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Abstract

In recent years, large language models (LLMs)001
have made remarkable advancements, yet hal-002
lucination, where models produce inaccurate003
or non-factual statements, remains a significant004
challenge for real-world deployment. Although005
current classification-based methods, such as006
SAPLMA, are highly efficient in mitigating007
hallucinations, they struggle when non-factual008
information arises in the early or mid-sequence009
of outputs, reducing their reliability. To ad-010
dress these issues, we propose Hallucination011
Detection-Neural Differential Equations (HD-012
NDEs), a novel method that systematically as-013
sesses the truthfulness of statements by captur-014
ing the full dynamics of LLMs within their015
latent space. Our approaches apply neural016
differential equations (Neural DEs) to model017
the dynamic system in the latent space of018
LLMs. Then, the sequence in the latent space019
is mapped to the classification space for truth020
assessment. The extensive experiments across021
five datasets and six widely used LLMs demon-022
strate the effectiveness of HD-NDEs, espe-023
cially, achieving over 14% improvement in024
AUC-ROC on the True-False dataset compared025
to state-of-the-art techniques.026

1 Introduction027

Hallucination has been widely recognized as a028

significant challenge in large language models029

(LLMs), as highlighted in various studies applica-030

tions (Li et al., 2023a; Min et al., 2023; Geng et al.,031

2023). Efforts to mitigate this issue have led to the032

development of hallucination detection techniques,033

which are broadly categorized into evidence-based034

and evidence-free approaches. Evidence-based035

methods (Wang et al., 2023; Wei et al., 2024) gen-036

erally involve retrieving relevant information from037

external sources to verify whether inconsistencies038

exist between the generated content and the re-039

trieved evidence. Nevertheless, this retrieval and040

verification process is computationally intensive041

Figure 1: 1D PCA projection of hidden layer embed-
dings for each token in Ex.1 and Ex.2. Both examples
use the same question with different answers. In the hid-
den state space, the embeddings of the earlier tokens are
identical until the tokens begin to differ. The final few
tokens, being the same, result in minimal differences in
the hidden state activations.

and time-consuming, making it impractical for 042

high-throughput applications in routine use. In 043

contrast, evidence-free methods (Chen et al., 2024; 044

Duan et al., 2023; Geng et al., 2023) primarily 045

utilize the inherent characteristics of LLMs and 046

semantic features to identify potential hallucina- 047

tions. These methods can be further categorized 048

into logit-based, consistency-based, classification- 049

based approaches, and so on. For instance, logit- 050

based methods (Huang et al., 2023) estimate the 051

overall uncertainty of a sentence by analyzing logit- 052

based uncertainty at the token level. Alternatively, 053

consistency-based methods (Manakul et al., 2023) 054

assess the consistency of model outputs, based on 055

the premise that hallucination tends to increase vari- 056

ability in the generated responses. 057

Furthermore, classification-based methods have 058

proposed using a model’s internal states to probe 059

its confidence in factual vs. non-factual sentences. 060

Specifically, a simple feed-forward neural network 061

classifier can be trained on the activations of the 062
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final token’s last-layer hidden state to predict the re-063

liability of the model’s output. This type of method064

has demonstrated significant effectiveness across065

various model architectures, as validated by mul-066

tiple studies (Azaria and Mitchell, 2023; Li et al.,067

2024; Kossen et al., 2024; Su et al., 2024). How-068

ever, the classification-based method is still in its069

early stages and remains inadequate for handling070

cases where the final token of a statement fails to071

capture the reliability of the entire sequence. It of-072

ten struggles when non-factual tokens are located073

at the beginning or middle of the sequence, as men-074

tioned in Levinstein and Herrmann (2024). We075

employ principal component analysis (PCA, Abdi076

and Williams 2010) to further investigate such fail-077

ure cases. As shown in Figure 1, we reduce the078

dimensionality of each token’s activations to a sin-079

gle dimension for clearer interpretation. Ex.1 il-080

lustrates a question with the correct answer, while081

Ex.2 presents the same question with an incorrect082

answer. Notably, the reduced hidden information083

of the last tokens in both examples appears nearly084

identical, despite differences in the middle of the085

sequences. This suggests that we need to effec-086

tively leverage hidden state information across the087

entire sequence, rather than only the last token, to088

accurately assess the truthfulness.089

The advances of neural differential equations090

(Neural DEs) offer a promising solution by model-091

ing hidden state transformations as continuous tra-092

jectories, providing a more accurate representation093

of information flow through LLMs (Kidger, 2022).094

Based on effective in tasks such as time-series fore-095

casting, classification, and outlier detection (Choi096

et al., 2022; Jhin et al., 2024), Neural DEs are well-097

suited for addressing hallucination detections in098

LLMs, where subtle errors can result in factual in-099

accuracies in generated sequences. Motivated by100

these strengths, our work introduces a novel, super-101

vised method, called HD-NDEs, marking the first102

application of Neural DEs in hallucination detec-103

tion. As shown in Figure 2, the method explicitly104

models the trajectory of intermediate states in the105

latent space using Neural DEs. Unlike previous106

methods that focus on individual token representa-107

tions, our approach leverages temporal information108

in state dynamics. We conduct an extensive study109

on five challenging hallucination datasets, evaluat-110

ing our method and state-of-the-art approaches us-111

ing six widely adopted LLMs. The results demon-112

strate the effectiveness of our approach. Our con-113

tributions are summarized as follows:114

• We introduce HD-NDEs, the first method to 115

apply Neural DEs, including neural ordinary 116

differential equations (Neural ODEs, Chen 117

et al. 2018), neural controlled differential 118

equations (Neural CDEs, Kidger et al. 2020a), 119

and neural stochastic differential equations 120

(Neural SDEs, Oh et al. 2024), for detecting 121

hallucinations in LLMs. By modeling the to- 122

ken generation process as continuous trajec- 123

tories in latent space, HD-NDEs provides a 124

more accurate and dynamic approach to de- 125

tecting hallucinations. 126

• We evaluate HD-NDEs on five diverse and 127

complex hallucination datasets and compare 128

their performance with baseline methods 129

across six widely used LLMs. Our results 130

demonstrate that HD-NDEs outperforms ex- 131

isting approaches with a 14% improvement in 132

True-False Dataset. 133

2 Related Work 134

Hallucination Detection. Hallucinations in 135

LLMs pose significant challenges for their 136

deployment (Zhang et al., 2023b; Li et al., 2023a). 137

The generation of inaccurate information can result 138

in customer attrition or legal risks, rendering the 139

decision-making process unreliable. Detecting 140

hallucinations has garnered increasing attention, 141

and this detection is typically performed in one of 142

the following ways: conducting a conventional 143

retrieval task (Min et al., 2023; Wang et al., 2023), 144

which requires external knowledge; converting 145

the logits output into an uncertainty estimate 146

for the sentence; or evaluating self-consistency 147

(Mündler et al., 2023), where inconsistent outputs 148

often indicate hallucinations. Recent studies have 149

shown that hallucinations can be attributed to the 150

model’s internal representations and have proposed 151

white-box methods to detect hallucinations based 152

on token latent states (Burns et al., 2023; Azadi 153

et al., 2023; Zhu et al., 2024). These approaches 154

have outperformed black-box methods across 155

various tasks. However, as noted in Levinstein 156

and Herrmann (2024), they often struggle when 157

non-factual tokens appear at the beginning or 158

middle of the sequence. 159

Neural Differential Equations. Neural DEs 160

have been extensively used in modeling dynam- 161

ical systems or simulating neural networks (Chang 162

et al., 2018; Dutta et al., 2021). For instance, Lu 163
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Figure 2: Computation graph of HD-NDEs detecting hallucination via Neural CDEs. The statement is processed by
LLMs, from which we extract embedding information of each token in the internal space to construct the trajectory
x = (x0, x1, x2, ..., xn), with corresponding time points (t0, t1, ..., tn). The PCA processes the trace and generates
states y = (y0, y1, y2, ..., yn). These states are used to parameterize a latent space representation z0 and extract
control path Y . The CDE Solver predicts future latent states, forming z = (z0, z1, z2, ..., zn). From these latent
states, z∗ is derived using the function k parameterized by θk. z∗ is then passed through a simple classifier to
produce the final incorrect factuality score P (ξ = 1|x).

et al. (2018) showed that any parametric ODE164

solver can be conceptualized as a deep learning165

framework with infinite depth. Chen et al. (2018)166

achieved ResNet-comparable results with a dras-167

tically lower number of parameters and memory168

complexity by parameterizing hidden layer deriva-169

tives and using ODE solvers. In addition, Lu et al.170

(2019) was the first to draw analogies between171

transformers and dynamical systems, conceptualiz-172

ing the transformer as a numerical approximation173

of ODEs. Furthermore, Neural DEs play important174

roles in interpolation, forecasting, and classifica-175

tion tasks in time series data (Kidger et al., 2020a;176

Liang et al., 2021; Li et al., 2020; Oh et al., 2024;177

Li et al., 2022).178

3 Methodology: HD-NDEs179

We denote the generated text as a sequence of to-180

kens o0:n = (o0, o1, ..., on), where ot represents181

the t-th token. Given a generated text sample182

o = o0:n, our objective is to predict P (ξ|o) where183

ξ ∈ {0, 1} serves as the hallucination indicator184

variable, with ξ = 1 indicating a hallucination and185

ξ = 0 otherwise. Naturally, each token ot is associ-186

ated with an internal state representation xt ∈ Rdx ,187

derived from the specific hidden layer embeddings188

corresponding to token t. We generally use the189

embedding from the last layer to represent each190

token, where dx denotes the embedding dimension.191

The value of dx varies across models; for instance,192

dx = 4096 for LLama-7B, while dx = 5120 for193

LLama-13B.194

3.1 Neural DEs 195

To capture the dynamic behavior of LLMs, we 196

utilize Neural ODEs, Neural CDEs, and Neural 197

SDEs to model the evolution in the latent space. 198

Neural ODEs describe smooth, continuous-time 199

dynamics using deterministic equations, Neural 200

CDEs introduce control signals to guide system 201

evolution. Furthermore, Neural SDEs incorporate 202

stochasticity to account for uncertainty or noise 203

within the system. Figure 2 illustrates hallucination 204

detection using HD-NDEs with Neural CDEs. 205

Neural ODEs. Let x = x0:n = (x0, ..., xn) ∈ 206

Rdx denote the embeddings in the internal space. x 207

is projected into y = y0:n = (y0, ..., yn) ∈ Rdy by 208

PCA. Consider a latent representation z(t) ∈ Rdz 209

at time t in latent space, which is given by 210

z(t) = z(0) +

∫ t

0

f(s, z(s); θf )ds

with z(0) = h(y; θh),

(1) 211

where h : Rdy → Rdz is an function with pa- 212

rameter θh and f(t, z(t); θf ) is a neural network 213

parameterized by θf to approximate dz(t)
dt . Neural 214

ODEs rely on ODE solvers, such as the explicit 215

Euler method (Euler, 1845), to solve the integral 216

problem in (1). Since we can freely choose the 217

upper limit t of the integration, we can predict z 218

at any time t. That is, once h(·; θh) and f(·, ·; θf ) 219

have been learned, then we are able to compute 220

z(t) for any t ≥ 0. 221

Neural CDEs. The solution to Neural ODEs is 222

determined by its initial condition, making it in- 223
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adequate for incorporating incoming information224

into a differential equation. To address this issue,225

Kidger et al. (2020b) proposed Neural CDEs by226

combining a controlled path Y (t) of the underlying227

time-series data. Specifically, given the sequential228

data y = (y0, y1, . . . , yn), z(t) is determined by229

z(t) = z(0) +

∫ t

0

f(s, z(s); θf )dY (s)

with z(0) = h(y; θh),

(2)230

where Y (t) is chosen as a natural cubic spline231

path (Kidger et al., 2020b) or hermite cubic splines232

with backward differences (James et al., 2021) of233

the underlying time-series data. Differently from234

Neural ODEs, f(t, z(t); θf ) is a neural network235

parameterized by θf to approximate dz(t)
dY (t) .236

Neural SDEs. Neural SDEs allow for describ-237

ing the stochastic evolution of trace, rather than238

the deterministic evolution (Kidger et al., 2021b,a).239

The latent representation z(t) of Neural SDEs is240

governed by the following SDE:241

z(t) = z(0) +

∫ t

0

f(s, z(s); θf )ds

+

∫ t

0

g(s, z(s); θg)dW (s) with z(0) = h(y; θh)

(3)242

where {Wt}t≥0 is a dz-dimensional Brownian mo-243

tion, f(·, ·; θf ) is the drift function, and g(·, ·; θg) is244

the diffusion function. Drift and diffusion functions245

are represented by neural networks.246

3.2 Classifier247

We derive z∗ from the latent states z =248

(z0, z1, z2, ..., zn) using the function k(θk). The249

classifier c(θc) then classifies z∗. In this work, the250

classifier is implemented as a simple linear layer251

followed by a sigmoid function.252

3.3 DEs Solvers and Adjoint Methods253

For simplicity, we denote the parameters of neural254

networks used in k(θk), c(θc) and Equations (1),255

(2), (3) as θ. After choosing one from Neural256

ODEs, Neural CDEs, or Neural SDEs to capture257

the state generation process in latent space, two258

natural questions arise: (1) How can we generate259

the subsequent latent states (z(t1), z(t2), ...) based260

on z(0) and θ? (2) How can we update the param-261

eters θ to ultimately obtain the optimal solution262

θ∗? Sections 3.3.1 and 3.3.2 answer the above two263

questions respectively.264

3.3.1 DE Solvers for Forward Propagation 265

We begin by introducing two common ODE 266

solvers: first-order and high-order schemes. Nu- 267

merical methods for Neural CDEs and Neural 268

SDEs can be adapted from these approaches. 269

First-order ODE Solvers. Euler method (Euler, 270

1845) is the simplest method for solving ODEs. 271

The transformation at each time step can be ex- 272

pressed as: 273

zt+1 = zt +
dz(t)

dt
= zt + f(t,z(t); θf ). (4) 274

High-order ODE Solvers. The Euler method is 275

not "precise" because it is a first-order method, and 276

naturally with local truncation errors. The global 277

error will be accumulated if we want to capture a 278

long timestep trajectory. Herein, we use the Runge- 279

Kutta method (Runge, 1895) for a higher-order 280

solution to ODEs. They are a classic family of 281

iterative methods with different orders of precision. 282

More formally, the explicit Runge-Kutta methods 283

of an n-step solution are defined to be: 284

zt+1 = zt +

n∑
i=1

γiZi, Z1 = ∆tf(t, zt; θf ),

Zi = ∆tf(t+ αi∆t, zt +

i−1∑
j=1

βijZj ; θf )

(5) 285

where ∆t is the time size and could be simply 1 286

in most cases. Zi is an intermediate approximation 287

to the solution at step t + αi∆t. α, β and γ are 288

coefficients which can be determined by the series 289

of zt+1. In this work, we use fourth-order Runge- 290

Kutta (RK4) for solving Equation (1), details in 291

Appendix A. 292

The Neural CDEs problem in (2) can be solved 293

by using the above-mentioned ODE solvers since 294
dz(t)
dt = f(t, z(t); θf )

dX(t)
dt . However, the Neural 295

SDE problem (3) requires additional handling of 296

stochastic noise, making its solution methods more 297

complex. Herein, we use the Euler-Maruyama 298

method designed to handle noise terms, which is 299

given by 300

zt+1 = zt + f(t, z(t); θf ) + g(t, z(t); θf )Z, (6) 301

where Z ∼ N (0, 1) is a standard normal random 302

variable with mean 0 and variance 1. 303

3.3.2 Adjoint Methods for Back Propagation 304

Since Neural DEs are continuous-time models com- 305

puted through DE solvers, standard backpropaga- 306

tion cannot be directly applied. Chen et al. (2018) 307
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Company∗ Fact∗

Method LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

Prompt-based Methods
P(True) 51.4 49.1 50.6 52.4 51.5 51.0 54.1 53.6 53.8 51.3 53.1 52.6
Logit-based Methods
AvgProb 59.0 59.2 53.0 60.2 59.3 58.0 59.5 59.3 54.2 58.3 56.3 61.2
AvgEnt 54.0 56.4 54.2 53.3 56.2 54.1 54.2 54.1 50.3 51.2 53.2 53.4
EUBHD 52.5 53.2 54.1 55.3 53.8 55.6 59.7 60.8 59.4 57.9 56.5 58.2
Classification-based Methods
SAPLMA 54.0 58.2 59.3 68.2 63.2 64.8 58.3 62.4 59.8 65.5 59.6 61.2
MIND 56.4 60.3 62.4 69.8 60.1 65.9 59.6 63.7 61.8 70.7 60.1 62.8
Probe@Exact 55.9 60.7 61.2 67.2 64.4 63.9 60.7 63.9 60.2 68.4 59.2 63.7
ODEs 59.7 65.3 67.8 72.9 63.5 71.4 58.6 66.9 64.3 70.4 62.4 66.7
CDEs 65.9 72.8 75.3 79.8 66.9 73.6 67.5 74.8 72.9 76.7 74.1 73.9
SDEs 73.8 78.4 70.5 72.3 71.3 72.8 70.3 73.1 70.3 78.6 75.3 72.5

City∗ Invention∗

Method LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

P(True) 53.1 54.7 57.3 56.2 49.8 51.7 49.3 50.2 47.6 54.7 51.9 49.7
Logit-based Methods
AvgProb 54.2 56.3 51.5 59.2 53.9 55.6 51.2 51.3 49.4 55.3 53.7 52.9
AvgEnt 49.1 50.2 49.3 52.4 47.1 52.0 45.1 46.3 48.4 47.5 47.1 45.9
EUBHD 59.9 61.1 60.3 58.5 59.5 60.7 60.1 59.8 57.9 59.4 60.6 58.9
Classification-based Methods
SAPLMA 60.0 69.3 59.4 64.5 63.3 64.7 59.2 66.0 52.4 69.3 61.3 59.4
MIND 64.5 71.3 62.6 65.8 63.0 65.2 60.5 65.1 53.6 71.2 64.1 58.6
Probe@Exact 65.8 70.4 61.8 66.9 62.7 64.3 61.1 63.0 55.5 70.2 63.6 57.3
ODEs 73.0 82.3 71.2 73.2 75.1 72.4 60.3 80.9 69.7 80.4 79.1 80.5
CDEs 75.7 80.6 72.1 80.1 77.5 77.2 75.9 88.3 73.8 81.2 81.3 83.7
SDEs 79.1 89.8 74.3 82.5 76.4 79.8 68.7 79.6 74.2 85.9 74.3 79.5

Table 1: The detection AUC-ROC (%) of different approaches across multiple LLMs on Company∗, Fact∗, City∗

and Invention∗. Bold and underlined numbers denote the best and second-best values, respectively. ODEs, CDEs,
and SDEs are the abbreviations of Neural ODEs, Neural CDEs, and Neural SDEs, respectively.

applied the adjoint sensitivity method (Pontryagin308

et al., 1962) to compute gradients for Neural ODEs.309

Specifically, to optimize the loss function L, we re-310

quire gradients with respect to θ. The first step is to311

determine how the gradient of the loss depends on312

the hidden state z(t) at each instant. This quantity313

is called the adjoint314

a(t) =
∂L

∂z(t)
. (7)315

Its dynamics are given by another ODE, which can316

be thought of as the instantaneous analog of the317

chain rule:318

da(t)

dt
= −α(t)T

∂f(t, z(t); θf )

∂z
. (8)319

We can compute a(t) by another call to an ODE320

solver. Computing the gradients with respect to the321

parameters θ requires evaluating a third integral,322

which depends on both z(t) and a(t):323

dL

dθ
= −

∫ t0

t1

α(t)T
∂f(t, z(t), θf )

∂z
. (9)324

In addition, Kidger et al. (2020a) and Li et al.325

(2020) proposed the adjoint sensitivity methods326

for Neural CDEs and Neural SDEs, respectively.327

In our work, we build upon the above methods to328

update the parameters of neural networks.329

4 Experimental Settings 330

4.1 Datasets 331

True-False Dataset. The original dataset con- 332

sists of six sub-datasets, each named after its sub- 333

ject matter (Azaria and Mitchell, 2023). We follow 334

the method proposed in Levinstein and Herrmann 335

(2024) to create factual and non-factual statements 336

containing subtle differences. Specifically, we 337

prompt GPT-4o to generate new statements that 338

are factually opposite to the original while main- 339

taining only minor word differences. For exam- 340

ple, we obtain a non-factual statement "The earth 341

doesn’t orbit the sun." from the factual statement 342

"The earth orbits the sun." For our experiments, we 343

randomly select 550, 560, 500, and 500 statements 344

from the Companies, Scientific Facts, Cities, and 345

Inventions sub-datasets, respectively. The result- 346

ing datasets are referred to as Company∗, Fact∗, 347

City∗, and Invention∗. This dataset poses a greater 348

challenge for hallucination detection. 349

Question Answering Datasets. We utilize four 350

widely used question answering datasets, including 351

TruthfulQA (Lin et al., 2022), TriviaQA (Joshi et al., 352

2017), "QA" subset of HaluEval (Li et al., 2023b) 353

and NQ (Kwiatkowski et al., 2019). Each question 354
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TruthfulQA TriviaQA

Method LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

Prompt-based Methods
P(True) 52.5 53.6 51.3 54.0 49.7 50.0 42.3 44.6 42.1 50.6 48.3 49.2
Logit-based Methods
AvgProb 51.4 54.6 53.3 55.1 48.3 45.6 44.1 48.3 43.1 47.1 48.5 48.0
AvgEnt 49.4 53.0 52.7 53.6 51.0 52.1 41.1 43.2 41.6 44.5 47.6 43.5
EUBHD 81.2 78.1 77.4 79.7 80.3 81.4 80.5 81.1 78.2 79.1 80.6 81.7
Consistency-based Methods
Unigram 57.6 62.2 60.1 63.4 60.9 61.8 56.8 60.4 57.9 61.3 59.5 60.3
NLI 60.6 63.7 61.6 65.1 61.3 62.5 59.4 63.2 58.1 64.5 61.4 62.1
INSIDE 79.8 81.2 80.0 82.1 81.8 82.4 81.7 82.6 78.1 80.8 81.3 82.0
Classification-based Methods
SAPLMA 87.5 86.3 84.9 88.6 81.3 85.4 80.0 81.1 80.2 85.0 84.1 83.4
MIND 88.0 87.1 84.5 88.9 83.6 85.7 79.4 82.3 81.1 83.2 84.5 81.1
Probe@Exact 85.7 86.8 85.2 88.7 82.9 87.4 80.3 82.5 81.9 84.4 84.1 84.0
ODEs 84.2 87.9 83.1 83.8 82.4 85.3 81.7 83.6 80.5 85.9 83.7 84.6
CDEs 86.7 84.0 84.3 89.2 83.9 87.7 83.7 84.9 82.6 86.3 84.1 85.0
SDEs 88.3 89.3 86.4 89.5 85.1 87.0 81.0 83.3 81.5 84.3 85.1 83.2

HaluEval NQ

Method LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

LLama-
2-7B

LLama-
2-13B

Alpaca-
13B

Vicuna-
13B

Mistral-
7B-0.3

Gemma-
2-9B

Prompt-based Methods
P(True) 46.7 48.9 51.6 50.2 49.7 46.8 54.7 56.8 51.0 53.4 52.1 51.3
Logit-based Methods
AvgProb 42.1 44.4 43.2 45.7 43.6 44.5 54.3 55.9 53.1 56.4 54.7 55.3
AvgEnt 47.3 48.5 46.1 51.4 49.7 50.3 53.9 54.6 54.2 55.2 53.8 54.6
EUBHD 71.9 78.1 71.3 76.0 70.5 72.6 73.9 79.4 76.8 73.2 71.7 70.3
Consistency-based Methods
Unigram 58.2 57.1 57.9 57.6 62.3 59.4 63.1 65.2 62.9 67.8 64.5 65.1
NLI 61.3 60.2 55.2 62.5 63.1 64.4 64.2 66.9 63.8 65.4 62.6 64.0
INSIDE 74.5 76.9 73.3 75.2 76.0 75.8 76.8 77.1 74.3 75.8 76.4 75.9
Classification-based Methods
SAPLMA 87.0 90.1 89.5 93.1 89.4 90.5 89.1 90.5 87.6 93.2 90.3 88.9
MIND 86.1 93.8 93.7 92.9 94.5 91.0 90.5 93.6 92.7 90.6 87.2 89.5
Probe@Exact 88.3 92.4 93.5 94.1 93.4 92.1 92.0 91.9 92.8 92.3 88.6 90.3
ODEs 89.5 93.9 92.1 95.4 91.2 90.5 91.3 92.1 90.5 92.4 89.7 90.0
CDEs 91.4 97.1 95.3 96.9 95.4 96.0 93.7 95.2 92.1 93.6 90.5 91.8
SDEs 92.8 95.4 97.1 93.1 93.7 92.6 94.1 93.2 93.5 91.1 89.7 90.9

Table 2: The detection AUC-ROC (%) for different approaches over multiple LLMs on TruthfulQA, TriviaQA,
HaluEval and NQ.

is accompanied by a truthful and a hallucinatory355

answer. Unlike the True-False dataset, we use the356

Levenshtein (Levenshtein, 1966) distance to select357

the pair of correct and incorrect answers with the358

greatest textual difference. These pairs, along with359

the original questions, form the data used for our360

experiments. Finally, we generate 1,000 samples361

in each of the four aforementioned datasets.362

4.2 Models363

We evaluate both our method and baseline ap-364

proaches using common open-source LLMs, in-365

cluding LLama-2-7B, LLama-2-13B (Touvron366

et al., 2023), Alpaca-13B (Taori et al., 2023),367

Vicuna-13B-v1.3 (Chiang et al., 2023), Mistral-7B-368

v0.3 (Jiang et al., 2023) and Gemma-2-9B (Team369

et al., 2024).370

4.3 Baselines371

We choose the following four types of hallucination372

detection methods as baselines. More details are373

shown in Appendix C.374

Prompt-based methods utilize a simple prompt 375

template to enable the model to assess the correct- 376

ness of the response. Here, we use P(True), pro- 377

posed in Kadavath et al. (2022), as a representative 378

of this class of methods. 379

Logit-based methods use the uncertainty of 380

LLMs’ outputs to detect hallucination. We adopt 381

the two effective metrics used in Huang et al. 382

(2023), namely AvgProb, AvgEnt, to aggregate 383

logit-based uncertainty of all tokens to measure 384

sentence uncertainty. In addition, we also compare 385

our approach with EUBHD (Zhang et al., 2023a), 386

which focuses on key tokens rather than consider- 387

ing all tokens. 388

Consistency-based methods are motivated by 389

the idea that if an LLM possesses specific knowl- 390

edge, the sampled responses are likely to be similar 391

and contain consistent facts. In this work, we ap- 392

ply two important variants proposed in Manakul 393

et al. (2023), namely Unigram and Natural Lan- 394

6



(a) Fact∗ (b) TruthfulQA

Figure 3: 2D PCA projection of the last hidden layer’s
embedding for the final token on Fact∗ and TruthfulQA.
Blue and red dots represent hallucinations and non-
hallucinations, respectively.

guage Inference (NLI), as well as INSIDE by Chen395

et al. (2024), which leverages the eigenvalues of396

the covariance matrix of responses.397

Classification-based methods train a classifier398

on a dataset containing labeled statements. We399

choose SAPLMA (Azaria and Mitchell, 2023),400

MIND (Su et al., 2024) and Probe@Exact (Or-401

gad et al., 2025) as representatives of this type402

of method. Unlike SAPLMA, which relies on pre-403

annotated datasets, MIND automatically labels data404

during the detection process to train its classifier.405

SAPLMA utilizes information from the last token,406

whereas Probe@Exact relies on information from407

potential correct tokens.408

4.4 Evaluation Metric409

We utilize AUC-ROC, which stands for the area un-410

der the ROC curve, to objectively evaluate the effec-411

tiveness of models. The higher value of AUC-ROC,412

the stronger the ability of this method for halluci-413

nation detection. All experiments are conducted on414

NVIDIA A100 GPUs with 40GB of memory.415

4.5 Implementation Details416

HD-NDEs. To reduce computational complexity,417

we employ PCA to reduce the dimensionality of418

the internal space to K = 1024. The integrands419

h(·; θh), f(·, ·; θf ), g(·, ·; θg) in Equations (1), (2)420

and (3) are taken to be feedforward neural networks.421

Specifically, we use a single hidden layer network422

to represent h(·; θh) in all variants of our meth-423

ods. We use an 8-layer neural network to repre-424

sent f(·, ·; θf ) in Neural CDEs and 10-layer neural425

networks for f(·, ·; θf ) in both Neural ODEs and426

Neural SDEs. Additionally, g(·, ·; θg) in Neural427

SDEs is represented by a 4-layer neural network.428

A final linear layer is always applied to map the429

latent state to the output. We use ReLU activation430

functions for Neural CDEs and Neural SDEs, while431

tanh activations are used for Neural ODEs. The 432

binary cross-entropy loss is applied to the sigmoid 433

of the model output. Additionally, we employ the 434

Adam optimizer with a learning rate of 0.001, a 435

batch size of 32, and 50 epochs. 436

Classification-based methods. The classifier re- 437

ceives embeddings from the last layer of LLMs. 438

In ablation studies, we discuss the results of us- 439

ing information from the middle layers. Different 440

classifiers are used for different methods. More im- 441

plementation details are introduced in Appendix D. 442

5 Experimental Results and Analysis 443

5.1 Effectiveness of HD-NDEs 444

True-False Dataset. The comprehensive results 445

are demonstrated in Table 1. Since consistency- 446

based methods rely on question-and-answer pairs, 447

and the True-False dataset is not structured in this 448

format, we do not include this type of method as 449

a comparison in this dataset. It is obvious that 450

our methods surpass SAPLMA, MIND, and 451

Probe@Exact by a noticeable margin, evidenced 452

by an average increase of over 14% in the de- 453

tection of AUC-ROC across different models 454

and subsets. Particularly, Neural CDEs outper- 455

form SAPLMA by 24.3% on Invention∗ when us- 456

ing Gemma-2-9B. Even in the worst case, Neural 457

ODEs perform comparably to SAPLMA on Fact∗ 458

based on LLama-2-7B. Furthermore, in most cases, 459

prompt-based methods and logit-based methods 460

perform worse than the classification-based meth- 461

ods. 462

For different variants of our approach, we can 463

find that Neural CDEs and Neural SDEs out- 464

perform Neural ODEs. As shown in Table 1, the 465

best and second-best values are achieved by Neural 466

CDEs and Neural SDEs models in 19 out of 24 467

cases. The likely reason is that Neural CDEs and 468

Neural SDEs can capture richer dynamical behav- 469

iors than Neural ODEs. As mentioned in Section 3, 470

Neural CDEs incorporates control theory, enabling 471

the dynamic system to account for the influence of 472

incoming information, and Neural SDEs introduces 473

stochasticity into the modeling process. While Neu- 474

ral ODEs assumes deterministic dynamics, which 475

can limit its flexibility in modeling the dynamics 476

of LLMs. 477

Question Answering Datasets. Table 2 shows 478

the results on question answering datasets. 479

EUBHD, SAPLMA, MIND, and Probe@Exact 480

7



Figure 4: The impact of the number of hidden layers on
Vicuna-13B: Company∗ and TruthfulQA.

demonstrate significantly better performance on481

the four question answering datasets compared482

to the True-False dataset across all six models.483

Notably, SAPLMA, MIND and and Probe@Exact484

achieve comparable performance to HD-NDEs, in-485

cluding Neural ODEs, Neural CDEs, and Neural486

SDEs, with a difference of less than 6%. Specif-487

ically, SAPLMA outperforms Neural ODEs and488

Neural CDEs on TruthfulQA using LLama-2-7B489

and Alpaca-13B, while remaining slightly behind490

Neural SDEs. On the NQ dataset, MIND and491

Probe@Exact achieve the second-highest perfor-492

mance among all methods on LLama-2-13B and493

Alpaca-13B, respectively. Meanwhile, INSIDE494

ranks just below Neural CDEs on TriviaQA with495

LLama-2-7B.496

5.2 Analysis497

We try to understand why HD-NDEs obviously498

outperforms SAPLMA, and MIND on the True-499

False dataset, yet performs comparably to them on500

the question-answer datasets. We use the subsets501

Fact∗ from True-False and TruthfulQA as exam-502

ples. We employ PCA to reduce the dimensions503

of the hidden embeddings, retaining the two dom-504

inant components. The results are shown in Fig-505

ure 3. The 2D PCA projection reveals a significant506

overlap between correct and incorrect statements507

in True-False, with many points intertwined. The508

poor separation causes other methods to perform509

only marginally better than random guessing in510

many cases. In contrast, the 2D PCA projections511

of TruthfulQA reveal a much clearer distinction512

between hallucination and non-hallucination. The513

statements in TruthfulQA exhibit substantial varia-514

tion, as we use the Levenshtein distance to select515

statements with significant differences. This allows516

other baselines to more easily differentiate them517

based on the embeddings of the final token. Ap-518

pendix E contains more results on other datasets.519

Figure 5: The impact of the PCA projection dimensions
on Vicuna-13B: Company∗ and TruthfulQA.

5.3 Ablation Studies 520

Number of Hidden Layers. An important factor 521

impacting the performance of detection methods 522

is the number of hidden layers in neural networks 523

representing f(s, z(s); θf ). Results are shown in 524

Figure 4. Specifically, the performance of Neu- 525

ral CDEs improves substantially as the number of 526

layers increases up to 8, with further increases be- 527

yond 8 still showing gains but at a slower pace. 528

For Neural ODEs and Neural SDEs, this turning 529

point occurs when the layer number reaches 10, 530

based on the results from both datasets. Finally, 531

we ultimately set 8 layers for Neural CDEs and 10 532

layers for both Neural ODEs and Neural SDEs in 533

Section 4.5. 534

Dimensions in Latent Space. Another key fac- 535

tor is the dimension of the latent state after being 536

mapped from the internal space to the latent space 537

by PCA. We then examine the impact of varying 538

dimensions as shown in Figure 5. An evident im- 539

provement in detection effectiveness is associ- 540

ated with retaining more components during 541

down-projection. Therefore, all three variants of 542

our methods achieve the best performance on both 543

datasets when the dimension is set to 1024, affirm- 544

ing our hyperparameter setting in Section 4.5. 545

More Results. In Appendix F, we explore the 546

impact of using activations from middle layers, and 547

Appendix G shows the effectiveness where classi- 548

fiers trained on out-of-domain datasets. 549

6 Conclusion 550

In this paper, we introduce HD-NDEs, which tracks 551

the dynamic changes in latent space. HD-NDEs 552

can effectively detect logical or factual inconsisten- 553

cies that arise in the generated text. Comprehensive 554

empirical results demonstrate that our approach 555

surpasses various state-of-the-art methods by over 556

14% on the True-False Dataset. 557
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Limitations558

This work identifies three major limitations. First,559

the model’s training process is approximately twice560

as long as that of the SAPLMA method. Sec-561

ond, NeuralDEs, as currently presented, do not562

provide uncertainty estimates for their predictions,563

though such extensions may be feasible in the fu-564

ture. Third, we experiment with a limited set of565

numerical schemes, and other methods could poten-566

tially exploit the structure of differential equations567

to further improve performance.568

Ethics and Broader Impact569

We sampled a portion of the data from existing570

datasets for our experiments, which may affect the571

accuracy of some of our conclusions.572
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A Fourth-order Runge-Kutta (RK4) 888

We can also define a fourth-order Runge-Kutta 889

(RK4) block to be: 890

zt+1 = zt +
∆t

6
(Z1 + 2Z2 + 2Z3 + Z4)

Z1 = f(t, zt; θf )

Z2 = f(t+
∆t

2
, zt +

∆t

2
Z1; θf )

Z3 = f(t+
∆t

2
, zt +

∆t

2
Z2; θf )

Z4 = f(t+∆t, zt +∆tZ3; θf )

(10) 891

B Question Answering Datasets 892

TruthfulQA consists of 873 questions, each with 893

multiple correct and incorrect answers. For HaluE- 894

val, our experiments focused on the ‘QA’ subset 895

comprising 10k records, where each record in- 896

cludes a question accompanied by both a truthful 897
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and a hallucinatory answer. The validation set of898

NQ consists of 3,610 QA pairs, while the valida-899

tion set of TriviaQA (rc.nocontext subset) contains900

9,960 deduplicated QA pairs. Unlike True-False,901

we use the Levenshtein (Levenshtein, 1966) dis-902

tance to select the pair of correct and incorrect903

answers with the greatest textual difference. These904

pairs, along with the original questions, form the905

data used for our experiments. Finally, we generate906

1,000 samples in each of the four aforementioned907

datasets.908

C Baseline Methods909

We collect logit-based and consistency-based meth-910

ods proposed in (Manakul et al., 2023) to test the911

effectiveness of models.912

C.1 Logit-based methods913

To aggregate the uncertainty information obtained914

at the token level, we employ four metrics to aggre-915

gate token-level uncertainty into sentence level. In916

particular, a sentence-level uncertainty score can917

be obtained by taking either the maximum or av-918

erage of the negative loglikelihood − log pij in a919

sentence:920

MaxProb(i) = max
j

(− log pij), (11)921

AvgProb(i) = − 1

Ji

Ji∑
j=1

log pij , (12)922

where pij is the probability of a token at a position j923

in the sentence i and Ji is the total number of tokens924

in the considered sentence. Additionally, one can925

also replace the negative loglikelihood − log pij926

with the entropy Hij :927

MaxEnt(i) = max
j

Hij , (13)928

AvgEnt(i) =
1

Ji

Ji∑
j=1

Hij , (14)929

where Hij is the entropy of the token distribution930

for the j-th token in the sentence i.931

C.2 Consistency-based Methods932

Unigram. The concept behind Unigram is to de-933

velop a new model that approximates the LVLMs934

by samples {S1, . . . , SN} and get the LVLM’s to-935

ken probabilities using this model. As N increases,936

the new model gets closer to LVLMs. Due to time937

and cost constraints, we just train a simple n-gram938

model using the samples {S1, . . . , SN} as well as 939

the main response R. We then compare the av- 940

erage and maximum of the negative probabilities 941

of the sentence in response R using the following 942

equations: 943

SAvg
n-gram(i) = − 1

Ji

Ji∑
j=1

log p̂ij , (15) 944

SMax
n-gram(i) = max

j
(− log p̂ij), (16) 945

where p̂ij is the probability of a token at position j 946

of a sentence i. 947

Natural Language Inference (NLI) determines 948

whether a hypothesis follows a premise, classified 949

into either entailment/neutral/contradiction. In this 950

work, we use DeBERTa-v3-large (He et al., 2023) 951

fine-tuned to MNLI as the NLI model. The input 952

for NLI classifiers is typically the premise con- 953

catenated to the hypothesis, which for NLI is the 954

sampled passage Sn concatenated to the sentence 955

to be assessed ri in the response R. Only the logits 956

associated with the ‘entailment’ and ‘contradiction’ 957

classes are considered, 958

P (contradict | ri, Sn) =
exp

(
zi,ne

)
exp

(
zi,ne

)
+ exp

(
zi,nc

) , 959

where zi,ne = ze(ri, S
n) and zi,nc = zc(ri, S

n) are 960

the logits of the ‘entailment’ and ‘contradiction’ 961

classes. NLI score for sentence ri on samples 962

{S1, . . . , SN} is then defined as, 963

SNLI(i) =
1

N

N∑
n=1

P (contradict | ri, Sn). (17) 964

D Implementation Details 965

SAPLMA. We follow the majority of the experi- 966

mental setup for SAPLMA as described in (Azaria 967

and Mitchell, 2023). Its classifier employs a feed- 968

forward neural network featuring three hidden lay- 969

ers with decreasing numbers of hidden units (1024, 970

512, 256), all utilizing ReLU activations. The final 971

layer is a sigmoid output. We use the Adam opti- 972

mizer. The classifier is trained for 20 epochs with 973

a learning rate of 5e-4 and a training batch size 974

of 32. We use about three-quarters of the dataset 975

to train a classifier based on a specific model, and 976

then test its accuracy on the remaining quarter of 977

the same dataset. The training and testing datasets 978

are randomly split. 979
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MIND. We follow the majority of the experimen-980

tal setup for MIND as described in Su et al. (2024).981

The MIND classifier utilizes a 4-layer Multilayer982

Perceptron (MLP) network with a 20% dropout ap-983

plied to the initial layer. The network architecture984

features decreasing hidden layer sizes of 256, 128,985

64, and 2 for each layer. The Rectified Linear Unit986

(ReLU) activation function is used, with a learning987

rate of 5e-4, a weight decay of 1e-5, and a training988

batch size of 32.989

Probe@Exact. We follow the majority of the990

experimental setup for Probe@Exact as described991

in Orgad et al. (2025). We employ the logistic992

regression model from the scikit-learn library as993

the probing classifier. For Question Answering994

Datasets, we use the same method as Orgad et al.995

(2025) to detect and utilize exact answer tokens.996

However, for True-False Datasets, we select key997

tokens as the exact answer tokens.998

P(True). The prompt that we use for P(True) Ka-999

davath et al. (2022) is as follows:1000

Given the following question and answer,
your objective is to determine if the answer
correctly answers the question. You should
give the probability that your think answer
is correct.
Question: [Question]
Answer: [[Answer]]

1001

LLM Configuration. For the selected LLMs, we1002

download the model parameters directly from their1003

official Hugging Face repositories. The genera-1004

tion process follows each model’s official default1005

configurations.1006

E 2D PCA Projection on Other Datasets1007

Figure 6 shows the 2D PCA projection of the last1008

hidden layer’s embedding for the final token on1009

Company∗, City∗, Invention∗. It reveals a signif-1010

icant overlap between correct and incorrect state-1011

ments.1012

F Experiment of Using Middle Layers1013

We select the 16th, 20th, 24th, and 28th layers1014

as representative intermediate layers and evaluate1015

the performance of various methods based on the1016

Vicuna-13B-v1.3 model on the Company∗ dataset,1017

as shown in Table 3. Compared to the final layer,1018

the results at the 20th and 24th layers show an1019

overall improvement. For other layers, the results 1020

vary depending on the method. Therefore, specific 1021

intermediate layers may contain more information 1022

for whether a hallucination is occurring. 1023

G Experiment of the Out-of-Domain 1024

Setting 1025

To evaluate the generalization capability of the pro- 1026

posed method in an out-of-domain setting, we train 1027

the model on Company∗, Fact∗, and City∗, and 1028

test its performance on Invention∗, based on the 1029

Vicuna-13B-v1.3 model. The detailed experimen- 1030

tal results are shown in Table 4. All methods ex- 1031

hibit a certain degree of performance degradation. 1032

Compared to SAPLMA, MIND, and Probe@Exact, 1033

the proposed ODEs, CDEs, and SDEs demonstrate 1034

relatively smaller declines, with reductions of less 1035

than 2%. 1036
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(a) Company∗ (b) City∗ (c) Invention∗

Figure 6: 2D PCA projection of the last hidden layer’s embedding for the final token on Company∗, City∗,
Invention∗. Blue and red dots represent hallucinations and non-hallucinations, respectively.

SAPLMA MIND Probe@Exact ODEs CDEs SDEs

16th 69.4 70.0 66.7 72.3 80.0 73.6
20th 70.5 70.3 69.1 73.9 81.7 73.8
24th 71.0 71.3 68.8 74.0 80.2 72.4
28th 68.1 68.9 67.5 72.4 78.9 74.0
Last 68.2 69.8 67.2 72.9 79.8 72.3

Table 3: AUC-ROC(%) for detection across the 16th, 20th, 24th, and 28th layers for different approaches.

Methods SAPLMA MIND Probe@Exact ODEs CDEs SDEs

AUC-ROC (%) 65.4 67.6 69.4 79.6 80.1 84.3

Table 4: AUC-ROC (%) for detection on Invention∗ using classifiers trained on Company∗, Fact∗, and City∗.
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