (Fscal). Indeed, by definition there exists f ∈ F ,
i ∈ {1, . . . , p} such that f(x)i 6= f(y)i. Let l ∈ C(F,R) defined by l(z) = zi and h ∈ C(F,F)
defined by, for z ∈ F, h(z) = (l(z), . . . , l(z)) = l(z)1. Then, by assumption h ◦ f ∈ F . But h ◦ f
is (l ◦ f)1 with l ◦ f ∈ C(X,R), so that, by definition, l ◦ f ∈ Fscal. Moreover, l ◦ f(x) 6= l ◦ f(y).
Therefore, (x, y) /∈ ρ (Fscal). Therefore, we can apply Thm. 22. We get that,

F = {f ∈ CE(X,Y) : ρ (F) ⊆ ρ (f) , ∀x ∈ X, f(x) ∈ F(x)} ,

and
F(x) = {y ∈ Fp : ∀(i, j) ∈ I(x), yi = yj} ,

with I(x) given by,

I(x) = {(i, j) ∈ {1, . . . , p}2 : ∀y ∈ F(x), yi = yj} .

To conclude the proof, we now show that I(x) = {(i, i) : i ∈ {1, . . . , p}}, which will imply that
F(x) = Rp = Y .

Indeed, the constant function z 7→ (1, 2, . . . , p) is in F by assumption. Therefore, I(x) is reduced to
{(i, i) : i ∈ {1, . . . , p}}.

In our previous version of our approximation result for node embedding, we did not allow features
in the output as it would have made the statement and the proof a bit convoluted. With this new
assumption, this is much easier.

Corollary 30. Let X be a compact space, Y = Fn, with F = Rp and G = Sn the permutation
group, acting (continuously) on X and acting on Fn by, for σ ∈ Sn, x ∈ Fn,

∀i ∈ {1, . . . , p}, (σ · x)i = xσ−1(i) ,

Let F ⊆ CE(X,Fn) be a (non-empty) set of equivariant functions.

Consider the following assumptions,

1. For any h ∈ C(F2,F), f, g ∈ F ,

x 7→ (h(f(x)1, g(x)1), . . . , h(f(x)n, g(x)n)) ∈ F .

2. If f ∈ F ,

x 7→

(
n∑
i=1

f(x)i,

n∑
i=1

f(x)i . . . ,

n∑
i=1

f(x)i

)
∈ F .

Then the closure of F (for the topology of uniform convergence) is,

F = {f ∈ CE(X,Fn) : ρ (F) ⊆ ρ (f)} .

For this we need a handy lemma, whose proof relies on a result about multi-symmetric polynomials
from Maron et al. (2019a).

31

Published as a conference paper at ICLR 2021

Lemma 31. Let F = Rp be some finite-dimensional space. Take x1, . . . , xn, y1, . . . , yn ∈ F such
that, for any σ ∈ Sn, (x1, . . . , xn) 6= (yσ(1), . . . , yσ(n)). Then, there exists h ∈ C(F,R) such that,

n∑
i=1

h(xi) 6=
n∑
i=1

h(yi) .

Moreover, h can be written as h(x) = h1(x1)h2(x2) . . . hp(xp) for any x ∈ F with h1, . . . , hp ∈
C(R,R).

Proof. By Maron et al. (2019a, Prop. 1), there exists α1, . . . , αp non-negative integers such that∑n
i=1 x

α1
i1 x

α2
i2 . . . x

αp
ip 6=

∑n
i=1 y

α1
i1 y

α2
i2 . . . y

αp
ip . Taking h : x 7→ xα1

i1 x
α2
i2 . . . x

αp
ip yields the result.

Proof of Cor. 30. We want to apply Thm. 22. With our first assumption, the first assumption of
Thm. 22 is easily verified.

We now focus on the second one. As in the statement of Thm. 22, define Fscal ⊆ C(X,R) by,

Fscal = {f ∈ C(X,R) : f1 ∈ F} .
We have to show that ρ (Fscal) ⊆ ρ (π ◦ F). For this, take x, y /∈ ρ (π ◦ F). There exists f ∈ F
such that for any σ ∈ Sn, σ · f(x) 6= f(y). We have to find l ∈ Fscal such that l(x) 6= l(y). In other
words, from a function in Fn which discriminates between x and y we have to build a function in R.

First, we exhibit a function which discriminates between x and y. Apply Lem. 31 to the vectors f(x)
and f(y): there exists h0 ∈ C(F,R) such that

∑n
i=1 h0(f(xi)) 6=

∑n
i=1 h0(f(yi)).

To fit the assumptions, we build h ∈ C(F,F) from h0 by h : x ∈ F 7→ (h0(x), . . . , h0(x)) ∈ F.
Take g ∈ C(F,F) such that g(z) = (z1, . . . , z1) for any z ∈ F and l ∈ C(X,R) defined by, for
w ∈ X , l(w) =

∑n
i=1 h0(f(wi)). Then, l(x) 6= l(y). All we have to do is show that l ∈ Fscal, i.e.,

l1 ∈ F . This is where the two assumptions we made come into play. Indeed, the first one implies
that h ◦ f ∈ F and the second gives

z 7→

(
n∑
i=1

h(f(zi)), . . . ,

n∑
i=1

h(f(zi))

)
∈ F .

Finally, the first assumption ensure that,

z 7→

(
g

(
n∑
i=1

h(f(zi))

)
, . . . , g

(
n∑
i=1

h(f(zi))

))
∈ F .

But this last function is none other than l1, which shows that l ∈ Fscal as required.

We have successfully verified the hypothesis of Thm. 22. Therefore, the closure of F is,

F = {f ∈ CE(X,Fn) : ρ (F) ⊆ ρ (f) , ∀x ∈ X, f(x) ∈ F(x)} ,
with

F(x) = {y ∈ Fn : ∀(i, i′, j, j′) ∈ I(x), yi,i′ = yj,j′} ,
and

I(x) = {(i, i′, j, j′) ∈ ({1, . . . , n} × {1, . . . , p})2 : ∀y ∈ F(x), yi,i′ = yj,j′} .

To get the desired result, we need to get rid of the condition “f(x) ∈ F(x)” in the description of F .
Fix x ∈ X .

First, we show that
F(x) = {y ∈ Fn : ∀(i, j) ∈ J(x), yi = yj} ,

with
J(x) = {(i, j) ∈ {1, . . . , n}2 : yi = yj} ,

(note that the equalities here are not in R anymore but in F). The direct inclusion “⊆” is immediate
by construction of J(x) so we focus on the reverse direction. For this, we show that the 4-tuples
(i, i′, j, j′) of I(x) necessarily satisfy i′ = j′ and (i, j) ∈ J(x).

32

Published as a conference paper at ICLR 2021

First note that, by the first assumption, the vector y0 ∈ Fn such that y0i = (1, 2, . . . , p) for i ∈
{1, . . . , n} is in F(x). Indeed, take the constant function always equal to (1, 2, . . . , p) as h. Now,
consider a 4-tuple (i, i′, j, j′) of I(x) and we show that, actually, (i, j) ∈ J(x) and i′ = j′. As y0
in F(x), and y0i,i′ = i′, y0j,j′ = j′, (i, i′, j, j′) ∈ I(x) implies that j′ = i′. Consider, k ∈ {1, . . . , p}.
We show that, for any y ∈ F(x), yi,k = yj,k. But such a y can be written as y = f(x) for some
f ∈ F . Consider, the function h ∈ C(F,F) associated to the permutation (i′ k), defined by,

z 7→ (z(i′ k)(1), . . . , z(i′ k)(n)) = (z1, . . . , zi′−1, zk, zi′+1, . . . , zk−1, zi′ , zk+1, . . . , zp) .

By our first assumption, z 7→ (h(f(z)1), . . . , h(f(z)n)) ∈ F so that (h(y1), . . . , h(yn)) ∈ F(x). In
particular, as (i, i′, j, i′) ∈ I(x), h(yi)i′ = h(yj)i′ , i.e. yi,k = yj,k. Therefore, (i, j) ∈ J(x).

Finally, we can conclude that F(x) ⊃ {y ∈ Fn : ∀(i, j) ∈ J(x), yi = yj}. Indeed, take
y ∈ Fn : ∀(i, j) ∈ J(x), yi = yj . We show that all the constraints of I(x) are satisfied. Indeed, take
(i, i′, j, j′) ∈ I(x). We have shown that (i, j) ∈ J(x) and i′ = j′ so that yi = yj and in particular
yi,i′ = yj,j′ . Therefore, this finishes the proof of F(x) ⊃ {y ∈ Fn : ∀(i, j) ∈ J(x), yi = yj}.
Thus,

F(x) = {y ∈ Fn : ∀(i, j) ∈ J(x), yi = yj} ,
with

J(x) = {(i, j) ∈ {1, . . . , n}2 : yi = yj} .

We have proven so far, that,

F = {f ∈ CE(X,Fn) : ρ (F) ⊆ ρ (f) , ∀x ∈ X, f(x) ∈ F(x)} ⊆ {f ∈ CE(X,Fn) : ρ (F) ⊆ ρ (f)} .

Take h ∈ CE(X,Fn) such that ρ (F) ⊆ ρ (h) and fix x ∈ X . Our goal is to show that, for any
(i, j) ∈ J(x), h(x)i = h(x)j so that h(x) ∈ F(x). But, if (i, j) ∈ J(x), then for any f ∈ F ,
f(x)i = f(x)j so that (i j) · f(x) = f(x), where (i j) denotes the permutation which exchanges i
and j. Moreover, as (i j) ∈ Sn, by equivariance, this means that f((i j) · x) = f(x) for every f ∈ F
and therefore that ((i j) · x, x) ∈ ρ (F). By assumption, we infer that ((i j) · x, x) ∈ ρ (h) too, i.e.
that h((i j) · x) = h(x) and so that h(x)i = h(x)j by equivariance, which concludes our proof.

D.9 REDUCTIONS FOR GNNS

We now present a lemma which explains how to instantiate the two corollaries above in the case of
GNNs by replacing continuous functions with MLPs.
Lemma 32. Fix X some compact space, n ≥ 1 and F a finite-dimensional feature space. Let
F0 ⊆

⋃∞
h=1 C(X,Rh) be stable by concatenation and consider,

F = {x 7→ (m(f(x)1), . . . ,m(f(x)n)) : f ∈ F0∩C(X,Rh), m : Rh → F MLP, h ≥ 1} ⊆ C(X,F) .

Then, if E(F) ⊆ C(X,F) is the set of functions obtained by replacing the MLP m in the definition of
F by an arbitrary continuous function, E(F) satisfies,

1. F = E(F)

2. ρ (F) = ρ (E(F))

3. For any h ∈ C(F2,F), f, g ∈ E(F),

x 7→ (h(f(x)1, g(x)1), . . . , h(f(x)n, g(x)n)) ∈ E(F) .

4. If, for any f ∈ F ,

x 7→

(
n∑
i=1

f(x)i,

n∑
i=1

f(x)i . . . ,

n∑
i=1

f(x)i

)
∈ F ,

then, for any f ∈ E(F),

x 7→

(
n∑
i=1

f(x)i,

n∑
i=1

f(x)i . . . ,

n∑
i=1

f(x)i

)
∈ E(F) .

33

Published as a conference paper at ICLR 2021

5. If F is equivariant w.r.t. the action described in Cor. 30, so is E(F).

Proof. Define,

E(F) = {x 7→ (m(f(x)1), . . . ,m(f(x)n)) : f ∈ F0 ∩ C(X,Rh), m ∈ C(Rh,F), h ≥ 1} .

As MLP are continuous and by the universality of MLP on a compact set (see Section C.1),

F ⊆ E(F) ⊆ F .

This already implies 1. and that ρ
(
F
)
⊆ ρ (E(F)) ⊆ ρ (F). Using Lem. 15 yields 2.

We now show 3. Take h ∈ C(F2,F), f, g ∈ F0, f ∈ C(X,Rhf), g ∈ C(X,Rhg) and m ∈ C(Rhf ,F),
l ∈ C(Rhg ,F). All we have to show is that,

x 7→ (h(m(f(x)1), l(g(x)1)), . . . , h(m(f(x)n), l(g(x)n))) ∈ E(F) .

But as F0 is stable by concatenation, x 7→ (f(x), g(x)) ∈ Rhf+hg is still in F0. Moreover,
y ∈ Rhf+hg 7→ h(m(y1, . . . , yhf), l(yhf+1, . . . , yhf+hg) is also in C(Rhf+hg ,F) which shows that
the map above is indeed in E(F). The last two points are immediate consequences of the definition
of E(F).

Thm. 5 and Thm. 6 are now obtained by combining Lem. 32 with Cor. 29 and Cor. 30.

E PROOFS FOR EXPRESSIVENESS OF GNNS

Note that in the Theorem 6, the additional stability assumption is “almost” necessary to obtain the
result. Indeed, if the result holds, i.e.,

F = {f ∈ CE(X,Fn) : ρ (F0) ⊆ ρ (f)} ,

then one can show, that, if f ∈ F , then

f̃ : x 7→

(
n∑
i=1

f(x)i,

n∑
i=1

f(x)i . . . ,

n∑
i=1

f(x)i

)
∈ F .

Indeed, f ∈ F so that it has a weaker discriminating power than F , so that ρ (F) = ρ (F0) ⊆ ρ (f).
But, by construction of f̃ , ρ (f) ⊆ ρ

(
f̃
)

so that ρ (F0) ⊆ ρ
(
f̃
)

. As f̃ is also in CE(X,Fn), f̃ ∈ F .

E.1 EXPRESSIVITY OF GNN LAYERS

Lemma 33. Fix F0,F1 (non-trivial) finite dimensionnal vector spaces. Consider the action of
G = Sn on F0 × Fn×k0 defined by,

∀σ ∈ Sn, ∀x0 ∈ F0, ∀x ∈ Fn×k, σ · (x0, x) = (x0, xσ−1(1), . . . , xσ−1(n))

Let K ⊆ F0 × Fn×k0 be a compact set. Then, the set of functions from K ⊆ F0 × Fn×k0 to F1 of the
form,

(x0, x) 7−→ f0

x0, n∑
j=1

k∏
w=1

fw(xj,w)

where f0 : F0 × Rh → F1, fj : F0 → Rh, j = 1, . . . , k are multi-linear perceptrons and h ≥ 1, is
dense in CI(K,F1).

Proof. Denote by F ⊆ CI(K,F1) the set of such functions. To prove that F = CI(K,F1), we first
apply Thm. 5.

We get, that,
F =

{
f ∈ CI(F0 × Fn×k0 ,F1) : ρ (F) ⊆ ρ (f)

}
.

34

Published as a conference paper at ICLR 2021

We now characterize ρ (F). Actually, it is equal to ρ (inv) = {((x0, x), (y0, y)) ∈
(
F0 × Fn×k0

)2
:

∃σ ∈ Sn, (x0, x) = σ · (y0, y)}. As the functions of F are invariant, ρ (inv) ⊆ ρ (F). We now
show the reverse. Take (x0, x), (y0, y) ∈ F0 × Fn×k0 such that there does not exist σ ∈ Sn such that
(x0, x) = σ · (y0, y). If x0 6= y0, there exists f0 : F0 → F1 MLP such that f(x0) 6= f(y0) so that
((x0, x), (y0, y)) /∈ ρ (F).

Otherwise, there does not exists σ ∈ Sn such that (xσ−1(1), . . . , xσ−1(n)) = (y1, . . . , yn) by
definition of the action of G = Sn. Now, apply Lem. 31 with F ← Fk0 , the universality
of MLP and use the decomposition given to get fj : F0 → Rh, j = 1, . . . , k such that∑n
j=1

∏k
w=1 fw(xj,w) 6=

∑n
j=1

∏k
w=1 fw(yj,w). Choosing an appropriate MLP f0 : Rh → F1

yields that ((x0, x), (y0, y)) /∈ ρ (F).

Hence, we have shown that,

F =
{
f ∈ CI(F0 × Fn×k0 ,F1) : ρ (inv) ⊆ ρ (f)

}
= CI(F0 × Fn×k0 ,F1) .

E.2 APPROXIMATION THEOREMS FOR GNNS

We now have all the tools to finally prove our main result.

Theorem 34. Let Kdiscr ⊆ Gn × Fn0 , K ⊆ Fn2

0 be compact sets. For the invariant case, we have:

MGNNI = {f ∈ CI(Kdiscr,F) : ρ (2-WLI) ⊆ ρ (f)}
2-LGNNI = {f ∈ CI(K,F) : ρ (2-WLI) ⊆ ρ (f)}
k-LGNNI = {f ∈ CI(K,F) : ρ (k-LGNNI) ⊆ ρ (f)} ⊃ {f ∈ CI(K,F) : ρ (k-WLI) ⊆ ρ (f)}
k-FGNNI = {f ∈ CI(K,F) : ρ (k-FWLI) ⊆ ρ (f)}

For the equivariant case, we have:

MGNNE = {f ∈ CE(Kdiscr,Fn) : ρ (2-WLE) ⊆ ρ (f)}
k-LGNNE = {f ∈ CE(K,Fn) : ρ (k-LGNNE) ⊆ ρ (f)} ⊃ {f ∈ CE(K,Fn) : ρ (k-WLE) ⊆ ρ (f)}
k-FGNNE = {f ∈ CE(K,Fn) : ρ (k-FWLE) ⊆ ρ (f)}

We decompose the proof with an additional lemma.

Lemma 35. Let Kdiscr ⊆ Gn × Fn0 , K ⊆ Fn2

0 be compact sets. For the invariant case, and any
k ≥ 2, we have,

MGNNI = {f ∈ CI(Kdiscr,F) : ρ (MGNNI) ⊆ ρ (f)}
k-LGNNI = {f ∈ CI(K,F) : ρ (k-LGNNI) ⊆ ρ (f)}
k-FGNNI = {f ∈ CI(K,F) : ρ (k-FGNNI) ⊆ ρ (f)}

For the equivariant case, and any k ≥ 2, we have:

MGNNE = {f ∈ CE(Kdiscr,F) : ρ (MGNNE) ⊆ ρ (f)}
k-LGNNE = {f ∈ CE(K,F) : ρ (k-LGNNE) ⊆ ρ (f)}
k-FGNNE = {f ∈ CE(K,F) : ρ (k-FGNNE) ⊆ ρ (f)}

Proof of Thm. 34. The theorem is now a direct consequence of Prop. 13 and Lem. 35.

We now move to the proof of Lem. 35.

Proof of Lem. 35. First, focus on the invariant case. Let F denote MGNNI , k-LGNNI or k-FGNNI
and X be either Kdiscr or K so that X is compact and F ⊆ CI(X,F). Applying Thm. 5 directly
gives,

F = {f ∈ CI(X,F) : ρ (F) ⊆ ρ (f)} ,

35

Published as a conference paper at ICLR 2021

which is the desired result.

We now move to the equivariant case. First, let us replace MGNNE by another class, which is slightly
simpler to analyze. Define,

MGNNE′ = {mE ◦ ((1− λ) Id +λS1) ◦ FT ◦ . . . F2 ◦ F1 : Ft :

Fnt → Fnt+1 message passing layer, t = 1, . . . , T, T ≥ 1, λ ∈ {0, 1}} .

It holds that ρ (MGNNE′) = ρ (MGNNE) and,

MGNNE′ ⊆ MGNNE ⊆ {f ∈ CE(Kdiscr,Fn) : ρ (MGNNE) ⊆ ρ (f)}
= {f ∈ CE(Kdiscr,Fn) : ρ (MGNNE′) ⊆ ρ (f)}

Therefore, if we show that,

MGNNE′ = {f ∈ CE(Kdiscr,Fn) : ρ (MGNNE′) ⊆ ρ (f)} ,

we will have the desired result.

Let F denote MGNNE′ , k-LGNNE or k-FGNNE and X be either Kdiscr or K so that X is compact
and F ⊆ CE(X,Fn). We now wish to apply Thm. 6, but we need to verify the stability assumption
first. Thus, we show that, for any f ∈ F ,

x 7→

(
n∑
i=1

f(x)i,

n∑
i=1

f(x)i . . . ,

n∑
i=1

f(x)i

)
∈ F ,

• If F = MGNNE′ .Take f ∈ MGNNE′ . f is of the form,

mE ◦ ((1− λ) Id +λS1) ◦ FT ◦ . . . F2 ◦ F1 ,

where Ft : Fnt → Fnt+1 are message passing layers, FT+1 = F and λ ∈ {0, 1}. We need to
show that there is a MGNNE′ which implements,

x 7→

(
n∑
i=1

f(x)i,

n∑
i=1

f(x)i . . . ,

n∑
i=1

f(x)i

)
. (26)

If λ = 1, f is exactly the function of (26). Otherwise, if λ = 0, we build another MGNNE′
implementing this function. Denote by FT+1 : Fn → Fn the (simple) message passing
layer defined by FT+1(h)i = mE(hi) for i ∈ [n] and any h ∈ Fn. Then, the MGNNE′
(1− λ′) Id +λ′S1) ◦ FT+1 ◦ FT ◦ . . . F2 ◦ F1 with λ′ = 1 exactly implements (26).

• If F = k-LGNNE . A function f of this class is of the form,

mE ◦ Sk1 ◦ FT ◦ . . . F2 ◦ F1 ◦ Ik,

where Ft : Fnkt → Fnkt+1 are linear graph layers and FT+1 = F. Our goal is to show that
there is a GNN of k-LGNNE which implements,

x 7→

(
n∑
i=1

f(x)i,

n∑
i=1

f(x)i . . . ,

n∑
i=1

f(x)i

)
, (27)

By definition of linear graph layers, the map FT+1 : Fnk → Fnk defined by, for G ∈ Fnk ,

∀(i1, . . . , ik) ∈ [n]k, FT+1(G)i1,...,ik = mE(Sk1 (G)i) ,

is a linear graph layer as defined in Section 3. Now, consider, the linear graph layer,
FT+2 : Fnk → Fnk defined by, for G ∈ Fnk ,

∀(i1, . . . , ik) ∈ [n]k, FT+1(G)i1,...,ik =

n∑
i=1

Gi,i2,...,ik .

Then, the k-LGNN FT+2 ◦ FT+1 ◦ FT ◦ . . . F2 ◦ F1 ◦ Ik exactly implements (27).

36

Published as a conference paper at ICLR 2021

• If F = k-FGNNE . A function f of this class is of the form,

mE ◦ Sk1 ◦ FT ◦ . . . F2 ◦ F1 ◦ Ik,

where Ft : Fnkt → Fnkt+1 are FGL (see Section 3) and FT+1 = F. We build a GNN of
k-MGNNE which implements,

x 7→

(
n∑
i=1

f(x)i,

n∑
i=1

f(x)i . . . ,

n∑
i=1

f(x)i

)
, (28)

For w ∈ [k], define the FGL Hw : Fnk → Fnk by,

∀G ∈ Fn
k

, ∀(i1, . . . , ik) ∈ [n]k, Hw(G)i1,...,ik =

n∑
j=1

Gi1,...,iw−1,j,iw+1,...,ik .

Then H2 ◦ · · · ◦Hk : Fnk → Fnk computes the sum of the elements of the input tensor over
the last k − 1 dimensions like to Sk1 : Fnk → Fn and H1 ◦H2 ◦ · · · ◦Hk : Fnk → Fnk

computes the full sum of the elements of the input tensor like to Sk : Fnk → F. Finally,
consider the FGL FT+1 : Fnk → Fnk associated to mE , i.e. such that, for any G ∈ Fnk ,

∀(i1, . . . , ik) ∈ [n]k, FT+1(G)i1,...,ik = mE(Gi1,...,ik) .

Now, the k-FGNN

H1 ◦H2 ◦ · · · ◦Hk ◦ FT+1 ◦H2 ◦ · · · ◦Hk ◦ FT+1 ◦ FT ◦ . . . F2 ◦ F1 ◦ Ik

exactly implements (28).

F EXTENSION TO GRAPHS OF VARYING SIZES

F.1 EXTENSION TO DISCONNECTED INPUT SPACES

Here we show that our results can be extended to graphs of varying sizes similarly to Keriven &
Peyré (2019). There are two ways to do it. The first would be to directly adapt all the proofs but it
would make them more cumbersome. Instead, we extend them with a simple argument presented
below. As a side benefit, this general lemma makes it possible to extend almost all the approximation
results for graph neural networks from the literature.

The abstract setting is the following. Given a compact input space X , assume that there is some
finite set A, and Xα, α ∈ A a family of pairwise disjoints compact sets such that X =

⊔
α∈AXα.

Crucially, we will assume that the Xα are in distinct connected components. Intuitively, they do not
"touch" each other. Similarly, assume that the output space Y can be written as Y =

⊔
α∈A Yα, with

Yα, α ∈ A a family of (pairwise disjoints) real vector spaces.

Before moving to the results, we need a last definition. Informally, we need that the functions f
that we will consider do not change the number of nodes of their inputs. Formally, we say that
f : X −→ Y is adapted if f(Xα) ⊆ Yα for each α ∈ A, and denote by Cad(X,Y) the of continuous
and adapted functions from X to Y .

We can now state our lemma to adapt our results to graphs with varying node sizes.

Lemma 36. Let X be a compact space, Y be a topological space and A a finite set. Assume that
there exists Xα, α ∈ A a family of pairwise disjoints compact sets such that X =

⊔
α∈AXα and the

Xα’s are in distinct connected components. Also assume that there is Yα, α ∈ A a family of (pairwise
disjoints) real vector spaces such that Y =

⊔
α∈A Yα. Consider F ⊆ Cad(X,Y) a (non-empty) set of

adapted functions and, for each α ∈ A, define F|Xα = {f|Xα : f ∈ F} ⊆ C(Xα, Yα) the restriction
of the functions of F to Xα.

Assume that the following holds,

37

Published as a conference paper at ICLR 2021

1. Each F|Xα is a sub-algebra of C(Xα, Yα) which contains the constant function 1Yα .

2. There is a set of functions Fscal ⊆ C(X,R) such that Fscal.F ⊆ F and it discriminates
between the Xα’s, i.e. ρ (Fscal) ⊆

⊔
α∈AX

2
α.

Then the closure of F is,

F =
{
f ∈ Cad(X,Y) : ∀α ∈ A, f|Xα ∈ F|Xα

}
,

for the distance on Cad(X,Y) defined by, for f, g ∈ Cad(X,Y),

d(f, g) = max
α∈A

sup
Xα

‖f − g‖Yα .

Proof. Define the set of functions S ⊆ C(X,R) by,

S = {f ∈ C(X,R) : f.F ⊆ F} .

By definition, Fscal ⊆ S. Moreover, as each F|Xα is a subalgebra, S is also a subalgebra of C(X,R).

As X is compact, we can apply Cor. 17 to S to get that, in C(X,R),

S = {f ∈ C(X,R) : ρ (S) ⊆ ρ (f)} .

In the first part of the proof, we check that, for each α, the function fα : X −→ [0, 1] defined by

fα|Xα = 1

∀β 6= α, fα|Xβ = 0 .

is continuous and satisfy ρ (S) ⊆ ρ (fα). This will means that such functions belong to Fscal.
As the Xβ’s are in different connected components, it is enough to check its continuity on each Xβ .
Indeed, each fα|Xβ is constant so continuous. The second fact comes from the second assumption.
Indeed, take (x, y) ∈ X such that (x, y) ∈ ρ (S). As Fscal ⊆ S, in particular (x, y) ∈ ρ (Fscal).
But, by assumption, ρ (Fscal) ⊆

⊔
β∈AX

2
β . Thus, necessarily x and y belong to the same Xβ so that

fα(x) = fα(y).

Therefore, we conclude that fα ∈ S.

We now prove the announced equality. By the definition of the distance, the first inclusion, F ⊆{
f ∈ Cad(X,Y) : f|Xα ∈ Fα

}
is immediate. We focus on the other way. Take h ∈ Cad(X,Y) such

that h|Xα ∈ Fα for every α ∈ A and ε > 0. By definition of h, there exists, for each α ∈ A, gα ∈ F
such that,

sup
Xα

‖h− gα‖Yα ≤ ε ,

As the Xα’s are compact and the gα’s are continuous, maxα∈A supXα ‖gα‖ < +∞ and denote by
M > 0 a bound on this quantity. We have shown above that each fα is in S so there exists, for each
α ∈ A, lα ∈ S such that,

sup
X
|fα − lα| ≤

ε

M
.

By definition of S and, as F is a subalgebra,
∑
α∈A lαgα ∈ F and, for each β ∈ A,

sup
Xβ

∥∥∥∥∥h−∑
α∈A

lαgα ∈ F

∥∥∥∥∥ ≤ sup
Xβ

‖h− gβ‖+ ‖gβ − lβgβ‖+

∥∥∥∥∥∥
∑
α6=β

lαgα

∥∥∥∥∥∥
≤ ε+M × ε

M
+ (|A| − 1)M × ε

M
= (|A|+ 1)ε ,

which concludes the proof.

38

Published as a conference paper at ICLR 2021

F.2 APPROXIMATION THEOREM WITH VARYING GRAPH SIZE

We now state our theorem in the case of varying graph size like Keriven & Peyré (2019). With
Lem. 36, it is indeed straightforward to extend any approximation result initially proven for a class of
graphs of fixed size. However, as the complete proof would require new notations again, we only
give a sketch of proof.

Fix N ≥ 1 and consider the space of graphs (described by tensors) of size less than N , F≤N
2

0 =⋃N
n=1 Fn

2

0 . Equip this space with the final topology or, equivalently, the graph edit distance. Then, the
last thing to check to apply Lem. 36 is that the classes of GNN that we consider indeed discriminate
between graphs of different sizes, which is immediate.

Likewise, for message passing GNN, consider G≤N×F≤N0 =
⋃N
n=1 Gn×Fn0 , with a similar topology

or the graph edit distance.

Corollary 37. Let Kdiscr ⊆ G≤N × F≤N0 , K ⊆ F≤N
2

0 be compact sets. For the invariant case, we
have:

MGNNI = {f ∈ CI(Kdiscr,F) : ρ (2-WLI) ⊆ ρ (f)}
2-LGNNI = {f ∈ CI(K,F) : ρ (2-WLI) ⊆ ρ (f)}
k-LGNNI = {f ∈ CI(K,F) : ρ (k-LGNNI) ⊆ ρ (f)} ⊃ {f ∈ CI(K,F) : ρ (k-WLI) ⊆ ρ (f)}
k-FGNNI = {f ∈ CI(K,F) : ρ (k-FWLI) ⊆ ρ (f)}

For the equivariant case, we have:

MGNNE =
{
f ∈ CE(Kdiscr,F≤N) : ρ (2-WLE) ⊆ ρ (f)

}
k-LGNNE =

{
f ∈ CE(K,F≤N) : ρ (k-LGNNE) ⊆ ρ (f)

}
⊃
{
f ∈ CE(K,F≤N) : ρ (k-WLE) ⊆ ρ (f)

}
k-FGNNE =

{
f ∈ CE(K,F≤N) : ρ (k-FWLE) ⊆ ρ (f)

}
Proof. This corollary is a direct consequence of Thm. 34 and Lem. 36, using Lem. 32 to satisfy the
sub-algebra assumption of Lem. 36.

39

	Introduction
	Related work
	Notations: graphs as tensors
	Definitions: Invariant and equivariant operators

	GNN definitions
	Message passing GNN
	Linear GNN
	Folklore GNN

	Theoretical results for GNNs
	Weisfeiler-Lehman invariant and equivariant versions
	Separating power of GNNs
	Approximation results for GNNs

	Expressiveness of GNNs
	Quadratic Assignment Problem
	Conclusion
	Experimental results
	Details on the experimental setup
	Experimental results on graphs of varying size
	Generalization for regular graphs

	Weisfeiler-Lehman tests
	Weisfeiler-Lehman test on vertices
	Isomorphism type
	Weisfeiler-Lehman and Folklore Weisfeiler-Lehman tests of order k 2

	Separating power of GNN
	Mutli-linear perceptrons
	Augmented separating power
	Initialization layer
	Known results about the separating power of some GNN classes
	Bounding the separating power of k-FGNN
	Conclusion

	Stone-Weierstrass theorem with symmetries
	General notations
	Separating power
	Approximation theorems for real-valued functions
	The equivariant approximation theorem
	A preliminary version of the equivariant approximation theorem
	Characterizing the subalgebras of Rp
	Proof of the main equivariant approximation theorem
	Practical reductions
	Reductions for GNNs

	Proofs for expressiveness of GNNs
	Expressivity of GNN layers
	Approximation theorems for GNNs

	Extension to graphs of varying sizes
	Extension to disconnected input spaces
	Approximation theorem with varying graph size

