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Abstract

The theoretical analysis of machine learning algo-
rithms, such as deep generative modeling, moti-
vates multiple recent works on the Mixed Nash
Equilibrium (MNE) problem. Different from
MNE, this paper formulates the Mixed Functional
Nash Equilibrium (MFNE), which replaces one
of the measure optimization problems with opti-
mization over a class of dual functions, e.g., the
reproducing kernel Hilbert space (RKHS) in the
case of Mixed Kernel Nash Equilibrium (MKNE).
We show that our MFNE and MKNE framework
form the backbones that govern several existing
machine learning algorithms, such as implicit
generative models, distributionally robust opti-
mization (DRO), and Wasserstein barycenters. To
model the infinite-dimensional continuous-limit
optimization dynamics, we propose the Interact-
ing Wasserstein-Kernel Gradient Flow, which in-
cludes the RKHS flow that is much less com-
mon than the Wasserstein gradient flow but en-
joys a much simpler convexity structure. Time-
discretizing this gradient flow, we propose a
primal-dual kernel mirror prox algorithm, which
alternates between a dual step in the RKHS, and
a primal step in the space of probability mea-
sures. We then provide the first unified conver-
gence analysis of our algorithm for this class
of MKNE problems, which establishes a conver-
gence rate of O(1/N) in the deterministic case
and O(1/

√
N) in the stochastic case. As a case

study, we apply our analysis to DRO, provid-
ing the first primal-dual convergence analysis for
DRO with probability-metric constraints.
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1. Introduction
Training state-of-the-art large-scale machine learning mod-
els typically requires stochastic optimization with non-
convex objective functions, which has achieved great em-
pirical success. However, its reliability and computational
complexity must also be theoretically analyzed and under-
stood. For example, the potential of deep generative models
is remarkable in numerous machine learning applications
such as image generation (Goodfellow et al., 2014), rein-
forcement learning (Ho & Ermon, 2016), and molecular
dynamics (Noé et al., 2019). However, training generative
models effectively has been a challenging topic for machine
learning research that attracts both empirical and theoretical
research interests.

State-of-the-art theoretical analysis of generative models
formulates the training process as finding a mixed Nash
Equilibrium (MNE) in a two-player zero-sum game (Hsieh
et al., 2019; Domingo-Enrich et al.; Wang & Chizat, 2022;
Trillos & Trillos, 2023). The MNE problem seeks the solu-
tion, i.e., MNE of the saddle-point optimization problem

inf
µ∈M

sup
ν∈M

F (µ, ν), (1)

where F (µ, ν) is a bi-variate objective function(al) of the
probability measures µ, ν.

In machine learning, there exists a commonly-used alterna-
tive paradigm to directly optimizing the measures, such as
in the MNE (1). This paradigm exploits the duality between
probability measure space M and a dual functional space
F , i.e., instead of optimizing w.r.t. a measure, we solve the
functional optimization problem

inf
f∈F

E(f). (2)

Such methods often leverage scalable learning models such
as reproducing kernel Hilbert spaces and deep neural net-
works for parameterizing and manipulating the dual func-
tions, instead of directly searching in the space of probability
distributions as in (1). Such dual functional approaches have
witnessed success in many domains of machine learning re-
search, e.g., generative modeling (Nowozin et al.; Arjovsky
et al., 2017; Gulrajani et al., 2017; Korotin et al., 2019) com-
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puting optimal transport (Genevay et al., 2016), distribu-
tionally robust optimization (Zhu et al., 2021), Wasserstein
barycenters (Li et al., 2020; Tiapkin et al., 2021; Korotin
et al., 2021). However, optimization over those functional
spaces, e.g., RKHSs or DNNs, is inherently an infinite di-
mensional problem, whose convergence analysis does not
directly follow from the finite-dimensional setting.

As an concrete application of our functional optimization
framework, we formulate the Mixed Functional Nash Equi-
librium (MFNE), whose inner optimization is an optimiza-
tion problem over a set F of functions

inf
f∈F

sup
µ∈M

F (µ, f), (3)

which, like the MNE, is a special case of the infinite-
dimensional pure NE problem. MFNE (3) has appeared
in several cutting-edge algorithms in ML research, which
we discuss in detail in Section 2.1. In such cases of saddle-
point optimization problems, a unified convergence analysis
for those applications to the primal-dual setting is still miss-
ing. To fill this gap, this paper provides the convergence
analysis for optimization problems that move in a functional
space.

Centered around the MFNE (3), this paper makes the fol-
lowing technical contributions:

1. We model the infinite-dimensional continuous-time
optimization dynamics of the general functional opti-
mization problem (2) as RKHS gradient flows. Despite
its simple structure, the RKHS gradient flow is less
explored in machine learning but enjoys simpler struc-
tures and straightforward convexity instead of (gener-
alized) geodesic convexity needed for optimization in
the Wasserstein space.

2. As a non-trivial application, we model the MFNE (3) as
an Interacting Wasserstein-Kernel Gradient Flow (19)-
(14), , which couples the now-well-known Wasserstein
gradient flow and an RKHS gradient flow. We show
that the time-discretization of this interacting gradient
flow results in a discrete-time primal-dual kernel mirror
prox algorithm for solving MFNE (3).

3. The techniques of optimizing dual (to probability mea-
sures) functions using modern learning models, such as
RKHSs and DNNs, have been applied in many recent
works. However, a unified convergence analysis is still
missing. This paper provides a unified convergence
analysis for functional optimization problems in the
context of MFNE (3), with a convergence rate O( 1

N )
via a primal-dual kernel mirror prox algorithm. To the
best of our knowledge, it is the first analysis with the
kernel mirror prox steps in the dual functional space,
which differs from the typical mean-field analysis of
measure optimization.

4. As a case study, we apply our analysis to distribu-
tionally robust optimization (DRO) to establish a con-
vergence rate via primal-dual stochastic kernel mirror
prox in the case of maximum mean discrepancy am-
biguity sets. To the best of our knowledge, this is the
first primal-dual continuous optimization guarantee for
DRO.

5. Last but not least, the unification perspective of a few
learning tasks, provided by MFNE and MKNE, high-
lights our Kernel Mirror Prox as a general-purpose
functional optimization algorithm for optimizing over
probability measures in the dual space, with theoreti-
cal convergence guarantee. This is similar to general-
purpose algorithms such as Langevin Monte-Carlo,
Stein variational gradient descent.

2. Preliminaries
Notation We use M = Prob(Ω̄) to denote the space
of probability measures defined on the closure of a closed
bounded convex domain Ω ⊂ Rd. We say that (3) is convex-
concave if the inner problem is concave maximization and
the outer problem is convex minimization. The convex-
ity notion, if not otherwise specified, refers to the regu-
lar convexity notion (defined in (13)). For PDE gradient
flows, the states are functions of both time and space, for
example, u(t, x). When there is no ambiguity, we write
u(t) := u(t, ·) to denote the function at evolutionary time
t. If not otherwise specified, proofs are deferred to the
appendix.

2.1. Duality of metrics on probability measures

One reason behind the ubiquity of the functional optimiza-
tion problem (2) and MFNE (3) in machine learning prob-
lems is that common probability metrics admit a dual charac-
terization. For example, the optimal transport distance (San-
tambrogio, 2015; Ambrosio et al., 2008), e.g., p-Wasserstein
metric Wp, can be characterized in the dual space via the
dual Kantorovich problem

OT(µ, ν) = sup
ψ1,ψ2

∫
ψ1 dµ+

∫
ψ2 dν (4)

s.t. ψ1(x) + ψ2(y) ≤ c(x, y), ∀x, y, a.e.
(5)

which is an infinite-dimensional optimization problem with
an infinite constraint. Bounded continuous functions ψi are
referred to as the Kantorovich potential functions. c(x, y) is
the transport cost function associated with the transport. In
the machine learning literature, researchers have explored
this dual formulation by directly parameterizing the Kan-
torovich potential, e.g., using RKHS functions (Genevay
et al., 2016) or ICNNs (Li et al., 2020; Korotin et al., 2019).

Another commonly used metric is the integral probability



Kernel Mirror Prox and RKHS Gradient Flow

metric (IPM), which is defined via the weak norm formula-
tion

IPM(µ, ν) = sup
f∈F

∫
fd(µ− ν).

One particular choice of the test function family is the
RKHS-norm-ball F = {f : ∥f∥H ≤ 1}, which yields the
kernel maximum mean discrepancy (MMD) (Gretton et al.,
2012). F = {f : Lip (f) ≤ 1} recovers the type-1 (Kan-
torovich) Wasserstein metric.

Those basic duality results characterize the relationship of
the underlying geometry of the learning problem and the
variational problem that optimizes w.r.t. functions, such as
the IPM test functions and the Kantorovich potentials in OT.
This has been exploited in several fields in machine learning,
which we detail below.

Implicit generative models (IGM) We consider the fol-
lowing IGM formulation, such as generative moment match-
ing networks (Li et al., 2015; Dziugaite et al.) and generative
adversarial networks (GAN) (Goodfellow et al., 2014),

inf
Gθ

EZD(P,Gθ(Z)), (6)

where D can be chosen as a discrepancy measure such as the
f -divergence family, optimal transport distance, or kernel
maximum mean discrepancy (MMD). In IGM, P is often
taken to be the training data distribution. Recent theoretical
analysis of the optimization for training (6) lifts the non-
convex optimization problem to the space of probability
measures, which is an instantiation of a mixed Nash equilib-
rium (MNE) problem (1). The problem can then be cast into
this paper’s general MFNE formulation (3), for example, by
choosing the function D as the integral probability metric
(IPM) family

inf
µ∈M

sup
f∈F

{∫
f(x)dP (x)− Eθ∼µ

∫
f(gθ(z))dQ(z)

}
,

(7)

where gθ(z) is the generator density. If the function class F
is chosen to be the class of 1-Lipschitz functions, then the
formulation is the Wasserstein GAN (Arjovsky et al., 2017;
Gulrajani et al., 2017). On the other hand, if F is the RKHS,
this is the MMD GAN (Li et al., 2017; Bińkowski et al.,
2018). Note that this lifted problem is now convex-concave
in the optimization variables.

Distributionally robust optimization (DRO) We now
consider a special case: the metric-ball-constrained DRO
problem (Delage & Ye, 2010)

inf
θ

sup
µ:D(µ,P̂n)≤ϵ

Eµ[l(θ;x)] (8)

Below, we consider DRO with the probability metric D
to be the p-Wasserstein DRO (p ≥ 1) (Gao & Kleywegt,
2016) as well as the Kernel(-MMD) DRO (Zhu et al., 2021).
Different from common DRO reformulation using conic
linear duality, we propose a primal-dual reformulation of
DRO.

Lemma 2.1 (Primal-dual reformulation of Wasserstein and
kernel DRO). Suppose the probability metric is chosen to
the MMD, then the DRO problem (8) admits the reformula-
tion

inf
θ∈Rd,f∈H

sup
µ∈M

Eµ(l − f) +
1

N

N∑
i=1

f(xi) + ϵ∥f∥H. (9)

Furthermore, it is equivalent to the smoothed optimization
problem

inf
θ∈Rd,f∈H

sup
µ∈M,h∈H:∥h∥H≤1(

1

N

N∑
i=1

f(xi) + ϵ⟨h, f⟩+ Eµ(l(θ;x)− f(x))

)
. (10)

Suppose the probability metric is chosen to the optimal
transport metric, e.g., p-Wasserstein distance. Then, the
DRO problem (8) admits the reformulation

inf
γ>0,θ∈Rd,f∈Ψc

sup
µ∈M

Eµ(l − γ · f)− γ

N

N∑
i=1

f c(xi) + γ · ϵ.

(11)

Ψc is the set of c-concave (Santambrogio, 2015) functions
and f c(y) := infx c(x, y)− f(x) denotes the c-transform.

Lemma 2.1 shows that those primal-dual DRO formulations
have the convex-concave structure in µ, f as in the MFKE,
and are convex in the learning model θ when the loss l is.
(10) is concave in the smoothing variable h. (11) is trivially
convex in the dual variable γ.

Wasserstein barycenter The Wasserstein barycenter
problem (Agueh & Carlier, 2011; Li et al., 2020; Tiapkin
et al., 2021; Korotin et al., 2021) can be formulated as a
saddle-point optimization problem.

min
µ∈M

n∑
i=1

αi [W(µ, νi)]

= min
µ∈M

n∑
i=1

αi sup
fi∈Ψc

{∫
f ci dµ+

∫
fidνi

}
, (12)

where µi ∈ M are given probability measures, fi ∈ Ψc are
the Kantorovich potentials associated with the Wasserstein
distance. f ci again denote the c-transform.
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Note that in the aforementioned settings of p-Wasserstein
(p ̸= 1) metric, one may parameterize Kantorovich po-
tential functions using tools such as the random Fourier
features (Rahimi & Recht, 2007) and input convex neural
networks (Amos et al., 2017), such as done in (Genevay
et al., 2016; Makkuva et al., 2020; Korotin et al., 2019). In
our theoretical analysis, we focus on the RKHS functions
(and hence the kernel MMD) setting in the rest of the pa-
per due to the difficulty in theoretically characterizing the
approximation error of deep models such as ICNNs.

2.2. Gradient Flow in the Wasserstein and Hilbert
Spaces

Recent theoretical analysis of generative models via MNE,
e.g., (Hsieh et al., 2019; Domingo-Enrich et al.; Wang &
Chizat, 2022; Trillos & Trillos, 2023), adopted the mean-
field limit point of view closely related to the mathematical
topic on PDE gradient flow of probability measures (Am-
brosio et al., 2008; Otto, a; Jordan et al., 1998; Otto, b).
Notably, works such as (Hsieh et al., 2019) modeled train-
ing dynamics of GAN as sampling using Langevin SDE,
which is also equivalent to solving the Fokker-Planck PDE.

Intuitively, a gradient flow describes a dynamical system that
is driven towards the dissipation of certain energies. This
system is called a gradient system. For example, the dynam-
ical system described by an ordinary differential equation
in the Euclidean space that follows the negative gradient
direction, ẋ(t) = −∇f(x(t)), x(t) ∈ Rd, is a simple gradi-
ent system. One milestone of the gradient system research
is the works of Otto and colleagues in deriving the Wasser-
stein gradient flow (Otto, a; Jordan et al., 1998; Otto, b).
Rigorous characterizations of general metric gradient sys-
tems have been carried out in PDE literature, for which we
refer to (Ambrosio et al., 2008; Santambrogio, 2015) for
complete treatments and (Peletier, 2014; Mielke, 2023) for
a first principles’ introduction, whose perspective we adopt
in this paper.

Recent machine learning literature has explored the Wasser-
stein gradient system, which generates the Wasserstein gra-
dient flow (WGF). It describes the evolution of probability
measures in the Wasserstein metric space (M,Wp), driven
by some energy functionals. In the case of 2-Wasserstein
metric, the metric space (M,W2) has particularly nice prop-
erties, namely, it is a so-called geodesic metric space (Am-
brosio et al., 2008). The gradient flow equation of Boltz-
mann entropy associated with this Wasserstein gradient sys-
tem is precisely the diffusion equation, which coincide with
the heat equation from the PDE perspective. From the op-
timization perspective, those foundational works allow us
to view complex dynamical systems as optimization algo-
rithms of probability measures, which minimizes or max-
imizes objective function(al)s (e.g., energy) in particular

geometries (e.g., Wasserstein space). This is vividly de-
scribed by a quote from Felix Otto:

The merit of the right gradient flow formula-
tion of a dissipative evolution equation is that it
separates energetics and kinetics: The energetics
endow the state space with a functional, the ki-
netics endow the state space with a (Riemannian)
geometry via the metric tensor.

While WGF has sparked significant interest within the ma-
chine learning community recently, performing optimization
with WGF requires extra care since its convergence cannot
be characterized using the regular notion of convexity. Re-
call that a functional E defined on a Hilbert space H is
λ-convex if ∀s ∈ [0, 1],∀u0, u1 ∈ H,

E((1− s)u0 + su1) ≤ (1− s)E(u0) + sE(u1)

− λ

2
s(1− s)∥u0 − u1∥2H. (13)

If λ > 0, E is strongly convex. This notion of convex-
ity does not make sense in the Wasserstein space and one
must summon the generalized geodesic convexity (Ambro-
sio et al., 2008). In contrast, gradient flows in the Hilbert
space geometry enjoy a much simpler structure and stronger
characterization results. We show below that the dual func-
tional optimization problems can be characterized by a sim-
pler gradient flow in the reproducing kernel Hilbert space,
where the regular convexity notion (13) is sufficient.

3. RKHS Gradient Flow
Our starting point is to model the infinite-dimensional
continuous-time optimization dynamics of the functional
optimization problem (2) using the RKHS gradient flows.

∂tf + E ′
f (f) = 0, f(0, x) = f0(x) ∈ H. (14)

In principle, other function spaces in the literature can also
be considered in practice, such as the random Fourier fea-
tures functions, single hidden-layer neural networks (Bach,
2017), and ICNNs. Although we focus the theoretical anal-
ysis in the rest of the paper on the RKHS setting.

Equation (14) is a gradient flow equation in a reproducing
kernel Hilbert space, which is much less explored in the
machine learning community than the WGF above. For ex-
ample, in (Arbel et al., 2019), the squared RKHS norm was
used as the driving energy functional for the Wasserstein
gradient flow, rather than the dissipation geometry for the
flow as in our formulation. A few other works such as (Chu
et al., 2020; Chewi et al., 2020; Duncan et al., 2019; Liu
& Wang, 2019; Korba et al., 2021) studied the kernelized
Wasserstein gradient flow in the context of Stein geome-
try. Those particular cases do not exploit the simplicity
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of gradient flow structure in the Hilbert space. Below, we
derive standard results for RKHSGF in the context of this
paper for completeness. For readers unfamiliar with PDE
gradient flows in the Hilbert space, we refer to (Ambro-
sio et al., 2008) for complete treatment and (Santambrogio,
2017; Mielke, 2023) for accessible introductions.

We first establish the main results for RKHSGF, namely,
existence, uniqueness, and a powerful result known as the
evolutionary variational inequalities (EVI)λ.
Lemma 3.1 (Characterizations of RKHS gradient flow).
Suppose the energy functional E is proper, upper semicon-
tinuous, λ-convex for some λ ∈ R (i.e., either convex or
concave), and has compact sublevel sets. Then for any
initial condition in the RKHS f(0, x) ∈ H, there exists a
unique solution at time t, f(t) ∈ H.

Furthermore, the gradient flow solution f(t, x) satisfies
(EVI)λ, for t ∈ [0, T ].

1

2
∥f(t)− ν∥2H ≤ 1

2
e−λ(t−s)∥f(s)− ν∥2H

+Mλ(t− s)(E(ν)− E(f(t))),

Mλ(τ) =

∫ τ

0

e−λ(τ−s)ds, ∀ν ∈ dom(F) ⊂ H.

Using (EVI)λ, we can effortlessly extract convergence re-
sults. Suppose a minimizer of the energy exists f∗ ∈
inff∈H E(f), we set ν = f∗, s = 0 in (EVI)λ

∥f(t)− f∗∥2H ≤ e−λt∥f(0)− f∗∥2H

+ 2Mλ(t− s)

(
inf
f∈H

E(f)− E(f(t))
)

≤ e−λt∥f(0)− f∗∥2H, (15)

yielding an exponential convergence in time if the energy is
convex (in the usual sense) w.r.t. the f variable, i.e., λ > 0.
Note that the convexity condition can be further weakened
using functional inequalities such as the logarithmic Sobolev
inequality.

One important distinction between the functional optimiza-
tion dynamics in RKHSGF and the measure optimization
in MNE optimization dynamics is that we do not need ad-
vanced structures such as generalized geodesic convexity
from the WGF setting — linearity or regular convexity is
sufficient for RKHSGF. This can be seen in the following
example.
Example 3.1. [Difference in convexity] In a 2-Wasserstein
space (M,W2), linear energy functional E0(µ) =

∫
V0dµ

for µ ∈ (M,W2), is non-convex geodesically if and only if
the function V0(x) is non-convex (Ambrosio et al., 2008).

On the other hand, in an RKHS H, linear energy functional
E1(f) = ⟨V1, f⟩H for f ∈ H is always convex, regardless
of the non-convexity of V1.

Hence, while the MNE problem ”lifts” the non-convex op-
timization problems to the measure spaces, the resulting
objective functions as in WGF are not geodesically convex.
Hence, the resulting WGF does not necessarily converge
globally even in the linear case above. In other words, there
is still no free lunch despite the lifting to the linear structure.
In contrast, the RKHSGF in our formulation converges un-
der the usual convexity in the Hilbert space. This distinction
of convexity has also been exploited in the context of distri-
butionally robust optimization with nonlinear or nonconvex
(in the uncertain variable) DRO objective functions using
kernel methods (Zhu et al., 2021). The same does not hold
true for the Wasserstein DRO, which requires Lagrangian
relaxation under nonconvex objectives (Sinha et al., 2020).

The standard proof of Lemma 3.1 is via time-discretization
using the following minimizing movement scheme (MMS),
also known as the time-incremental minimization scheme

f̂k+1 ∈ arg inf
f∈H

{
E(f) + 1

2τ
∥f − f̂k∥2H

}
, (16)

f̂0(x) = f(0, x) ∈ H, (17)

where τ > 0 is the step size for time-discretization. Defining
the piecewise constant function f̄τ (t, x) := f̂k(x) for t ∈
[kτ, kτ + τ ], standard PDE proofs (see, e.g., (Ambrosio
et al., 2008)) guarantee that f̄τ converges to the continuous-
time RKHSGF solution, i.e., f̄τ → f(t) as τ → 0.

Therefore, a natural bi-product of the existence results for
RKHSGF is the MMS step (16). This is a fully-implicit
Euler discretization of the RKHSGF, which is difficult to
implement in practice. In the next section, we will use the
explicit step, coupled with measure-update step, to derive
the primal-dual kernel mirror prox algorithm, which is the
discrete-time counterpart to the IWKGF (19)-(14).

Example: Interacting Wasserstein-Kernel Gradient
Flow Previously, the authors of (Domingo-Enrich et al.)
proposed the Interacting Wasserstein Gradient Flow as the
infinite-dimensional continuous-time optimization dynam-
ics for solving the MNE problem (1). We now propose a
new coupled gradient system which alternatives between
a WGF and an RKHS gradient flow (RKHSGF). We term
the mean-field dynamics Interacting Wasserstein-Kernel
Gradient Flow (IWKGF). Our perspective is to choose the
(dual) functional space in MFNE (3) as a reproducing kernel
Hilbert space (RKHS) (Wendland, 2004; Steinwart & Christ-
mann, 2008; Berlinet & Thomas-Agnan, 2011; Schölkopf
et al., 2002). That is to say, let F = H in MFNE (3), we
solve a specific variation of MFNE, which is the Mixed
Kernel Nash Equilibrium (MKNE)

inf
f∈H

sup
µ∈M

F (µ, f). (18)
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The gradient flow equations govern the IWKGF system are

∂tµ−∇ · (µ · F ′
µ(µ, f)) = 0, µ(0, x) = µ0(x) ∈ M,

(19)

∂tf + F ′
f (µ, f) = 0, f(0, x) = f0(x) ∈ H.

(20)

where H is an RKHS. The derivatives F ′
µ, F

′
f are taken in

the sense of the Fréchet differential. We will calculate the
concrete forms in the next sections.

When viewed standalone, The properties of the RKHS gradi-
ent flow (20) has already been discussed above. The Fokker-
Planck equation (19) can be viewed either as a Wasserstein
gradient flow of the energy functional E0(µ) := F (µ, f)
from the PDE perspective, or as a Langevin SDE, and is
already well understood in the machine learning community.
We refer to (Santambrogio, 2017; Ambrosio et al., 2008) for
its properties and recent works such as (Nitanda et al., 2022;
Chizat & Bach, 2018; Chizat, 2022) for recent machine
learning applications.

4. A Primal-Dual Kernel Mirror Prox
Algorithm

To construct our mirror prox algorithm, we consider generic
variable x ∈ Rp with domain X and make some mild reg-
ularity assumptions. Namely, we restrict M to the set of
probability measures on X that admit densities w.r.t. the
Lebesgue measure and have a density that is continuous and
positive almost everywhere on X . We also assume that there
is a Hilbert space H and a convex and closed set H ∈ H.
For the sake of generality, we consider a slight variation of
MKNE (18) as the following general infinite-dimensional
saddle-point problem on the spaces of measures and func-
tions

inf
f∈H⊆H

sup
µ∈M

F (f, µ). (21)

For shortness, we denote the set of all variables by u =
(f, µ). We consider here the setting of two variables only
for simplicity. An extension for a more general problem for-
mulation covering the DRO problem (10) is easy to derive.
Moreover, in the next section, we consider DRO problem
(10) as a particular case study and provide technical details
to check that the main assumptions of this section hold for
that problem. Our first main assumption in this section is as
follows.

Assumption 4.1. The functional F (f, µ) is convex in f for
fixed µ and concave in µ for fixed f .

4.1. Preliminaries

To construct the mirror prox algorithm for problem (21) we
need, first, to introduce proximal setup, which consists of

norms, their dual, and Bregman divergences on each space
of the variables.

For the space of the variable f , we use the self-dual norm
of the Hilbert space ∥ · ∥H, distance generating func-
tion df (f) = 1

2∥f∥
2
H, which gives Bregman divergence

BH(f, f̆) = 1
2∥f − f̆∥2H. This leads to the mirror step,

which is an explicit version of the MMS step (16),

f+ = Mirrf,Hη (f, ξf ) = arg min
f̃∈H

{⟨f̃ , ηξf ⟩+
1

2
∥f̃ − f∥2H}.

(22)

For the space of the variable µ, we follow (Hsieh et al.,
2019) and, first, introduce the Total Variation norm for
the elements of M ∥µ∥TV = sup∥ξ∥L∞≤1

∫
ξdµ =

sup∥ξ∥L∞≤1⟨ξ, µ⟩, where ∥ξ∥L∞ is the L∞-norm of func-
tions. To define the mirror step, we use (negative) Shannon
entropy and its Fenchel dual defined respectively as

Φ(µ) =

∫
dµ ln

dµ

dx
, Φ∗(ξ) = ln

∫
eξdx (23)

defined for ξ from the space F of all bounded integrable
functions on X . The corresponding Bregman divergence is
the relative entropy given by

DΦ(µ, µ̆) =

∫
dµ ln

dµ

dµ̆
. (24)

This leads to the mirror step (Hsieh et al., 2019) [Theorem
1]

µ+ = Mirrµη (µ, ξµ) = dΦ∗(dΦ(µ)− ηξµ)

≡ dµ+ =
e−ηξµdµ∫
e−ηξµdµ

. (25)

Our second main assumption is as follows.

Assumption 4.2. The functional F (f, µ) is Fréchet differ-
entiable w.r.t. each variable and the derivatives are Lipschitz
continuous in the following sense

∥F ′
f (u)− F ′

f (ũ)∥H ≤ Lff∥f − f̃∥H + Lfµ∥µ− µ̃∥TV ,

(26)

∥F ′
µ(u)− F ′

µ(ũ)∥L∞ ≤ Lµf∥f − f̃∥H + Lµµ∥µ− µ̃∥TV .
(27)

We also denote

L = max
κ1,κ2∈{f,µ}

{Lκ1κ2
}. (28)

4.2. Kernel Mirror Prox Algorithm and Its Analysis

The updates of the ideal general infinite-dimensional mirror
prox algorithm for problem (21) are given in Algorithm 1.
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Algorithm 1 Ideal General Mirror-Prox

Require: Initial guess (f̃0, µ̃0), step-sizes ηf , ηµ > 0.
1: for k = 0, 1, . . . , N − 1 do
2: Compute

fk = Mirrf,Hηf (F ′
f (ũk)),

µk = Mirrµηµ(µk,−F
′
µ(ũk)).

3: Compute

f̃k+1 = Mirrf,Hηf (F ′
f (uk)),

µ̃k+1 = Mirrµηµ(µk,−F
′
µ(uk)).

4: end for
5: Compute ūN = 1

N

∑N−1
k=0 uk.

For the analysis of the mirror prox algorithm we need the
following auxuliary results. The first one is used for the
mirror steps applied to the variable f .

Lemma 4.3. Let H be (possibly finite-dimensoinal) Hilbert
space and let H ⊂ H be convex and closed. Let h̃ ∈ H and
ξ, ξ̃ ∈ H∗ = H, and

h = arg min
ĥ∈H

{
⟨ĥ, ηξ⟩+ 1

2
∥h̃− ĥ∥2H

}
= Mirrh,Hη (h̃, ξ),

(29)

h̃+ = arg min
ĥ∈H

{
⟨ĥ, ηξ̃⟩+ 1

2
∥h̃− ĥ∥2H

}
= Mirrh,Hη (h̃, ξ̃).

(30)

Then, for any ĥ ∈ H

⟨h− ĥ, ηξ̃⟩ ≤ 1

2
∥ĥ− h̃∥2H − 1

2
∥ĥ− h̃+∥2H

+
η2

2
∥ξ̃ − ξ∥2H − 1

2
∥h− h̃∥2H.

The second result characterizes the mirror step with respect
to the measure µ.

Lemma 4.4 ((Hsieh et al., 2019) [Lemma 5]). Let µ̃ ∈ M
and ξ, ξ̃ ∈ F , and

µ = Mirrµη (µ̃, ξ), µ̃+ = Mirrµη (µ̃, ξ̃). (31)

Then, for any µ̂ ∈ M

⟨µ− µ̂, ηξ̃⟩ ≤ DΦ(µ̂, µ̃)−DΦ(µ̂, µ̃+)

+
η2

8
∥ξ̃ − ξ∥2L∞ − 2∥µ− µ̃∥2TV . (32)

The following result gives the convergence rate of Algorithm
1.

Theorem 4.5. Let Assumptions 4.1, 4.2 hold. Let also the
stepsizes in Algorithm 1 satisfy ηf = ηµ = 1

16L , where L is
defined in (28). Then, for any compact set U = Uf ×Uµ ⊆
H ×M, the sequence (f̄N , µ̄N ) generated by Allgorithm 1
satisfies

max
µ∈Uµ

F (f̄N , µ)− min
f∈Uf

F (f, µ̄N )

≤ 8L

N
max
u∈U

(
∥f − f̃0∥2H + 2DΦ(µ, µ̃0)

)
.

4.3. Analysis of Stochastic Kernel Mirror Prox

To account for potential inexactness in the first-order in-
formation, we assume that instead of exact derivatives, the
algorithm uses their inexact counterparts F̃ ′

f (u), F̃
′
µ(u) that

may be random and are assumed to satisfy the following
assumption.

Assumption 4.6.

F ′
f (u) = EF̃ ′

f (u), F ′
µ(u) = EF̃ ′

µ(u), (33)

E∥F ′
f (u)− F̃ ′

f (u)∥2H ≤ σ2
f , E∥F ′

µ(u)− F̃ ′
µ(u)∥2L∞ ≤ σ2

µ.

(34)

Theorem 4.7. Let Assumptions 4.1–4.6 hold. Let also in
Algorithm 1 the stochastic derivatives be used instead of
the deterministic and the stepsizes satisfy ηf = ηµ = 1

16L ,
where L is defined in (28). Then, for any compact set U =
H × Uµ ⊆ H ×M, the sequence (f̄N , µ̄N ) generated by
Algorithm 1 satisfies

E
{
max
µ∈Uµ

F (f̄N , µ)− min
f∈Uf

F (f, µ̄N )

}
≤ 8L

N
max
u∈U

(
∥f − f̃0∥2H + 2DΦ(µ, µ̃0)

)
+
3(σ2

f + σ2
µ)

16L
.

Let us denote σ2 = σ2
f + σ2

µ. As we see, Theorem 4.7
guarantees the same convergence rate as in the exact case,
but up to some vicinity which is governed by the level of
noise. In most cases, the σ2/L term can be made of the same
order 1/N by using the mini-batching technique. Indeed, a
mini-batch of size N allows us to reduce the variance from
σ2 to σ2/N . Yet, we note that in this case, N iterations will
require the number of samples O(N2).

An alternative would be to use the information about the
diameter of the set U . Indeed, assume that

max
u∈U

(
∥f − f̃0∥2H + 2DΦ(µ, µ̃0)

)
≤ Ω2

U .

Fixing the number of steps N and choosing ηf = ηµ =
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min
{

1
16L ,

ΩUσ√
6N

}
, we obtain the following result

E
{
max
µ∈Uµ

F (f̄N , µ)− min
f∈Uf

F (f, µ̄N )

}
≤ max

{
8LΩ2

U

N
,

√
3σ2Ω2

U

2N

}
. (35)

5. Case Study: Distributionally Robust
Optimization

In this subsection we particularize the elements of Algo-
rithm 1 for the specific DRO problem (8), (10). In contrast
with the large number of reformulation techniques using
the dual formulation, we propose the first principled primal-
dual convergence analysis for DRO using our MFNE and
MKNE framework.

Compared to problem (21) it has two additional variables
θ ∈ Rd and h ∈ H ⊂ H. For these variables, the proximal
setup is introduced in the same way as for the variable f .
We choose H to be a reproducing kernel Hilbert space with
kernel k.

Our main assumptions for problem (10) are

1. l is convex w.r.t. θ for all x.
2. L0 = supx,θ ∥∇θl(θ;x)∥2 < +∞.
3. ∇θl(θ;x) is L(x)-Lipschitz w.r.t. θ and L1 =

supµ Ex∼µL(x)2 < +∞.
4. C = supx k(x, x) < +∞.

We note that the convexity assumption w.r.t. θ is used to
obtain global convergence guarantee w.r.t. θ. When it does
not hold in practice, we can still execute our primal-dual
kernel mirror prox for DRO. This is not possible with other
existing Wasserstein or kernel DRO algorithms. Clearly,
then the objective F is convex in (θ, f) for fixed (µ, h) and
concave in (µ, h) for fixed (θ, f). The Frechet derivatives
of F with respect to the variables (θ, f, µ, h) are given by

F ′
θ = Ex∼µ∇θl(θ;x) (36)

F ′
f =

∫
k(x, x′)dµ̂(x′) + ϵh(x)−

∫
k(x, x′)dµ(x′)

(37)

= Ex∼µ̂k(·, x) + ϵh(·)− Ex∼µk(·, x) (38)
−F ′

µ = f(·)− l(θ; ·) (39)

−F ′
h = −ϵf(·). (40)

Since the derivative w.r.t. θ and f have the form of expecta-
tion, we can use the following stochastic counterparts. We
can take a sample of Xi’s from µ to construct an unbiased

stochastic derivative

F̃ ′
θ =

1

Nθ

Nθ∑
i=1

∇θl(θ;Xi). (41)

Similarly, we can take a sample of Xi’s from µ and X̂i from
µ̂ to construct an unbiased stochastic derivative

F̃ ′
f = ϵh(·) + 1

Nf

Nf∑
i=1

(k(·, X̂i) + k(·, Xi)). (42)

We summarize the result of applying our theoretical analysis
to the primal-dual DRO.

Corollary 5.1. Assumptions 4.2, 4.6 hold for the smoothed
DRO problem (10). Consequently, the results of Theorems
4.5 and 4.7 hold for the DRO problem (10).

Therefore, we obtain O(1/N) convergence rate in the deter-
ministic case andO(1/

√
N) convergence rate in the stochas-

tic case for solving DRO with kernel mirror prox.

6. Discussion
In conclusion, this paper studies the functional optimization
dynamics using the continuous-time RKHS gradient flow.
As a specific application, we introduce the Mixed Functional
Nash Equilibrium framework that governs several learning
algorithms. We model the optimization dynamics as the
Interacting Wasserstein-Kernel Gradient Flow and analyze
its corresponding discrete-time primal-dual kernel mirror
prox algorithm. We provide the first unified convergence
analysis for the MKNE problem class and the primal-dual
reformulation of DRO with probability-metric constraints.

As this paper focuses on theoretical analysis, code imple-
mentation is left for future work. We also did not include
the now-standard mean-field analysis using the Wasserstein
gradient flow and Langevin SDE, for which we refer to re-
cent works such as (Domingo-Enrich et al.; Chizat, 2022;
Nitanda et al., 2022).
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A. Further Technical Background
A.1. Proof of Lemma 2.1

We now prove Lemma 2.1, of which a more detailed version is stated below.

Lemma A.1 (Primal-dual reformulation of Wasserstein and kernel DRO). Suppose the probability metric is chosen to the
MMD, then the DRO problem (8) admits the following equivalent primla-dual reformulations

inf
θ∈Rd,f∈H,τ>0

sup
µ∈M

Eµ(l(θ;x)− f(x)) +
1

N

N∑
i=1

f(xi) +
τ

2
∥f∥2H +

ϵ2

2τ
, (43)

inf
θ∈Rd,f∈H

sup
µ∈M

Eµ(l(θ;x)− f(x)) +
1

N

N∑
i=1

f(xi) + ϵ∥f∥H. (44)

Furthermore, it is equivalent to the smoothed optimization problem

inf
θ∈Rd,f∈H

sup
µ∈M,h∈H:∥h∥H≤1

{
1

N

N∑
i=1

f(xi) + ϵ⟨h, f⟩+ Eµ(l(θ;x)− f(x))

}
. (45)

Suppose the probability metric is chosen to the optimal transport metric, e.g., p-Wasserstein distance. Then, the DRO
problem (8) admits the following equivalent reformulations

inf
γ>0,θ∈Rd,f∈Ψγ·c

sup
µ∈M

Eµ(l(θ;x)− f(x))− 1

N

N∑
i=1

fγ·c(xi) + γ · ϵ, (46)

inf
γ>0,θ∈Rd,f∈Ψc

sup
µ∈M

Eµ(l(θ;x)− γ · f(x))− 1

N

N∑
i=1

γ · f c(xi) + γ · ϵ. (47)

Ψc denotes the set of c-concave (Santambrogio, 2015) functions and f c(y) := infx c(x, y)− f(x) denotes the c-transform.

Proof. For this proof, it suffices to consider the case where θ is fixed, since only the inner maximization is reformulated.
We first prove the result for the MMD setting.

MMD setting. We consider the kernel mean embedding map as a linear constraint∫
ϕ(x)dµ = h, (48)

where h is a function in H. By straightforward Lagrange duality and associating the linear constraint with the multiplier in
the dual space, f ∈ H,

inf
τ>0,f∈H

sup
µ

{
⟨l, µ⟩ − 1

2τ
∥h− ĥ∥2H +

ϵ2

2τ
− ⟨f, h⟩H +

∫
⟨f, ϕ(x)⟩Hdµ

}
(49)

where ĥ is the kernel mean embedding of the empirical measure P̂N = 1
N

∑N
i=1 δxi . Carrying out the quadratic optimization

problem in closed form w.r.t. h and rearranging the terms, we obtain the result in (43). An optimal choice of the dual
variable τ yields the equivalent reformulation (44). Smoothing via the definition of the dual norm in the Hilbert spaces, we
obtain (45).

Wasserstein setting. The reformulation is a direct consequence of combining the dual Kantorovich representation of
OT (4) and Lagrange duality.

A.2. Lemma (3.1)

Since an RKHS is a Hilbert space, Lemma (3.1) is simply the (EVI)λ in a Hilbert space, whose proof is standard (Ambrosio
et al., 2008; Santambrogio, 2015; Mielke, 2023).
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A.3. Technial details on geodesic convexity in the Wasserstein space

Recent machine learning literature has explored Wasserstein gradient flow (WGF). The 2-Wasserstein space (M,W2) is
geodesically convex, as defined below.

In a metric space (M,D) a curve γ : [0, 1] →M is a (constant speed) geodesic if

∀r, s ∈ [0, 1] : D(γ(r), γ(s)) = |s− r|D(γ(0), γ(1)).

We refer to that as the geodesic γ connects the points γ(0) and γ(1) and write Geod (γ(0), γ(1)) for the set of all such
geodesics.

Definition A.2 (Geodesic metric spaces). The metric space (M,D) is a geodesic space, if for all u0, u1 ∈ M there exists a
geodesic connecting u0 and u1.

Definition A.3 (Geodesic convexity). A functional F : M → R∞ is geodesically λ-convex if ∀u0, u1 ∈ M∃γ ∈
Geod (u0, u1) ,

E(γ(s)) ≤ (1− s)E(γ(0)) + sE(γ(1))− λ

2
s(1− s)D(γ(0), γ(1))2, ∀s ∈ [0, 1].

As we have seen in the main text, e.g., discussions around Example 3.1, this complication of convexity structure makes
optimization in the Wasserstein more difficult than general Hilbert spaces, which motivates our approach to work in the
RKHS.

A.4. Practical Consideration about Infinite-dimensional Mirror Steps

Algorithm 1 requires two infinite-dimensional mirror steps in the functional variables µ, f . The f -update, optimization w.r.t.
RKHS functions, is standard in the machine learning literature, e.g., (Dai et al., 2014; Genevay et al., 2016; Tiapkin et al.,
2021; Zhu et al., 2021). We now discuss the µ-update. In addition to existing works using Bregman-mirror steps, such as
(Hsieh et al., 2019), which employ Langevin Monte-Carlo, we show a fully variational approach using Wasserstein gradient
flows. While the PDE and SDE can describe the same drift-diffusion process, the resulting optimization algorithms are
different. Notably, it is possible to perform deterministic optimization steps, purely relying on the Wasserstein geomtry
and bypassing the discretization of Langevin SDE. The goal of the mirror step (25) is to solve the following optimization
problem

µk+1 ∈ arg inf
µ∈M

∫
F ′
µ(µ

k, fk)dµ+
1

2τ
D(µ, µk). (50)

The optimization objective is the energy of the Fokker-Planck equation, of which we can take the time-discretization in the
Wasserstein space. This results in the standard JKO steps for Wasserstein gradient flow (Otto, a; Jordan et al., 1998; Otto, b).
Let ξ0 = µk, for the sub-step count l = 0, ..., T , step size s > 0, we solve the variational problem

ξl+1 ∈ arg inf
ξ∈M

∫
F ′
µ(µ

k, fk)dξ +
1

2τ
D(ξ, µk) +

1

2s
W 2

2 (ξ, ξ
l). (51)

Each step can be realized, e.g., via Stein variational gradient descent (Liu & Wang, 2016).

B. Theoretical Analysis of Primal-Dual Kernel Mirror Descent in Section 4
For the sake of generality, in particular, to cover the DRO problem (10), we consider a more general saddle-point problem.
Theorems 4.5 and 4.7 are obtained as corollaries of the results obtained in this section. To make this section self-contained
and for the reader’s convenience we repeat some definitions and results given in the main text.

We consider generic variable x ∈ Rp with domain X . We denote by M the set of all probability measures on X that admit
densities w.r.t. the Lebesgue measure and the density is continuous and positive almost everywhere on X . We also assume
that there are two Hilbert spaces Hf ,Hh and convex set Θ ⊆ Rd and convex compact H ∈ Hh. We consider the following
general infinite-dimensional saddle-point problem

inf
θ∈Θ⊆Rd,f(x)∈Hf

sup
µ∈M,h(x)∈H⊆Hh

F (θ, f, µ, h). (52)
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For shortness, we denote the set of all variables by u = (θ, f, µ, h).

Our first main assumption is as follows.

Assumption B.1. The functional F (θ, f, µ, h) is convex in (θ, f) for fixed (µ, h) and concave in (µ, h) for fixed (θ, f).

B.1. Preliminaries

To construct the mirror prox algorithm for problem (52) we need to first introduce proximal setup, which consists of norms,
their dual, and Bregman divergences on each space of the variables.

For the space of the variable θ, we introduce the standard proximal setup with the self-dual Euclidean norm ∥ · ∥2, distance-
generating function dθ(θ) = 1

2∥θ∥
2
2, which gives Bregman divergence Bθ(θ, θ̆) = 1

2∥θ − θ̆∥22. This leads to the mirror step
defined as

θ+ = Mirrθ,Θη (θ, ξθ) = argmin
θ̃∈Θ

{⟨θ̃, ηξθ⟩+
1

2
∥θ̃ − θ∥22}. (53)

We note that our choice of the Euclidean proximal setup is made for simplicity and that other standard proximal setups are
possible (Nemirovski et al., 2009).

For the space of the variable f , we use the self-dual norm of the Hilbert space ∥ · ∥Hf
, distance generating function

df (f) =
1
2∥f∥

2
Hf

, which gives Bregman divergence BHf
(f, f̆) = 1

2∥f − f̆∥2Hf
. This leads to the mirror step

f+ = Mirrf,Hf
η (f, ξf ) = argmin

f̃
{⟨f̃ , ηξf ⟩+

1

2
∥f̃ − f∥2Hf

} = f − ηξf . (54)

For the space of the variable µ, we follow (Hsieh et al., 2019) and, first, introduce the Total Variation norm for the elements
of M

∥µ∥TV = sup
∥ξ∥L∞≤1

∫
ξdµ = sup

∥ξ∥L∞≤1

⟨ξ, µ⟩,

where ∥ξ∥L∞ is the L∞-norm of functions. To define the mirror step, we use (negative) Shannon entropy

Φ(µ) =

∫
dµ ln

dµ

dx
(55)

and its Fenchel dual

Φ∗(ξ) = ln

∫
eξdx (56)

defined for ξ from the space F of all bounded integrable functions on X . The corresponding Bregman divergence is the
relative entropy given by

DΦ(µ, µ̆) =

∫
dµ ln

dµ

dµ̆
. (57)

This leads to the mirror step (Hsieh et al., 2019) [Theorem 1]

µ+ = Mirrµη (µ, ξµ) = dΦ∗(dΦ(µ)− ηξµ) ≡ dµ+ =
e−ηξµdµ∫
e−ηξµdµ

. (58)

Finally, for the space of the variable h, we do the same as for the variable f . Namely, we use the distance generating function
dh(h) =

1
2∥h∥

2
Hh

, which gives Bregman divergence BHh
(h, h̆) = 1

2∥h− h̆∥2Hh
. This leads to the mirror step

h+ = Mirrh,Hη (h, ξh) = arg min
h̃∈H

{⟨h̃, ηξh⟩+
1

2
∥h̃− h∥2Hh

}. (59)

Our second main assumption is as follows
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Assumption B.2. The functional F (θ, f, µ, h) is Fréchet differentiable w.r.t. each variable and the derivatives are Lipschitz
continuous in the following sense

∥F ′
θ(u)− F ′

θ(ũ)∥2 ≤ Lθθ∥θ − θ̃∥2 + Lθf∥f − f̃∥Hf
+ Lθµ∥µ− µ̃∥TV + Lθh∥h− h̃∥Hh

, (60)

∥F ′
f (u)− F ′

f (ũ)∥Hf
≤ Lfθ∥θ − θ̃∥2 + Lff∥f − f̃∥Hf

+ Lfµ∥µ− µ̃∥TV + Lfh∥h− h̃∥Hh
, (61)

∥F ′
µ(u)− F ′

µ(ũ)∥L∞ ≤ Lµθ∥θ − θ̃∥2 + Lµf∥f − f̃∥Hf
+ Lµµ∥µ− µ̃∥TV + Lµh∥h− h̃∥Hh

, (62)

∥F ′
h(u)− F ′

h(ũ)∥Hh
≤ Lhθ∥θ − θ̃∥2 + Lhf∥f − f̃∥Hf

+ Lhµ∥µ− µ̃∥TV + Lhh∥h− h̃∥Hh
. (63)

We also denote
L = max

κ1,κ2∈{θ,f,µ,h}
{Lκ1κ2

}. (64)

B.2. Mirror Prox Algorithm and Its Analysis

The updates of the general ideal infinite-dimensional Mirror Prox algorithm for problem (52) are given in Algorithm 2.

Algorithm 2 Ideal General Mirror-Prox

Require: Initial guess (θ̃0, f̃0, µ̃0, h̃0), step-sizes ηθ, ηf , ηµ, ηh > 0.
1: for k = 0, 1, . . . , N − 1 do
2: Compute

θk = Mirrθ,Θηθ (θ̃k, F
′
θ(ũk)), fk = Mirrf,Hf

ηf
(F ′
f (ũk)),

µk = Mirrµηµ(µk,−F
′
µ(ũk)), hk = Mirrh,Hηh (hk,−F ′

h(ũk)).

3: Compute

θ̃k+1 = Mirrθ,Θηθ (θ̃k, F
′
θ(uk)), f̃k+1 = Mirrf,Hf

ηf
(F ′
f (uk)),

µ̃k+1 = Mirrµηµ(µk,−F
′
µ(uk)), h̃k+1 = Mirrh,Hηh (hk,−F ′

h(uk)).

4: end for
5: Compute ūN = 1

N

∑N−1
k=0 uk.

For the analysis of the mirror prox algorithm, we need the following auxiliary results. The first one is used for the mirror
steps applied to the variables θ, f, h.
Lemma B.3. Let H be (possibly finite-dimensoinal) Hilbert space and let H ⊂ H be convex and closed. Let h̃ ∈ H and
ξ, ξ̃ ∈ H∗ = H, and

h = arg min
ĥ∈H

{
⟨ĥ, ηξ⟩+ 1

2
∥h̃− ĥ∥2H

}
= Mirrh,Hη (h̃, ξ), (65)

h̃+ = arg min
ĥ∈H

{
⟨ĥ, ηξ̃⟩+ 1

2
∥h̃− ĥ∥2H

}
= Mirrh,Hη (h̃, ξ̃). (66)

Then, for any ĥ ∈ H

⟨h− ĥ, ηξ̃⟩ ≤ 1

2
∥ĥ− h̃∥2H − 1

2
∥ĥ− h̃+∥2H +

η2

2
∥ξ̃ − ξ∥2H − 1

2
∥h− h̃∥2H. (67)

Proof. By the optimality condition in (66), we have for all ĥ ∈ H

⟨ηξ̃ − (h̃− h̃+), ĥ− h̃+⟩ ≥ 0. (68)

Rearranging, we obtain

⟨h̃+ − ĥ, ηξ̃⟩ ≤ ⟨h̃+ − ĥ, h̃− h̃+⟩ = −1

2
∥h̃+ − h̃∥2H − 1

2
∥ĥ− h̃+∥2H +

1

2
∥ĥ− h̃∥2H. (69)
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In the same way, by the optimality condition in (65), we have for all ĥ ∈ H , and, in particular for h̃+

⟨ηξ − (h̃− h), h̃+ − h⟩ ≥ 0. (70)

Rearranging, we obtain

⟨h− h̃+, ηξ⟩ ≤ ⟨h− h̃+, h̃− h⟩ = −1

2
∥h− h̃∥2H − 1

2
∥h̃+ − h∥2H +

1

2
∥h̃+ − h̃∥2H. (71)

Combining the last inequality with (69) and using the Fenchel inequality, we obtain

⟨h− ĥ, ηξ̃⟩ =⟨h̃+ − ĥ, ηξ̃⟩+ ⟨h− h̃+, ηξ⟩+ ⟨h− h̃+, η(ξ̃ − ξ)⟩ (72)

− 1

2
∥h̃+ − h̃∥2H − 1

2
∥ĥ− h̃+∥2H +

1

2
∥ĥ− h̃∥2H (73)

− 1

2
∥h− h̃∥2H − 1

2
∥h̃+ − h∥2H +

1

2
∥h̃+ − h̃∥2H (74)

+
η2

2
∥ξ̃ − ξ∥2H − 1

2
∥h− h̃∥2H, (75)

which gives the result of the Lemma.

The second result characterizes the mirror step with respect to the measure µ.

Lemma B.4 ((Hsieh et al., 2019) [Lemma 5]). Let µ̃ ∈ M and ξ, ξ̃ ∈ F , and

µ = Mirrµη (µ̃, ξ), (76)

µ̃+ = Mirrµη (µ̃, ξ̃). (77)

Then, for any µ̂ ∈ M

⟨µ− µ̂, ηξ̃⟩ ≤ DΦ(µ̂, µ̃)−DΦ(µ̂, µ̃+) +
η2

8
∥ξ̃ − ξ∥2L∞ − 2∥µ− µ̃∥2TV . (78)

The following result gives the convergence rate of Algorithm 2.

Theorem B.5. Let Assumptions B.1, B.2 hold. Let also the stepsizes in Algorithm 2 satisfy ηθ = ηf = ηµ = ηh = 1
16L ,

where L is defined in (64). Then, for any compact set U = Uθ × Uf × Uµ × Uh ⊆ Θ × Hf × M × H , the sequence
(θ̄N , f̄N , µ̄N , h̄N ) generated by Allgorithm 2 satisfies 1

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N )

≤ 8L

N
max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
.

Proof. Applying Lemma B.3 to the step in θ, we obtain for any θ ∈ Θ and for k = 0, ..., N − 1

⟨θk − θ, ηθF
′
θ(uk)⟩ ≤

1

2
∥θ − θ̃k∥22 −

1

2
∥θ − θ̃k+1∥22 −

1

2
∥θk − θ̃k∥22 +

η2θ
2
∥F ′

θ(uk)− F ′
θ(ũk)∥22. (79)

Summing these inequalities for k = 0, ..., N − 1, we obtain

N−1∑
k=0

⟨θk − θ, F ′
θ(uk)⟩ ≤

1

2ηθ
∥θ − θ̃0∥22 +

Rθ
2ηθ

,

Rθ =

N−1∑
k=0

(
−∥θk − θ̃k∥22 + η2θ∥F ′

θ(uk)− F ′
θ(ũk)∥22

)
.

1There was an obvious typo in the primal-dual gap expression in the original theorem statement in the main text. We have fixed this in
the following result.
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In the same way, we obtain for all f ∈ Hf

N−1∑
k=0

⟨fk − f, F ′
f (uk)⟩ ≤

1

2ηf
∥f − f̃0∥2Hf

+
Rf
2ηf

,

Rf =

N−1∑
k=0

(
−∥fk − f̃k∥2Hf

+ η2f∥F ′
f (uk)− F ′

f (ũk)∥2Hf

)
and for all h ∈ H

N−1∑
k=0

⟨hk − h,−F ′
h(uk)⟩ ≤

1

2ηh
∥h− h̃0∥2Hh

+
Rh
2ηh

,

Rh =

N−1∑
k=0

(
−∥hk − h̃k∥2Hh

+ η2h∥F ′
h(uk)− F ′

h(ũk)∥2Hh

)
.

Finally, applying Lemma B.4 to the step in µ, we obtain for any µ ∈ M

N−1∑
k=0

⟨µk − µ,−F ′
µ(uk)⟩ ≤

1

ηµ
DΦ(µ, µ̃0) +

Rµ
2ηµ

,

Rµ =

N−1∑
k=0

(
−∥µk − µ̃k∥2TV + η2µ∥F ′

µ(uk)− F ′
µ(ũk)∥2L∞

)
.

By convexity of F in (θ, f) and concavity of F in (µ, h), we have, for all (θ, f) ∈ Θ×Hf

1

N

N−1∑
k=0

F (uk)− F (θ, f, µ̄N , h̄N ) ≤ 1

N

N−1∑
k=0

(F (uk)− F (θ, f, µk, hk))

≤ 1

N

N−1∑
k=0

(⟨θk − θ, F ′
θ(uk)⟩+ ⟨fk − f, F ′

f (uk)⟩)

≤ 1

2Nηθ
∥θ − θ̃0∥22 +

Rθ
2Nηθ

+
1

2Nηf
∥f − f̃0∥2Hf

+
Rf

2Nηf
.

In the same way, we obtain that, for all (µ, h) ∈ M×H

− 1

N

N−1∑
k=0

F (uk) + F (θ̄N , f̄N , µ, h) ≤
1

N

N−1∑
k=0

(−F (uk) + F (θk, fk, µ, h))

≤ 1

N

N−1∑
k=0

(⟨µk − µ,−F ′
µ(uk)⟩+ ⟨hk − h,−F ′

h(uk)⟩)

≤ 1

Nηµ
DΦ(µ, µ̃0) +

Rµ
2Nηµ

+
1

2Nηh
∥h− h̃0∥2Hh

+
Rh

2Nηh
.

Combining the last two bounds, we obtain that for all θ ∈ Θ, f ∈ Hf , µ ∈ M, h ∈ H it holds that

F (θ̄N , f̄N , µ, h)− F (θ, f, µ̄N , h̄N )

≤ 1

2Nηθ
∥θ − θ̃0∥22 +

1

2Nηf
∥f − f̃0∥2Hf

+
1

Nηµ
DΦ(µ, µ̃0) +

1

2Nηh
∥h− h̃0∥2Hh

+
1

2N

(
Rθ
ηθ

+
Rf
ηf

+
Rµ
ηµ

+
Rh
ηh

)
.
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Our next goal is to show that
Rθ
ηθ

+
Rf
ηf

+
Rµ
ηµ

+
Rh
ηh

≤ 0.

Using the Lipschitz condition in Assumption B.2, we obtain

Rθ =

N−1∑
k=0

(
−∥θk − θ̃k∥22 + η2θ∥F ′

θ(uk)− F ′
θ(ũk)∥22

)
≤
N−1∑
k=0

(
−∥θk − θ̃k∥22 + 4η2θ(L

2
θθ∥θk − θ̃k∥22 + L2

θf∥fk − f̃k∥2Hf
+ L2

θµ∥µk − µ̃k∥2TV + L2
θh∥hk − h̃k∥2Hh

)
)
.

Combining this with the similar estimates for Rf , Rµ, Rh and rearranging the terms, we obtain

Rθ
ηθ

+
Rf
ηf

+
Rµ
ηµ

+
Rh
ηh

≤
N−1∑
k=0

(
∥θk − θ̃k∥22(−1/ηθ + 4(L2

θθηθ + L2
fθηf + L2

µθηµ + L2
hθηh))

+ ∥fk − f̃k∥2Hf
(−1/ηf + 4(L2

θfηθ + L2
ffηf + L2

µfηµ + L2
hfηh))

+ ∥µk − µ̃k∥2TV (−1/ηµ + 4(L2
θµηθ + L2

fµηf + L2
µµηµ + L2

hµηh))

+ ∥hk − h̃k∥2Hh
(−1/ηh + 4(L2

θhηθ + L2
fhηf + L2

µhηµ + L2
hhηh))

)
≤ 0,

where we used that ηθ, ηf , ηµ, ηh ≤ 1
16L for L defined in (64).

Thus, we finally obtain that for any compact U = Uθ × Uf × Uµ × Uh ⊂ Θ×Hf ×M×H

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N )

≤ 8L

N
max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
.

B.3. Analysis in the stochastic case

To account for potential inexactness in the first-order information, we assume that instead of exact derivatives, the algorithm
uses their inexact counterparts F̃ ′

θ(u), F̃
′
f (u), F̃

′
µ(u), F̃

′
h(u), that may be random and are assumed to satisfy the following

assumption.

Assumption B.6.

F ′
θ(u) = EF̃ ′

θ(u), (80)

F ′
f (u) = EF̃ ′

f (u), (81)

F ′
µ(u) = EF̃ ′

µ(u), (82)

F ′
h(u) = EF̃ ′

h(u), (83)

E∥F ′
θ(u)− F̃ ′

θ(u)∥22 ≤ σ2
θ , (84)

E∥F ′
f (u)− F̃ ′

f (u)∥2Hf
≤ σ2

f , (85)

E∥F ′
µ(u)− F̃ ′

µ(u)∥2L∞ ≤ σ2
µ, (86)

E∥F ′
h(u)− F̃ ′

h(u)∥2Hh
≤ σ2

h. (87)

Theorem B.7. Let Assumptions B.1–B.6 hold. Let also in Algorithm 2 the stochastic derivatives be used instead of the
deterministic and the stepsizes satisfy ηθ = ηf = ηµ = ηh = 1

16L , where L is defined in (64). Then, for any compact set
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U = Uθ × Uf × Uµ × Uh ⊆ Θ×Hf ×M×H , the sequence (θ̄N , f̄N , µ̄N , h̄N ) generated by Allgorithm 2 satisfies

E
{

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N )

}
≤ 8L

N
max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
+

3

16L
(σ2
θ + σ2

f + σ2
µ + σ2

h).

Proof. We proceed as in the proof of Theorem B.5 changing in Algorithm 2 the exact first-order information to its inexact
counterpart. In this way, we obtain the following counterpart of (79)

⟨θk − θ, ηθF̃
′
θ(uk)⟩ ≤

1

2
∥θ − θ̃k∥22 −

1

2
∥θ − θ̃k+1∥22 −

1

2
∥θk − θ̃k∥22 +

η2θ
2
∥F̃ ′

θ(uk)− F̃ ′
θ(ũk)∥22. (88)

Using the inequality

E∥F̃ ′
θ(uk)− F̃ ′

θ(ũk)∥22 ≤ 3E
(
∥F̃ ′

θ(uk)− F ′
θ(uk)∥22 + ∥F̃ ′

θ(ũk)− F ′
θ(ũk)∥22 + ∥F ′

θ(uk)− F ′
θ(ũk)∥22

)
(89)

Assumpt.B.6
≤ 6σ2

θ + 3E∥F ′
θ(uk)− F ′

θ(ũk)∥22 (90)

and taking the expectation in the previous inequality, we obtain the following counterpart of (79)

⟨θk − θ, ηθF
′
θ(uk)⟩ ≤

1

2
E∥θ − θ̃k∥22 −

1

2
E∥θ − θ̃k+1∥22 −

1

2
E∥θk − θ̃k∥22 (91)

+
3η2θ
2

E∥F ′
θ(uk)− F ′

θ(ũk)∥22 + 3η2θσ
2
θ . (92)

Repeating the same steps as in the proof of Theorem B.5, we obtain that for any compact U = Uθ × Uf × Uµ × Uh ⊂
Θ×Hf ×M×H

E
{

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N )

}
≤ 8L

N
max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
+

3

16L
(σ2
θ + σ2

f + σ2
µ + σ2

h). (93)

Let us denote σ2 = σ2
θ + σ2

f + σ2
µ + σ2

h. As we see, Theorem B.7 guarantees the same convergence rate as in the exact case,
but up to some vicinity which is governed by the level of noise. In most cases, the σ2/L term can be made of the same order
1/N by using mini-batching technique. Indeed, a mini-batch of size N allows to change the variance from σ2 to σ2/N . Yet,
we note that in this case, N iterations will require the number of samples O(N2).

An alternative would be to use the information about the diameter of the set U . Indeed, assume that

max
u∈U

(
∥θ − θ̃0∥22 + ∥f − f̃0∥2Hf

+ 2DΦ(µ, µ̃0) + ∥h− h̃0∥2Hh

)
≤ Ω2

U .

Then, we obtain the following counterpart of the r.h.s. of (93) substituting ηθ = ηf = ηµ = ηh = η

Ω2
U

2Nη
+ 3σ2η.

Fixing the number of steps N and choosing

ηθ = ηf = ηµ = ηh = η = min

{
1

16L
,
ΩUσ√
6N

}
,

we obtain the following result

E
{

max
µ∈Uµ,h∈Uh

F (θ̄N , f̄N , µ, h)− min
θ∈Uθ,f∈Uf

F (θ, f, µ̄N , h̄N )

}
≤ max

{
8LΩ2

U

N
,

√
3σ2Ω2

U

2N

}
. (94)
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B.4. Case Study: Distributionally Robust Optimization

In this subsection we particularize the elements of Algorithm 2 for the specific DRO problem (10). We choose Hf = Hh =
H to be a reproducing kernel Hilbert space with kernel k.

Our main assumptions for this problem are

• l is convex w.r.t. θ.

• L0 = supx,θ ∥∇θl(θ;x)∥2 < +∞.

• ∇θl(θ;x) is L(x)-Lipschitz w.r.t. θ and L1 = supµ Ex∼µL(x)2 < +∞.

• C = supx k(x, x) < +∞.

Clearly, then the objective F is convex in (θ, f) for fixed (µ, h) and concave in (µ, h) for fixed (θ, f).

The Frechet derivatives of F with respect to the variables (θ, f, µ, h) are given by

F ′
θ = Ex∼µ∇θl(θ;x) (95)

F ′
f =

∫
k(x, x′)dµ̂(x′) + ϵh(x)−

∫
k(x, x′)dµ(x′) = Ex∼µ̂k(·, x) + ϵh(·)− Ex∼µk(·, x) (96)

−F ′
µ = f(·)− l(θ; ·) (97)

−F ′
h = −ϵf(·). (98)

Since the derivative w.r.t. θ and f have the form of expectation, we can use the following stochastic counterparts. We can
take a sample of Xi’s from µ to construct an unbiased stochastic derivative

F̃ ′
θ =

1

Nθ

Nθ∑
i=1

∇θl(θ;Xi). (99)

Similarly, we can take a sample of Xi’s from µ and X̂i from µ̂ to construct an unbiased stochastic derivative

F̃ ′
f = ϵh(·) + 1

Nf

Nf∑
i=1

(k(·, X̂i) + k(·, Xi)). (100)

The Lipschitz constants of the derivatives are estimated in the following way. The derivative F ′
θ depends only on µ and θ.

Thus, Lθf = Lθh = 0. Further, we have

∥Ex∼µ∇θl(θ1;x)− Ex∼µ∇θl(θ2;x)∥2 ≤ Ex∼µL(x)∥θ1 − θ2∥2 (101)

and Lθθ = L1.

∥Ex∼µ1
∇θl(θ;x)− Ex∼µ2

∇θl(θ;x)∥2 ≤ L0∥µ1 − µ2∥TV (102)

and Lθµ = L0.

The derivative F ′
f depends only on µ and h. Thus, Lff = Lfθ = 0. Further, we have

∥Ex∼µ̂k(·, x) + ϵh1(·) + Ex∼µ1k(·, x)− (Ex∼µ̂k(·, x) + ϵh2(·) + Ex∼µ2k(·, x))∥H (103)

≤ ϵ∥h1 − h2∥H + ∥Ex∼µ1k(·, x)− Ex∼µ2k(·, x)∥H ≤ ϵ∥h1 − h2∥H +
√
C∥µ1 − µ2∥TV , (104)

i.e., Lfµ =
√
C,Lfh = ϵ. Here we used that

∥Ex∼µ1k(·, x)− Ex∼µ2k(·, x)∥H ≤
√
C∥µ1 − µ2∥TV .
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The derivative F ′
µ depends only on f and θ. Thus, Lµµ = Lµh = 0. Further, we have

∥−f1(·) + l(θ1; ·)− (−f2(·) + l(θ2; ·))∥L∞ (105)

≤
√
C∥f1 − f2∥H + L0∥θ1 − θ2∥H, (106)

i.e., Lfµ =
√
C,Lfθ = L0. Here we used that

∥f2(·)− f1(·)∥L∞ = sup
x

|f2(x)− f1(x)| = sup
x
⟨f2 − f1, ϕ(x)⟩H

≤ ∥f2 − f1∥H · sup
x

∥ϕ(x)∥H ≤
√
C · ∥f2 − f1∥H. (107)

Finally, the derivative F ′
h depends only on f . Thus, Lhθ = Lhµ = Lhh = 0. Further, we have

∥−ϵf1(·)− (−ϵf2(·))∥H ≤ ϵ∥f1 − f2∥H. (108)

Thus, Lhf = ϵ.

As we see, or main assumptions in Theorem B.5 hold for the DRO problem (10). Moreover, stochastic derivatives in (99)
and (100) satisfy Assumption B.6. Indeed, we have

EX∼µ ∥Ex∼µ∇θl(θ;x)−∇θl(θ;X)∥22 ≤ EX∼µ ∥∇θl(θ;X)∥22 ≤ L2
0, (109)

EX̂∼µ̂,X∼µ

∥∥∥ϵh(·) + k(·, X̂) + k(·, X)− (Ex∼µ̂k(·, x) + ϵh(·)− Ex∼µk(·, x))
∥∥∥2
H

(110)

≤ 2EX∼µ ∥k(·, X)∥2H + 2EX̂∼µ̂

∥∥∥k(·, X̂)
∥∥∥2
H

≤ 4C. (111)

This allows us to apply also Theorem B.7 to the DRO problem (10). This proves Corollary 5.1.


