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ABSTRACT

The advancement of scientific knowledge relies on synthesizing prior research to
forecast future developments, a task that has become increasingly intricate. The
emergence of large language models (LLMs) offers a transformative opportunity
to automate and streamline this process, enabling faster and more accurate aca-
demic discovery. However, recent attempts either limit to producing surveys or fo-
cus overly on downstream tasks. To this end, we introduce a novel task that bridges
two key challenges: the comprehensive synopsis of past research and the accurate
prediction of emerging trends, dubbed Dual Temporal Research Analysis. This
dual approach requires not only an understanding of historical knowledge but also
the ability to predict future developments based on detected patterns. To evaluate,
we present an evaluation benchmark encompassing 20 research topics and 210
key AI papers, based on the completeness of historical coverage and predictive
reliability. We further draw inspirations from dual-system theory and propose a
framework HorizonAI which utilizes a specialized temporal knowledge graph for
papers, to capture and organize past research patterns (System 1), while leverag-
ing LLMs for deeper analytical reasoning (System 2) to enhance both summariza-
tion and prediction. Our framework demonstrates a robust capacity to accurately
summarize historical research trends and predict future developments, achieving
significant improvements in both areas. For summarizing historical research, we
achieve a 18.99% increase over AutoSurvey; for predicting future developments,
we achieve a 7.71% increase over GPT-4o.

1 INTRODUCTION

For over 200,000 years, human intelligence has evolved, with knowledge-building processes under-
pinned by the dual imperatives of learning from the past and forecasting future directions (Sternberg,
2000). From the conceptual foundations of Ramon Llull’s “Tree of Knowledge” to Francis Bacon’s
structured approach to human learning, both historical and contemporary scholars have emphasized
the critical role of synthesizing past insights to drive future advancements. In recent years, modern
frameworks addressing scientific discovery and knowledge structuring have further underscored this
dual focus (Fire & Guestrin, 2019; Nagarajan et al., 2015).

The rapid growth of scientific publications presents an unprecedented challenge: researchers must
now sift through vast amounts of literature to extract relevant historical insights and anticipate future
trends (Fire & Guestrin, 2019). LLMs offer potential solutions by automating tasks such as retrieval,
summarization, and analysis. However, most existing approaches either concentrate on retrospective
literature reviews (Wang et al., 2024; Agarwal et al., 2024) or focus solely on generating novel
research by using simple concept-level link predictions lacking semantic relationships (Krenn et al.,
2023; Lu, 2021; Gu & Krenn; Tran & Xie, 2021). These narrow approaches neglect the essential
integration of synthesizing past research with projecting future developments, a combination that is
increasingly crucial for scientific discovery (Figure 1).

To address this gap, we propose Dual Temporal Research Analysis (DTRA), a novel task that unifies
the analysis of past research with the forecasting of future trends. In contrast to traditional method-
ologies, which focus on either historical synthesis or future speculation, our task bridges both by
leveraging past knowledge to generate informed predictions. This twofold task is especially rele-
vant in domains such as artificial intelligence (AI), where understanding prior research trajectories
is essential for predicting emerging advancements.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Comparison on dual temporal research analysis of a) human researchers b) current methods
and c) our HorizonAI. Our framework resembles human researchers in the workflow while improv-
ing on thoroughness and logical reasoning, with both historical narrative and future prediction as
output. In contrast, current methods focus only on either summarizing history (Wang et al., 2024;
Edge et al., 2024) or generating future ideas (Baek et al., 2024; Si et al., 2024).

The DTRA consists of two interconnected phases: it involves consolidating and validating histor-
ical research trends, followed by the application of these insights to predict future developments.
This approach mirrors the distinction between validation and experimentation, wherein past re-
search serves as a foundation for verifying patterns and future predictions represent experimental,
data-driven inferences (Chaiken, 1999; Posner, 2020).

Our framework HorizonAI (Figure 2) draws inspiration from Dual-System Theory (Chaiken, 1999),
which posits that human cognition operates through two systems: System 1, which performs rapid,
intuitive assessments, and System 2, which engages in deliberate, analytical reasoning. In the con-
text of our framework, System 1 focuses on efficiently organizing historical data into structured
formats such as temporal knowledge graphs (TKGs) (Cai et al., 2022), while System 2 conducts
in-depth reasoning using Chain-of-Thought (CoT) (Wei et al., 2022; OpenAI, 2024b), to identify
patterns and project future developments. Together, these systems enable a comprehensive analysis
of both past and future research.

Given the novelty of the task, no established evaluation benchmarks or standardized methodologies
currently exist. To address this, we introduce an evaluation benchmark ResBench that assesses
the performance through historical completeness and predictive reliability. Extensive experiments
demonstrate the superior performance of our proposed framework, HorizonAI, in tracing historical
trends and making reliable future predictions. In comparison to existing baselines, it achieves higher
predictive accuracy and generates more coherent, insightful content.

The main contributions of this paper are summarized as follows:
• Integrating Historical Analysis and Future Forecasting: We introduce DTRA, a task that com-

bines the analysis of historical research with predictions about future trends. Unlike traditional
methods that focus on either past research or future possibilities, this task incorporates both to
generate informed projections, providing a more balanced perspective on scientific progress by
ensuring that insights from the past inform future directions.

• Coginitive-Inspired Framework: Our approach HorizonAI is influenced by Dual-System The-
ory, suggesting that human cognition operates through both intuitive and analytical processes. In
our framework, System 1 organizes past research into temporal knowledge graphs, while System
2 deliberately reasons to uncover patterns and anticipate future developments. This dual approach
supports a more comprehensive, precise, and dynamic understanding of research trends.

• Innovative Benchmark for Evaluation: We propose a benchmark ResBench designed to evaluate
DTRA based on historical coverage and predictive reliability. By incorporating datasets that span
both historical and predictive dimensions, this benchmark provides the research community with
a tool for systematically testing methods that summarize past research while forecasting future

2
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developments. The integration of these two tasks enhances the performance of each, as insights
from historical analysis inform predictions, leading to more accurate and contextually relevant
forecasts.

2 DUAL-SYSTEM FRAMEWORK: HorizonAI

More formally, we define the Dual Temporal Research Analysis(DTRA) task as follows:
Given the input topic and source paper pair (T ,P), the task is to narrate the research history H of
the topic and generate possible research ideas F .

To achieve this task, we propose HorizonAI (as illustrated in Figure 2), a framework inspired by
Dual-System Theory. We retrieve related papers to represent the history hs∼t = {P1, P2, ..., Pn}
during the time interval of s ∼ t and structure it into a graph G (i.e. our PaperTKG), then using
strategy S to search the graph for timeline generation τs∼t = S(G). The historical narrative H
is generated by LLMs using temporal reasoning based on the timeline. We sample possible future
predictions F , p(F |H) > threshold based on H .

Figure 2: Diagram of HorizonAI framework. Given a topic and a source paper as input, HorizonAI
goes through System 1 of a) structuring dynamically gathered historical information into PaperTKG
and b) generating a timeline based on historical information and System 2 of reasoning on the
timeline for historical narrative generation and future research trend prediction based on it.

2.1 PaperTKG CONSTRUCTION

To store historical information of research dynamically and structurally, we propose one specialized
data structure—PaperTKG. It builds on the foundation of traditional TKGs by focusing specifically
on academic papers. In PaperTKG, paper nodes are annotated with their timestamps and connected
to entities such as methods, problems, domains, topics, and citations, as shown in the structure in
Figure 2, storing all relevant and recent information to enhance reasoning in System 2 while reducing
data processing costs.

The construction process of PaperTKG systematically progresses through three phases— building
the initial graph, extending the graph by web search, and graph integration and refinement. The
pseudo-code of our PaperTKG construction process can be found in Algorithm 1 and the prompts
for it can be found in C.1.

Paper2Graph Converting papers to graphs (Paper2Graph) is a vital task in PaperTKG Construc-
tion. We use mainly the abstract and related work sections of a paper for that purpose. We derive the

3
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Algorithm 1 Temporal Knowledge Graph Construction

1: Input: Topic T , Source Paper S
2: Output: Temporal Knowledge Graph G
3: Phase 1: Build Initial Graph G0 = Paper2Graph(T, S)
4: Phase 2: Extend Graph G0

5: for each problem node p in G0 do
6: for each year y from Ystart to Yend do
7: search for related papers with keywords {T, p}
8: end for
9: end for

10: for each new paper Pi, i = 1 to N do
11: Gi = Paper2Graph(T, Pi)
12: end for
13: Phase 3: Graph Integration
14: for each subgraph Gi, i = 1 to N do
15: for each problem node p in Gi do
16: for each year y from Ystart to Yend do
17: search for related papers with keywords {T, p}
18: end for
19: end for
20: merge Gi into G0

21: end for
22: refine G: drop duplicates, discrete entities, complete missing entities
23: return G

problem, application domain, and proposed method from the abstract while related works section
provides insights into connections between existing methods, problems, and domains, annotated by
the authors (Inevitable subjective bias is addressed by bulk sampling of papers - See Appendix A.3).
Algorithm 2 details the pipeline.

Algorithm 2 Paper2Graph: Entity and Relation Extraction

1: Input: topic T , paper P
2: Output: subgraph G with core concepts from P and its citations
3: Phase 0: Citation Matching
4: Match citations in related work to references
5: Create paper nodes and complete metadata via web search
6: Phase 1: Local Extraction
7: for each citation c do
8: Extract method, problem, and domain related to c from context
9: Establish entity relations

10: end for
11: Phase 2: Overall Connection
12: Infer relations between all entities
13: return G

Graph Augmentation We extend graphs built by Paper2Graph by incorporating subgraphs from
papers cited and papers retrieved through a targeted web search. To create a concentrated historical
dataset, we adopt a problem-centric sampling strategy, using problem nodes as search keywords
rather than querying databases directly. Initially, problem nodes guide the first sampling round,
yielding a fixed number of papers per year (also called uniform sampling, see Appendix A.2 for
further explaination). Each sampled paper is converted to a subgraph using Paper2Graph, with their
problem nodes driving the second and final sampling round. For a source paper with k0 problem
nodes and n0 citations, the first round adds n0+L ·k0 · t subgraphs, sampling t papers annually over
L years. Ultimately, we gather k0 +

∑n0+L·k0·t
i=1 ki problems and 1 + n0 +

∑n0+L·k0·t
i=1 ni papers,

ideally without duplication. To manage costs, we cap the total number of sampled papers.
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2.2 QUERY GENERATION AND TEMPORAL REASONING

Query Generation and Graph Exploration Inspired by the local-to-global search strategy for
summarization utilized by the GraphRAG (Edge et al., 2024), we design a global-to-local search
strategy to narrow down the search range step by step without missing related nodes or relations.
We first use global search to locate paper nodes related to the query, then apply local search to get
detailed relations and neighbors of the paper node. Global Search: The query for global search is
generated from the following three aspects: the application domain, the target problem to solve, and
the method. We traverse all the paper nodes and select the ones related to our query by similarity,
then we check the timestamps of these nodes to ensure that representative works from each year are
included. Local Search: In the local search phase, we collect the one-hop relevances of the target
paper nodes (i.e. the details of the paper) and structure them into a chain, finally, we get the timeline
for the topic.

Temporal Reasoning Large Language Models (LLMs) are utilized to perform temporal reason-
ing (Yuan et al., 2024) using Chain-of-Thought (CoT) prompting (Wei et al., 2022). They are
prompted to identify key research milestones, explain the methods and solutions, highlight connec-
tions between works, and emphasize the progression over time, step by step, to generate a coherent
narrative of the research history. The prompt for converting the timeline to logical text can be found
in Appendix C.2.

2.3 RESULT GENERATION

The output of our HorizonAI consists of two components: a historical narrative and a future
prediction, with the latter being generated based on the former.

Historical Narrative We narrate the history from both local and holistic perspectives using tempo-
ral reasoning through CoT prompts (listed in Appendix C.2). For the local perspective, we structure
the narrative by using the subtitles from the related work sections of the target papers as an outline,
producing content resembling related work discussions. For the holistic perspective, we create out-
lines based on section titles from selected surveys to represent the overall development of the topic.
Each section is then expanded with content following the outline, resulting in a survey-like narrative.
Future prediction Existing approaches often emphasize the novelty of generated research ideas,
overlooking that feasibility is a more critical factor than pure innovation. To ensure the ideas are
grounded in practicality, we reference the local historical narrative and prompt LLMs to outline de-
tailed roadmaps for realizing each idea. For each subdomain, multiple potential ideas are sampled,
ensuring a balance between originality and implementability.

3 PROPOSED BENCHMARK: ResBench

3.1 DATA CONSTRUCTION

Table 1: Topics Used in Data Collection.

Index Topic
1 In-context Learning
2 LLMs for Recommendation
3 LLMs-based Agents
4 Instruction Tuning for LLMs
5 LLMs for Information Retrieval
6 Safety in LLMs
7 Large Multi-Modal Language Models
8 LLMs for Software Engineering
9 LLM-Generated Texts Detection

Our dataset comprises papers from the arXiv1

repository, specifically focusing on LLMs. The
dataset has 20 different topics, but consider-
ing the difficulty of manual verification, this
article mainly evaluates 9 different topics (Ta-
ble 1), covering the principles, techniques, and
diverse applications of LLMs. For each topic,
the dataset includes a source paper, a survey and
at least 10 target papers. The source paper, an
input for the task, serves as a starting point for
collecting related literature to complete the his-

torical information, while the surveys and target papers are used to evaluate the task outputs. In the
surveys, every subsection’s content and title are included, alongside the corresponding references
and notable research contributions. More details of the data composition are shown in Appendix B.

1https://arxiv.org/
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3.2 EVALUATION

The LLM evaluation consists of three main areas: historical completeness, predictive reliability
,and text readability .

3.2.1 GRAPH COMPLETENESS AND SEARCH EFFICIENCY

The completeness of graphs is evaluated by comparing the overlap between citations in target sur-
veys and paper nodes in TKGs. Similarly, the search efficiency of graphs is assessed by mea-
suring the overlap between paper nodes in retrieved during search and those in the surveys. The
following sets involved in our evaluation are defined (their relationships are illustrated in Figure 3):

Figure 3: Venn Diagram. Note that S is a subset
of G and H is a subset of R.

• R: References in the surveys.
• G: Paper nodes in the constructed graphs.
• S: Paper nodes retrieved during graph search.
• H: Key historical works in the surveys.

We define the following metrics to quantify the
degree of overlap between these sets:

OR =
|G ∩R|
|R|

, OH =
|G ∩H|
|H|

, SER =
|S ∩R|
|G ∩R|

, SEH =
|S ∩H|
|G ∩H|

Where O stands for Overlap, evaluating graph completeness upon construction and SE stands for
Search Efficiency, evaluating graph search. More specifically:

• OR: Average proportion of target paper citations present in the generated graph. Used to evaluate
the graph completeness.

• OH : Average proportion of key historical works present in the searched nodes. Used to evaluate
the graph completeness, with a greater weight compared to OR.

• SER: The ratio between searched historical works and all the historical work referenced in the
surveys and constructed in the graphs. Used to evaluate the search efficiency.

• SEH : The ratio between searched key historical works and all the key historical works referenced
in the surveys and constructed in the graphs. Used to evaluate the search efficiency, with a greater
weight compared to SER.

3.2.2 PREDICTIVE RELIABILITY

Predictive reliability is evaluated through four perspectives: semantic similarity S1, innovation and
feasibility S2, temporal consistency S3, and contextual consistency S4. All values are rated by LLM
based on prompt instructions (detailed in Appendix C.3.1) on a scale of 1 to 5. The final rating is a
weighted sum of these values:

Final Score = w1 · S1 + w2 · S2 + w3 · S3 + w4 · S4

Where w1, w2, w3, w4 are weights for Semantic Similarity S1, Innovation and Feasibility S2, Tem-
poral Consistency S3, and Contextual Consistency S4.

The explanation for the ranges of the final score is defined as:

• Final Score ∈ [1,2): The generated future directions show poor relevance to the target paper, with
significant deficiencies in semantics, innovation, feasibility, or temporal consistency.

• Final Score ∈ [2,3): The generated future directions are somewhat relevant to the target paper but
have several notable shortcomings.

• Final Score ∈ [3,4): The generated future directions are generally well-aligned with the target
paper across multiple dimensions, though some improvements are still needed.

• Final Score ∈ [4,5): The generated future directions are highly relevant and excel in innovation,
feasibility, temporal logic, and contextual consistency.

6
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4 EXPERIMENTS

We use the GPT-4o (OpenAI, 2024a) for all the LLMs-involved processes (e.g. graph construction
and reasoning) in our framework. We run experiments on the evaluation dataset on two subtasks for
both our HorizonAI and baselines.

4.1 SUMMARIZING HISTORY - SURVEY COMPARISON

The performance of our history summarization subtask is assessed on the overlap degree of gener-
ated content and the target survey, whose result is illustrated in Table 7 where we also present the
performance of graph completeness and search efficiency as a reference. As shown in Table 2, we
compare the performance of our HorizonAI and AutoSurvey (Wang et al., 2024) in the history sum-
marization subtask from three perspectives, namely total citation, key citation, and keyword. We
conclude the performance of our framework as follows:
Comprehensive historical representation Under the conditions of limited information and the
presence of bias in the writing of the target survey, the paper nodes in our PaperTKG have an aver-
age 39.35% overlap ratio with the citations in the human-written surveys and an even higher score
of 46.35% regarding key citation overlap, demonstrating that our method of structuring history into
PaperTKG to thoroughly and logically arrange scientific history is effective.
Efficient Search Strategy The average proportion of our searched works shared with the target
survey among the total paper nodes of the graph reaches 69.92%, while on key references it is
as high as 71.06%. The significantly high ratios of success indicate that using our global-to-local
search strategy to fetch related paper nodes in the graph is powerful.
Complete and Reliable History Summarization A small proportion of searched past works are
lost after the reasoning phase. The final generated content has an average of 24.25% citations in
common with the target survey, compared to 5.26% of AutoSurvey. It reveals that our HorizonAI
has a better ability to trace and summarize influential past works.

Table 2: Comparison of our HorizonAI and AutoSurvey (Wang et al., 2024) in history summarization
subtask evaluated on nine topics. We use the overlap ratio of two aspects—total citation and key
citation—to evaluate the performance of this task.

Evaluation Object Citation Overlap(%) Key Citation Overlap(%)
HorizonAI

(ours) AutoSurvey HorizonAI
(ours) AutoSurvey

Topic 1 42.86 5.44 53.01 12.12
Topic 2 27.32 6.19 38.93 6.45
Topic 3 2.27 2.27 37.87 10.81
Topic 4 24.24 6.06 47.98 0.00
Topic 5 27.93 4.14 46.19 6.98
Topic 6 5.00 4.00 10.00 6.06
Topic 7 35.57 4.35 50.00 12.50
Topic 8 19.75 8.02 24.24 5.48
Topic 9 33.33 6.86 25.40 8.33
Average 24.25 5.26 37.07 7.64

4.2 PREDICTING FUTURE - RELATED WORKS COMPARISON

We use the subtitles of related work of the target paper as a guideline to generate the possible
research idea, then we compare this generated idea with the actual one proposed by this paper in
the abstract. The performance of the future prediction is evaluated on the comprehensive score of
the content, covering content quality, relevance, innovation, and so on. Due to the existing works
aimed at idea generation mainly focusing on novelty, they will naturally filter out previous works.
In response to this situation, we use LLM and horizonAI without temporal logic reasoning as our
baseline to evaluate how much the performance of HorizonAI will drop without adopting a workflow
inspired by dual system theory. The result of this subtask, as is illustrated in Table 3, proved that
with adequate historical narrative and temporal logic reasoning, LLMs can produce more reliable
research ideas than the ones without.

7
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Table 3: Comparison between our HorizonAI, LLMs and HorizonAI without temporal logic reason-
ing in future prediction. The final score calculation method is shown in Section 3. The full score is
5.

Evaluation Object Baseline Without Temporal Logic Reasoning HorizonAI (ours)
Topic 1 3.77 2.30 3.91
Topic 2 3.42 1.10 3.98
Topic 3 3.88 1.25 3.85
Topic 4 3.68 2.20 3.78
Topic 5 3.50 2.05 3.76
Topic 6 3.69 1.15 4.01
Topic 7 3.44 2.00 3.87
Topic 8 3.84 2.28 3.88
Topic 9 3.23 1.90 3.91
Average 3.60 2.14 3.88

Table 4: Ablation for input quality. Problem type 1 stands for the interdisciplinary topics, and topics
related to it are: A - Bias and Fairness in LLMs, B - LLMs in Medicine, C - Domain Specialization
of LLMs, D - Challenges of LLMs in Education. Problem type 2 stands for the topic and source
paper misalignment case, and the topic related to it is: E - Explainability for LLMs

Problem
Type Topic Source

Paper
Number of

Paper Nodes
History

Completeness (%)
Citation

Overlap (%)

1

A Gupta et al. (2023) 44 2.99 1.45
B Singhal et al. (2023) 996 6.19 2.44
C Li et al. (2022) 131 16.67 5.56
D Leinonen et al. (2023) 36 0.00 0.00

2 E Gao et al. (2023) 620 2.68 1.52

4.3 ABLATION STUDY

Effect of Input We designed two possible problem types regarding the inputs to determine their in-
fluence on our method (as illustrated in Table 4). The first case involves interdisciplinary topics that
require more relevant historical information compared to topics within the AI field. Additionally,
obtaining related data from arXiv is relatively more challenging. Topics related to medicine, edu-
cation, and society are selected for it. The results show that our method with a broad cross-domain
topic as input suffers from graph augmentation failure, leading to an unwanted history completion
performance. The second case involves a mismatch between the topic and source paper. In this
case, a source paper with less relevance to the topic is given as input. This leads to the graph used
for representing history expanding in the wrong direction, which explains the bad performance. In
conclusion, our method is sensible to the inputs (i.e. the topic and the source paper), either a vague
topic or mismatched inputs will lead to unwanted results.

Figure 4: Diagram of search strategy performance.
Method 1 is human efforts, Method 2 is greedy-search
from the original problem in source paper, Method 3
uses similarity ranking to search from the original prob-
lem, while Method 4 (ours) updates on method 3 by
searching on all central problems.

Effect of Graph Augmentation Strategy We
test the performance of history completeness
under four different graph argumentation meth-
ods to determine the effect of web retrieval
strategy on our framework. The complexity
of collecting historical work increases sequen-
tially from Method 1 to Method 4, with Method
4 being the one used in our framework. As
shown in Figure 4, the performance variation
trends of different search strategies across top-
ics are consistent, and the more comprehen-
sive the search method, the higher the citation
overlap of the enhanced graph. Among them,
Method 4 achieves the best performance across
all topics. This result indicates that the graph
argumentation method has a significant impact

8
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on completing historical data. More data does not necessarily mean better historical reproduction;
rather, retrieving data from multiple dimensions is more beneficial for historical completion.

5 RELATED WORKS

5.1 RETRIEVAL ON KNOWLEDGE GRAPHS (KGS)

Recent search strategies using Knowledge Graphs (KGs) improve retrieval by leveraging structured
relationships in Large Language Models (LLMs) to enhance inference and interpretability (Pan et al.,
2024; Yang et al., 2024). Structuring LLM interactions with KGs refines retrieval performance,
enabling effective responses to complex queries (Sun et al., 2023; Jiang et al., 2023; 2024). Unlike
traditional RAG methods that rely on text embeddings, KGs serve as indices to enhance precision
by navigating relevant subgraphs. Approaches like KAPING (Baek et al., 2023), G-Retriever (He
et al., 2024), and Graph-ToolFormer (Zhang, 2023) enhance retrieval by using graph metrics to refine
search results, while SURGE (Kang et al., 2023) and FABULA (Ranade & Joshi, 2023) leverage
KGs for narrative generation grounded in factual subgraphs. Systems like ITRG (Feng et al., 2023)
and IR-CoT (Trivedi et al., 2023) facilitate multi-hop question answering by tracing interconnected
knowledge nodes, while Selfmem (Cheng et al., 2023) employs KGs for generation-augmented
retrieval. GraphRAG (Edge et al., 2024) advances these approaches by introducing a unique local-
to-global search strategy with a self-generated graph index, which inspired us for our global-to-local
retrieval approach.

5.2 TEMPORAL KNOWLEDGE GRAPHS (TKGS)

Temporal Knowledge Graphs (TKGs) extend traditional Knowledge Graphs(KGs) by incorporating
temporal information, enabling the representation of dynamically changing facts (Ji et al., 2021).
Temporal Knowledge Graph Completion (TKGC) is a key task in TKGs, focusing on filling in miss-
ing information and predicting future relationships (Wang et al., 2023; Xu et al., 2023; Zhang et al.,
2023; Xiong et al., 2024b). Additionally, TGKs specialize in applications like event tracking and
historical data analysis, providing a more nuanced framework for mapping extensive academic liter-
ature. Specialized models such as Know-Evolve (Trivedi et al., 2017) and TA-TransE (Garcı́a-Durán
et al., 2018) have advanced temporal reasoning, while Xiong et al. (2024a) introduced a two-step
framework for language-based temporal reasoning that translates narratives into TKGs. Despite
these innovations, many existing models remain general and do not specifically address the orga-
nizational needs of academic information. Our proposed PaperTKG thus serves as a tailored TKG
structure designed explicitly for managing scholarly papers, enabling the tracking of paper evolu-
tion, citation networks, and topic trends over time, thereby fulfilling the demand for a specialized
TKG in academia.

5.3 LLMS IN SCIENTIFIC DEVELOPMENT

Large Language Models (LLMs) are recognized for their transformative potential in scientific re-
search, owing to their ability to process and analyze vast datasets beyond human capacity. Recent
studies, such as those by Baek et al. (2024), Yang et al. (2023), and Qi et al. (2023), focus on
Literature-based Discovery (LBD) (Swanson, 1986), using LLMs to mine academic publications
for correlations and generate research insights. Wang et al. (2024) explores the possibility of LLMs
automatically generating survey papers, while other works (Elsevier, 2024; Agarwal et al., 2024)
emphasize automated retrieval and summarization of existing literature, often neglecting the pre-
diction of future research trends. In a pioneering effort, Li & Flanigan (2024) formalizes future
language modeling, aiming to predict future textual data based on temporal histories. Additionally,
several studies (Si et al., 2024; Baek et al., 2024; Zheng et al., 2024) develop LLM-based agents
for research idea generation, a critical step in the early stages of scientific inquiry. AI Scientist (Lu
et al., 2024) represents the first comprehensive system for fully automated scientific discovery using
LLMs, generating novel research ideas independent of prior work, though it requires multiple iter-
ations to yield viable outcomes. In contrast, we introduce HorizonAI, a dual-system approach that
integrates both the summarization of past research and the prediction of future directions, offering
superior performance in both tasks compared to existing models.

9
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6 CONCLUSION

In this paper, we introduced Dual Temporal Research Analysis (DTRA), a novel task that integrates
the summarization of historical research with the prediction of future trends. Our framework, Hori-
zonAI, draws inspiration from Dual-System Theory to organize past research using PaperTKG (a
temporal knowledge graph for papers) and employs LLMs for in-depth reasoning to generate both
historical narratives and future projections.

Through extensive evaluation on the ResBench benchmark, we demonstrated that bridging the tasks
of historical analysis and future forecasting enhances the performance of both. Our results showed
significant improvements in summarizing past works and generating accurate predictions compared
to existing methods.

The integration of historical insights with predictive reasoning offers a balanced perspective on
scientific progress, showing the potential of HorizonAI as a robust tool for supporting research
across multiple domains. Future work will focus on expanding the dataset beyond AI-related topics
and enhancing search capabilities to incorporate a wider range of academic databases.

7 LIMITATION AND FUTURE WORKS

7.1 LIMITATIONS

1. The dataset currently focuses on AI-related topics with surveys available in 2024, but it can
be extended to a broader range of domains. This design was chosen to facilitate more pre-
cise evaluation and easier expert feedback, but future work should include diverse research
fields to enhance generalizability.

2. Currently, the search and graph construction processes are time-consuming due to the re-
liance on third-party web APIs that often struggle with bulk access. This issue can be
addressed by using specialized API keys or developing our own databases. Nevertheless,
the current system still offers higher efficiency compared to manual research, and the con-
structed graphs can be reused for further analysis.

3. The current assessment of future idea generation relies solely on LLMs in content analysis;
however, while the accuracy of utilizing our algorithm is guaranteed, the inclusion of expert
reviewers will provide additional insight into the feasibility and reliability of the ideas
generated.

7.2 FUTURE WORKS

In addressing previous limitations, we encourage extending the dataset beyond AI-related topics to
include a broader range of research fields. This expansion would allow for a more comprehensive
evaluation of the framework’s generalizability across different domains. Additionally, we plan to
enhance our data collection by incorporating papers from other sources beyond Arxiv, such as peer-
reviewed journals and other preprint servers, using advanced tools for PDF information extraction.
Furthermore, integrating expert reviews into the evaluation process will provide more reliable in-
sights into the feasibility and practical relevance of the generated future ideas, moving beyond sole
reliance on LLM evaluations.

On the other hand, we will continue to explore ways to enhance research efficiency in the era of
LLMs and AI. This area holds significant potential, and beyond generalization and future direction
prediction, we aim to enable AI to contribute to the actual realization of future research topics. This
will involve collaboration with researchers in experiment design and result analysis, integrating AI
more deeply into the research process.

10
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A FURTHER CLARIFICATION ON STRATEGY

A.1 HOW DO WE REPRESENT RESEARCH HISTORY?

There are various ways to define the history of research, but academic papers remain one of the
most common forms of scholarly communication. A typical method for scientists to understand the
evolution of a field is by reviewing related papers. Thus, we define the history of a field or research
question as the collection of papers associated with it:

H = {P1, P2, . . . , Pn} (1)

where Pi denotes the i-th paper in the collection, and n is the total number of relevant papers.

To expand this collection more effectively, we extract papers from the related works sections:

H ′ =

n⋃
i=1

RW (Pi) (2)

where H ′ represents the extended history, and RW (Pi) is the set of cited works in Pi.

The progression of knowledge in a field can be represented as a trajectory, with papers ordered
temporally:

T = {Pσ(1), Pσ(2), . . . , Pσ(n) | tσ(1) ≤ tσ(2) ≤ · · · ≤ tσ(n)} (3)

where σ is a permutation of indices ensuring the papers are arranged chronologically.

To represent this trajectory more efficiently, we use temporal knowledge graphs, detailed further in
Section 3 of the Methods.

A.2 HOW DO WE SAMPLE FROM HISTORICAL PAPERS?

Sampling is essential to ensure the accuracy and diversity of research findings, mitigating bias.
Table 5 compares several sampling strategies: Uniform Sampling, Proportional Sampling, Citation-
based Sampling, Random Sampling, and Stratified Sampling. We select Uniform Sampling due to
its ability to maintain an even distribution across years, minimizing variance and offering ease of
implementation.

Table 5: Overview of Sampling Methods and Their Variance. The other methods have > 0 variance
influenced by factors such as publication volume, citation counts, and strata representation. P (pi)
is the probability of selecting papers pi, Nj is the number of papers in a time period yj , N is the
total number of papers, Ci is the citation count of paper pi, M is the total sample size, and mj is the
sample size for each period or stratum.

Sampling
Method Mathematical Definition Pros Cons Variance

in mj

Uniform
Sampling

P (pi) =
1

|Pyj
| ,

∀i ∈ yj

Balanced representation
across time periods

May exclude influential
papers from prolific years 0

Proportional
Sampling

P (pi) =
Nj

N ,
mj = P (pi) ·M

Reflects natural
publication volume

Over-represents years
with high publication counts > 0

Citation-based
Sampling P (pi) =

Ci∑
P∈Pyj

CP

Focuses on highly
influential papers

Skews toward older papers;
Ignores recent work > 0

Random
Sampling P (pi) =

1
N

Simple, unbiased
by time or citation

May miss important trends;
Over-represents recent years > 0

Stratified
Sampling

P (pi) =
Nj

N ,
mj = P (pi) ·M

Ensures representation
across strata

Complex to implement;
Over-represent dominant strata > 0
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A.3 ADDRESSING SUBJECTIVE BIAS IN PUBLICATIONS

Subjective bias is inherent in individual papers, as each presents knowledge from a particular view-
point. Consequently, integrating biased papers into a study introduces this subjectivity. However, by
aggregating enough diverse papers, we can mitigate individual biases and approach a more objective
historical representation:

B(H) =

n∑
i=1

B(Pi) (4)

To reduce bias, we aim to incorporate a sufficiently large set of papers. The bias in an expanded
collection H ′ of papers can be approximated by:

B(H ′) ≈ 1

|H ′|

|H′|∑
i=1

B(Pi) (5)

As the size of H ′ increases, the overall bias approaches a more balanced representation of the field.
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B DATA COLLECTION

The data collection process focused on identifying relevant papers across three categories: source
papers, target papers, and surveys. These papers were selected based on their influence, citation
count, and relevance to the topic, ensuring a comprehensive overview of the field.

B.1 SOURCE PAPERS

Source papers refer to highly cited and influential papers published before 2023. These papers were
carefully chosen based on their significant contributions to the field and their role in shaping foun-
dational knowledge. Each source paper was analyzed for its related work sections, which included:

• The titles of cited references.
• Summaries of key points from these references.

We selected these papers using Semantic Scholar’s influential sorting feature (Kinney et al., 2023),
ensuring the source papers were ranked by citation count. Data was extracted from HTML and PDF
formats, with arXiv2 and ar5iv3 providing the HTML versions for most papers. All data underwent
manual verification to ensure accuracy.

B.2 TARGET PAPERS

Target papers refer to newer, high-quality papers and surveys from 2024, chosen for their cutting-
edge insights. These papers were similarly ranked by citation count and were selected to reflect the
most current trends and advancements in the field. In target papers, we also focused on their related
work sections, capturing:

• The titles of cited references.
• Key points and summaries relevant to the topic.

Target papers helped bridge the gap between historical research and the latest developments, pro-
viding a forward-looking perspective.

B.3 SURVEYS

Surveys were treated as a separate category, as they provide an overview of the field and summa-
rize key developments. For surveys, we included every subsection’s content and title, alongside
corresponding references. In addition, we focused on identifying notable research contributions,
defined as:

• Articles or works that were frequently cited.
• Papers described with extensive detail by the survey authors, often corresponding to key

subheadings.

These typically represent key historical works and important research results such as the develop-
ment of technologies like Transformers.

Surveys were instrumental in identifying key historical works (key history) that had a lasting impact
on the field. These works were defined by their influence and the significant number of references
made to them within the surveys.

More details of the data composition are shown in Table 6.

2https://arxiv.org/
3https://ar5iv.labs.arxiv.org/
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Table 6: Details of the data information.

Entity Type Content Example
topic ”in-context learning”
year start “2021”
year end ”2024”
source paper

↓
name, arxiv id,
isAPA, abstract,
reference,
related work

{”name”: ”Chain-of-Thought...”, ”arxiv id”: ”2201.11903”,
”isAPA”: true, ”abstract”: ”We explore how generating...”,
”reference”: [ reference1, reference2,... ], ”related work”:
”7Related Work...”, date”: ”2022”}

reference(full) ”Subhro Roy and Dan Roth. 2015. Solving general arithmetic
word problems. EMNLP”

target list
↓

[target paper1, target paper2,...]

target paper
↓

name, arxiv id,
subtitles, reference,
related work

{ ”name”: ”Long-context LLMs...”, ”arxiv id”:
”2404.02060”, ”subtitles”: [subtitle1, subtitle2,...],
”reference”:[reference1, reference2,...] , ”related work”:
”2Related Work...” }

subtitle
”Reinforcement Learning via Supervised Learning (RvS)”

reference
”Eva: Exploring the limits of masked visual representation
learning at scale”

survey
↓

name, arxiv id,
subtitles,
all references

{”name”: ”In-context Learning...”, ”arxiv id”: ”2401.11624”,
”subtitles”: [subtitle1, subtitle1,...], ”all references”:
[reference1, reference2,...]}

reference
”Eva: Exploring the limits of masked visual representation
learning at scale”

subtitle(full)
↓

name, key history,
refer-
ences in this section

{”name”: ”Few-shot...”, ”key history”: [key history1,
key history2,...] , ”references in this section”: [reference1,
reference2,...]}

key history
reference title,
key word

{”reference title”: ”Attention is all you need”, ”key word”:
”Transformer Models”}

topic history
↓

name, arxiv id,
reference

{ ”name”: ”Long-context LLMs...”, ”arxiv id”:
”2404.02060”, ”reference”:[reference1, reference2,...] }

reference
”Eva: Exploring the limits of masked visual representation
learning at scale”
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C PROMPTS

C.1 PROMPTS FOR GRAPH CONSTRUCTION

Extract from Abstract
EXTRACT_THEME = ’’’Please extract the key issue addressed, the proposed

method, and the application domain from the abstract of the paper
titled *{title}* and present the information in the following JSON
format.

{{
"problem": {{

"name": the key issue it addressed,
"description": a more detailed description of this key issue

}}
"method": {{

"name": the method it proposed,
"description": a more detailed description of this method

}}
"domain": {{

"name": the application domain,
"description": a more detailed description of this domain

}}
}}]
If any of the information is not available, please fill the corresponding

value with ’null’. Note that the descriptions should be extracted
from context, DO NOT simply use your prior knowledge to complete them
.

Absract Content: {abstract}’’’

Extract from related works
LEVEL1 = ’’’Please extract the method and problem entities related to the

citation ’{citations}’ from the excerpt of the paper titled ’{title
}’, and identify the relations between these entities and the
citation. Please respond with the following JSON format.

[
{{

"entity name": The name of the entity that has relation
with the citation ’{citations}’. DO NOT extract human
names as entities,

"entity type’: The type of the entity, selected from ’
method’, ’problem’, and ’domain’,

"description": Description of the entity extracted from
the context, null if not enough information,

"relation": The relationship between the citation and the
entity extracted from the context can be expressed

using phrases such as ’applied in’, ’proposed by’,
and others. Ensure that the relation is explicitly
mentioned in the text and avoid inferring any
relations based on prior knowledge. Do not use vague
description like ’related to’

}},
...

]
’’’

LEVEL2 = ’’’Find out the relationships between these entities in the
content. DO NOT add relations including entities that do not exist in
the list. Please respond with the following format.
[{{

"entity1": The name of the entity1,
"relation": The relationship between entity1 and entity2. Ensure

that the relation is explicitly mentioned in the text and
avoid inferring any relations based on prior knowledge. Do
not use vague description like ’related to’,
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"entity2": The name of the entity2
}},
...]
Entities: {entities}
Content: {content}’’’

C.2 PROMPTS FOR REASONING

Generate Related Works

generate_relatedwork_prompt = f"""
Let’s generate a high-quality "Related Work" section for a research paper

by following a structured reasoning approach. We will use the
following steps to ensure clarity and depth.

**Step 1: Analyze the topic and the narrative’s progression.**
The topic is ‘{topic}‘, and the subtitle is ‘{subtitle}‘. Here is the

time-based progression of research developments:\n\n{cot_narrative}\n
\n

Analyze the key themes, shifts, and milestones in the narrative to
extract the most relevant and impactful works that shaped the field
over time.

**Step 2: Identify key studies.**
Based on the analysis, identify the most influential and representative

studies that have contributed to the advancement of this field.
Select works that either introduced foundational concepts, solved
critical challenges, or advanced the field in significant ways.

**Step 3: Structure the Related Work section.**
Organize the selected studies in a way that emphasizes their contribution

to the progression of the field. The section should naturally flow
either chronologically or thematically, ensuring a balance between
foundational works and recent innovations. You may highlight any gaps
or ongoing debates in the literature to contextualize how these

works relate to your research.
Now, based on this reasoning, generate the "Related Work" section. Make

sure it is flexible but retains a coherent narrative that aligns with
academic standards. Incorporate key research areas and their

evolution in the field, using a mix of foundational works and recent
studies. The section should demonstrate a clear understanding of how
these works interrelate and how they contribute to the current
research landscape.

Please provide the response in "Related Work" section only, structured as
follows:

"""
example="""
**Related Work**
The field of {main_topic} has evolved significantly over the past few

decades, particularly in areas such as {key_areas_1}, {key_areas_2},
and {key_areas_3}. Early works such as {Author1 et al., Year} laid
the groundwork for {specific concept or technique}, introducing key
methods that have since been built upon by later studies.

For instance, *{Key Area 1}* has been a major focus, starting with
foundational research by {Author2 et al., Year}, who proposed {a
major contribution}. Building on this, subsequent studies like {
Author3 et al., Year} have refined these approaches, introducing
innovations such as {specific advancement} that have made a
substantial impact in the field.

In contrast, *{Key Area 2}* represents a more recent development, with
groundbreaking contributions by {Author4 et al., Year}, who explored
{a novel approach or finding}. This has opened new avenues for
research, particularly in {specific application or challenge}, as
evidenced by {Author5 et al., Year}, whose work has further expanded
on these ideas.

Additionally, the intersection of *{Key Area 3}* with {related field} has
also gained attention in recent years. Notably, {Author6 et al.,
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Year} demonstrated {key contribution}, which has been instrumental in
advancing the understanding of {specific problem or question}.

While much progress has been made, there remain open questions,
especially in {specific area of ongoing research}, where recent
studies by {Author7 et al., Year} indicate that further exploration
is needed to fully realize the potential of {key technique or
approach}.

By reviewing these works, we gain a comprehensive understanding of how
the field has evolved and where it is headed, providing essential
context for the contributions of our own research.

"""
generate_relatedwork_prompt+=example

Generate Future Idea

Now, let’s think step by step to generate predictions for future
research directions based on the provided time-based narrative and
subtitle.

Step 1: **Analyze the time-based narrative for future trends**. The
narrative ‘{cot_narrative}‘ shows how the research has evolved over
time. Carefully examine this narrative to extract clues about current
trends, technological bottlenecks, and potential gaps in research

that could drive future developments.

Step 2: **Consider challenges and opportunities**. Based on the trends
and patterns identified in the narrative, think about the challenges
the field currently faces and the opportunities for future
innovations. What are the key bottlenecks, and what cutting-edge
technologies could overcome them?

Step 3: **Predict future research directions**. Based on the analysis,
predict possible future directions for the topic ‘{topic}‘ and
subtitle ‘{subtitle}‘. These directions should be logically derived
from the observed research trends and potential advancements in
technology.

Step 4: **Structure the future directions and technical roadmap**.
Organize the predicted future research directions into a well-
structured roadmap, clearly outlining the steps researchers might
take to advance in this area. Present the future directions in JSON
format.

Please provide the response in JSON format only, structured as follows:
Example output format:
‘‘‘json
{{

"Future_Directions": {{
"1. Title of Future Direction": {{
"Description": "Detailed description of the future research

direction, derived from trends in the narrative.",
"Technical_Roadmap": [
"First step in technical roadmap, based on observed trends.",
"Next steps, reflecting future possibilities derived from the

narrative."
]

}},
"2. Another Future Direction": {{
"Description": "Another future research direction logically derived

from current research challenges and gaps.",
"Technical_Roadmap": [
"First step, addressing challenges seen in the narrative.",
"Subsequent steps reflecting the roadmap towards technological

advancements."
]

}}
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}}
}}
‘‘‘

C.3 PROMPTS FOR EVALUATION

C.3.1 PROMPT FOR FUTURE RELIABILITY EVALUATION

S1: Semantic Similarity
The following is the abstract of a target paper:\n\n{target_abstract}\n\n

Below is a set of future research directions predicted by another
paper:\n\n{future_text}\n\n

Your task is to carefully compare the abstract and the predicted
future directions step by step using chain of thought reasoning.

Step 1: Analyze the future directions and extract key research themes
or topics.

Step 2: Compare each theme with the abstract to identify any matching
concepts.

Step 3: Assign a score based on the extent of matching as follows:

- **Score 0**: No matches at all; none of the key themes or topics
from the future directions are present in the abstract.

- **Score 1**: Very few matches; only 1 out of 5 key themes match
with the abstract.

- **Score 2**: Some matches; 2 out of 5 key themes match with the
abstract.

- **Score 3**: Moderate matches; 3 out of 5 key themes match with the
abstract.

- **Score 4**: Mostly matches; 4 out of 5 key themes match with the
abstract.

- **Score 5**: All matches; all 5 key themes from the future
directions are present in the abstract.

Please **only return the final score as a single number**.

S2: Innovation and Feasibility
The following is a future research direction proposed by a research paper

:

"{future_direction}"

Please evaluate the following aspects step by step:
Step 1: Analyze the future direction to determine if it proposes a

novel or innovative idea compared to current research in the
field, specifically related to the topic: {topic} and subtitle: {
subtitle}. Does it introduce new concepts, techniques, or
approaches that are not commonly explored?

Step 2: Assess the technical feasibility of this future direction.
Can it be realistically implemented with current technology, or
does it require significant breakthroughs?

Step 3: Rate the future direction on a scale from 1 to 5:
- 1: No innovation and technically infeasible.
- 2: Slight innovation but mostly infeasible.
- 3: Moderately innovative and feasible with technical challenges.
- 4: Innovative and feasible with current technology, with minor

challenges.
- 5: Highly innovative and technically feasible without significant

challenges.

Please **only return the final score as a single number**.

S3: Temporal Consistency
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The following is a future research direction proposed by a research paper
:

"{future_direction}"

Please evaluate the following step by step:
Step 1: Analyze the current state of research and technological

progress in the relevant field of {topic}, and related to the
subtitle: {subtitle}. Identify the key milestones and major
developments up to now.

Step 2: Determine if this future direction logically builds upon
recent developments, or if it requires an unrealistic leap
forward in technology.

Step 3: Assess whether the future direction aligns with the current
pace of technological development. If it seems unrealistic for
the near future, explain why.

Step 4: Rate the temporal consistency of the future direction on a
scale from 1 to 5:

- 1: Does not fit the timeline at all.
- 2: Slightly inconsistent with the timeline.
- 3: Moderately consistent with the timeline, with some gaps.
- 4: Largely consistent with minor inconsistencies.
- 5: Fully consistent with the timeline and logically follows current

research progress.

Please **only return the final score as a single number**.

S4: Contextual Consistency

The following is a future research direction proposed by a research paper
:

"{future_direction}"

The target paper’s abstract is as follows:

"{target_abstract}"

Please evaluate the following aspects step by step:
Step 1: Identify the key research challenges or limitations discussed

in the target paper’s abstract, which relates to the topic: {
topic} and subtitle: {subtitle}. What are the primary issues the
target paper seeks to address?

Step 2: Determine if the proposed future direction addresses any of
these challenges or builds upon the research presented in the
target paper.

Step 3: Assess whether the proposed future direction logically
follows the research context or is disconnected from the
challenges identified in the target paper.

Step 4: Rate the contextual consistency of the future direction on a
scale from 1 to 5:

- 1: Completely disconnected from the research context.
- 2: Slightly relevant, but mostly misaligned with the research

context.
- 3: Moderately related to the research context, but missing key

connections to the identified challenges.
- 4: Largely consistent, addressing most of the research challenges

with minor gaps.
- 5: Fully aligned with the research context, addressing key

challenges comprehensively.

Please **only return the final score as a single number**.
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C.3.2 WEIGHT SETTINGS FOR FUTURE RELIABILITY EVALUATION

Weight Distribution: In our future prediction evaluation task, we use the following weights:

( w1 = 0.4 ) for historical completeness and prediction reliability (this includes manual evaluation),
( w2, w3, w4 = 0.2) each for the LLM-based assessments of prediction reliability, text generation
quality, and other factors. We assign the highest weight ( w1 = 0.4 ) to historical completeness
because this portion involves manual evaluation, which we believe is more accurate and reliable,
particularly for complex tasks such as evaluating the completeness of the graph and the reliability
of future predictions. Manual evaluation offers higher credibility compared to the more automated
LLM assessments.

On the other hand, the LLM-based evaluations are given lower weights because they rely on auto-
mated models, and their results can be more dynamic and fluctuate depending on the context, input,
and other factors. While LLM assessments are valuable for scalability, we acknowledge that their
results are not as stable or trustworthy as human assessments in these particular tasks.
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D RESULT SPECIFICS

D.1 HISTORICAL SUMMARIZATION EVALUATION RESULTS

The specific values for our evaluation metrics of the nine topics can be viewed below:

Table 7: The performance of history completeness and history summarization. We utilize the overlap
degree of paper nodes in the graph and citations in the survey to evaluate the completeness of history.
The search phase is a preliminary process of history summarization, we show the search efficiency
on both overall and key citations to indicate the reasoning performance. The history summarization
performance is assessed on the overlap degree of generated content and the target survey. See the
definition of the metrics in Section 3.

Evaluation Object Graph Completeness(%) Search Efficiency(%) Generated Content
Overlap Degree(%)OR OH SER SEH

Topic 1 50.00 65.74 75.71 74.51 42.86
Topic 2 30.00 46.00 63.00 79.00 27.32
Topic 3 70.00 73.00 43.00 36.00 2.27
Topic 4 57.00 38.00 81.00 68.00 24.24
Topic 5 34.00 59.00 77.00 73.00 27.93
Topic 6 21.00 35.00 17.00 19.00 5.00
Topic 7 36.00 50.00 97.00 100.00 35.57
Topic 8 25.00 25.00 79.00 90.00 19.75
Topic 9 31.13 25.40 96.54 100.00 33.33
Average 39.35 46.35 69.92 71.06 24.25

D.2 CASE STUDY ON FUTURE PREDICTION: TOPIC 2 - LLMS FOR RECOMMENDATION

Future Directions Generated by Our HorizonAI
The ratings are 4 for S1, 4 for S2, 4.17 for S3, 3.75 for S4, with an average of 3.98.

1. Enhancing Generative Recommendations with LLMs Description: Building on
the paradigm-shifting survey on generative recommendations, focus on overcoming
efficiency challenges and improving the ethical integration of LLMs in recommender
systems. Technical Roadmap: 1. Develop optimized algorithms to reduce compu-
tational overhead in LLM-based generative recommendations. 2. Explore pruning
and quantization techniques to make LLMs more efficient for real-time applications.
3. Conduct extensive studies on the ethical implications of LLM recommendations,
formulating guidelines for ethical usage.

2. Integrating User Mobility Patterns in Recommendations Description: Leverage
LLMs to better understand and predict user mobility patterns, enhancing recommen-
dation relevance in location-based services. Technical Roadmap: 1. Create datasets
that capture diverse mobility patterns and integrate them with user activity data. 2.
Develop LLM-based models that can learn and predict user mobility patterns to pro-
vide context-aware POI recommendations. 3. Evaluate the effectiveness of mobility-
pattern integrated recommendations in real-world scenarios and refine models accord-
ingly.

3. Cross-Domain Knowledge Transfer in Recommender Systems Description: Ad-
dress the limitations of single-domain pre-training by exploring techniques for cross-
domain knowledge transfer using LLMs. Technical Roadmap: 1. Investigate method-
ologies for transferring knowledge between different domains to enhance recommen-
dation capabilities. 2. Develop frameworks to assess the quality and applicability of
transferred knowledge across domains. 3. Implement and test cross-domain transfer
models in various recommendation contexts to determine best practices.

4. Enhancing Behavioral Simulation for Recommendation Development Descrip-
tion: Refine the agent-based simulation methods introduced by RecAgent to create
even more sophisticated user behavior models. Technical Roadmap: 1. Expand user
and recommender modules to capture a broader range of user behaviors and interac-
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tions. 2. Integrate reinforcement learning techniques to continuously improve simu-
lated user-adaptive responses. 3. Validate simulated environments against real-world
data to ensure the fidelity and applicability of simulations.

5. Ethical and Fair Recommendation Systems Description: Further research into de-
veloping frameworks for ensuring fairness, transparency, and ethical considerations
in LLM-powered recommender systems. Technical Roadmap: 1. Develop metrics
and benchmarks to evaluate fairness and transparency in recommendation systems.
2. Create auditing tools to detect and mitigate biases in LLM-generated recommenda-
tions. 3. Formulate policies and best practices to uphold ethical standards in deploying
LLM-based recommenders.

6. Real-Time Adaptability in LLM-Based Recommender Systems Description: Fo-
cus on making LLM-based recommender systems more adaptive in real-time scenar-
ios to provide timely and context-sensitive recommendations. Technical Roadmap: 1.
Develop techniques for rapid model updates and fine-tuning based on real-time user
feedback and environmental changes. 2. Implement scalable infrastructure to support
real-time adaptability without compromising performance. 3. Test real-time adaptable
systems in diverse recommendation applications and refine models for robustness.

Future Directions Generated by GPT-4o
The ratings are 3.6 for S1, 3.3 for S2, 3.8 for S3, 2.98 for S4, with an average of 3.42.

1. Integrating LLMs with Geographic Information Systems (GIS) for Next-POI
Recommendation Description: Develop sophisticated models that combine the
power of LLMs with GIS to provide highly accurate next-POI recommendations,
leveraging spatial and temporal data. Technical Roadmap: 1. Develop methods to
preprocess and integrate GIS data with LLM inputs, ensuring data coherence and
compatibility. 2. Enhance LLM capabilities to understand geographical nuances and
contexts by fine-tuning on spatial datasets. 3. Create hybrid models that combine
LLM predictions with GIS analytics, implementing validation mechanisms specific to
location-based predictions. 4. Deploy and iteratively improve the recommendation
system using real-world data and feedback loops.

2. Personalization in LLM-Based Recommender Systems Description: Address per-
sonalization challenges by developing LLMs capable of deeply understanding individ-
ual user preferences and historical behavior for tailor-made recommendations. Tech-
nical Roadmap: 1. Aggregate extensive user interaction data and develop pre-training
tasks that reflect typical user behaviors. 2. Investigate transfer learning methods to
adapt general LLMs to specific user profile data, enhancing personalization accuracy.
3. Integrate reinforcement learning techniques to continuously adapt and improve rec-
ommendations based on real-time user feedback. 4. Evaluate and implement privacy-
preserving mechanisms to ensure user data protection while personalizing recommen-
dations.

3. Predicting User Mobility Patterns Using LLMs Description: Leverage LLMs to
predict complex user mobility patterns by integrating various data sources like social
media, transportation logs, and historical movements. Technical Roadmap: 1. Identify
and unify diverse data sources (e.g., social media, GPS logs) to create comprehensive
mobility datasets. 2. Design pre-training tasks focused on mobility pattern recogni-
tion to enhance LLM understanding of movement data. 3. Implement sequence-based
LLM architectures to capture temporal dynamics and predict future movements accu-
rately. 4. Develop evaluation frameworks to assess the predictive performance and
refine models based on predictive accuracy and reliability metrics.

4. Predicting User Mobility Patterns Using LLMs Description: Leverage LLMs to
predict complex user mobility patterns by integrating various data sources like social
media, transportation logs, and historical movements. Technical Roadmap: 1. Identify
and unify diverse data sources (e.g., social media, GPS logs) to create comprehensive
mobility datasets. 2. Design pre-training tasks focused on mobility pattern recogni-
tion to enhance LLM understanding of movement data. 3. Implement sequence-based
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LLM architectures to capture temporal dynamics and predict future movements accu-
rately. 4. Develop evaluation frameworks to assess the predictive performance and
refine models based on predictive accuracy and reliability metrics.

5. Cross-Domain Implications of LLM-Based Recommendation Systems Descrip-
tion: Explore the applicability and implications of LLM-based recommender systems
across various domains (e.g., retail, entertainment, health) to uncover new opportu-
nities and challenges. Technical Roadmap: 1. Conduct domain-specific studies to
understand the unique requirements and constraints of LLM applications in different
sectors. 2. Develop adaptable LLM architectures that can efficiently switch contexts
and deliver domain-specific recommendations. 3. Implement cross-domain trans-
fer learning techniques to enhance LLM generalizability while preserving domain-
specific nuances. 4. Continuously monitor and document the performance, ethical
considerations, and user satisfaction across these diverse applications.
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