
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Calibrating Graph Neural Networks from a Data-centric
Perspective

Anonymous Author(s)∗

ABSTRACT
Graph neural networks (GNNs) have gained popularity in model-
ing various complex networks, e.g., social network and webpage
network. Despite the promising accuracy, the confidences of GNNs
are shown to be miscalibrated, indicating limited awareness of pre-
diction uncertainty and harming the reliability of model decisions.
Existing calibration methods primarily focus on improving GNN
models, e.g., adding regularization during training or introducing
temperature scaling after training. In this paper, we argue that the
miscalibration of GNNsmay stem from the graph data and can be al-
leviated through topology modification. To support this motivation,
we conduct data observations by examining the impacts of decisive
and homophilic edges on calibration performance, where decisive
edges play a critical role in GNN predictions and homophilic edges
connect nodes of the same class. By assigning larger weights to
these edges in the adjacency matrix, we observe an improvement in
calibration performance without sacrificing classification accuracy.
This suggests the potential of a data-centric approach for calibrat-
ing GNNs. Motivated by our observations, we propose Data-centric
Graph Calibration (DCGC), which uses two edge weighting mod-
ules to adjust the input graph for GNN calibration. The first module
learns the weights of decisive edges by parameterizing the adja-
cency matrix and enabling backpropagation of the prediction loss to
edge weights. This emphasizes critical edges that fit the prediction
needs. The second module computes weights for homophilic edges
based on predicted label distributions, assigning larger weights to
edges with stronger homophily. These modifications operate at the
data level and can be easily integrated with temperature scaling-
based methods for better calibration. Experimental results on 8
benchmark datasets demonstrate that DCGC achieves state-of-the-
art calibration performance, with an average relative improvement
of 36.4% in ECE, while maintaining or even slightly improving clas-
sification accuracy. Ablation studies and hyper-parameter analysis
further validate the effectiveness and robustness of our proposed
method DCGC.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Graph Neural Network, Calibration, Data-centric Learning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Anonymous Author(s). 2018. Calibrating Graph Neural Networks from a
Data-centric Perspective. In Proceedings of Make sure to enter the correct
conference title from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 11 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
With the widespread applications of complex networks in various
domains, the task of node classification has attracted significant
attention over the last decade [22, 26, 35, 36, 39]. As a powerful
framework for learning representations of graph-structured data,
graph neural networks (GNNs) have demonstrated promising accu-
racy on various benchmarks of node classification [3, 7, 15].

(a) Temperature scaling-based calibration

(b) Data-centric calibration

Figure 1: Comparison between (a) previous temperature
scaling-based methods [10, 33] and (b) our proposed data-
centric approach. Previous work focuses on tuning tempera-
tures in the final softmax function, while this work focuses
on modifying the input graph instead.

Besides the prediction accuracy, the awareness of prediction un-
certainty is also desired for trustworthy GNNs [17]. For example,
in safety-critical scenarios, GNNs are expected to know when their
predictions are likely to be incorrect and accordingly alert human
users. Recent advances [33] show that GNNs are usually under-
confident in node classification task, i.e., their prediction accuracies
are higher than their confidence of being correct. To calibrate the
confidence of GNNs, existing methods can be divided into two
categories. The in-processing methods [29, 32] jointly train and
calibrate GNNs by incorporating regularizations [32] or Bayesian
modelings [29, 41]. The post-hoc methods [10, 33] are applied on
well-trained GNNs for calibration and focus on adjusting the tem-
peratures in the final softmax operation, known as temperature
scaling [8]. Recent work [10] has shown that the post-hoc methods
can achieve a better trade-off between accuracy and calibration

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

than in-processing ones. Thus, we follow the post-hoc setting and
aim to calibrate well-trained GNNs in this paper.

However, existing calibration methods focus on improving GNN
models, while we argue that the miscalibration of GNNs may come
from the graph data and can be alleviated via topology modification.
For example, we evaluate the expected calibration error (ECE) on
Cora [38] and Photo [28] datasets with five different GNNs, includ-
ing GCN [13], GraphSAGE [9], GAT[30], SGC[34] and TAGCN[2].
We find that the ECEs on Cora (10.25%-18.02%) are always larger
than those on Photo (4.38%-8.27%), indicating that the calibration
performance depends more on the datasets instead of GNN models
in this case. Inspired by this phenomenon, as shown in Fig. 1, we
innovatively propose to calibrate GNNs from a data-centric perspec-
tive: can we froze the well-trained GNNs and modify the graph data
instead for better calibration performance without losing accuracy?

To support the data-centric motivation, we further conduct data
observations by analyzing the impacts of decisive and homophilic
edges on calibration performance. Specifically, decisive edges refer
to the edges critical for the prediction of a GNN; while homophilic
edges refer to the edges whose endpoints belong to the same class.
By simply assigning larger weights to decisive or homophilic edges
in the adjacency matrix, we find that the calibration performance
can be improved without significant drop in classification accuracy,
showing the potential of data-centric calibration. But note that
the definitions of both decisive and homophilic edges in the above
observations involves the ground truth classes of unlabeled nodes,
and thus cannot be directly used in practice.

Inspired by the observations, we propose Data-centric Graph
Calibration (DCGC) with two edge weighting modules to adjust
the input graph. The two modules are respectively inspired by
the decisive and homophilic edges, and processed sequentially: (1)
For weight learning of decisive edges, we parameterize the ad-
jacency matrix and enable the prediction loss to backpropagate
to edge weights. In this way, the edge weights can automatically
fit the need of label prediction, and critical edges will be empha-
sized. (2) For weight computation of homophilic edges, we quantify
the homophily of each edge by predicted label distributions, and
adaptively assign larger weights to edges with stronger homophily.
Moreover, the above modifications of edge weights operate on data
level, and can be easily integrated with various temperature scaling-
based methods [8, 10, 33] for better calibration. Experiments on 8
benchmark datasets show that the proposed DCGC can achieve
state-of-the-art (SOTA) calibration performance with 36.4% aver-
age relative improvement of ECE, and can even slightly improve
the classification accuracy. Ablation studies and hyper-parameter
analysis further demonstrate our effectiveness and robustness.

To summarize, our contributions are three-fold:
•We innovatively propose to calibrate GNNs from a data-centric

perspective, which aims to modify the graph data for better cali-
bration performance without losing accuracy.

•Wepropose a novel calibrationmethod namedDCGC by assign-
ing larger weights to decisive and homophilic edges. The proposed
DCGC operates on data level, and can be easily integrated with
previous temperature scaling-based methods.

• Experiments show that DCGC can effectively calibrate different
GNNs on 8 benchmark datasets, and achieves SOTA calibration
performance with 36.44% average relative improvement of ECE.

2 RELATEDWORK
2.1 Graph Neural Network
During the last decade, various GNN models have been proposed
and show promising results in modeling structure data. As one of
the most popular GNNs, GCN [13] aggregates node information
from neighborhood structures using graph convolutional layers.
GraphSAGE[9] enables inductive representation learning by sam-
pling neighbor nodes and aggregating their features with multiple
pooling techniques. GAT [30] incorporates attention mechanisms
to learn node representations by assigning different importance
weights to neighboring nodes. Simple Graph Convolution (SGC)[34]
simplifies the graph convolution operation by a linear transforma-
tion on the node features. In addition to thementionedmodels, there
are also many GNN variants specialized for graph-level modeling,
such as MoNet [20] and GIN [37]. Most GNNs focus on improving
expressive power [40], and target on accuracy instead of reliability.

2.2 Confidence Calibration of Neural Networks
General calibration methods. Confidence calibration methods
aim to enhance the reliability of predicted probabilities. These meth-
ods can be categorized into in-processing methods and post-hoc
methods. In-processing methods, incorporate calibration directly
into the training process. These methods add specific regulariza-
tion terms to the loss function, encouraging the model to produce
well-calibrated probabilities, such as Focal loss [16] and Maximum
Mean Calibration Error (MMCE) [14]. Additional, there are some in-
processing methods to tackle confidence calibration by estimating
the uncertainty associated with the predictions. These techniques
aim to provide not only accurate probabilities but also reliable es-
timates of uncertainty or confidence intervals. Bayesian neural
networks [5] and Monte Carlo (MC) dropout [6] are examples that
leverage probabilistic models to capture and quantify uncertainty.
In contrast, post-hoc methods focus on adjusting the predicted
probabilities after the initial model training. Techniques like Platt
Scaling [25] and Temperature Scaling (TS) [8] fall into this category.
These methods operate on the output scores of the trained model
and aim to align them with the true probabilities.

Calibrationmethods for GNNs. In recent years, there has been
a growing interest in developing confidence calibration methods
for GNNs. These methods can also be classified into two categories
as mentioned above. For in-processing methods, Graph Calibration
Loss (GCL) [32] achieves calibration by adding a minimal-entropy
regularizer to the KL divergence. Some approaches can calibrate
GNNs by reducing model uncertainty, such as Graph-based Kernel
Dirichlet distribution Estimation (GKDE) [41] and Graph Posterior
Network (GPN) [29]. For post-hoc methods, CaGCN [33] introduces
the confidence propagation mechanism to calibrate GNN using
GCN as a topology-aware post-hoc calibration function. Essentially,
CaGCN calibrates GNN by using GCN to generate node-specific
temperatures. Similar to CaGCN, GATS [10] also employs a post-
hoc function to obtain node-specific temperatures, and show that
post-hoc methods are superior to in-processing ones.

However, existing methods focus on improving GNN models for
calibration, and ignore the possibility of calibrating GNNs from the
data level. To the best of our knowledge, we are the first work to
calibrate GNNs from a data-centric perspective.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Calibrating Graph Neural Networks from a Data-centric Perspective Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3 PRELIMINARY
Definition 1: Semi-supervised Node Classification. Let’s con-
sider a graph G = (V, E,X) with node labels Y, where V repre-
sents the set of nodes, E represents the set of edges, and X rep-
resents the node features. Each node 𝑣 ∈ V is associated with a
feature vector 𝑥𝑣 ∈ X and ground-truth label 𝑦𝑣 ∈ Y = {1, ..., 𝐾},
and each edge (𝑣,𝑢) ∈ E represents the relationship between nodes
𝑣 and 𝑢. Given a limited number of labeled examples as the labeled
set L ⊂ V , the goal of semi-supervised node classification is to
assign class labels to the nodes in the unlabeled setU = V \ L.

Definition 2: GraphNeural Network.A graph neural network
(GNN) is a parametric model that computes representations for each
node by aggregating information from its neighborhood. Formally,
the computation is performed by iterating over multiple layers: in
each layer 𝑙 , the representation ℎ𝑙𝑣 of node 𝑣 will be updated by
combining the representations of 𝑣 and its neighbors in the previous
layer:

ℎ𝑙𝑣 = 𝜓
𝑙 (ℎ𝑙−1𝑣 , ⊕

𝑢∈N(𝑣)
𝜙𝑙 (ℎ𝑙−1𝑣 , ℎ𝑙−1𝑢)), (1)

where N(𝑣) = {𝑢 | (𝑢, 𝑣) ∈ E} is the neighbor set of node 𝑣 , ⊕ de-
notes a differentiable, permutation-invariant function (e.g., sum,
mean or max),𝜓, 𝜙 denote differentiable transformation functions
such as multi-layer perceptrons (MLPs), and ℎ0𝑣 is the initial feature
vector 𝑥𝑣 . For the semi-supervised classification task, the represen-
tation ℎ𝐿𝑣 in the final layer 𝐿 is usually 𝐾-dimensional, and can be
converted into label distribution 𝑧𝑣 by the softmax function:

𝑧𝑣,𝑘 =
exp(ℎ𝐿

𝑣,𝑘
)∑𝐾

𝑘 ′=1 exp(ℎ
𝐿
𝑣,𝑘 ′

)
, ∀𝑘 = 1, 2 . . . 𝐾, (2)

where 𝑧𝑣,𝑘 and ℎ𝐿
𝑣,𝑘

are respectively the 𝑘-th elements of 𝑧𝑣 and ℎ𝐿𝑣 .
More briefly, the label predictions of a GNN can be computed as

𝑍 = softmax(GNNΘ (𝐴,X)) ∈ R |V |×𝐾 , (3)

where 𝐴 ∈ R |V |× |V | is the adjacency matrix, Θ denotes the set
of trainable parameters, and each row of matrix 𝑍 corresponds
the predicted label distribution of a specific node. Then the GNN
will employ a loss function (e.g., cross entropy) to measure the
discrepancy between prediction 𝑍 and true labels on labeled set L,
and update parameters Θ via gradient descent.

Definition 3: Calibration of GNNs and Expected Calibra-
tion Error (ECE). Let 𝑦𝑣 = argmax𝑘 𝑧𝑣,𝑘 be the label prediction
of node 𝑣 , and 𝑝𝑣 = max𝑘 𝑧𝑣,𝑘 be the corresponding confidence.
The GNN is calibrated if its prediction confidence aligns with the
chance being correct. Formally, a GNN is perfectly calibrated [33] if

Pr[𝑦𝑣 = 𝑦𝑣 |𝑝𝑣 = 𝑝] = 𝑝, ∀𝑝 ∈ [0, 1] . (4)

For example, if the GNN makes 100 predictions with confidence
0.9, then 90 of them are correct.

One common metric to quantify the calibration of neural net-
works is the expected calibration error (ECE) [21], which calculates
the average discrepancy between predicted probabilities and ob-
served accuracies in different bins. Formally, we first divide unla-
beled nodes into 𝑁 equally spaced bins based on their confidence
scores, and denote the set of nodes in the 𝑛-th bin as 𝐵𝑛 . Then we

compute the gap between the accuracy and average confidence for
each bin and take the weighted average of all bins as ECE:

Acc𝑛 =
1

|𝐵𝑛 |
∑︁
𝑣∈𝐵𝑛

1(𝑦𝑣 = 𝑦𝑣), Conf𝑛 =
1

|𝐵𝑛 |
∑︁
𝑣∈𝐵𝑛

𝑝𝑣,

ECE =

𝑁∑︁
𝑛=1

|𝐵𝑛 |
|U| |Acc𝑛 − Conf𝑛 |,

(5)

where 1(·) is the indicator function. A lower ECE value indicates
better calibration, i.e., the model’s confidence aligns well with the
accuracy of its predictions. Following previous GNN calibration
methods [33], we set the number of bins 𝑁 = 20 for evaluation in
practice. For brevity, we regard the computation of ECE as a func-
tion ECE(𝑍) operating on prediction 𝑍 in the following sections.

4 OBSERVATION
In this section, we aim to investigate the factors influencing the
calibration of GNNs, and present two key observations to motivate
our method design. Specifically, we respectively explore the impacts
of decisive edges and homophilic edges on calibration performance.

4.1 Setup
We conduct observation experiments1 on 8 datasets with GCN [13]
and GraphSAGE [9]. For each dataset, we first train GNNs in a
standard semi-supervised setting [10], and evaluate the calibra-
tion performance by ECE. Then we adjust the adjacency matrix
by highlighting some key edges, and re-evaluate the calibration
performance without updating the parameters of GNNs. Finally,
we observe how the ECE varies when the adjacency matrix 𝐴
changes to 𝐴′, i.e., comparing ECE(softmax(GNNΘ (𝐴,X))) with
ECE(softmax(GNNΘ (𝐴′,X))).

4.2 Impact of Decisive Edges
During the computation process of a GNN, some edges are more
important than others for the final predictions. For example, in a
citation network, some citation relationship may provide useful
contextual information for a GNN to decide the categories of unla-
beled papers. In this subsection, we aim to investigate whether the
calibration performance can be improved by enlarging the weights
of such decisive edges.

To quantify the importance of each edge, we can calculate the
change in the test loss of the GNNmodel when each edge is removed
from the graph. However, this calculation can be computationally
expensive. Therefore, as an alternative approach, we compute the
gradients of test loss Loss𝑡𝑒𝑠𝑡 with respect to the adjacency matrix
𝐴, and take the absolute value as edge importance:

∇𝐴 = | 𝜕 Loss𝑡𝑒𝑠𝑡
𝜕𝐴

|. (6)

These gradients represent the sensitivity of the model classifica-
tion results to the edges. Larger gradient magnitudes indicate that
the corresponding edges have a stronger impact on the predictions
and can be considered more decisive.

1The dataset descriptions and detailed settings will be presented in Section 6.1.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Table 1: Calibration performance with original/modified graphs on 8 datasets. Here Modified-D and Modified-H represent the
modified graphs based on decisive and homophilic edges, respectively. Decisive/homophilic edges are assigned with larger
weights than unimportant/heterophilic ones. ECE scores (%) are the lower the better.

Model Structure Cora Citeseer Pubmed Photo Computers CoraFull Arxiv Reddit

GCN
Original 14.43±4.52 14.42±4.17 8.41±1.29 7.49±1.14 5.92±0.29 14.31±0.54 8.00±0.15 5.18±0.23

Modified-D 14.01±3.54 13.97±3.24 7.06±1.20 4.29±0.56 4.35±0.18 12.84±0.41 7.10±0.13 3.45±0.19
Modified-H 13.61±3.92 14.35±3.66 8.29±1.01 6.22±1.01 5.07±0.51 13.95±0.51 7.70±0.12 2.37±0.21

GraphSAGE
Original 10.25±5.27 10.82±4.74 7.43±2.23 8.27±2.60 7.22±0.78 13.92±1.21 8.79±1.52 9.67±0.31

Modified-D 8.22±1.61 9.65±3.52 6.85±1.45 4.53±1.00 6.41±0.76 9.95±0.73 8.42±1.39 5.74±0.27
Modified-H 4.22±1.86 5.80±1.08 4.00±0.78 2.00±1.00 2.93±0.95 4.17±1.14 2.02±1.12 4.93±0.24

Next, we will modify the adjacency matrix by assigning larger
weights to decisive edges. Since the gradient values may vary sig-
nificantly, we take the logarithm of the gradients and divide them
by the median to normalize the weight distribution, making it more
comparable across different edges. Formally, the edge weight matrix
is computed as:

∇𝐴𝑤𝑒𝑖𝑔ℎ𝑡 =
log(∇𝐴 + 𝜎)

median(log(∇𝐴 + 𝜎)) , (7)

where 𝜎 is a constant slightly greater than 1. Then we modify
the adjacency matrix as 𝐴′ = 𝐴 ⊙ ∇𝐴𝑤𝑒𝑖𝑔ℎ𝑡 and re-evaluate the
calibration performance as ECE(softmax(GNNΘ (𝐴′,X))), where
⊙ is the element-wise product.

Table 1 shows the calibration performancewith original/modified
graphs on 8 datasets over 10 runs. The results show that enlarging
the weights of decisive edges has a positive impact on calibration
performance for both GCN and GraphSAGE over all 8 datasets.

4.3 Impact of Homophilic Edges
Note that the above decisive edges are model-specific. For the node
classification task, the edges whose endpoints belong to the same
category are also critical for message passing and irrelevant to
GNN models. In this subsection, we aim to investigate whether the
calibration performance can be improved by enlarging the weights
of such homophilic edges.

In this observation, we use ground truth labels to define ho-
mophilic edges and set edge weights heuristically. Specifically, the
weights of homophilic edges are twice as the weights of heterophilic
ones. Similar to the previous subsection, we then modify the ad-
jacency matrix accordingly and re-evaluate the calibration perfor-
mance.

Table 1 shows the calibration performancewith original/modified
graphs on 8 datasets over 10 runs. We can see that enlarging the
weights of homophilic edges also brings a notable improvement for
calibration performance.

4.4 Discussion
It is worth noting that decisive edges and homophilic edges are
quite independent with each other. For instance, given a random
homophilic edge and a random heterophilic one, the probability
that the homophilic edge has a larger importance score as Eq. (6)
is around 0.55 (0.5 if they are fully independent). Therefore, the
above two observations do not overlap.

More importantly, the above modifications of adjacency matrices
will not bring significant drop in classification accuracy when im-
proving the calibration performance. Therefore, these observations
show the potential that we can calibrate a well-trained GNN by
modifying edge weights without changing GNN parameters.

However, theweight computation of both decisive and homophilic
edges involves the ground truth classes of unlabeled nodes, and
thus cannot be directly used in practice. Hence, in next section, we
will propose our method that can identify these two kinds of edges
and enlarge their weights without using ground truth labels.

5 METHODOLOGY
In this section, we propose a data-centric approach for calibrating
GNNs, named Data-Centric Graph Calibration (DCGC). DCGC can
be applied on any well-trained GNNs, and is also compatible with
previous temperature scaling-based methods [8, 10, 33].

5.1 Overview
The overview of our method is shown in Figure 2. Given a well-
trained GNN, we design two modules to adjust the edge weights
of the input graph. The two modules are respectively inspired by
the observations of decisive and homophilic edges, and processed
sequentially in our method. Afterward, temperature scaling-based
methods [8, 10, 33] can be integrated to adjust the sharpness of
label predictions. Note that the parameters of learned GNNs are
frozen in the entire pipeline.

5.2 Weight Learning of Decisive Edges
Inspired by the first observation, we propose to parameterize the
adjacency matrix, and enable the prediction loss to backpropagate
to edge weights. In this way, the edge weights can be automatically
adjusted to fit the need of label prediction and assign larger weights
for critical edges.

Specifically, we first design a trainable module that estimates
the weight of an edge based on the representations of its endpoints.
Formally, for each edge (𝑣,𝑢) ∈ E, we first encode nodes 𝑣 and 𝑢 as
ℎ𝑣 and ℎ𝑢 by the well-trained GNN, and then introduce a 2-layer
MLP for weight computation:

𝑤1
𝑣,𝑢 = max(MLPΩ (concat(hv, hu)), 0), (8)

where Ω denotes the set of parameters in the MLP, and concat(·, ·)
is the concatenation operation. We gather the weights of all edges

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Calibrating Graph Neural Networks from a Data-centric Perspective Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 2: Illustration of our proposed Data-Centric Graph Calibration (DCGC). The entire pipeline of calibrating GNNs with
DCGC is as follows: (a) train the GNN to be calibrated in a standard semi-supervised manner; (b) learn larger weights for
decisive edges and accordingly modify the adjacency matrix; (c) assign larger weights for homophilic edges and accordingly
modify the adjacency matrix; (d) integrate DCGC with any temperature scaling-based method.

and denote the weight matrix as 𝑊 1, a sparse matrix with the
same shape as the adjacency matrix. Then we re-calculate the pre-
dictions of the GNN by the modified adjacency matrix as 𝑍 1 =

softmax(GNNΘ (𝐴 ⊙𝑊 1,X)).
To optimize this edge weighting module, we simply minimize

the cross-entropy loss on the validation set2 by gradient descent:

min
Ω

−
∑︁
𝑣∈D

𝐾∑︁
𝑘=1

1(𝑦𝑣 = 𝑘) log 𝑧1𝑣,𝑘 , (9)

whereD is the validation set, and 𝑧1
𝑣,𝑘

is the corresponding element
in matrix 𝑍 1.

Compared with the observation of decisive edges in Section 4.2,
we use the prediction loss on validation set instead, and dynamically
adjust the edge weights by optimization. By minimizing Eq. (9),
the module learns to assign larger weights to edges critical to the
classification task, and help improve the calibration performance.

5.3 Weight Computation of Homophilic Edges
Inspired by the second observation, we propose to quantify the
homophily of each edge by predicted label distributions, and assign
larger weights to edges with stronger homophily. This module
requires no training process, and is heuristically designed.

Specifically, we first measure the homophily of edge (𝑣,𝑢) by
the Euclidean distance between the label predictions 𝑧1𝑣 and 𝑧1𝑢 , and
then define the edge weight as

𝑤2
𝑣,𝑢 =

(
∥ softmax-TS(𝑧1𝑣, 𝛽) − softmax-TS(𝑧1𝑢 , 𝛽)∥2 + 𝛼

)−1
, (10)

where softmax-TS(·, ·) is the softmax function with temperature
scaling:

softmax(𝑧𝑣, 𝜏) =
exp(𝑧𝑣/𝜏)∑𝐾

𝑘 ′=1 exp(𝑧𝑣,𝑘 ′/𝜏)
. (11)

Here temperature 𝜏 > 0 controls the sharpness of predicted label
distribution: a smaller 𝜏 will push the prediction towards one-hot
vector. Besides 𝛽 , another hyper-parameter 𝛼 ensures that the edge
2Previous GNN calibration methods [10, 33] also use the validation set for parameter
learning.

weightwill not be excessively largewhen the predicted distributions
are too close to each other.

Then we gather the weights of all edges and denote the weight
matrix as𝑊 2, which is also a sparse matrix as𝑊 1. The label predic-
tions can be calculated as 𝑍 2 = softmax(GNNΘ (𝐴 ⊙𝑊 1 ⊙𝑊 2,X)).

Compared with the observation of homophilic edges in Sec-
tion 4.3, we use the predicted label distributions to define ho-
mophilic edges instead, and design a smooth function as in Eq. (10)
to compute edge weights. The module heuristically assigns larger
weights to edges with similar labels, and help improve the calibra-
tion performance.

Algorithm 1 Data-Centric Graph Calibration (DCGC)

Require: Graph G = (V, E,X), well-trained GNN model GNNΘ,
initialized parameter Ω, hyper-parameters 𝛼, 𝛽 ;

Ensure: Learned parameter Ω and prediction 𝑍 2;
1: Encode every node 𝑣 as ℎ𝑣 by GNNΘ (𝐴,X);
2: while not converge do
3: Compute each element𝑤1

𝑣,𝑢 of edge weight matrix𝑊 1 with
parameter Ω as Eq. (8);

4: Compute label prediction𝑍 1 = softmax(GNNΘ (𝐴⊙𝑊 1,X));

5: Backpropagate Ω by minimizing the loss as Eq. (9);
6: end while
7: Compute each element 𝑤2

𝑣,𝑢 of edge weight matrix𝑊 2 with
prediction 𝑍 1 as Eq. (10);

8: Encode every node 𝑣 as ℎ2𝑣 by GNNΘ (𝐴 ⊙𝑊 1 ⊙𝑊 2,X);
9: Employ any temperature scaling-based methods to assign tem-

perature 𝜏𝑣 for each node 𝑣 ;
10: Compute the final label distribution prediction 𝑧2𝑣 for each node

𝑣 as 𝑧2𝑣 = softmax(ℎ2𝑣, 𝜏𝑣);

5.4 Integration with Temperature Scaling
The above modifications of edge weights operate on data level, and
can be easily integrated with previous temperature scaling-based
methods [8, 10, 33] for better calibration.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Specifically, given the weight matrices𝑊 1,𝑊 2, we denote the
representation of node 𝑣 encoded by GNNΘ (𝐴 ⊙𝑊 1 ⊙𝑊 2,X) as
ℎ2𝑣 . Then we rewrite the computation of prediction 𝑍 2 by defin-
ing the prediction of node 𝑣 as 𝑧2𝑣 = softmax(ℎ2𝑣, 𝜏𝑣), where 𝜏𝑣 is
the temperature. In practice, the temperatures can be global [8],
class-specific [8] or node-specific [10, 33]. We will evaluate the
integration with different temperature scaling methods in our ex-
periments.

We present the pseudo code of DCGC in Algorithm 1. Finally, we
take 𝑍 2 as algorithm output and compute ECE(𝑍 2) for evaluation.
Note that we only model edge weights for existing edges, and thus
enjoy linear computational complexity. We will demonstrate the
efficiency of our algorithm in Section 6.4.

6 EXPERIMENT
In this section, we conduct experimental evaluation to answer the
following research questions (RQs):RQ1:How does DCGC perform
compared with state-of-the-art GNN calibration algorithms? RQ2:
How does the two weighting modules contribute to the overall
performance?RQ3:How about the efficiency of DCGC?RQ4:How
about the hyper-parameter sensitivity of DCGC?

6.1 Experimental Settings
6.1.1 Dataset. We consider 8 popular graph datasets from vari-
ous domains to evaluate the effectiveness of our proposed DCGC:
Cora [38], Citeseer [38], Pubmed [38], CoraFull [1], Photo [28],
Computers [28], Arxiv [11] and Reddit [9]. Cora, Citeseer, Pubmed
are three well-known citation network datasets and CoraFull is
the extended version of Cora. Photo and Computers are subsets
of the Amazon co-purchase graph dataset, where nodes represent
different Amazon goods and edges indicate frequent co-purchases
between goods. Arxiv dataset comes from OGB [11], and is an arxiv
citation network extracted from theMicrosoft Academic Graph [31].
Reddit dataset is a large-scale graph where nodes represent posts,
and edges represent that the same user comments on both. Statistics
of these datasets are listed in Appendix A. Following the partition
settings of GATS[10], we use 10% random nodes as the training set,
5% random nodes as the validation set, and the other 85% nodes as
the test set for all 8 datasets.

6.1.2 GNNs to be Calibrated. In our experiments, we train GCN [13]
and GraphSAGE [9] on each dataset as the GNNs to be calibrated.
For GCN, we use a 2-layer architecture and 16-dimensional hidden
size. For GraphSAGE, we adopt the default average aggregation
variant with 2-layer architecture and 16-dimensional hidden size.
Model parameters of GCN and GraphSAGE are fixed after training.

6.1.3 Baselines. To prove the effectiveness and compatibility of
DCGC, we consider four temperature scaling-based baselines for
comparison and integration: Temperature Scaling (TS) [8], Vector
Scaling (VS) [8], CaGCN [33] and Graph Attention Temperature
Scaling (GATS) [10]. TS and VS are calibrationmethods designed for
general classification task, while CaGCN and GATS are specialized
for GNNs. Specifically, TS employs a global temperature parameter
in the final softmax function. VS learns class-specific temperatures
for calibration. CaGCN calibrates GNNs by employing GCN to
generate node-specific temperatures. Similar to CaGCN, GATS also

learns node-specific temperatures based on a heuristic formula.
We integrate our DCGC with each of the four scaling methods,
respectively. All calibration methods are trained on the validation
set, including our DCGC. The implementation of GATS requires
the entire graph, and thus is not compatible with sampling or batch
processing of large-scale graphs. Hence we ignore the results of
GATS on Reddit dataset.

6.1.4 Ablated Variants. We consider two ablated variants of DCGC
for comparison: DCGCw/o D indicates that the weighting module
of decisive edges is removed; while DCGCw/o H indicates that the
weighting module of homophilic edges is removed.

6.1.5 Evaluation Metrics. Following previous calibration meth-
ods [33], we adopt Expected Calibration Error (ECE) with 20 bins as
the metric for calibration. Besides, since the modification of graph
structure may influence the predicted label 𝑦𝑣 , we also adopt clas-
sification accuracy as another evaluation metric. In addition, we
train GNNs with five random dataset divisions, and conduct five
runs of calibration for each well-trained GNN, i.e., a total of 25 runs
for each pair of dataset and GNN. We report both the average and
standard deviation.

6.1.6 Implementation Details. For hyper-parameters in DCGC, we
tune 𝛼 ∈ {0.1, 0.3, 0.5, 1} and 𝛽 ∈ {0.1, 0.2, 1, 10} based on the
performance on validation set. For the MLP in the decisive edge
weighting module, we adopt 2-layer architecture and 2× input
dimension as hidden size, i.e., 4× the number of classes. We fix
weight decay as 0.005 and learning rate as 0.01, and train calibration
methods for at most 1000 epochs using early stop of 200 patience.

6.2 Main Results (RQ1)
The results of calibration and accuracy are shown in Table 2 and 3,
respectively, and we have the following observations:

(1) Before evaluating the calibration performance, we first show
that our data-centric approach will not harm the classification
accuracy. As shown in Table 2, compared with uncalibrated GCN
and GraphSAGE, DCGC and its variants have competitive or even
better prediction accuracy. The average relative improvement of
DCGC over GCN/GraphSAGE are 0.51%/0.32%, respectively. Thus,
instead of sacrificing precision as a trade-off, our proposed DCGC
can bring accuracy gains as a by-product.

(2) By integratingwith temperature scaling-basedmethods, DCGC
can achieve SOTA calibration performance on all datasets and
GNNs. In terms of ECE, the average relative improvement over
TS, VS, CaGCN and GATS are respectively 39.8%, 38.6%, 34.4% and
33.0%. In fact, even when equipped with the vanilla TS, DCGC+TS
is already better than SOTA GNN calibration methods, i.e., CaGCN
and GATS. This observation validates the effectiveness and com-
patibility of our proposed data-centric calibration.

(3) For some datasets such as Pubmed, calibration methods spe-
cialized for GNNs (CaGCN and GATS) do not show significant
advantages over graph-irrelevant ones (TS and VS). Thus, only uti-
lizing graph information in modeling node-specific temperatures
may not make full use of the structure data. In contrast, our DCGC
calibrates GNN predictions by modifying the input graph, and thus
has stronger impact on the calibration performance.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Calibrating Graph Neural Networks from a Data-centric Perspective Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 2: The classification accuracy (in percentage) of uncalibrated GNNs and their calibrated versions based on DCGC. Note
that temperature scaling tricks will not affect the accuracy. The accuracy is the higher the better.

Model Method Cora Citeseer Pubmed Photo Computers CoraFull Arxiv Reddit

GCN

Original 82.84±1.64 72.40±1.14 87.23±0.24 92.50±0.55 87.88±0.45 62.04±0.58 63.94±0.57 90.34±0.38
DCGCw/o D 82.80±1.73 72.38±0.81 87.59±0.38 92.55±0.46 87.43±0.33 61.97±0.60 64.14±0.25 90.41±0.33
DCGCw/o H 82.73±1.54 72.72±1.26 87.63±0.40 93.34±0.29 89.07±0.53 63.12±0.58 64.05±0.16 90.36±0.27

DCGC 82.62±1.72 72.40±0.94 87.72±0.48 93.39±0.38 88.80±0.42 63.09±0.60 64.07±0.12 90.37±0.27

GraphSAGE

Original 83.49±0.57 70.93±0.68 86.58±0.36 92.29±0.39 87.09±0.83 60.02±0.25 61.79±0.35 90.21±0.12
DCGCw/o D 83.65±0.72 71.09±0.74 86.85±0.47 92.30±0.42 87.11±0.87 60.05±0.25 61.66±0.23 90.29±0.16
DCGCw/o H 83.66±0.50 71.89±0.52 86.98±0.54 92.43±0.24 87.70±0.76 60.32±0.54 61.50±0.20 90.39±0.08

DCGC 83.78±0.60 71.04±0.61 87.24±0.69 92.51±0.31 87.74±0.76 60.28±0.24 61.46±0.17 90.40±0.09

Table 3: The calibration results of different methods on eight datasets. ECE scores (%) are the lower the better.

Model Method Cora Citeseer Pubmed Photo Computers CoraFull Arxiv Reddit

GCN

Original 14.43±4.52 14.42±4.17 8.41±1.29 7.49±1.14 5.92±0.29 14.31±0.54 8.00±0.15 5.18±0.23
TS 6.60±1.83 10.22±1.92 4.43±0.58 3.16±1.02 3.92±1.56 11.00±0.78 6.39±0.31 5.12±0.22

DCGC+TS 4.89±1.41 8.13±2.36 2.18±0.71 1.72±0.62 1.93±0.50 5.63±0.78 4.26±0.37 4.17±0.32
VS 8.26±1.80 10.86±1.38 5.02±0.68 4.54±0.96 4.46±1.31 13.68±0.37 7.68±0.21 4.36±0.05

DCGC+VS 6.04±1.67 8.86±1.69 2.50±0.85 1.77±0.49 1.67±0.70 8.32±0.85 4.60±0.27 3.84±0.27
CaGCN 6.88±1.29 8.41±1.87 3.52±0.56 1.75±0.72 2.94±3.33 7.09±0.58 3.87±0.39 2.92±0.14

DCGC+CaGCN 5.42±1.25 6.68±1.85 1.68±0.54 1.11±0.24 2.55±2.84 4.52±0.47 2.86±0.37 1.23±0.26
GATS 5.27±1.86 9.09±2.03 3.69±0.51 1.41±0.41 1.61±0.85 9.07±0.61 4.42±0.31 -

DCGC+GATS 4.23±1.24 7.17±2.30 1.66±0.47 1.30±0.26 1.58±0.41 4.21±0.56 3.87±0.33 -

GraphSAGE

Original 10.25±5.27 10.82±4.74 7.43±2.23 8.27±2.60 7.22±0.78 13.92±1.21 8.79±1.52 9.67±0.31
TS 9.68±3.83 9.42±1.68 5.15±0.80 2.76±0.79 2.85±0.69 10.54±1.33 7.77±0.99 9.05±0.20

DCGC+TS 6.03±1.19 5.00±0.68 3.54±1.06 1.45±0.50 2.26±0.66 5.39±1.25 4.14±1.21 4.04±0.47
VS 9.91±3.75 9.18±3.19 5.14±0.35 4.11±0.89 4.25±0.68 14.47±1.66 8.55±1.18 9.87±0.26

DCGC+VS 5.14±0.72 5.91±0.76 2.19±0.63 1.62±0.71 2.14±0.55 8.28±1.63 5.10±1.36 8.16±0.36
CaGCN 9.49±2.29 8.67±1.64 4.63±1.74 2.05±0.63 2.38±0.36 6.91±1.35 4.13±1.22 5.02±0.22

DCGC+CaGCN 5.26±1.35 5.38±3.10 2.30±0.69 1.31±0.36 2.13±0.43 4.29±0.84 3.83±1.15 2.15±0.17
GATS 9.68±3.38 8.86±2.05 5.04±1.33 2.44±0.77 2.76±0.58 8.69±1.27 5.96±1.21 -

DCGC+GATS 6.99±1.61 6.18±1.73 3.70±1.25 1.43±0.40 2.31±0.67 4.50±0.99 2.92±1.16 -

6.3 Ablation Study (RQ2)
In this subsection, we will conduct ablation study to discuss the im-
pact of two weighting modules in DCGC. The two ablated variants,
i.e., DCGCw/o D and DCGCw/o H, respectively remove the modeling
of decisive and homophilic edges. The accuracy and calibration
performance of ablated models are shown in Table 2 and 4. From
the results, we can see that:

(1) The full model DCGC has better calibration performance than
the two ablated variants with 22.03% and 15.29% average relative im-
provement of ECE. Hence, both weighting modules of decisive and
homophilic edges contribute to the final calibration performance
of DCGC, which validates the effectiveness of our design.

(2) Compared with uncalibrated GNNs, both DCGCw/o D and
DCGCw/o H have competitive or even better classification accu-
racy. The two ablated variants can also improve the calibration
performance over temperature scaling baselines. Therefore, the
two weighting modules can be deployed separately for calibrating
GNNs without sacrificing prediction accuracy.

(3) The decisive edge weighting module is more important the
homophilic one. Compared with DCGCw/o D, DCGCw/o H has 0.44%

and 7.36% relative improvement in accuracy and calibration. A
possible reason is that the decisive edgeweightingmodule is learned
via optimization instead of heuristically designed. We will explore
more powerful edge weighting methods for homophilic edges in
the future work.

(a) CoraFull (b) Arxiv

Figure 3: Training time comparison between different meth-
ods on CoraFull and Arxiv datasets.

6.4 Efficiency Analysis (RQ3)
To demonstrate the efficiency of DCGC,we present the training time
of DCGC and other methods on CoraFull and Arxiv datasets. We

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 4: The calibration results of different model variants on eight datasets. ECE scores are the lower the better.

Model Method Cora Citeseer Pubmed Photo Computers CoraFull Arxiv Reddit

GCN

DCGCw/o D+TS 5.27±1.53 9.90±1.95 3.49±0.58 2.11±0.61 2.49±0.68 9.70±0.52 5.81±0.29 4.94±0.36
DCGCw/o H+TS 5.26±1.78 8.32±2.35 2.47±0.99 1.76±0.44 2.05±0.88 6.85±1.14 5.49±0.36 4.67±0.47

DCGC+TS 4.89±1.41 8.13±2.36 2.18±0.71 1.72±0.62 1.93±0.50 5.63±0.78 4.26±0.27 4.17±0.32
DCGCw/o D+VS 7.32±1.59 10.50±1.36 4.16±0.60 2.62±0.79 2.36±0.59 12.51±0.49 6.51±0.37 4.21±0.14
DCGCw/o H+VS 6.61±1.89 9.16±1.49 2.95±1.09 1.84±0.55 2.03±0.96 9.57±0.72 6.04±0.33 3.92±0.28

DCGC+VS 6.04±1.67 8.86±1.69 2.50±0.85 1.77±0.49 1.67±0.70 8.32±0.85 4.60±0.27 3.84±0.27
DCGCw/o D+CaGCN 6.00±1.34 8.26±1.70 2.48±0.51 1.31±0.25 2.55±3.18 6.72±0.41 3.42±0.23 2.53±0.34
DCGCw/o H+GaGCN 5.72±1.70 6.77±2.05 2.08±0.87 1.16±0.25 2.62±2.61 4.68±0.82 3.28±0.29 1.86±0.25

DCGC+CaGCN 5.42±1.25 6.68±1.85 1.68±0.54 1.11±0.24 2.55±2.84 4.52±0.47 2.86±0.27 1.23±0.26
DCGCw/o D+GATS 4.14±1.43 8.64±2.25 2.47±0.34 1.43±0.11 1.66±0.25 7.90±0.43 4.32±0.19 -
DCGCw/o H+GATS 4.62±1.32 7.38±2.42 2.05±0.89 1.36±0.47 1.72±0.62 5.00±0.92 3.99±0.29 -

DCGC+GATS 4.23±1.24 7.17±2.30 1.66±0.47 1.30±0.26 1.58±0.41 4.21±0.56 3.87±0.33 -

GraphSAGE

DCGCw/o D+TS 6.29±0.81 6.98±2.35 3.68±1.25 2.73±0.75 2.84±0.68 7.23±1.38 7.76±0.99 5.05±0.24
DCGCw/o H+TS 8.20±3.90 8.14±2.06 4.71±1.60 1.50±0.48 2.33±0.66 8.01±2.74 4.10±1.18 4.18±0.32

DCGC+TS 6.03±1.19 5.00±0.68 3.54±1.06 1.45±0.50 2.26±0.66 5.39±1.25 4.14±1.21 4.04±0.47
DCGCw/o D+VS 5.82±0.87 6.11±3.37 2.29±0.14 4.06±0.83 4.19±0.64 8.50±1.03 8.51±1.17 9.10±0.22
DCGCw/o H+VS 8.87±3.78 8.82±3.12 4.70±1.82 1.69±0.65 2.19±0.55 9.73±2.35 5.12±1.35 8.85±0.28

DCGC+VS 5.14±0.72 5.91±0.76 2.19±0.63 1.62±0.71 2.14±0.55 8.28±1.63 5.10±1.36 8.16±0.36
DCGCw/o D+CaGCN 5.46±0.97 6.74±1.89 2.33±0.69 2.01±0.63 2.37±0.39 6.00±2.45 4.00±1.26 4.85±0.25
DCGCw/o H+GaGCN 6.65±2.10 6.91±1.99 4.16±1.60 1.36±0.38 2.18±0.49 7.17±1.67 3.89±1.17 2.89±0.27

DCGC+CaGCN 5.26±1.35 5.38±3.10 2.30±0.69 1.31±0.36 2.13±0.43 4.29±0.84 3.83±1.15 2.15±0.17
DCGCw/o D+GATS 6.14±0.91 6.01±1.35 3.90±1.26 2.16±0.71 2.58±0.45 6.78±1.51 6.00±1.20 -
DCGCw/o H+GATS 7.55±3.20 7.05±1.05 4.39±1.55 1.40±0.37 2.39±0.68 7.52±2.55 2.86±1.12 -

DCGC+GATS 6.99±1.61 6.18±1.73 3.70±1.25 1.43±0.40 2.31±0.67 4.50±0.99 2.92±1.16 -

can see that compared with the semi-supervised training of GCN,
all three calibration methods are very efficient. In particular, the
training time of DCGC (excluding the integration of temperature
scaling) is the least. Thus, when equipping DCGC with temperature
scaling-based methods for calibration, the computational overhead
brought by DCGC is very limited, making DCGC applicable for
large-scale graphs.

(a) GCN on Cora (b) GraphSAGE on Cora

(c) GCN on Photo (d) GraphSAGE on Photo

Figure 4: Hyper-parameter sensitivity of 𝛼 and 𝛽 in Eq. (10)
on Cora and Photo. For legibility, we use 1/𝛽 as the axis.

6.5 Hyper-parameter Sensitivity (RQ4)
In this subsection, we explore the influence of hyper-parameters
on calibration performance. Fixed hyper-parameters of DCGC have
been introduced in Section 6.1.6. Besides, DCGC has two key hyper-
parameters in computing the weights of homophilic edges: 𝛼 ∈
{0.1, 0.3, 0.5, 1} and 𝛽 ∈ {0.1, 0.2, 1, 10}. Fig. 4 presents the calibra-
tion performance of DCGC under different hyper-parameters 𝛼
and 𝛽 on Cora and Photo datasets. We can see that a larger 𝛼 is
preferred in all four cases, and the calibration performance is not
very sensitive to the change of 𝛽 at this time. This suggests the
robustness of DCGC under proper hyper-parameter settings.

7 CONCLUSION
In this paper, we propose a novel data-centric perspective for the
calibration of graph neural networks, which aims to modify the
graph structure for better calibration performance without sac-
rificing prediction accuracy. By analyzing the impact of decisive
and homophilic edges on calibration, we design DCGC with two
corresponding edge weighting modules that can adaptively assign
larger weights to such important edges. The proposed DCGC is
also highly compatible with existing temperature scaling-based
methods. Experimental results on eight datasets demonstrate the
effectiveness and efficiency of DCGC.

For future work, we will explore the potential of DCGC on graph-
level tasks as well as other trustworthy graph learning scenarios. It
is also possible to replace the heuristic design of homophilic edge
weighting module with more powerful learning algorithms.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Calibrating Graph Neural Networks from a Data-centric Perspective Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Aleksandar Bojchevski and Stephan Günnemann. 2018. Deep Gaussian Embed-

ding of Graphs: Unsupervised Inductive Learning via Ranking. In International
Conference on Learning Representations.

[2] Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya
Kar. 2017. Topology adaptive graph convolutional networks. arXiv preprint
arXiv:1710.10370 (2017).

[3] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent,
Yoshua Bengio, and Xavier Bresson. 2020. Benchmarking graph neural networks.
arXiv preprint arXiv:2003.00982 (2020).

[4] Matthias Fey and Jan Eric Lenssen. 2019. Fast graph representation learning
with PyTorch Geometric. arXiv preprint arXiv:1903.02428 (2019).

[5] Meire Fortunato, Charles Blundell, and Oriol Vinyals. 2017. Bayesian Recurrent
Neural Networks. arXiv e-prints (2017), arXiv–1704.

[6] Yarin Gal and Zoubin Ghahramani. 2016. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In International Conference on
Machine Learning. PMLR, 1050–1059.

[7] Shurui Gui, Xiner Li, Limei Wang, and Shuiwang Ji. 2022. Good: A graph out-of-
distribution benchmark. Advances in Neural Information Processing Systems 35
(2022), 2059–2073.

[8] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration
of modern neural networks. In International Conference on Machine Learning.
PMLR, 1321–1330.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[10] Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, and Daniel Cremers.
2022. What Makes Graph Neural Networks Miscalibrated? Advances in Neural
Information Processing Systems 35 (2022), 13775–13786.

[11] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[12] DP Kingma. 2015. Adam: a method for stochastic optimization. In International
Conference on Learning Representations.

[13] Thomas N Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[14] Aviral Kumar, Sunita Sarawagi, and Ujjwal Jain. 2018. Trainable calibration
measures for neural networks from kernel mean embeddings. In International
Conference on Machine Learning. PMLR, 2805–2814.

[15] Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar
Bhalerao, and Ser Nam Lim. 2021. Large scale learning on non-homophilous
graphs: New benchmarks and strong simple methods. Advances in Neural Infor-
mation Processing Systems 34 (2021), 20887–20902.

[16] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision. 2980–2988.

[17] Yang Liu, Xiang Ao, Fuli Feng, and Qing He. 2022. UD-GNN: Uncertainty-aware
Debiased Training on Semi-Homophilous Graphs. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1131–1140.

[18] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[19] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval 3 (2000), 127–163.

[20] Federico Monti, Davide Boscaini, JonathanMasci, Emanuele Rodola, Jan Svoboda,
andMichaelMBronstein. 2017. Geometric deep learning on graphs andmanifolds
using mixture model cnns. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 5115–5124.

[21] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. 2015. Obtain-
ing well calibrated probabilities using bayesian binning. In Proceedings of the
AAAI conference on artificial intelligence, Vol. 29.

[22] Kenta Oono and Taiji Suzuki. 2020. Graph Neural Networks Exponentially Lose
Expressive Power for Node Classification. In International Conference on Learning
Representations.

[23] Adam Paszke, SamGross, FranciscoMassa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[24] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[25] John Platt et al. 1999. Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods. Advances in large margin classifiers

10, 3 (1999), 61–74.
[26] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. 2020. DropEdge:

Towards Deep Graph Convolutional Networks on Node Classification. (2020).
[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[28] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. 2018. Pitfalls of Graph Neural Network Evaluation. arXiv e-prints
(2018), arXiv–1811.

[29] Maximilian Stadler, Bertrand Charpentier, Simon Geisler, Daniel Zügner, and
Stephan Günnemann. 2021. Graph posterior network: Bayesian predictive uncer-
tainty for node classification. Advances in Neural Information Processing Systems
34 (2021), 18033–18048.

[30] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al. 2018. Graph attention networks. (2018).

[31] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396–413.

[32] Min Wang, Hao Yang, and Qing Cheng. 2022. GCL: Graph Calibration Loss for
Trustworthy Graph Neural Network. In Proceedings of the 30th ACM International
Conference on Multimedia. 988–996.

[33] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. 2021. Be confident!
towards trustworthy graph neural networks via confidence calibration. Advances
in Neural Information Processing Systems 34 (2021), 23768–23779.

[34] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
Conference on Machine Learning. PMLR, 6861–6871.

[35] Jun Wu, Jingrui He, and Jiejun Xu. 2019. Net: Degree-specific graph neural
networks for node and graph classification. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 406–
415.

[36] Shunxin Xiao, Shiping Wang, Yuanfei Dai, and Wenzhong Guo. 2022. Graph
neural networks in node classification: survey and evaluation. Machine Vision
and Applications 33 (2022), 1–19.

[37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In International Conference on Learning Representa-
tions.

[38] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International Conference on Ma-
chine Learning. PMLR, 40–48.

[39] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In Proceedings of the 24th ACM SIGKDD international
conference on knowledge discovery & data mining. 974–983.

[40] Bingxu Zhang, Changjun Fan, Shixuan Liu, Kuihua Huang, Xiang Zhao, Jincai
Huang, and Zhong Liu. 2023. The Expressive Power of Graph Neural Networks:
A Survey. arXiv preprint arXiv:2308.08235 (2023).

[41] Xujiang Zhao, Feng Chen, Shu Hu, and Jin-Hee Cho. 2020. Uncertainty aware
semi-supervised learning on graph data. Advances in Neural Information Process-
ing Systems 33 (2020), 12827–12836.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 5: Dataset statistics of eight graph datasets.

Cora Citeseer Pubmed Photo Computers CoraFull Arxiv Reddit

Nodes 2,708 3,327 19,717 7,650 13,752 19,793 169,343 232,965
Edges 10,556 9,104 88,648 238,162 491,722 126,842 1,166,243 114,615,892

Features 1,433 3,703 500 745 767 8,710 128 602
Classes 7 6 3 8 10 70 40 41

A DATASET STATISTICS
We summarize the dataset statistics in Table 5 and the detailed
dataset descriptions are as follows:

• Cora, Citeseer and Pubmed: These datasets are con-
structed by three text classification datasets [27]. Each node
feature vector is the bag-of-words representation of a doc-
ument, and each edge indicates a citation relationship be-
tween two documents. The task is to classify each document
into the correct class.

• Photo and Computers: Both datasets are parts of the
Amazon co-purchase graph [18]. Each node feature vector
is the bag-of-words encoded product reviews, and each edge
indicates a co-purchase relationship between two goods.

• CoraFull: Cora dataset is constructed on a small subset of
the original citation dataset [19], while CoraFull addition-
ally extracts the entire network.

• Arxiv: This dataset comes from OGB [11], and is an arxiv
citation network extracted from the Microsoft Academic
Graph [31]. Each node can be mapped to a research paper.

• Reddit: Reddit is a large online discussion forum where
users can post and comment in different communities. Each
node feature vector is 300-dimensional GloVe word vec-
tors [24] of a post, and each edge indicates that the same
user comments on both posts. The task is to classify which
community different Reddit posts belong to.

B MORE EXPERIMENTAL SETTING DETAILS
B.1 Optimizer
We choose Adam optimizer [12] with fixed learning rate as 0.01 to
train GNNs and calibration models. For GNNs, we follow PyTorch
Geometric (PyG) [4] by setting weight decay as 0.005 on the first
layer and 0 on the second layer. For calibration methods, we fix
weight decay as 0.005.

B.2 Implementation Details
We implement GNNs and calibrationmethods based on PyTorch [23]
and PyTorch Geometric (PyG) [4]. For all experiments, we employ
GeForce RTX 2080 as our GPU device.

C ADDITIONAL EXPERIMENTS
Here we present extra figures of the efficiency analysis (RQ3) and
hyper-parameter analysis (RQ4). These figures show similar pat-
terns with those in Section 6.

C.1 Training Time on Other Datasets

(a) Cora (b) Citeseer
Figure 5: Training time on Cora and Citeseer datasets.

(a) Pubmed (b) Photo
Figure 6: Training time on Pubmed and Photo datasets.

Figure 7: Training time on Computers dataset.

C.2 Hyper-parameter Sensitivity on Other
Datasets with GCN

(a) GCN on Citeseer (b) GCN on Pubmed

Figure 8: Hyper-parameter sensitivity of 𝛼 and 𝛽 on Citeseer
and Pubmed datasets.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Calibrating Graph Neural Networks from a Data-centric Perspective Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

(a) GCN on Computers (b) GCN on CoraFull

Figure 9: Hyper-parameter sensitivity of 𝛼 and 𝛽 on Comput-
ers and CoraFull datasets.

(a) GCN on Arxiv (b) GCN on Reddit

Figure 10: Hyper-parameter sensitivity of 𝛼 and 𝛽 on Arxiv
and Reddit datasets.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

11

	Abstract
	1 Introduction
	2 Related work
	2.1 Graph Neural Network
	2.2 Confidence Calibration of Neural Networks

	3 PRELIMINARY
	4 Observation
	4.1 Setup
	4.2 Impact of Decisive Edges
	4.3 Impact of Homophilic Edges
	4.4 Discussion

	5 Methodology
	5.1 Overview
	5.2 Weight Learning of Decisive Edges
	5.3 Weight Computation of Homophilic Edges
	5.4 Integration with Temperature Scaling

	6 Experiment
	6.1 Experimental Settings
	6.2 Main Results (RQ1)
	6.3 Ablation Study (RQ2)
	6.4 Efficiency Analysis (RQ3)
	6.5 Hyper-parameter Sensitivity (RQ4)

	7 Conclusion
	References
	A Dataset Statistics
	B More Experimental Setting Details
	B.1 Optimizer
	B.2 Implementation Details

	C Additional Experiments
	C.1 Training Time on Other Datasets
	C.2 Hyper-parameter Sensitivity on Other Datasets with GCN

