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Abstract
This paper provides a generative approach for
causal inference in observational studies. Inspired
by the semi-supervised Variational Auto-Encoder
(VAE), we propose a novel double-stacked M2
architecture with β-VAE components that encour-
age learning disentangled representations. Our
empirical results demonstrate the superiority of
the proposed method compared to both state-of-
the-art discriminative as well as generative ap-
proaches in the literature.

1. Introduction
As one of the main tasks in studying causality (Peters et al.,
2017; Guo et al., 2018), the goal of Causal Inference is to
figure out how much the value of a certain variable would
change (i.e., effect) had another certain variable (i.e., cause)
changed its value. A prominent example is the counterfac-
tual question (Rubin, 1974; Pearl, 2009) “Would this patient
have lived longer [and by how much], had she received
an alternative treatment?”. Such question is often asked
in the context of precision medicine, that attempts to iden-
tify which medical procedure t ∈ T will benefit a certain
patient x the most, in terms of the treatment outcome y ∈ R.

Missing values is a major challenge in causal inference;
since, for each subject i, any real-world dataset can only
contain the outcome of the administered treatment (aka ob-
served outcome: yi), but not the outcome(s) of the alterna-
tive treatment(s) (aka counterfactual outcome(s) – i.e., yti for
t ∈ T \{ti} denoted by¬ti. The fact that counterfactual out-
comes are unobservable (i.e., missing in any training data)
makes estimating treatment effects more difficult than the
generalization problem in the supervised learning paradigm.

Most of the current causal inference methods can be catego-
rized as discriminative approaches – i.e., they only observe
and condition on the provided data and make no efforts to
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figure out the underlying mechanism that actually gener-
ated the data. These include the Balancing Neural Network
(BNN) (Johansson et al., 2016), CounterFactual Regression
Network (CFR-Net) (Shalit et al., 2017), and CFR-Net’s
extensions – cf., (Hassanpour & Greiner, 2019; 2020; Yao
et al., 2018) – as well as Dragon-Net (Shi et al., 2019).

A promising direction is developing generative models, us-
ing either Generative Adverserial Network (GAN) (Good-
fellow et al., 2014) or Variational Auto-Encoder (VAE)
(Kingma & Welling, 2014; Rezende et al., 2014). Two
generative approaches for causal inference in the literature
are: (i) GANs for inference of Individualised Treatment
Effects (GANITE) (Yoon et al., 2018) and (ii) Causal Effect
VAE (CEVAE) (Louizos et al., 2017). However, neither of
the two achieve competitive performance compared to the
discriminative approaches.

Contribution: In this paper, we provide a VAE-based gener-
ative model for causal inference that significantly enhances
state-of-the-art on two publicly available benchmarks.

The rest of this document is organized as follows: Sec-
tion 2 elaborates on the ideas presented in some of the
above-mentioned papers and discusses their main contribu-
tions and gaps. Section 3 presents our proposed method: a
double-stacked M2 VAE (Kingma et al., 2014). Section 4
summarizes the experiments and discusses the performance
results of the proposed method compared to the contenders.
Section 5 concludes the paper with future directions of this
research and summary of contributions of the current work.

2. Related works
CFR-Net Shalit et al. (2017) learned a representation
space Φ to reduce selection bias by making Pr(x | t= 0 )
and Pr(x | t=1 ) as close to each other as possible (see Fig-
ure 1), provided that Φ(x ) retains enough information such
that all the |T | learned regressors {ht

(
Φ(·)

)
, ∀t∈T } can

generalize well on the observed outcomes. Their objective
function includes L

[
yi, h

ti
(
Φ(xi)

)]
which is the loss of

predicting the observed outcome for sample i, weighted by
ωi. These weights are derived via ωi = ti

2u + 1−ti
2(1−u) , where

u = 1
N

∑N
i=1 ti = Pr( t=1 ). This is effectively setting:

ωi =
1

2 Pr( ti )
=

1

2

[
1 +

Pr(¬ti )

Pr( ti )

]
(1)
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Figure 1. Selection bias can be reduced using representation learn-
ing. Note there were few +’s for small values of x (left), but there
are +’s across the entire range of φ (right); similarly for (•)’s.

where Pr( ti ) is the probability of selecting treatment ti∈
{0, 1} over the entire population.

Dragon-Net Shi et al. (2019)’s main objective was to es-
timate the ATE, which they explain requires a two stage
procedure: (i) fit models that predict the outcomes and
(ii) find a downstream estimator of the effect. Their method
is based on a classic result from strong ignorability – i.e.,
Theorem 3 in (Rosenbaum & Rubin, 1983) – which states:

(y1, y0) ⊥⊥ t |x & Pr( t = 1 |x ) ∈ (0, 1) =⇒
(y1, y0) ⊥⊥ t | b(x) & Pr( t = 1 | b(x) ) ∈ (0, 1)

where b(x) is a balancing score1. They consider propensity
score as a balancing score and argue that only the parts ofX
relevant for predicting T are required for the estimation of
the causal effect.2 This theorem, however, only provides a
way to match treated and control instances. In other words,
it helps finding potential counterfactual outcomes from the
alternative group in order to calculate ATE. Shi et al. (2019),
however, used this theorem to derive minimal representa-
tions on which to regress in order to estimate the outcomes.

GANITE Yoon et al. (2018) proposed the counterfactual
GAN, whose generator G, given {x, t, yt}, estimates the
counterfactual outcomes (ŷ¬t); and whose discriminator D
tries to identify the factual outcome given {x, (yt, ŷ¬t)}.
It is, however, unclear why G can produce samples that
are indistinguishable from the factual outcomes while it
is plausible that D can just learn the treatment selection
mechanism instead of distinguishing the factual outcomes
from counterfactuals. Although this work is among the few
generative approaches for causal inference in the literature,
our empirical results (cf., Section 4) shows that it is not suc-
cessful in terms of accurate estimation of counterfactuals.

CEVAE Louizos et al. (2017) used VAE to extract latent
confounders from their observed proxies {X,T, Y }. While

1That is, X ⊥⊥ T | b(X) (Rosenbaum & Rubin, 1983)
2The authors acknowledge that this would hurt the predictive

performance for individual outcomes. As a result, this yields
inaccurate estimation of Individual Treatment Effects (ITEs).

Figure 2. Underlying factors of any observational dataset

Figure 3. Graphical model of
CEVAE (Louizos et al., 2017)

Figure 4. Graphical model of
the proposed method

this is an interesting step in the right direction, the proposed
model does not demonstrate promising performance in terms
of estimating treatment effects (cf., Section 4). One of the
reasons, as acknowledged by the authors, is that CEVAE is
not yet capable of addressing the problem of selection bias.
Another reason that we think contributes to CEVAE’s sub-
optimal performance is its graphical model of the underlying
data generating mechanism (depicted in Figure 3). This
model assumes that there is only one underlying factor Z
that generates the entire observational data; however, we
know from (Kuang et al., 2017) and (Hassanpour & Greiner,
2020) that there must be more (see Figure 2).

3. Method
Following (Hassanpour & Greiner, 2020) and without
loss of generality, we assume that the random variable
X follows a(n unknown) joint probability distribution
Pr(X |Γ,∆,Υ,Ξ ), where Γ, ∆, Υ, and Ξ are non-
overlapping factors3. Moreover, treatment T follows
Pr(T |Γ,∆ ) and outcome Y

T

follows Pr
T

(Y
T |∆,Υ ) –

see Figure 2. Observe that the factor Γ (resp., Υ) partially
determines only T (resp., Y ), but not the other variables;
and ∆ includes the confounding factors between T and Y .
This graphical model suggests that selection bias is induced

3 As examples: Γ = rich patients receiving the expensive treat-
ment while poor patients receiving the cheap one – although neither
of the outcomes depend on patients’ wealth status; ∆ = younger
patients receiving surgery while older patients receiving medica-
tion; Υ = genetic information that determines the efficacy of a
medication, where this relationship is not known to the attending
physician; and Ξ = irrelevant factors such as eye-color.
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by factors Γ and ∆. It also shows that the outcome depends
on the factors ∆ and Υ.

Our goal is to design an architecture for a generative model
that encourages disentanglement of these four underlying
latent variables (see Figure 2). It is an attempt to decom-
pose and separately learn the underlying factors that are
responsible for determining T and Y . Our proposed model
employs a VAE (Kingma & Welling, 2014; Rezende et al.,
2014) that includes a decoder (generative model) pθ(x|z1, t)
and an encoder (variational posterior) qφ(z1, z2|x, t, y). All
components are parametrized as deep neural networks.

Specifically, we use two stacked M2 models (Kingma et al.,
2014). The architecture of the proposed method is illustrated
in Figure 4. Unlike the M1 model, the M2 model allows
the treatment as well as the outcome information to guide
the representation learning process. In other words, the
proposed structure functions as a distillation tower: the
bottom M2 model attempts to decompose Γ (by T ) from
∆, Υ, and Ξ (by Z1); and the top M2 model attempts to
decompose ∆ and Υ (by Y ) from Ξ (by Z2).

Decoder (parametrized by θ) includes these distributions:

Priors: pθ(z2)

pθ(z1|y, z2)

Likelihood: pθ(x|z1, t)

Encoder (parametrized by φ) includes these distributions:

Posteriors: qφ(z1|x, t)
qφ(y|z1)

qφ(z2|y, z1)

The goal is to maximize the conditional log-likelihood of the
observed data (left-hand-side of the following inequality)
by maximizing the Evidence Lower BOund (ELBO; right-
hand-side of the following inequality) – i.e.,

N∑
i=1

log p(xi|ti, yi) ≥
N∑
i=1

Eqφ(z1|x,t)
[

log pθ(xi|z1i, ti)
]

− KL
(
qφ(z1|x, t) || pθ(z1|y, z2)

)
− KL

(
qφ(z2|y, z1) || pθ(z2)

)
where KL denotes the Kullback-Leibler divergence, pθ(z2)
is the unit Gaussian, and the other distributions are parame-
terized as deep neural networks.

As mentioned earlier, we want the learned latent variables
to be disentangled, such that they match to our assumed
non-overlapping factors Γ, ∆, Υ, and Ξ. To ensure this,
we employ the β-VAE (Higgins et al., 2017) which adds a
hyperparameter β > 1 to the KL part of the ELBO. This
adjustable hyperparameter helps balance the latent chan-
nel capacity and independence constraints noted by the KL

terms) with the reconstruction accuracy, which in turn would
encourage disentanglement (Burgess et al., 2018). There-
fore, the generative objective to be minimized becomes:

LVAE = −
N∑
i=1

Eqφ(z1|x,t)
[

log pθ(xi|z1i, ti)
]

+β ·
[
KL
(
qφ(z1|x, t) || pθ(z1|y, z2)

)
+ KL

(
qφ(z2|y, z1) || pθ(z2)

)]
(2)

Although the proposed graphical model suggests that T
and Z1 are statistically independent (see the collider struc-
ture T → X ← Z1 in Figure 4), an information leak is
quite possible due to the correlation between the outcome
y and treatment t. We therefore require an extra regular-
ization term on the marginal qφ(z1|t) in order to penalize
the discrepancy (denoted by disc) between conditional dis-
tributions of z1 given t= 0 versus given t= 1 as follows:

LMMD = disc
(
{z1}i:ti=0, {z1}i:ti=1

)
(3)

Following the literature – cf., (Louizos et al., 2015; Shalit
et al., 2017; Hassanpour & Greiner, 2019; 2020) – we use
the Maximum Mean Discrepancy (MMD) (Gretton et al.,
2012) measure to achieve this regularization.

Note, however, that neither the VAE nor the MMD losses
contribute to training a predictive model for outcomes. To
remedy this, we extend the objective function to include a
discriminative term for the regression loss of predicting y. 4

Lpred =
1

N

N∑
i=1

ωi · L
[
yi, ŷi

]
(4)

where the predicted outcome ŷi is derived as the mean of the
qφ(yi|z1i) posterior trained for the respective treatment ti;
L
[
yi, ŷi

]
is the factual loss (i.e., L2 loss for real-valued

outcomes and log loss for binary-valued outcomes); and ωi
represent the weights as derived by Equation (1).

Putting everything together, the overall objective function
to be minimized is then:

J = Lpred + α · LMMD + γ · LVAE + λ ·Reg( · ) (5)

where Reg( · ) regularizes the model complexity. Note
that for γ = 0, the proposed method effectively reduces
to CFR-Net. However, as supported by our empirical re-
sults (cf., Section 4), the generative term in the objective
function helps learning representations that embed more
relevant information for estimating outcomes than that of Φ
in CFR-Net. We refer to our proposed method as VAE-CI
(Variational Auto-Encoder for Causal Inference).

4This is similar to what is done in (Kingma et al., 2014) by
adding a classification loss in their Equation (9).
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4. Experiments
4.1. Benchmarks

Infant Health and Development Program (IHDP) The
original IHDP randomized controlled trial was designed
to evaluate the effect of specialist home visits on future
cognitive test scores of premature infants. Hill (2011) in-
duced selection bias by removing a non-random subset of
the treated population. The dataset contains 747 instances
(608 control and 139 treated) with 25 covariates. We use the
same benchmark (100 realizations of outcomes) provided
by Johansson et al. (2016) and Shalit et al. (2017).

Atlantic Causal Inference Conference 2018 (ACIC’18)
ACIC’18 is a collection of 24 binary-treatment datasets
released for a data challenge; with number of instances
N ∈ {1, 2.5, 5, 10, 25, 50}×103 (four datasets in each cate-
gory). The covariates matrix for each dataset is comprised
of 177 features and is sub-sampled from a table of medi-
cal measurements taken from the Linked Birth and Infant
Death Data (LBIDD) (MacDorman & Atkinson, 1998), that
contains information corresponding to 100,000 subjects.

4.2. Evaluating Treatment Effect Estimation

Given a synthetic data (that includes both factual and coun-
terfactual outcomes), one can evaluate treatment effect esti-
mation methods with two types of performance measures:

• Individual-based: “Precision in Estimation of Hetero-
geneous Effect” PEHE =

√
1
N

∑N
i=1 (êi−ei)

2 where
êi = ŷ1i − ŷ0i is the predicted effect and ei = y1i − y0i is
the true effect.

• Population-based: “Bias of the Average Treatment Ef-
fect” εATE =

∣∣ATE− ÂTE
∣∣ where ATE = 1

N

∑N
i=1 y

1
i −

1
N

∑N
j=1 y

0
j in which y1i and y0j are the true outcomes

and ÂTE is calculated based on the estimated outcomes.

4.3. Results and Discussion

In this paper, we compare performances of the following
treatment effect estimation methods: CFR-Net (Shalit et al.,
2017), Dragon-Net (Shi et al., 2019), GANITE (Yoon
et al., 2018), CEVAE (Louizos et al., 2017), and VAE-CI
(our proposed method). We ran the experiments using the
publicly available code-bases of the contender methods.
Note the following points:

• Since Dragon-Net is designed to estimate ATE only, we
did not report its performance results for the PEHE mea-
sure (which, as expected, were significantly inaccurate).

• The original GANITE code-base was implemented for
binary outcomes only. We modified the code (losses, etc.)
such that it could process real-valued outcomes also.

Table 1. PEHE and εATE on the IHDP (100 realizations) dataset

METHOD PEHE εATEεATEεATE

CFR 0.70 ± 0.36 0.07 ± 0.08
DRAGON NA 0.14 ± 0.12
GANITE 5.11 ± 7.85 1.12 ± 2.28
CEVAE 2.50 ± 3.48 0.18 ± 0.25

VAE-CI 0.60 ± 0.19 0.02 ± 0.03

Table 2. PEHE and εATE on the ACIC’18 (N≤10K) dataset

METHOD PEHE εATEεATEεATE

CFR 4.46 ± 7.97 1.21 ± 1.98
DRAGON NA 0.95 ± 1.68
GANITE 5.06 ± 5.81 1.30 ± 1.85
CEVAE 5.65 ± 6.71 2.87 ± 3.44

VAE-CI 1.82 ± 2.08 0.79 ± 1.50

• We were surprised that CEVAE diverged when running
on the ACIC’18 datasets. To avoid this, we had to run the
ACIC’18 experiments on the binary covariates only.

Table 1 summarizes the mean and standard deviation of
the PEHE and εATE measures (lower is better) on the IHDP
benchmark. VAE-CI achieves the best performance among
the contending methods (statistically significant based on
the Welch’s unpaired t-test with α=0.05).

Table 2 reports the PEHE and εATE measures on the 16
datasets in the ACIC’18 benchmark with ≤ 10K samples.
Similar to the IHDP benchmark, VAE-CI achieves the best
performance among the contending methods. These results,
however, are not statistically significant, which is mostly due
to the high standard deviation of the contending methods.

5. Future works and Conclusion
We hypothesize that the most important reasons for the
superior performance of the proposed method are: (i) the
architecture of our double-stacked M2 VAE model; and
(ii) the disentanglement property of the β-VAE component.
More theoretical and empirical analysis should be conducted
to support this claim though, which is left to future work.

In this paper, we employed a variant of the semi-supervised
VAE (Kingma et al., 2014) in a novel double-stacked M2
architecture in order to estimate treatment effects (for both
individuals as well as the entire population). For the VAE
component, we used β-VAE (Higgins et al., 2017) to encour-
age learning disentangled representations. Our empirical
results demonstrated the superiority of the proposed method
compared to both state-of-the-art discriminative as well as
generative approaches in the literature.
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