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ABSTRACT

In model-free Safe Reinforcement Learning (Safe RL) methods, agents are tasked
with satisfying constraints in high-dimensional environments. However, they often
learn from state representations that do not explicitly encode safe or unsafe infor-
mation. This forces them into a prolonged trial-and-error cycle where the agent’s
learning process is split between constraint satisfaction and maximizing rewards.
We argue that this is not fundamentally a policy learning problem, but a representa-
tion problem. To address this, we introduce a framework - Self Supervised Safe
Reinforcement Learning (S3RL) - that jointly learns a control policy and safety-
aware state representations. These representations are learned by maximizing the
mutual information (MI) between state embeddings and their corresponding safety
labels. We optimize the MI objective using a contrastive InfoNCE loss, which
learns to distinguish safe states from unsafe ones. Our representation learning
module is algorithm agnostic and can be integrated into various Safe RL algorithms.
Integrating it into a Lagrangian-based soft actor-critic update, we prove that our
joint objective guarantees stable and monotonic policy improvement. Experiments
on multiple safety environment benchmarks validate that our method helps in
alleviating the conflict between exploration and constraint satisfaction, leading to
policies that achieve higher rewards than state-of-the-art Safe RL baselines without
compromising safety.

1 INTRODUCTION

A major challenge in Reinforcement Learning (RL) is making sure that agents are safe while
maximizing the cumulative rewards. The field of Safe RL addresses this by framing the problem
as a constrained sequential decision-making task, where an agent must maximize its reward while
satisfying safety constraints, which are typically enforced by limiting the expected cumulative value
of cost functions (Gu et al., 2022). Modern approaches solve these problems by training deep neural
networks from scratch, learning from repeated interactions with an environment. To enforce safety,
these methods typically use penalization mechanisms, such as Lagrangian multipliers, which guide
the agent towards constraint-satisfying regions (Achiam et al., 2017; Ray et al., 2019; Stooke et al.,
2020; Liu et al., 2022).

While effective, these methods have a major limitation: the agent learns to be safe through extensive
interactions, and does not not develop an explicit awareness of safe regions, but rather learn to avoid
certain actions purely based on penalties from cost functions. This means that the agent’s learning
capacity is split between two tasks: (1) understanding which parts of the environment incur cost
violations and (2) maximizing reward, which forces the policy to learn about safety through repeated,
costly violations, which is sample-inefficient and can compromise the agent’s ability to focus on
reward maximization.

We argue that this is not fundamentally a policy learning problem, but a representation problem. The
main challenge is not just reacting to a violation, but knowing how to avoid unsafe regions in the first
place. Therefore, we propose a different approach: to decouple the task of learning about safety from
the task of policy optimization. We posit that a better and more efficient way is first to understand a
state representation that already encodes information about the safe state space (Figure 1), and train a
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Figure 1: Overview of the safety aware reinforcement learning framework (S3RL). The agent (policy)
interacts with the environment by sending actions and receiving states, costs and rewards. States
are encoded into a latent embedding space via a state encoder. In the embedding space, regions
corresponding to safe behaviors (green) and unsafe behaviors (red) are identified. A safety feedback
loop provides corrective signals from unsafe embeddings back to the policy, allowing the agent to
adjust its behavior under safety constraints while maximizing the rewards.

policy using the learned representation. By giving the agent a better map of the environment’s risks,
the policy learner can be better positioned to focus on maximizing rewards.

While prior works (Laskin et al., 2020; Eysenbach et al., 2022) have successfully applied contrastive
learning in RL, their objectives remain largely task-agnostic. In these methods, positives and
negatives are constructed from either temporal proximity, future prediction, or data augmentation.
Although such approaches improve sample efficiency by enriching representations, they also do
not explicitly address the challenge of safety in RL. This leaves a critical gap: existing contrastive
methods provide general-purpose feature learning but fail to encode the boundaries that determine
safe versus unsafe behaviors. Our work targets this gap by leveraging safety labels as semantically
meaningful supervision, where positives correspond to safe states and negatives to unsafe states. By
shaping the latent space according to safety labels and embedding safety-awareness directly into the
policy optimization process, our approach ensures that learned representations capture the boundaries
critical for constraint satisfaction. In doing so, the contribution reframes representation learning as a
safety-critical inductive bias that alleviates the costly trial-and-error process typically required by
conventional model-free Safe RL methods.

To this end, we introduce a modular, self-supervised method for learning these safety-aware state
representations. We maximize a mutual-information objective via an InfoNCE loss built from
safe/unsafe labels to train a state encoder that explicitly encodes proximity to unsafe regions. Our
approach is algorithm-agnostic and can be integrated with both modern Safe RL and standard RL
methods. Our contributions are:

1. We identify and analyze a state-representation bottleneck in Safe RL: standard pipelines
lack explicit safety awareness in the state space, forcing trial-and-error learning that splits
capacity between constraint satisfaction and reward maximization.

2. We introduce a self-supervised module that learns safety-aware representations by maxi-
mizing the mutual information between policy embeddings and per-transition safety labels
using an InfoNCE objective constructed from safe/unsafe replay partitions.

3. We propose a decoupled training scheme that applies the MI regularizer only to the pol-
icy encoder while keeping the critic encoder separate, and we outline online/semi-online
synchronization schedules that mitigate non-stationarity and preserve off-policy stability.

4. We provide theoretical guarantees: a per-state soft policy-improvement lemma and a block-
coordinate ascent result showing monotone increase of a joint objective combining the soft
Lagrangian return with the MI term, ensuring stable improvement under safety shaping.
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5. We demonstrate algorithm-agnostic integration and consistent reward improvements on
safety control tasks while maintaining safety constraints within acceptable limits.

2 PRELIMINARIES

Constrained Markov Decision Process. Safe RL problems are typically formulated as Con-
strained Markov Decision Processes (CMDPs) (Altman, 1999). A CMDP is defined by the tuple
(S,A, P, r, C, µ0, γ), where S is the state space, A is the action space, P : S × A × S → [0, 1]
is the transition probability function, r : S × A → R is the reward function, µ0 is the initial state
distribution, and γ ∈ [0, 1) is the discount factor. Safety violations are incorporated through a set
of m cost functions, C = {ci : S × A → R≥0}mi=1. Each cost function quantifies an undesirable
behavior (e.g., entering unsafe regions or exceeding operational limits) and is associated with a safety
threshold ϵi.

An agent interacts with the environment by executing a policy π(at|st), generating trajectories τ =
(s0, a0, s1, . . . ) where the initial state s0 is sampled from µ0. In the discounted setting, a policy π is
evaluated based on the expected discounted return for the reward, Jr(π) = Eτ∼π [

∑∞
t=0 γ

tr(st, at)] ,
and similarly for each constraint, we have the expected discounted returns per cost function Jci(π) =
Eτ∼π [

∑∞
t=0 γ

tci(st, at)] , ∀i ∈ {1, . . . ,m}. The objective in a CMDP is to find an optimal policy
π∗ that maximizes the expected reward return while ensuring that each expected cost return remains
below its respective threshold:

max
π

Jr(π) :=

∫
dπ(s, a) [r(s, a) + αH(π(·|s))] da ds

s.t. Jci(π) :=

∫
dπ(s, a) ci(s, a) da ds ≤ ϵi, i = 1, . . . ,m,

(1)

where dπ(z, a) is the induced occupancy andH(π(·|s)) represents the entropy of the policy π. The
occupancy dπ(z, a) is to capture both task-relevant and safety-relevant features by leveraging policy
state encoder fϕπ , which maps raw state s into latent embedding z = fϕπ(s). Note that the entropy
termH(π(·|s)) is only present in soft policy optimization methods, such as Soft Actor-Critic (SAC)
(Haarnoja et al., 2018). The coefficient α controls the weight of this entropy regularization term.

3 METHODOLOGY

We hypothesize that an effective encoder maps raw observations into a latent representation where
safety-relevant structure — such as proximity to hazards or constraint boundaries — is linearly sepa-
rable and predictive of future violations. A well-structured embedding serves a critical role in policy
learning. It conditions the policy on features that align action logits with safe state–action regions,
thereby improving the entropy-regularized objective while simultaneously respecting constraints.
Thus, it improves the agent’s ability to organize its representation space in a way that accelerates
reward maximization. To achieve this, we perform mutual information maximization between safety
labels and latent embeddings, explicitly encoding safety structure in the learned representation space.

3.1 MUTUAL INFORMATION AS A SAFETY-AWARE REPRESENTATION OBJECTIVE

For state space S, let Z = fϕπ (S) denote the policy’s latent representation and L ∈ {0, 1} the safety
label indicating whether a transition is safe or unsafe. The mutual information I(Z;L) measures how
much knowing the embedding Z reduces uncertainty about L. For two random variables Z and L
with joint density p(Z,L) and marginals p(Z) and p(L), the mutual information is defined as:

I(Z;L) = Ep(Z,L)

[
log

p(Z,L)

p(Z) p(L)

]
=

∫∫
p(z, l) log

p(z, l)

p(z) p(l)
dz dl. (2)

This is equivalent to the Kullback–Leibler divergence between the joint distribution and the product
of its marginals:

I(Z;L) = DKL(p(Z,L) ∥ p(Z) p(L)) = H(L)−H(L|Z) (3)

3
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Maximizing this quantity encourages fϕπ
to retain and organize safety-relevant information in its

latent space i.e. that observing Z reduces uncertainty about L. Intuitively, large I(Z;L) forces
fϕπ

to encode safety-discriminative structure, sharpening the shaped policy gradients that depend
on the critic estimate Q̃λ. Such safety-aware geometry makes policy gradients more aligned with
constraint satisfaction, especially in off-policy updates where replay data contain both safe and unsafe
transitions.

3.2 POLICY IMPROVEMENT WITH A DECOUPLED MI REGULARIZER

We fix the critics and dual variables, and define the shaped value as Q̃λ(s, a) = Qr(s, a)−λ⊤Qc(s, a),
where Qr(s, a) is the reward critic and Qc(s, a) is the cost critic. These values are computed on
features from the critic encoder and are therefore independent of the policy encoder. We define the
soft Lagrangian return for a policy π:

Jsoft(π;λ) :=

∫
S
dµ(s)

∫
A
π(a|s)

[
Q̃λ(s, a)− α log π(a|s)

]
da︸ ︷︷ ︸

:= Φλ(π; s)

ds, (4)

for any reference state distribution dµ (e.g., replay marginal). Here, Φλ(π; s) denotes the per-state
soft objective, i.e., the expected shaped return obtained by following policy π at state s under the
Lagrangian-augmented value Q̃λ(s, a). Intuitively, this quantity measures how well the current
policy balances reward maximization, safety penalties, and entropy regularization at a given state.
Importantly, the effectiveness of this objective depends on how s is represented in the policy encoder
(Figure 1). If the encoder fails to capture features that distinguish safe from unsafe regions, then
Φλ(π; s) may not reliably reflect the safety consequences of actions. This creates a representation
bottleneck: the policy update improves Φλ only with respect to the features currently available,
which may be insufficient for safety-critical decisions. Given the policy encoder fϕπ which maps raw
observations to latent representations, Z = fϕπ (S) and safety label L, we augment the objective in
Equation 4 with a mutual-information term:

F(π, ϕP ;λ) := Jsoft(π;λ) + β I(Z;L), β ≥ 0. (5)
Lemma 1 (Per-state soft improvement). For any fixed s and λ, define the Boltzmann policy π∗(a|s) ∝
exp

(
1
α Q̃λ(s, a)

)
. Then

Φλ(π
∗; s)− Φλ(π; s) = αKL

(
π(·|s)

∥∥π∗(·|s)
)
≥ 0, (6)

with equality iff π(·|s) = π∗(·|s) a.e.

Proof. Rewrite Φλ(π; s) as Φλ(π; s) = −αKL(π(·|s) ∥π∗(·|s)) + α logZλ(s), where Zλ(s) =∫
exp

(
Q̃λ(s, a)/α

)
da. Subtracting the expressions for π∗ and π yields the claimed identity.

Proposition 1 (Monotone ascent of the joint objective by block updates). With critics and λ fixed,
consider the block-coordinate ascent: (i) π-update: π ← π∗ (the Boltzmann improvement of
Lemma 1), (ii) policy-encoder update: ϕπ ← ϕπ + η∇ϕπ

I(Z;L) (or any step that does not decrease
I(Z;L)). Then the joint objective F(π, ϕπ;λ) is non-decreasing:

∆F =
[
Jsoft(π

∗;λ)− Jsoft(π;λ)
]︸ ︷︷ ︸

≥0 by Lemma 1

+ β
[
I(Z+;L)− I(Z;L)

]︸ ︷︷ ︸
≥0 by encoder step

≥ 0. (7)

The consequences of this design are threefold. First, the policy update (π-step) guarantees policy
improvement in the soft Lagrangian sense: Jsoft increases strictly at each step unless the policy is
already optimal for every state. This mirrors the monotonicity arguments in standard policy iteration,
ensuring consistent ascent of the return under the current regularization scheme. Second, the mutual
information (MI) update is policy-specific: because Q̃λ is computed using the critic’s encoder—which
is decoupled from the policy encoder—the MI regularizer can only affect the informativeness of the
policy representation I(Z;L). It cannot interfere with the critic’s Bellman updates or the contraction
property that underpins stable value estimation. Finally, when the π-improvement and MI-ascent
steps are alternated, we obtain joint objective ascent: the global objective F increases monotonically,
improving both the soft Lagrangian return and the safety-awareness encoded in the policy’s features.
This separation of roles allows the method to balance reward maximization, safety constraints, and
representational informativeness in a principled manner.
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3.3 MI ESTIMATION VIA INFONCE.

Directly computing I(Z;L) is generally intractable for continuous, high-dimensional embeddings
because I(Z;L) in general because it requires the joint pZ,L in Equation 2. We therefore adopt the
InfoNCE bound (Oord et al., 2018), which constructs a minibatch contrastive task using anchor–
positive pairs from matching (Z,L) samples and negatives from mismatched labels:

I(Z;L) ≥ logB − LInfoNCE(ϕπ), (8)

where B is the number of samples in the contrastive batch and LInfoNCE is the cross-entropy loss over
one positive and B − 1 negatives per anchor. Minimizing LInfoNCE thus maximizes a tractable lower
bound on I(Z;L).

LInfoNCE = E(z,z+)∼D+ Ez−1:M∼D-

[
− log

exp
(
g(z, z+)/τ

)
exp

(
g(z, z+)/τ

)
+

∑M
j=1 exp

(
g(z, z−j )/τ

)] . (9)

where zi = fϕπ (si) are the encoded representations, g(·, ·) is a similarity function ( cosine similarity
in our case), τ > 0 is a temperature parameter that controls the concentration of the distribution, and
M is the number of negative samples per anchor.

3.4 FULL ALGORITHM

During environment interaction, we collect transitions and assign safety labels as described in
Algorithm 1. For each transition (st, at, rt, st+1, ct), we compute the safety label ℓt = 1[ct = 0],
which indicates whether the transition is safe (cost-free) or unsafe (cost-incurring). This systematic
labeling process partitions our replay buffer B into safe and unsafe experiences:

Dsafe = {(s, a, r, s′, c) ∈ B : c = 0} (10)

Dunsafe = {(s, a, r, s′, c) ∈ B : c > 0} (11)

For each training iteration, we sample a batch of anchor states {si}Ni=1 from Dsafe. For each anchor
si, we construct: 1. Positive samples: Other safe states s+i ∼ Dsafe, representing semantically
similar (safe) experiences. Negative samples: Unsafe states s−i ∼ Dunsafe, representing semantically
dissimilar (unsafe) experiences. This differs from typical contrastive approaches that rely on data
augmentation to create positive pairs. Instead, we leverage the natural semantic structure provided by
safety labels, which offers a more direct supervision signal for learning safety-aware representations.
Partitioning the replay buffer is presented in Algorithm 2.

Our approach is policy-agnostic and can be integrated into any Safe Reinforcement Learning (Safe
RL) algorithm. We choose Soft Actor-Critic under Lagrangian constraints (SAC-LAG). We provide
the complete procedure summarized in Algorithm 3. However, the framework can be applied to any
Lagrangian or projection based methods. At each environment interaction, we perform a standard
Safe RL update: a minibatch is drawn from the replay buffer, the critics are trained to minimize
the entropy-regularized Bellman error, the policy is updated under adaptive penalties on constraint
costs using learned multipliers, and target networks are softly updated for stability. In parallel, we
interleave a self-supervised representation phase at fixed intervals. During this phase, several epochs
of contrastive training are run on anchor–positive–negative triplets drawn from the replay buffer. The
contrastive objective pulls anchors toward their true successors and pushes them away from unrelated
states, refining the encoder’s ability to distinguish safe from unsafe regions. Importantly, only the
policy encoder is updated in this phase, while the policy and critics remain frozen.

We update the encoder intermittently rather than at every epoch, which avoids destabilizing off-policy
training, reduces gradient interference, and lowers computational overhead. This enables strong
representation learning while preserving off-policy sample efficiency and training stability.

4 EXPERIMENTAL RESULTS

We train a Soft Actor-Critic with PID Lagrangian (SAC-LAG) agent that combines a stochastic
Gaussian actor with state-conditioned standard deviation and automatic entropy tuning with double

5
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Algorithm 1: COLLECT SAFETY
DATA(E , πθ,B)
Input: Env. E , policy πθ, replay buffer B
Output: Updated replay buffer B
Initialize s0 ← RESET E ;
for t = 0, 1, 2, . . . do

// action with exploration
at ← πθ(st) + εt;
st+1, rt, ct ← E .step(at);
// transition tuple
τt ← ⟨st, at, rt, st+1, ct⟩;
// safety labeling

ℓt ←
{
1 if ct = 0 (safe)
0 if ct > 0 (unsafe)

;

B.add(τt, ℓt);
if done then

s0 ← E .reset();
else

st ← st+1;

Algorithm 2: Sample Safety-Contrastive
Triplets from Replay Buffer
Input: Replay buffer B, batch size B
Output: Xanchor,Xpos,Xneg

// partition the buffer
Dsafe ← {(s, a, r, s′, c) ∈ B | c = 0};
Dunsafe ← {(s, a, r, s′, c) ∈ B | c > 0};
// Sampling step
// B neg., B anc., B pos.
if |Dunsafe| < B or |Dsafe| < 2B then

return ∅, ∅, ∅;

// unsafe states
Xneg ← { si ∼ U(Dunsafe) }Bi=1;

// positives and anchors
Xpos ← { s+i ∼ U(Dsafe) }Bi=1;
Xanchor ← { si ∼ U(Dsafe \ Xpos) }Bi=1;

return Xanchor,Xpos,Xneg

Q-critics and soft target updates for stability. A PID Lagrangian controller Stooke et al. (2020) a
per-task safety cost limit during learning, and an optional safety-aware contrastive module learns
representations that separate safe from unsafe transitions. We used standard hyperparameters unless
otherwise noted. The actor and critic learning rates were set to 5 × 10−4 and 10−3, respectively,
with two hidden layers of size (128, 128). Automatic entropy tuning was enabled with an entropy
coefficient learning rate of 3 × 10−4 and initial value 0.005. We used Polyak averaging with
τ = 0.05, a 2-step return, and state-conditioned variance for the actor. Actions were squashed with
tanh and clipped to the environment bounds, with double Q-critics and deterministic evaluation
enabled. Safety-aware contrastive learning was activated by default. For the Lagrangian component,
we adopted PID-controlled multipliers with gains (Kp,Ki,Kd) = (0.05, 0.0005, 0.1), rescaling
enabled, and the safety-constraint module switched on throughout training.

4.1 DATASET

We evaluate on a diverse suite of different safety-critical continuous-control environments spanning
Bullet Safety Gym (Gronauer, 2022) and Safety Gymnasium (Ji et al., 2023). Each environment
provides both a task reward and a scalar safety cost; the agent must maximize reward while keeping
cumulative cost below a fixed limit, thereby capturing the fundamental trade-off between performance
and safety in real-world control. The suite includes environments with varying morphology (e.g., car,
drone, ball, point, and humanoid agents), different hazard layouts (e.g., pits, walls, moving obstacles),
and multiple difficulty levels. This broad coverage enables a systematic assessment of generalization
and robustness, allowing us to benchmark how algorithms handle both high-reward pursuit and strict
adherence to safety limits under diverse and challenging conditions.

4.2 EVALUATION PROTOCOL AND SETUP

To evaluate the trained policies, we adopt a standardized protocol across all environments. Each
agent is trained for a fixed budget of interaction steps, after which we periodically pause training and
perform evaluation rollouts without exploration noise. Unless otherwise stated, evaluation episodes
are run in deterministic mode, where the policy outputs the mean of the learned Gaussian distribution.
To ensure fair comparison, all baselines and our method share identical network architectures,
optimizers, and training budgets. Statistical significance of performance differences is assessed using
paired t-tests across evaluation rollouts, with 95% confidence intervals reported where appropriate.
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Figure 2: Training curves comparing S3RL and SAC-LAG across representative environments. S3RL
achieves faster reward acquisition and smoother cost trajectories, showing improved sample efficiency
and stability.

4.3 DISCUSSION

Training Dynamics. Figure 2 compares the learning curves of our method and the SAC-LAG
baseline across representative environments. We observe that our approach consistently acceler-
ates reward acquisition, with steeper learning curves in tasks such as SafetyCarRun-v0 and
SafetyBallRun-v0, where near-optimal performance is achieved with fewer interactions. In
hazard-dense settings such as SafetyDroneCircle-v0, our method maintains smoother and

7
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Environment Reward ↑ Cost ↓ Length
S3RL SAC-LAG S3RL SAC-LAG

SafetyCarRun-v0 548.10 ± 0.00 542.02 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 200.00 ± 0.00
SafetyBallRun-v0 822.57 ± 311.74 -411.08 ± 501.20 62.18 ± 33.41 80.02 ± 11.30 100.00 ± 0.00
SafetyBallCircle-v0 635.46 ± 36.92 656.61 ± 39.35 18.26 ± 21.76 28.50 ± 18.69 200.00 ± 0.00
SafetyCarCircle-v0 332.13 ± 0.00 330.08 ± 0.00 25.60 ± 7.10 5.20 ± 3.00 300.00 ± 0.00
SafetyDroneRun-v0 325.53 ± 20.53 288.21 ± 106.89 15.78 ± 19.33 59.62 ± 30.66 200.00 ± 0.00
SafetyAntRun-v0 592.11 ± 61.73 677.13 ± 19.00 13.06 ± 18.49 10.60 ± 5.22 200.00 ± 0.00
SafetyAntCircle-v0 20.90 ± 20.48 13.28 ± 10.52 18.28 ± 25.64 9.10 ± 9.31 201.34 ± 94.28

SafetyPointCircle1Gymnasium-v0 37.54 ± 4.44 22.15 ± 12.79 5.17 ± 5.61 32.65 ± 54.44 500.00 ± 0.00
SafetyCarCircle1Gymnasium-v0 5.01 ± 4.69 7.97 ± 3.32 3.70 ± 3.83 19.23 ± 18.29 500.00 ± 0.00
SafetyPointGoal1Gymnasium-v0 1.47 ± 4.11 0.77 ± 1.38 94.40 ± 55.97 103.25 ± 71.75 1000.00 ± 0.00

SafetyHalfCheetahVelocityGymnasium-v1 2828.95 ± 50.71 2880.26 ± 78.87 1.70 ± 4.43 0.30 ± 1.33 1000.00 ± 0.00
SafetyHopperVelocityGymnasium-v1 1163.25 ± 459.28 955.52 ± 401.01 22.32 ± 10.20 11.40 ± 0.00 699.54 ± 265.38
SafetySwimmerVelocityGymnasium-v1 6.27 ± 17.07 -4.32 ± 0.21 15.78 ± 13.94 0.20 ± 0.20 1000.00 ± 0.00
SafetyWalker2dVelocityGymnasium-v1 3088.62 ± 94.23 2626.57 ± 548.82 51.90 ± 60.36 19.35 ± 1.45 974.65 ± 31.11
SafetyAntVelocityGymnasium-v1 2474.75 ± 206.50 1994.91 ± 234.10 17.68 ± 18.18 109.20 ± 0.00 992.92 ± 14.16
SafetyHumanoidVelocityGymnasium-v1 5673.13 ± 465.76 5028.21 ± 101.00 0.00 ± 0.00 0.00 ± 0.00 991.16 ± 17.68

Table 1: Inference performance across Bullet Safety Gym and Safety Gymnasium tasks. We compare
S3RL (ours) with the SAC-LAG baseline in terms of episodic reward (higher is better), cumulative
safety cost (lower is better), and average episode length. Overall, S3RL achieves consistently higher
rewards in most environments while maintaining comparable or lower safety costs, highlighting the
benefit of safety-aware representation learning.

lower-variance cost trajectories, while SAC-LAG exhibits larger spikes in early training. In some
tasks, such as SafetyCarCircle-v0, the contrastive module yields higher rewards at the expense
of slightly higher costs, reflecting a trade-off between task mastery and conservative safety. Overall,
the curves demonstrate that safety-aware representations improve both sample efficiency and stability,
producing more consistent outcomes across seeds compared to the baseline.
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Figure 3: Safe state occupancy (%) across representative
environments, comparing S3RL with SAC-LAG. Higher val-
ues indicate that the policy spends more time in constraint-
satisfying regions of the state space.

Test Dynamics. We evaluate the
inference performance of 10 evalua-
tion episodes across a diverse suite
of safety-critical continuous-control
environments. Table 1 reports the
mean and standard deviation of the
return (Reward) and safety violations
(Cost), along with average episode
length. Overall, S3RL consistently
achieves higher task rewards in most
environments, while maintaining com-
parable or lower safety costs in several
cases. For example, in CarRun and
DroneRun, S3RL outperforms SAC-
LAG both in terms of reward and cost,
indicating more efficient task comple-
tion under safety constraints. Simi-
larly, on locomotion benchmarks such
as Walker2dVelocity and AntVelocity, S3RL achieves substantial gains in reward (+462.05
and +479.84, respectively).

Insights. The results also reveal environments where SAC-LAG exhibits an advantage. For instance,
in SafetyAntRun-v0 and SafetyHalfCheetah, SAC-LAG attains higher average rewards
with slightly reduced safety costs, suggesting that its conservative constraint-handling may be more
effective in these settings. To quantify these differences, we conducted paired statistical tests
over the 10 evaluation episodes. At a significance level of α = 0.05, the observed improvements
of SAC-LAG in these two environments are statistically distinguishable, with p < 0.05 in both
cases, and the 95% confidence intervals exclude zero. Nonetheless, the effect sizes are relatively
small compared to the large and statistically significant gains of S3RL across the majority of tasks,
where p < 0.01 confirms that the observed reward improvements are unlikely to be due to random
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variation. This suggests that while SAC-LAG can provide marginal benefits in select environments,
the consistent superiority of S3RL across the broader benchmark remains robust under rigorous
statistical testing. Additionally, S3RL demonstrates robustness in sparse-reward environments such as
SafetyPointGoal1Gymnasium-v0, where it achieves nearly double the reward of SAC-LAG,
despite both methods incurring relatively high costs. This highlights the benefit of incorporating
self-supervised representation learning in guiding exploration under safety-critical dynamics.

Figure 3 safe state occupancy (%) and absolute improvements (percentage points, pp). We observe
large margins on hazard-dense tasks such as BallRun ( +91.3 pp) and DroneRun ( +42.5 pp), indi-
cating that the policy quickly concentrates its visitation on feasible regions. Even on velocity-control
domains where SAC-LAG is competitive, S3RL retains a consistent edge (e.g., AntVelocity
+9.6 pp; HumanoidVelocity +1.4 pp). Overall, these occupancy gains align with our learning-
curve trends: by shaping features to make safety-relevant structure more separable, the policy steers
probability mass in the discounted occupancy measure dπ(s, a) toward productive, low-violation
regions, thereby reducing uninformative (unsafe) exploration and improving reward maximization
efficiency.
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Figure 4: State embedding visualizations using t-SNE. Illustrating the state occupancy measure
for two representative environments: SafetyAntRun-v0 (left pair) and SafetyDroneRun-v0
(right pair). Compared to the baseline, the S3RL embeddings exhibit clearer separation of safe and
unsafe state clusters, with more compact and structured representations.

5 LIMITATIONS

While our approach shows consistent improvements across diverse benchmarks, several limitations
remain. First, the learned safety-aware representations are derived from replay buffer partitions based
on observed costs. This mechanism implicitly assumes that past unsafe experiences are sufficiently
representative of the environment’s hazards. In tasks where hazards are rare or highly context-
dependent, the encoder may fail to capture critical risk boundaries. Second, our method focuses
on binary safe/unsafe labels, which simplifies supervision but overlooks the graded nature of many
real-world risks (e.g., proximity to hazards or cumulative stress on physical systems). Extending
the framework to incorporate richer safety signals remains an open challenge. Third, the contrastive
updates are scheduled periodically to preserve stability, yet this design introduces a trade-off: more
frequent updates can destabilize training, whereas sparse updates may underutilize representation
learning. Understanding this trade-off more systematically is left for future work.

6 CONCLUSION

Our work demonstrates that explicitly encoding safety-awareness into state representations can
significantly improve both reward maximization and safety compliance in reinforcement learning.
By shaping the latent space with safety labels and coupling representation learning with policy
optimization, the proposed framework provides a principled way to alleviate the representation
bottleneck in Safe RL. We identify a fundamental gap in Safe RL: the lack of explicit safety-aware
representations. We address this gap by introducing a safety-critical inductive bias that integrates
representation learning into policy optimization, leading to improved sample efficiency and more
robust safety compliance. While further research is needed to explore extensions to diverse domains,
scaling strategies, and more general safety signals, we believe this work takes a step towards bridging
representation learning and safe decision-making in reinforcement learning.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
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A RELATED WORK

Safe RL as Constrained Decision Making. Safe reinforcement learning is typically cast as a
Constrained Markov Decision Process (CMDP) (Altman, 1999), where the agent maximizes return
subject to discounted cost budgets. This formulation separates feasibility (constraint satisfaction) from
optimality (reward maximization) and motivates evaluation over feasible policy sets and budgeted
costs (Gu et al., 2022; Hayes et al., 2022).

Mechanisms for Enforcing Safety. Three lines of work dominate. (i) Primal–dual/Lagrangian
methods relax constraints via multipliers and alternate policy updates with dual adjustments. Con-
strained Policy Optimization uses trust regions and surrogate constraints (Joshua Achiam & Abbeel,
2017); PID-Lagrangian stabilizes dual dynamics for off-policy SAC (Stooke et al., 2020); recent
off-policy primal–dual variants refine critic updates and improve sample-efficiency (Wu et al., 2024);
variational approaches (CVPO) leverage distributional parameterizations for constrained optimization
(Liu et al., 2022). (ii) Projection/shielding modifies actions at execution time to remain in a locally
feasible set, reducing violations at the cost of potential bias and overhead (Dalal et al., 2018). (iii) Risk-
aware/distributional methods account for tail risks and safety margins; safe distributional RL models
constraints over return distributions to enable richer specifications and robust trade-offs (Zhang &
Weng, 2021). Across these families, surveys emphasize reporting both reward and cumulative cost
under fixed limits, across multiple seeds, with clear feasibility criteria (Gu et al., 2022).

Representation Learning for Control. Orthogonal to safety mechanisms, representation learning
improves data efficiency and stability in RL. Contrastive Predictive Coding (CPC) frames represen-
tation learning as future prediction with the InfoNCE objective (Oord et al., 2018); CURL applies
contrastive learning to image-based control (Laskin et al., 2020). To mitigate non-stationarity from
joint updates, Stooke et al. (2021) decouple representation learning from policy optimization. Ey-
senbach et al. (2022) connect contrastive learning to goal-conditioned value learning via discounted
occupancy measures, suggesting that contrastive scores can align with control-relevant structure.
These results collectively motivate safety-aware encoders that organize state space around hazard
structure to sharpen policy gradients under constraints.

InfoNCE: Practice and Theory. The InfoNCE loss underpins many state-of-the-art contrastive
methods. In vision, SimCLR shows the role of augmentation, batch size, and temperature (Chen et al.,
2020); Supervised Contrastive Learning leverages labels to define positives (Khosla et al., 2020);
bootstrap and clustering variants reduce reliance on explicit negatives (BYOL (Grill et al., 2020),
SwAV (Caron et al., 2020)); redundancy- and variance-regularized objectives temper collapse (Barlow
Twins (Zbontar et al., 2021), VICReg (Bardes et al., 2022)). Theory analyzes when contrastive
learning recovers discriminative features (Arora et al., 2019; Saunshi et al., 2019), clarifies mutual-
information bounds and estimator trade-offs (Poole et al., 2019; Tschannen et al., 2020), and studies
the role of hard negatives and temperature (Robinson et al., 2021). In RL, InfoNCE-style objectives
improve sample efficiency (CURL (Laskin et al., 2020)), stabilize off-policy training when decoupled
(ATC (Stooke et al., 2021)), and enhance prediction of future latent features (SPR (Schwarzer et al.,
2021)).

Our Scope and Positioning. Prior safe RL focuses on how to enforce constraints (dual control,
projection, risk) but largely assumes a shared encoder that must simultaneously learn safety boundaries
and maximize reward—often via trial-and-error signals. Concurrently, contrastive methods show that
encoders can be shaped to reflect control-relevant structure. We bridge these threads by targeting
the state-representation bottleneck in safe RL: we decouple a safety-aware InfoNCE/MI regularizer
applied to the policy encoder from the critic encoder, preserving off-policy stability while explicitly
injecting safety-discriminative geometry into policy features. This design complements primal–dual
SAC-style updates (Stooke et al., 2020) and aligns with evidence that decoupling representation
learning mitigates non-stationarity (Stooke et al., 2021), while leveraging contrastive objectives
that connect to occupancy-aware value learning (Eysenbach et al., 2022). Our experiments adopt
established safety benchmarks and protocols (Ray et al., 2019; Gu et al., 2022), emphasizing both
reward gains and adherence to cost budgets.
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B METHODOLOGY

Algorithm 3: TRAIN-S3RL-WITH-SAC-LAGRANGIAN

Input :Replay buffer B with labeled tuples (s, a, r, s′, d, c, ℓ) from Algorithm 1
COLLECT-SAFETY-DATA; policy πθ; critics Q(i)

ψ (i=0 reward, i≥1 costs); policy
encoder fϕ (online) and optional target encoder fϕ̄; duals λ

Output :Updated θ, ψ, ϕ (and ϕ̄), optionally λ

Init: Adam optimizers for θ, ψ, ϕ; target critics ψ′←ψ.
Schedule: step counter t←0; encoder update interval Tenc; Encoder update epochs Eenc; Batch to

update encoder Benc.
while not converged do

// (1) Off-policy RL update
Sample minibatch D ∼ B of size BRL.
For each (s, a, r, s′, d, c, ℓ) ∈ D, draw a′ ∼ πθ(· | s′).
for i← 0 to Ncritics − 1 do

if i = 0 then
y(0) ← r + γ(1− d)

[
minj Q

(j)
ψ′ (s′, a′)− α log πθ(a

′ | s′)
]

else
y(i) ← ci + γ(1− d)

[
minj Q

(j)
ψ′ (s′, a′)− α log πθ(a

′ | s′)
]

L(i)
Q ← ED

[
(Q

(i)
ψ (s, a)− y(i))2

]
Lcritic ←

∑Ncritics−1
i=0 L(i)

Q

// Shaped policy loss (reward + safety)

Lreward ← Es∼D, a∼πθ

[
α log πθ(a | s)−Q(0)

ψ (s, a)
]

Lsafety ←
∑Ncritics−1
i=1 λi · Es,a

[
Q

(i)
ψ (s, a)

]
Lpolicy ← ρ

(
Lreward + Lsafety

)
// Gradient steps & target update
θ ← θ − ηθ∇θLpolicy
ψ ← ψ − ηψ∇ψLcritic
ψ′ ← τ ψ + (1− τ)ψ′

// Optional: PID duals (per cost i)
if using PID then

ei(t)← Ĵci − c̄i; λi ←
[
λi +KP ei(t) +KI

∑
k≤tei(k) +KD

(
ei(t)−ei(t−1)

)]
+

// (2) Periodic safety-aware SSL on policy encoder
t← t+ 1
if t mod Tenc = 0 then

for e← 1 to Eenc do
// Sample contrastive samples from replay buffer using

Algorithm 2
// Compute INFONCE loss using Algorithm 4.
(Xa,Xp,Xn)← SAMPLE-CONTRASTIVE-TRIPLETS(B, BSSL)
if Xa ̸= ∅ then
LInfoNCE ←
COMPUTE-INFONCE-LOSS(Xa,Xp,Xn; fϕ, fϕ̄)
ϕ← ϕ− ηϕ∇ϕLInfoNCE
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Algorithm 4: Compute InfoNCE Loss
Input: Xa, Xp, Xn (triplet batches), encoder fϕπ

Output: LInfoNCE
Za ← fϕπ (Xa) ∈ RB×d;
Zp ← fϕπ (Xp) ∈ RB×d;
Zn ← fϕπ

(Xn) ∈ RB×d;
τ ← 0.7;
Spos ← diag(ZaZ⊤

p )/τ ∈ RB ;
Sneg ← ZaZ

⊤
n /τ ∈ RB×B ;

L← [Spos, Sneg] ∈ RB×(1+B);
y ← 0B ∈ RB ;

LSSL ← − 1
B

∑B
i=1 log

(
exp(Li,0)∑B

j=0 exp(Li,j)

)
;

µpos ← 1
B

∑B
i=1 Spos[i];

µneg ← 1
B2

∑B
i=1

∑B
j=1 Sneg[i, j];

return LInfoNCE

B.1 MORE EXPERIMENTS

We perform an ablation study of S3RL under both unconstrained (Non-Lagrangian) and constrained
(Lagrangian) training after 100 epochs, alongside SAC, PPO, and DDPG for reference. The results show
that in the unconstrained setting, S3RL achieves the highest rewards (e.g., 10 024 in HalfCheetah
and 836 in DroneRun), surpassing all other methods. When Lagrangian constraints are enforced,
S3RL successfully reduces costs close to zero while maintaining competitive rewards, whereas other
baselines experience larger drops in performance (e.g., DDPG-LAG collapses inHalfCheetah, and
SAC-LAG incurs much higher cost inDroneRun). These observations confirm that S3RL adapts more
effectively than standard off-policy and on-policy methods when switching between unconstrained
and constrained regimes.

Table 2: Ablation study on HalfCheetah-v1 and DroneRun-v0. All agents are trained for 100
epochs, and the reported values correspond to policy evaluation performed after training. Results are
separated into Lagrangian-constrained (top) and unconstrained (bottom) settings.

Task Model Reward Cost

Half
Cheetah-v1 (Lag)

S3RL-LAG 9880.40± 68.88 15.87± 5.66
SAC-LAG 9452.30± 1440.87 20.08± 7.60
PPO-LAG 1930.68± 272.53 129.74± 72.67

DDPG-LAG 2855.66± 38.55 8.97± 11.81

Half
Cheetah-v1 (Non-Lag)

S3RL 10 024.07± 116.46 978.15± 2.22
SAC 9 491.12± 121.89 977.85± 3.13
PPO 2535.46± 66.76 412.00± 30.88

DDPG 8940.81± 1298.56 956.55± 35.31

Drone
Run-v0 (Lag)

S3RL-LAG 287.88± 7.86 0.15± 0.65
SAC-LAG 174.26± 17.88 39.25± 1.92
PPO-LAG 55.43± 257.29 87.85± 44.87

DDPG-LAG 384.54± 6.71 55.30± 3.32

Drone
Run-v0 (Non-Lag)

S3RL 836.27± 18.74 155.55± 0.73
SAC 803.77± 22.57 152.15± 0.57
PPO 729.77± 17.93 150.00± 0.00

DDPG 738.02± 67.75 153.50± 8.43
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Name Description Default
General
task Environment ID SafetyDroneRun-v0
cost limit Per-task safety cost limit 10
device Compute device cuda
thread CPU threads when using CPU 4
seed Random seed 10,20,30,40,50
SAC (policy/value)
actor lr Actor learning rate 5e-4
critic lr Critic learning rate 1e-3
hidden sizes MLP hidden layer sizes (128, 128)
auto alpha Automatic entropy tuning True
alpha lr Entropy coefficient LR 3e-4
alpha Initial entropy coefficient 0.005
tau Target network Polyak factor 0.05
n step N-step return 2
conditioned sigma State-conditioned std for actor True
unbounded Disable tanh squashing False
last layer scale Scale last layer init False
gamma Discount factor 0.99
deterministic eval Deterministic evaluation True
action scaling Scale actions to bounds True
action bound method Action bound handling clip
use double critic Use double Q for critics True
use contrastive Enable safety-aware contrastive learning True
Lagrangian (safety constraint)
lagrangian pid (Kp,Ki,Kd) gains (0.05, 0.0005,

0.1)
rescaling Rescale constraint penalty True
Collection / Training
epoch Training epochs 100
enc training epoch Number of epochs to train encoder 50
enc update steps Steps to update encoder 1000
episode per collect Episodes collected per cycle 20
step per epoch Env steps per epoch 10000
update per step Gradient updates per env step 0.2
buffer size Replay buffer capacity 100000
training num Parallel training envs 10
testing num Parallel testing envs 2
batch size SGD mini-batch size 256
reward threshold Early-stop reward threshold 10000
save interval Epochs between checkpoints 4

Table 3: Hyperparameters for training and evaluating S3RL.

B.2 LLM USAGE

When preparing this manuscript, we utilized a Large Language Model (LLM) to assist with various
aspects of the writing and research process. The LLM was employed for several key tasks:

• Grammar and Language Polishing: The LLM helped improve sentence structure, gram-
mar, and overall readability of the manuscript, ensuring clear and professional academic
writing throughout the paper.

• Formatting Consistency: We used the LLM to check and maintain consistent formatting
across sections, including proper citation formatting, equation numbering, and LaTeX
structure.

• Technical Writing Assistance: The LLM provided support in crafting clear explanations
of technical concepts, improving the clarity of mathematical formulations, and ensuring
consistent terminology throughout the paper.
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It is important to note that all technical content, experimental results, mathematical derivations, and
core research contributions remain entirely our own work.
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