
Integrating Symmetry into Differentiable Planning

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study how group symmetry helps improve data efficiency and generalization1

for end-to-end differentiable planning algorithms, specifically on 2D robotic path2

planning problems: navigation and manipulation. We first formalize the idea from3

Value Iteration Networks (VINs) on using convolutional networks for path plan-4

ning, because it avoids explicitly constructing equivalence classes and enable end-5

to-end planning. We then show that value iteration can always be represented as6

some convolutional form for (2D) path planning, and name the resulting paradigm7

Symmetric Planner (SymPlan). In implementation, we use steerable convolution8

networks to incorporate symmetry. Our algorithms on navigation and manipula-9

tion, with given or learned maps, improve training efficiency and generalization10

performance by large margins over non-equivariant counterparts, VIN and GPPN.11

1 Introduction12

Figure 1: The path planning problem has
symmetry, so we study how to exploit its
symmetry in (differentiable) planning. Red
dots are goal. The optimal actions (ar-
rows) A = SymPlan(M) (bottom row)
for the maps M (top row) are guaran-
teed to be equivariant SymPlan(g.M) =
g.SymPlan(M) under ⟲ rotations for (2D)
path planning. For example, the action in the
NW corner of A is the same as the action in
the SW corner of g.A, after also rotating the
arrow ⟲ 90◦.

Model-based planning usually struggles in complex prob-13

lems, and planning in more structured and abstract space14

is a major solution [1, 2, 3, 4]. Symmetry is ubiquitous15

in learning and decision-making problems and can effec-16

tively reduce search space for planning. However, ex-17

isting planning algorithms using symmetry assumes per-18

fect dynamics knowledge, needs to explicitly build equiv-19

alence classes, or does not consider problem structure20

[5, 4, 6, 7, 8]. For example, if we use A* on path plan-21

ning, we cannot specify visually obvious rotation sym-22

metry in Figure 1, and need to detect in manually from23

the provided dynamics model. This would be even more24

challenging to detect in differentiable planning.25

Nevertheless, symmetry in model-free deep reinforce-26

ment learning (RL) has been studied recently [9, 10].27

However, it can only handle pixel-level “element-wise”28

symmetry, such as flipping or rotating state and action29

together. However, a critical benefit of model-free RL30

agents that enables great asymptotic performance is its31

end-to-end differentiability. This motivates us to com-32

bine the spirit of both: is it possible to design an end-to-33

end differentiable planning algorithm that makes use of34

symmetry in environments?35

In this work, we propose to (1) avoid explicitly building equivalence classes for symmetric states36

while (2) realize planning in an end-to-end differentiable manner. We are motivated by work in37

the equivariant network and geometric deep learning community [11, 12, 13, 14, 15, 16], which38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

treat an RGB image as a mapping Z2 → R3 and apply equivariant convolutions between feature39

maps. It satisfies our desiderata: equivariant networks on images do not need to explicitly consider40

“symmetric pixels” while guarantee symmetry properties. Based on the intuition, we propose a41

framework, Symmetric Planning (SymPlan), to understand a straightforward but general problem,42

path planning, as operating like images, called steerable feature fields [14, 16]. We focus on 2D43

grid and prove that value iteration (VI) for 2D path planning is equivariant under the isometries44

of Z2: translations, rotations, and reflections, and further show that VI here is a special form of45

steerable convolution network [14]. This provides us a foundation to equip Value Iteration Network46

(VIN, [17]) with steerable convolution. We implement the equivariant steerable version of VIN,47

named SymVIN, and use a variant, GPPN, to build SymGPPN. Both SymPlan methods achieve48

great improvement on training efficiency and generalization performance to unseen random maps,49

which showcases the advantage of exploiting symmetry from environments for planning.50

Our contributions are as follows:51

• Understand the inherent symmetry in path planning problems (on 2D grids), formulate value iter-52

ation in as steerable convolution network, and connect both to incorporate symmetry into VI.53

• Based on the formulation, implement equivariant steerable version of VIN and GPPN.54

• Show significant improvement in training and generalization on 2D navigation and manipulation.55

2 Related work56

Planning with symmetries (Symmetric Planning). Symmetries widely exist in various domains,57

and have been exploited in classic planning algorithms as well as model checking [5, 4, 6, 18, 19,58

20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. Zinkevich and Balch [7] show the invariance of value function59

for an MDP with symmetry. Narayanamurthy and Ravindran [8] prove that finding exact symmetry60

in MDPs is graph isomorphism complete. However, they are based on classic planning algorithms,61

such as A*, and have a fundamental issue with exploitation of symmetries: they explicitly construct62

equivalence classes of symmetric states, which explicitly represents states and introduces symmetry63

breaking. Therefore, they are intractable (NP-hard) in maintaining symmetries in trajectory rollout64

and forward search (for large state space and symmetry group) and incompatible with differentiable65

pipelines for representation learning, hindering it from wider applications in RL and robotics.66

State abstraction for detecting symmetries. Coarsest state abstraction aggregates all symmetric67

states into equivalence classes, studied in MDP homomorphisms and bisimulation [3, 30, 2]. How-68

ever, they usually require perfect MDP dynamics knowledge and do not scale up well, because of the69

complexity in maintaining abstraction mappings (homomorphisms) and abstracted MDPs. van der70

Pol et al. [31] integrate symmetry into model-free RL based on MDP homomorphisms [3], which71

avoids the challenges in handling symmetry in forward search. Park et al. [32] learn equivariant72

transition models, but do not consider planning. Additionally, the formulation in commonly defined73

symmetric MDPs [3, 9, 6, 7] is different from our symmetry formulation for path planning, since74

they study "element-wise" symmetry for every state-action pairs and require reward to be symmet-75

ric. Our reward is not symmetric and we mainly study symmetry of the underlying domain (2D76

grid), as further discussed in Section B.1.77

Symmetries and equivariance in deep learning. Equivariant neural networks are used to incor-78

porate symmetry in supervised learning for different domains (e.g. grid and sphere), symmetry79

groups (e.g. translations and rotations), and group representation on feature spaces [33]. Cohen and80

Welling [15] introduce G-CNNs, followed by Steerable CNNs [14] which generalizes from scalar81

feature fields to vector fields with induced representations. Kondor and Trivedi [13], Cohen et al.82

[12] study theory on the relation between equivariant maps and convolutions. Weiler and Cesa [16]83

propose to solve kernel constraints under arbitrary representations for E(2) and its subgroups by84

decomposing into irreducible representations, named E(2)-CNN.85

Differentiable planning. Our pipeline is based on learning to plan in a neural network in a differ-86

entiable manner. Value iteration network (VIN) [34] is a representative work that performs value87

iteration using convolution on lattice grids, and has been further extended [35, 36, 37, 38]. Other than88

using convolution network, works on integrating learning and planning into differentiable networks89

include [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. In the theoretical side, Grimm et al. [50, 51]90

propose to understand the differentiable planning algorithms from value equivalence perspective,91

while Gehring et al. [52] study its gradient dynamics.92

2

3 Preliminaries93

Markov decision processes. We model the path planning problems as Markov decision processes94

(MDP) [1]. An MDP is a 5-tuple M = ⟨S,A, P,R, γ⟩, with state space S, action space A, transition95

probability function P : S × A × S → R+, reward function R : S × A → R, and discount factor96

γ ∈ [0, 1]. Value functions V : S → R and Q : S ×A → R represent expected future returns [1].97

Symmetry groups and equivarance. A symmetry group is defined as a setG together with a binary98

composition map satisfying the axioms of associativity, identity, and inverse. A (left) group action99

of G on a set X is defined as the mapping (g, x) 7→ g.x which is compatible with composition.100

Given a function f : X → Y and G acting on X and Y , then f is G-equivariant if it commutes101

with group actions: g.f(x) = f(g.x),∀g ∈ G,∀x ∈ X . In the special case the action on Y is trivial102

g.y = y, then f(x) = f(g.x) holds, and we say f is G-invariant.103

Group representations. We mainly use two groups: dihedral group D4 and cyclic group C4. The104

cyclic group of 4 elements is C4 = ⟨r | r4 = 1⟩, a symmetry group of rotating a square. The105

dihedral group D4 = ⟨r, s | r4 = s2 = (sr)2 = 1⟩ includes both rotations r and reflections s,106

and has size |D4| = 8. A group representation defines how a group action transforms on a set107

G × S → S. These groups have three types of representations of our interest: trivial, regular,108

and quotient representations, see [16]. The trivial representation ρtriv maps each g ∈ G to 1 and109

hence fixes all s ∈ S. The regular representation ρreg of C4 group sends each g ∈ C4 to a 4 × 4110

permutation matrix that cyclically permutes a 4-element vector, such as a one-hot 4-direction action.111

The regular representation of D4 maps each element to an 8 × 8 permutation matrix which does112

not act on 4-direction actions, which requires the quotient representations (quotienting out fr2) and113

forming a 4×4 permutation matrix. It is worth mentioning the standard representation of the cyclic114

groups, which are 2× 2 rotation matrices, only used for visualization (Figure 2 middle).115

Steerable feature fields and Steerable CNNs. The concept of feature fields is used in (equivariant)116

CNNs [11, 12, 13, 14, 15, 16]. The pixels of an 2D RGB image x : Z2 → R3 on a domain Ω = Z2117

is a feature field. In steerable CNNs for 2D grid, features are formed as steerable feature fields118

f : Z2 → RC that associate a C-dimensional feature vector f(x) ∈ RC to each element on a119

base space, such as Z2. Defined like this, we know how to transform a steerable feature field and120

also the feature field after applying CNN on it, using some group [14]. The type of CNNs that121

operates on steerable feature fields is called Steerable CNN [14], which is equivariant to groups122

including translations as subgroup (Z2,+), extending [15]. It needs to satisfy a kernel steerability123

constraint, where the R2 and Z2 cases are considered in [16]. We consider the 2D grid as our domain124

Ω = S = Z2 and use G = p4m group as the running example. The group p4m = (Z2,+) ⋊ D4125

(wallpaper group) is semi-direct product of discrete translation group Z2 and dihedral groupD4, see126

[15, 14]. We visualize the transformation law of p4m on a feature field on Ω = Z2 in Figure 2127

(Middle), usually referred as induced representation [14, 16]. Additional details in Section C.128

Planning as convolution. The core component behind dynamic programming (DP) based algo-129

rithms in planning or reinforcement learning is Bellman (optimality) equation [53, 1]: V (s) =130

maxaR(s, a) + γ
∑

s′ P (s
′|s, a)V (s′). Value Iteration (VI) iteratively applies Bellman operator131

and converges to fixed points [1, 53]. The key component of our interest is
∑

s′ P (s
′|s, a)V (s′)132

that aggregates values V (s′) from adjacent states by expectation using transition probabilities, here133

referred as expected value operation. Tamar et al. [17] propose Value Iteration Network (VIN) that134

uses convolution (networks) for planning, as an instance of differentiable planning, by recursively135

applying planar convolutions and max-pooling over feature spaces on 2D grid Z2.136

4 Symmetric Planning Framework137

This section formulates the notion of Symmetric Planning (SymPlan). We expand the understanding138

of path planning in neural networks by planning as convolution on steerable feature fields (steerable139

planning). We use that to build steerable value iteration and show it is equivariant.140

4.1 Steerable Planning: planning on steerable feature fields141

We start the discussion based on Value Iteration Networks (VINs, [17]) and use a running example142

of planning on the 2D grid Z2. We aim to understand (1) how VIN-style networks embed planning143

3

Construct

Spatial MDP

Figure 2: (Left) Construction of spatial MDPs from path planning problems, enabling G-invariant
transition. (Middle) The group acts on a feature field (MDP actions). We need to find the element
in the original field by f(r−1x), and also rotate the arrow by ρ(r), where r ∈ D4. We represent
one-hot actions as arrows (vector field, using ρstd) for visualization. (Right) Equivariance of V 7→ Q
in Bellman operator on feature fields, under ⟲ 90◦ ∈ C4 rotation, which visually explains Theorem
4.1. The example simulates VI for one step (see red circles; minus signs omitted) with true transition
P using ⟲ N-W-S-E actions. The Q-value field are for 4 actions and can be viewed as either Z2 →
R4 ([14, 16]) or Z2 ⋊ C4 → R (on p4 group, [15]). See Appendix D for more details.

and how its idea generalizes, (2) how is symmetry structure defined in path planning and how could144

it be injected into such planning networks.145

Constructing G-invariant transition: spatial MDP. Intuitively, the embedded MDP in a VIN146

is different from the original path planning problem, since (planar) convolutions are translation147

equivariant but there are different obstacles in different regions.148

We found the key insight in VINs is that it implicitly uses an MDP that has translation equivariance.149

The core idea behind the construction is that it converts obstacles (encoded in transition probability150

P , by blocking) into “traps” (encoded in reward R̄, by −∞ reward). This allows to use planar con-151

volutions with translation equivariance, and also enables use to further use steerable convolutions.152

The demonstration of the idea is shown in Figure 2 (Left). We call it spatial MDP, with different153

transition and reward function M̄ = ⟨S,A, P̄ , R̄m, γ⟩, which converts the “complexity” in the154

transition function P in M to the reward function R̄m in M̄. The state and action space are kept155

the same: state S = Z2 and action A ⊂ Z2 to move ∆s in four directions in a 2D grid. We provide156

the detailed construction of the spatial MDP in Appendix D.1.157

Steerable features fields. We generalize the idea from VIN, by viewing functions (in RL and158

planning) as steerable feature fields, motivated by [11, 12, 14]. This is analogous to pixels on images159

Ω → [255]3, and would allow us to apply convolution on it. The state value function is expressed160

as a field V : S → R, while the Q-value function needs a field with |A| channels: Q : S → R|A|.161

Similarly, a policy field1 has probability logits of selecting |A| actions. For the transition probability162

P (s′|s, a), we can use action to index it as P a(s′|s), similarly for reward Ra(s). The next section163

will show that we can convert the transition function to field and even convolutional filter. Additional164

details are in Appendix D.165

4.2 Symmetric Planning: symmetry by equivariance166

The seemingly slight change in the construction of spatial MDPs brings important symmetry struc-167

ture. The general idea in exploiting symmetry in path planning is to use equivariance to avoid168

explicitly constructing equivalence classes of symmetric states. To this end, we construct value169

iteration over steerable feature fields, and show it is equivariant for path planning.170

In VIN, the convolution is over 2D grid Z2, which is symmetric underD4 (rotations and reflections).171

However, we also know that VIN is already equivariant under translations. To consider all symme-172

tries, as in [14, 16], we understand the group p4m = G = B ⋊H as constructed by a base space173

B = G/H = (Z2,+) and a fiber groupH = D4, which is a stabilizer subgroup that fixes the origin174

0 ∈ Z2. We could then formally study such symmetry in the spatial MDP, since we construct it to175

1We avoid the symbol π for policy since it is used for induced representation in [14, 16].

4

ensure that the transition probability function in M̄ is G-invariant. Specifically, we can uniquely176

decompose any g ∈ Z2 ⋊D4 as t ∈ Z2 and r ∈ D4 (and translations act "trivially" on action), so177

P̄ (s′ | s, a) = P̄ (g.s′ | g.s, g.a) ≡ P̄ ((tr).s′ | (tr).s, r.a) , ∀g = tr ∈ Z2 ⋊D4,∀s, a, s′. (1)

Expected value operator as steerable convolution. The equivariance property can be shown step-178

by-step: (1) expected value operation, (2) Bellman operator, and (3) full value iteration. First, we179

use G-invariance to prove that the expected value operator
∑

s′ P (s
′|s, a)V (s′) is equivariant.180

Theorem 4.1. If transition is G-invariant, the expected value operator E over Z2 is G-equivariant.181

The proof is in Appendix E.1 and visual understanding is in Figure 2 left. However, this provides182

intuition but is inadequate since we do not know: (1) how to implement it with CNNs, (2) how to use183

multiple feature channels like VINs, since it shows for scalar-valued transition probability and value184

function (corresponding to trivial representation). To this end, we next prove that we can implement185

value iteration using steerable convolution with general steerable kernels.186

Theorem 4.2. If transition is G-invariant, there exists a (one-argument, isotropic) matrix-valued187

steerable kernel P a(s− s′) (for every action), such that the expected value operator can be written188

as a steerable convolution and is G-equivariant:189

E[V] = P a ⋆ V, [g.[P g.a ⋆ V]](s) = [P a ⋆ [g.V]](s), ∀s ∈ Z2,∀g ∈ Z2 ⋊D4. (2)

The full derivation is provided in Appendix E. We write the transition probability as P a(s, s′), and190

we show it only depends on state difference P a(s − s′) (or one-argument kernel [12]) using G-191

invariance, which is the key step to show it is some convolution. Note that we use one kernel P a192

for each action (four directions), and when the group acts on E, it also acts on the action P g.a (and193

state, so technically acting on S × A). Additionally, if the steerable kernel also satisfies the D4-194

steerability constraint [16, 54], the steerable convolution is equivariant under p4m = Z2 ⋊D4. We195

can then extend VINs from Z2 translation equivariance to p4m-equivariance (translations, rotations,196

reflections). The derivation follows the existing work on steerable CNNs [15, 14, 16, 12], while this197

is our goal: to justify the close connection between path planning and steerable convolutions.198

Steerable Bellman operator and value iteration. We can now represent all operations in Bellman199

(optimality) operator on steerable feature fields over Z2 (or steerable Bellman operator) as follows:200

201

Vk+1(s) = max
a

Ra(s) + γ × [P a ⋆ Vk] (s), (3)

where V,Ra, P̄ a are steerable feature fields over Z2. As for the operations, maxa is (max) pooling202

(over group channel), +,× are point-wise operations, and ⋆ is convolution. As the second step,203

the main idea is to prove every operation in Bellman (optimality) operator on steerable fields is204

equivariant, including the nonlinear maxa operator and +,×. Then, iteratively applying Bellman205

operator forms value iteration and is also equivariant, as shown below and proved in Appendix E.4.206

Proposition 4.3. For a spatial MDP with G-invariant transition, the optimal value function can be207

found through G-steerable value iteration.208

Remark. Our framework generalizes the idea behind VINs and enables us to understand its appli-209

cability and restrictions. More importantly, this allows us to integrate symmetry but avoid explicitly210

building equivalence classes and enables planning with symmetry in end-to-end fashion. We em-211

phasize that the symmetry in spatial MDPs is different from symmetric MDPs [7, 3, 9], since our212

reward function is not G-invariant. Although we focus on Z2, we can generalize to path planning213

on higher-dimensional or even continuous Euclidean spaces (like R3 space [54] or spatial graphs in214

R)3 [55]), and use equivariant operations on steerable feature fields (such as steerable convolutions,215

pooling, and point-wise non-linearities) from steerable CNNs. We refer the readers to Appendix D216

and to [15, 14, 56, 16] for more details.217

5 Symmetric Planning in Practice218

In this section, we discuss how to achieve Symmetric Planning on 2D grids with E(2)-steerable219

CNNs [16]. We focus on implementing symmetric version of value iteration, SymVIN, and gener-220

alize the methodology to make a symmetric version of a popular follow-up of VIN, GPPN [36].221

5

Figure 3: Commutative diagram for the full pipeline of SymVIN on steerable feature fields over Z2

(every grid). If rotating the input map M by πM (g) of any g, the output action A = SymVIN(M)
is guaranteed to be transformed by πA(g), i.e. the entire steerable SymVIN is equivariant under
induced representations πM and πA: SymVIN(πM (g)M) = πA(g)SymVIN(M). We use stacked fea-
ture fields to emphasize that SymVIN supports direct-sum of representations beyond scalar-valued.

Steerable value iteration. We have showed that, value iteration for path planning problems on Z2222

consists of equivariant maps between steerable feature fields. It can be implemented as an equivari-223

ant steerable CNN, with recursively applying two alternating (equivariant) layers:224

Qa
k(s) = Ra

m(s) + γ × [P a
θ ⋆ Vk] (s), Vk+1(s) = max

a
Qa

k(s), s ∈ Z2, (4)

where k ∈ [K] indexes iteration, Vk, Qa
k, R

a
m are steerable feature fields over Z2 output by equiv-225

ariant layers, P a
θ is a learned kernel in neural network, and +,× are element-wise operations.226

Pipeline. We follow the pipeline in VIN [17]. The commutative diagram for the full pipeline is227

shown in Figure 3. The path planning task is given by a m ×m spatial binary obstacle occupancy228

map and one-hot goal map, represented as a feature field M : Z2 → {0, 1}2. For the iterative229

process Qa
k 7→ Vk 7→ Qa

k+1, the reward field RM is predicted from map M (by a 1× 1 convolution230

layer) and the value field V0 is initialized as zeros. The network output is (logits of) planned actions231

for all locations2, represented as A : Z2 → R|A|, predicted from the final Q-value field QK (by232

another 1 × 1 convolution layer). The number of iterations K and the convolutional kernel size F233

of P a
θ are set based on map size M , and the spatial dimension m×m is kept consistent.234

Building Symmetric Value Iteration Networks. Given the pipeline of VIN fully on steerable235

feature fields, we are ready to build equivariant version with E(2)-steerable CNNs [16]. The idea236

is to replace every Conv2d with a steerable convolution layer between steerable feature fields, and237

associate the fields with proper fiber representations ρ(h).238

VINs use ordinary CNNs and can choose the size of intermediate feature maps. The design choices239

in steerable CNNs is the feature fields and fiber representations (or type) for every layer [14, 16].240

The main difference3 in steerable CNNs is that we also need to tell the network how to transform241

every feature field, by specifying fiber representations, as shown in Figure 3.242

Specification of input map and output action. We first specify fiber representations for the input243

and output field of the network: map M and action A. For input occupancy map and goal M :244

Z2 → {0, 1}2, it does notD4 to act on the 2 channels, so we use two copies of trivial representations245

ρM = ρtriv ⊕ ρtriv. For action, the final action output A : Z2 → R|A| is for logits of four actions246

A = (north, west, south, east) for every location. If we use H = C4, it naturally acts on247

the four actions (ordered ⟲) by cyclically ⟲ permuting the R4 channels. However, since the D4248

group has 8 elements, we need a quotient representation, see [16] and Appendix F.249

Specification of intermediate fields: value and reward. Then, for the intermediate feature fields:250

Q-values Qk, state value Vk, and reward Rm, we are free to choose fiber representations, as well as251

the width (number of copies). For example, if we want 2 copies of regular representation of D4, the252

feature field has 2× 8 = 16 channels and the stacked representation is 16× 16 (by direct-sum).253

For theQ-value fieldQa
k(s), we use representation ρQ and its size asCQ. We need at leastCA ≥ |A|254

channels for all actions of Q(s, a) as in VIN and GPPN, then stacked together and denoted as255

Qk ≜
⊕

aQ
a
k with dimension Qk : Z2 → RCQ∗CA . Therefore, the representation is direct-sum256

2Technically, it also includes values or actions for obstacles, since the network needs to learn to approximate
the reward RM (s,∆s) = −∞ with enough small reward and avoid obstacles.

6

⊕
ρQ for CA copies. The reward is implemented similarly as RM ≜

⊕
aR

a
M and must have same257

dimension and representation to add element-wisely. For state value field, we denote the choose as258

fiber representation as ρV and its size CV . It has size Vk : Z2 → RCV Thus, the steerable kernel259

is matrix-valued with dimension Pθ : Z2 → R(CQ∗CA)×CV . In practice, we found using regular260

representations for all three works the best. It can be viewed as "augmented" state and is related to261

group convolution, detailed in Appendix F.262

Other operations. We now visit the remained (equivariant) operations. (1) The max operation in263

Qk 7→ Vk+1. While we have showed the max operation in Vk+1(s) = maxaQ
a
k(s) is equivariant264

in Theorem 4.3, we need to apply max(-pooling) for all actions along the "representation channel"265

from stacked representations CA ∗ CQ to one CQ. More details are in Appendix F.5. (2) The final266

output layer QK 7→ A. After the final iteration, the Q-value field Qk is fed into the policy layer267

with 1× 1 convolution to convert the action logit field Z2 → R|A|.268

Extended method: Symmetric GPPN. Gated path planning network (GPPN [36]) proposes to use269

LSTM to alleviate the issue of unstable gradient in VINs. Although it does not strictly follow value270

iteration, it still follows the spirit of steerable planning. Thus, we first obtained a fully convolutional271

variant of GPPN from [Redacted for anonymous review], called ConvGPPN. It replaces the MLPs272

in the original LSTM cell with convolutional layers, and then replaces convolutions with equivariant273

steerable convolutions, resulting in a fully equivariant SymGPPN. See Appendix F.3 for details.274

Extended tasks: planning on learned maps with mapper networks. We consider two planning275

tasks on 2D grids: 2D navigation and 2-DOF manipulation. To demonstrate the ability of handling276

symmetry in differentiable planning, we consider more complicated state space input: visual nav-277

igation and workspace manipulation, and discuss how to use mapper networks to convert the state278

input and use end-to-end learned maps, as in [36, 37]. See Appendix F.2 for details.279

6 Experiments280

We experiment VIN, GPPN and our SymPlan methods on four path planning tasks, including using281

given or learned maps. The additional experiments and ablation studies are in Appendix G.282

Environments and datasets. We demonstrate the idea in two major robotics tasks: navigation and283

manipulation. We focus on the 2D regular grid setting for path planning, as adopted in prior work284

[17, 36, 37]. For each task, we consider using either given (2D navigation and 2-DOF configuration-285

space manipulation) or learned maps (visual navigation and 2-DOF workspace manipulation). In286

the latter case, the planner needs to jointly learn a mapper that converts egocentric panoramic images287

(visual navigation) or workspace states (workspace manipulation) into plannable loss, as in [36, 37].288

In both cases, we randomly generate training, validation and test data of 10K/2K/2K maps for all289

map sizes, to demonstrate data efficiency and generalization ability of symmetric planning. Note290

that the test maps are unlikely to be symmetric to the training maps by any transformation from the291

symmetry groups G. For all environments, the planning domain is the 2D regular grid S = Ω = Z2,292

and the action space is to move in 4 ⟲ directions4: A = (north, west, south, east).293

Methods: planner networks. We compare five planner methods, where two are our SymPlan294

version of their non-equivariant counterparts. Our equivariant implementation is based on Value295

Iteration Networks (VIN, [17]) and Gated Path Planning Networks (GPPN, [36]). We implement296

the equivariant version of VIN, named SymVIN. For GPPN, we first obtained a fully convolutional297

version, named ConvGPPN [Redacted for anonymous review], and furthermore SymGPPN with298

steerable CNNs. All methods use (equivariant) convolutions with circular padding in planning299

in configuration spaces for the manipulation tasks, except GPPN that is not fully convolutional.300

Chaplot et al. [37] propose SPT based on Transformers, while integrating symmetry to Transformers301

is beyond steerable convolutions, thus we do not consider it but still adopt some useful setup.302

Training and evaluation. We report successful rate and its training curves over 3 seeds for each303

setup. The training process of the given map setup follows [17, 36], where we train 30 epochs with304

batch size 32, and use kernel size F = 3 by default. The gradient clip threshold is set to 5. The305

4Note that the MDP action space A needs to be compatible with the group action G × A → A. Since the
E2CNN package [16] uses counterclockwise rotations ⟲ as generators for rotation groups Cn, the action space
needs to be counterclockwise ⟲.

7

Figure 4: (Left) A visual navigation environment rendered from a randomly generated 7 × 7 maze
(Middle), where the hover is the visualization of four views at position (5, 3). (Right) A 2-joint
manipulation task in workspace (topdown) and configuration space (2 DOFs) in 18× 18 resolution.

0 5 10 15 20 25 30
Epochs

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 R

at
e

model
VIN
SymVIN
GPPN
ConvGPPN
SymGPPN

0 5 10 15 20 25 30
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
sf

ul
 R

at
e model

VIN
SymVIN
GPPN
ConvGPPN
SymGPPN

Figure 5: Training curves on (Left) 2D navigation with 10K of 15× 15 maps and on (Right) 2DoFs
manipulation with 10K of 18× 18 maps in configuration space. Faded areas indicate standard error.

default batch size is 32, while we need to reduce for some GPPN variants, since LSTM consumes306

much more memory.307

6.1 Planning on given maps308

Environmental setup. In the 2D navigation task, the map and goal are randomly generated, where309

the map size is {15, 28, 50}. In 2-DOF manipulation in configuration space, we adopt the setting310

in [37] and train networks to take as input of configuration space, represented by two joints. We311

randomly generate 0 to 5 obstacles in the manipulator workspace. Then the 2 degree-of-freedom312

(DOF) configuration space is constructed from workspace and discretized into 2D grid with sizes313

{18, 36}, corresponding to bins of 20◦ and 10◦, respectively. All methods are trained using the same314

network size, where for equivariant versions, we use regular representations for all layers, which has315

size |D4| = 8. We keep the same parameters for all methods, so all equivariant convolution layers316

with regular representations will have higher embedding sizes. Due to memory constraint, we use317

K = 30 iterations for 2D maze navigation, and K = 27 for manipulation. We use kernel sizes318

F = {3, 5, 5} for m = {15, 28, 50} navigation, and F = {3, 5} for m = {18, 36} manipulation.319

Results. We show the averaged test results for both 2D navigation and C-space manipulation tasks320

on generalizing to unseen maps (Table 1) and the training curves for all methods (Figure 5). For321

VIN series, our SymVIN is much better than the vanilla VIN in terms of generalization and training322

performance in both environments, which learns much faster and achieves almost perfect asymptotic323

performance. As for GPPN, we found the fully convolutional variant ConvGPPN actually works bet-324

ter than the original one in [36], especially in learning speed. SymGPPN further boosts ConvGPPN325

and outperforms all other methods, including our SymVIN. One exception is GPPN learns poorly326

in C-space manipulation. For GPPN, the added circular padding in the convolution encoder leads to327

gradient vanishing problem.328

Additionally, we found using regular representations (for D4 or C4) for state value V : Z2 → RCV329

(and for Q-value) works better than trivial representations. This is counterintuitive since we expect330

the V value to be scalar Z2 → R. One reason is that switching between regular (for Q) and trivial331

(for V) representation introduces unnecessary bottleneck. Depending on the choose of representa-332

tions, we implement different max-pooling, with details in Appendix F.5. We also empirically found333

using FC only in the final layer QK 7→ A helps stabilize the training a bit. The ablation study on334

this and more are in Appendix G.335

Remark. Two symmetric planners are both significantly better than their counterparts. Notably,336

we did not include any symmetric maps to the test data that symmetric planners would perform337

much better. There are several potential sources of advantages: (1) SymPlan allows parameter338

sharing across positions and maps and implicitly enables planning in a reduced space: every (s, a, s′)339

8

Table 1: Averaged test success rate (%) for using 10K/2K/2K dataset for all four types of tasks.
Method Navigation Manipulation

(10K Data) 15× 15 28× 28 50× 50 Visual 18× 18 36× 36 Workspace

VIN 66.97 67.57 57.92 50.83 77.82 84.32 80.44
SymVIN 98.99 98.14 86.20 95.50 99.98 99.36 91.10

GPPN 96.36 95.77 91.84 93.13 2.62 1.68 3.67
ConvGPPN 99.75 99.09 97.21 98.55 99.98 99.95 89.88
SymGPPN 99.98 99.86 99.49 99.78 100.00 99.99 90.50

seamlessly generalizes to (g.s, g.a, g.s′) for any g ∈ G, (2) thus it uses training data more efficiently,340

(3) it reduces the space of hypothesis class and facilitate generalization to unseen maps.341

6.2 Planning on learned maps: simultaneously planning and mapping342

Environmental setup. For visual navigation, we randomly generate maps using the same strategy343

as before, and then render four egocentric panoramic views for each location from produced 3D344

environments with Gym-MiniWorld [57], since it allows to generate 3D mazes with any layout. For345

m × m maps, all egocentric views for a map is represented by m × m × 4 RGB images. For346

workspace manipulation, we randomly generate 0 to 5 obstacles in workspace as before. We use a347

mapper network to convert the 96 × 96 workspace (image of obstacles) to the m ×m 2 degree-of-348

freedom (DOF) configuration space (2D occupancy grid). In both environments, the setup is similar349

to Section 6.1, while we only use m = 15 maps but longer 100 epochs for visual navigation and350

m = 18 maps still with 30 epochs for workspace manipulation.351

Methods: mapper networks and setup. For visual navigation, we follow the mapper network352

setup in [36]. A mapper network converts every image into a 256-dimensional embedding m×m×353

4× 256 and then predicts map layout m×m× 1. For workspace manipulation, we use U-net [58]354

with residual-connection [59] as a mapper. See Section G for details.355

Results. The results are also shown in Table 1, denoted as Visual (navigation, 15 × 15) and356

Workspace (manipulation, 18 × 18). In visual navigation, the trends are similar to 2D case: two357

symmetric planners both train much faster. Besides vanilla VIN, all approaches finally converge to358

near-optimal successful rate (around 95%), while the validation and test results show large gaps.359

SymGPPN has almost no generalization gap, while VIN does not generalize well to new 3D visual360

navigation environments. Our SymVIN improves test successful rate from less than 50% to 90%361

and is comparable with GPPN. Since the input is raw images and a mapper is used to learn end-to-362

end, it potentially causes one major source of generalization gap for some approaches. In workspace363

manipulation, the results are also analogous to C-space, while ours advantages over baselines are364

smaller. In our inspection, we found the mapper network is the bottleneck, since the mapping for365

obstacles from workspace to C-space is nontrivial to learn.366

Remark. The SymPlan models demonstrate end-to-end planning and learning ability, potentially367

enabling further applications to other tasks as a differentiable component for planning. The addi-368

tional results and ablation studies are provided in Appendix G.369

7 Discussion370

In this work, we study the symmetry in 2D path planning problem, and build a framework using371

the theory of steerable CNNs to prove that value iteration in path planning is actually a form of372

steerable CNN (on 2D grids). Although we focus on Z2, we can generalize to path planning on373

higher-dimensional or even continuous Euclidean spaces [54, 55], and use equivariant operations on374

steerable feature fields (such as steerable convolutions, pooling, and point-wise non-linearities) from375

steerable CNNs. We practically show that the SymPlan algorithms exactly motivated by the theory376

provide great improvement. We hope the framework along with the design of practical algorithm377

can enable new perspective to exploit the symmetry structure in path planning problems. Although378

it still has some limitations, such as (1) that the action needs to be known as moving on the domain379

(2D), and (2) that it is not sampling-based and may struggle for high-dimensional problems, we380

believe that it has potential extensions to more general formulation.381

9

References382

[1] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: an introduction. Adaptive383

computation and machine learning series. The MIT Press, Cambridge, Massachusetts, second384

edition edition, 2018. ISBN 978-0-262-03924-6.385

[2] Lihong Li, Thomas J. Walsh, and M. Littman. Towards a Unified Theory of State Abstraction386

for MDPs. In AI&M, 2006.387

[3] Balaraman Ravindran and Andrew G Barto. An algebraic approach to abstraction in rein-388

forcement learning. PhD thesis, University of Massachusetts at Amherst, 2004.389

[4] Maria Fox and Derek Long. Extending the exploitation of symmetries in planning. In In390

Proceedings of AIPS’02, pages 83–91, 2002.391

[5] Maria Fox and Derek Long. The Detection and Exploitation of Symmetry in Planning Prob-392

lems. In In IJCAI, pages 956–961. Morgan Kaufmann, 1999.393

[6] Nir Pochter, Aviv Zohar, and Jeffrey S. Rosenschein. Exploiting Problem Symmetries in State-394

Based Planners. In Twenty-Fifth AAAI Conference on Artificial Intelligence, August 2011.395

URL https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3732.396

[7] Martin Zinkevich and Tucker Balch. Symmetry in Markov decision processes and its impli-397

cations for single agent and multi agent learning. In In Proceedings of the 18th International398

Conference on Machine Learning, pages 632–640. Morgan Kaufmann, 2001.399

[8] Shravan Matthur Narayanamurthy and Balaraman Ravindran. On the hardness of finding400

symmetries in Markov decision processes. In Proceedings of the 25th international confer-401

ence on Machine learning - ICML ’08, pages 688–695, Helsinki, Finland, 2008. ACM Press.402

ISBN 978-1-60558-205-4. doi: 10/bkswc2. URL http://portal.acm.org/citation.403

cfm?doid=1390156.1390243.404

[9] Elise van der Pol, Daniel E. Worrall, Herke van Hoof, Frans A. Oliehoek, and Max405

Welling. MDP Homomorphic Networks: Group Symmetries in Reinforcement Learning.406

arXiv:2006.16908 [cs, stat], June 2020. URL http://arxiv.org/abs/2006.16908. arXiv:407

2006.16908.408

[10] Dian Wang, Robin Walters, and Robert Platt. $\mathrm{SO}(2)$-Equivariant Reinforcement409

Learning. September 2021. URL https://openreview.net/forum?id=7F9cOhdvfk_.410

[11] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learn-411

ing: Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.412

[12] Taco Cohen, Mario Geiger, and Maurice Weiler. A General Theory of Equivariant CNNs on413

Homogeneous Spaces. arXiv:1811.02017 [cs, stat], January 2020. URL http://arxiv.414

org/abs/1811.02017. arXiv: 1811.02017.415

[13] Risi Kondor and Shubhendu Trivedi. On the Generalization of Equivariance and Convolution416

in Neural Networks to the Action of Compact Groups. arXiv:1802.03690 [cs, stat], November417

2018. URL http://arxiv.org/abs/1802.03690. arXiv: 1802.03690.418

[14] Taco S. Cohen and Max Welling. Steerable CNNs. November 2016. URL https:419

//openreview.net/forum?id=rJQKYt5ll.420

[15] Taco S. Cohen and Max Welling. Group Equivariant Convolutional Networks.421

arXiv:1602.07576 [cs, stat], June 2016. URL http://arxiv.org/abs/1602.07576. arXiv:422

1602.07576.423

[16] Maurice Weiler and Gabriele Cesa. General $E(2)$-Equivariant Steerable CNNs.424

arXiv:1911.08251 [cs, eess], April 2021. URL http://arxiv.org/abs/1911.08251.425

arXiv: 1911.08251.426

10

https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3732
http://portal.acm.org/citation.cfm?doid=1390156.1390243
http://portal.acm.org/citation.cfm?doid=1390156.1390243
http://portal.acm.org/citation.cfm?doid=1390156.1390243
http://arxiv.org/abs/2006.16908
https://openreview.net/forum?id=7F9cOhdvfk_
http://arxiv.org/abs/1811.02017
http://arxiv.org/abs/1811.02017
http://arxiv.org/abs/1811.02017
http://arxiv.org/abs/1802.03690
https://openreview.net/forum?id=rJQKYt5ll
https://openreview.net/forum?id=rJQKYt5ll
https://openreview.net/forum?id=rJQKYt5ll
http://arxiv.org/abs/1602.07576
http://arxiv.org/abs/1911.08251

[17] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value Iteration Net-427

works. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial In-428

telligence, pages 4949–4953, Melbourne, Australia, August 2017. International Joint Confer-429

ences on Artificial Intelligence Organization. ISBN 978-0-9992411-0-3. doi: 10/ggjfst. URL430

https://www.ijcai.org/proceedings/2017/700.431

[18] Carmel Domshlak, Michael Katz, and Alexander Shleyfman. Enhanced Symmetry Breaking432

in Cost-Optimal Planning as Forward Search. page 5.433

[19] Alexander Shleyfman. Symmetry Breaking: Satisficing Planning and Landmark Heuristics.434

page 5.435

[20] Alexander Shleyfman, Michael Katz, Malte Helmert, Silvan Sievers, and Martin Wehrle.436

Heuristics and Symmetries in Classical Planning. Proceedings of the AAAI Conference on437

Artificial Intelligence, 29(1), March 2015. ISSN 2374-3468. URL https://ojs.aaai.org/438

index.php/AAAI/article/view/9649. Number: 1.439

[21] Silvan Sievers, Martin Wehrle, Malte Helmert, Alexander Shleyfman, and Michael Katz. Fac-440

tored Symmetries for Merge-and-Shrink Abstractions. page 8.441

[22] Martin Wehrle, Malte Helmert, Alexander Shleyfman, and Michael Katz. Integrating Partial442

Order Reduction and Symmetry Elimination for Cost-Optimal Classical Planning. page 7.443

[23] Mohammad Abdulaziz, Michael Norrish, and Charles Gretton. Exploiting Symmetries by444

Planning for a Descriptive Quotient. page 8.445

[24] Silvan Sievers, Martin Wehrle, Malte Helmert, and Michael Katz. An Empirical Case Study446

on Symmetry Handling in Cost-Optimal Planning as Heuristic Search. In Steffen Hölldobler,447

Rafael Peñaloza, and Sebastian Rudolph, editors, KI 2015: Advances in Artificial Intelligence,448

volume 9324, pages 166–180. Springer International Publishing, Cham, 2015. ISBN 978-449

3-319-24488-4 978-3-319-24489-1. doi: 10.1007/978-3-319-24489-1_13. URL http://450

link.springer.com/10.1007/978-3-319-24489-1_13. Series Title: Lecture Notes in451

Computer Science.452

[25] Silvan Sievers. Structural Symmetries of the Lifted Representation of Classical Planning Tasks.453

page 8.454

[26] Dominik Winterer, Martin Wehrle, and Michael Katz. Structural Symmetries for Fully Ob-455

servable Nondeterministic Planning. page 7.456

[27] Gabriele Röger, Silvan Sievers, and Michael Katz. Symmetry-Based Task Reduction for457

Relaxed Reachability Analysis. In Twenty-Eighth International Conference on Automated458

Planning and Scheduling, June 2018. URL https://aaai.org/ocs/index.php/ICAPS/459

ICAPS18/paper/view/17772.460

[28] Silvan Sievers, Gabriele Röger, Martin Wehrle, and Michael Katz. Theoretical Foundations461

for Structural Symmetries of Lifted PDDL Tasks. Proceedings of the International Conference462

on Automated Planning and Scheduling, 29:446–454, 2019. ISSN 2334-0843. URL https:463

//ojs.aaai.org/index.php/ICAPS/article/view/3509.464

[29] Daniel Fišer, Álvaro Torralba, and Alexander Shleyfman. Operator Mutexes and Symmetries465

for Simplifying Planning Tasks. Proceedings of the AAAI Conference on Artificial Intelligence,466

33(01):7586–7593, July 2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.33017586. URL467

https://ojs.aaai.org/index.php/AAAI/article/view/4751. Number: 01.468

[30] N. Ferns, P. Panangaden, and Doina Precup. Metrics for Finite Markov Decision Processes. In469

AAAI, 2004.470

[31] Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. Mdp471

homomorphic networks: Group symmetries in reinforcement learning. Advances in Neural472

Information Processing Systems, 33, 2020.473

11

https://www.ijcai.org/proceedings/2017/700
https://ojs.aaai.org/index.php/AAAI/article/view/9649
https://ojs.aaai.org/index.php/AAAI/article/view/9649
https://ojs.aaai.org/index.php/AAAI/article/view/9649
http://link.springer.com/10.1007/978-3-319-24489-1_13
http://link.springer.com/10.1007/978-3-319-24489-1_13
http://link.springer.com/10.1007/978-3-319-24489-1_13
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17772
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17772
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17772
https://ojs.aaai.org/index.php/ICAPS/article/view/3509
https://ojs.aaai.org/index.php/ICAPS/article/view/3509
https://ojs.aaai.org/index.php/ICAPS/article/view/3509
https://ojs.aaai.org/index.php/AAAI/article/view/4751

[32] Jung Yeon Park, Ondrej Biza, Linfeng Zhao, Jan Willem van de Meent, and Robin Walters.474

Learning Symmetric Embeddings for Equivariant World Models. arXiv:2204.11371 [cs], April475

2022. URL http://arxiv.org/abs/2204.11371. arXiv: 2204.11371.476

[33] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep Learn-477

ing: Grids, Groups, Graphs, Geodesics, and Gauges. arXiv:2104.13478 [cs, stat], April 2021.478

URL http://arxiv.org/abs/2104.13478. arXiv: 2104.13478.479

[34] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration net-480

works. arXiv preprint arXiv:1602.02867, 2016.481

[35] Sufeng Niu, Siheng Chen, Hanyu Guo, Colin Targonski, Melissa C. Smith, and Jelena Ko-482

vačević. Generalized Value Iteration Networks: Life Beyond Lattices. arXiv:1706.02416 [cs],483

October 2017. URL http://arxiv.org/abs/1706.02416. arXiv: 1706.02416.484

[36] Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdi-485

nov. Gated Path Planning Networks. arXiv:1806.06408 [cs, stat], June 2018. URL486

http://arxiv.org/abs/1806.06408. arXiv: 1806.06408.487

[37] Devendra Singh Chaplot, Deepak Pathak, and Jitendra Malik. Differentiable Spatial Planning488

using Transformers. arXiv:2112.01010 [cs], December 2021. URL http://arxiv.org/489

abs/2112.01010. arXiv: 2112.01010.490

[38] Andreea Deac, Petar Veličković, Ognjen Milinković, Pierre-Luc Bacon, Jian Tang, and Mladen491

Nikolić. Neural Algorithmic Reasoners are Implicit Planners. October 2021. URL https:492

//arxiv.org/abs/2110.05442v1.493

[39] Junhyuk Oh, Satinder Singh, and Honglak Lee. Value Prediction Network. arXiv:1707.03497494

[cs], November 2017. URL http://arxiv.org/abs/1707.03497. arXiv: 1707.03497.495

[40] Peter Karkus, David Hsu, and Wee Sun Lee. QMDP-Net: Deep Learning for Planning under496

Partial Observability. arXiv:1703.06692 [cs, stat], November 2017. URL http://arxiv.497

org/abs/1703.06692. arXiv: 1703.06692.498

[41] Théophane Weber, Sébastien Racanière, David P. Reichert, Lars Buesing, Arthur Guez,499

Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess, Yu-500

jia Li, Razvan Pascanu, Peter Battaglia, Demis Hassabis, David Silver, and Daan Wierstra.501

Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203 [cs,502

stat], February 2018. URL http://arxiv.org/abs/1707.06203. arXiv: 1707.06203.503

[42] Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal504

Planning Networks. arXiv:1804.00645 [cs, stat], April 2018. URL http://arxiv.org/505

abs/1804.00645. arXiv: 1804.00645.506

[43] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,507

Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy508

Lillicrap, and David Silver. Mastering Atari, Go, Chess and Shogi by Planning with a Learned509

Model. arXiv:1911.08265 [cs, stat], November 2019. URL http://arxiv.org/abs/1911.510

08265. arXiv: 1911.08265.511

[44] Brandon Amos, Ivan Dario Jimenez Rodriguez, Jacob Sacks, Byron Boots, and J. Zico Kolter.512

Differentiable MPC for End-to-end Planning and Control. arXiv:1810.13400 [cs, math, stat],513

October 2019. URL http://arxiv.org/abs/1810.13400. arXiv: 1810.13400.514

[45] Tingwu Wang and Jimmy Ba. Exploring Model-based Planning with Policy Networks. June515

2019. URL https://arxiv.org/abs/1906.08649v1.516

[46] Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane517

Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, Greg Wayne, David Silver,518

and Timothy Lillicrap. An investigation of model-free planning. arXiv:1901.03559 [cs, stat],519

May 2019. URL http://arxiv.org/abs/1901.03559. arXiv: 1901.03559.520

12

http://arxiv.org/abs/2204.11371
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/1706.02416
http://arxiv.org/abs/1806.06408
http://arxiv.org/abs/2112.01010
http://arxiv.org/abs/2112.01010
http://arxiv.org/abs/2112.01010
https://arxiv.org/abs/2110.05442v1
https://arxiv.org/abs/2110.05442v1
https://arxiv.org/abs/2110.05442v1
http://arxiv.org/abs/1707.03497
http://arxiv.org/abs/1703.06692
http://arxiv.org/abs/1703.06692
http://arxiv.org/abs/1703.06692
http://arxiv.org/abs/1707.06203
http://arxiv.org/abs/1804.00645
http://arxiv.org/abs/1804.00645
http://arxiv.org/abs/1804.00645
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1911.08265
http://arxiv.org/abs/1810.13400
https://arxiv.org/abs/1906.08649v1
http://arxiv.org/abs/1901.03559

[47] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to Control:521

Learning Behaviors by Latent Imagination. arXiv:1912.01603 [cs], March 2020. URL http:522

//arxiv.org/abs/1912.01603. arXiv: 1912.01603.523

[48] Vitchyr Pong, Shixiang Gu, Murtaza Dalal, and Sergey Levine. Temporal Difference Models:524

Model-Free Deep RL for Model-Based Control. arXiv:1802.09081 [cs], February 2018. URL525

http://arxiv.org/abs/1802.09081. arXiv: 1802.09081.526

[49] Ignasi Clavera, Violet Fu, and Pieter Abbeel. Model-Augmented Actor-Critic: Backpropagat-527

ing through Paths. arXiv:2005.08068 [cs, stat], May 2020. URL http://arxiv.org/abs/528

2005.08068. arXiv: 2005.08068.529

[50] Christopher Grimm, André Barreto, Satinder Singh, and David Silver. The Value Equivalence530

Principle for Model-Based Reinforcement Learning. arXiv:2011.03506 [cs], November 2020.531

URL http://arxiv.org/abs/2011.03506. arXiv: 2011.03506.532

[51] Christopher Grimm, André Barreto, Gregory Farquhar, David Silver, and Satinder Singh.533

Proper Value Equivalence. arXiv:2106.10316 [cs], December 2021. URL http://arxiv.534

org/abs/2106.10316. arXiv: 2106.10316.535

[52] Clement Gehring, Kenji Kawaguchi, Jiaoyang Huang, and Leslie Pack Kaelbling. Understand-536

ing End-to-End Model-Based Reinforcement Learning Methods as Implicit Parameterization.537

May 2021. URL https://openreview.net/forum?id=xj2sE--Q90e.538

[53] Steven M. LaValle. Planning Algorithms. Cambridge University Press, May 2006. ISBN539

978-1-139-45517-6.540

[54] Maurice Weiler, M. Geiger, M. Welling, Wouter Boomsma, and Taco Cohen. 3D Steerable541

CNNs: Learning Rotationally Equivariant Features in Volumetric Data. In NeurIPS, 2018.542

[55] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J. Bekkers, and Max543

Welling. Geometric and Physical Quantities Improve E(3) Equivariant Message Passing.544

arXiv:2110.02905 [cs, stat], December 2021. URL http://arxiv.org/abs/2110.02905.545

arXiv: 2110.02905.546

[56] T. S. Cohen. Equivariant convolutional networks. 2021. URL https://dare.uva.nl/547

search?identifier=0f7014ae-ee94-430e-a5d8-37d03d8d10e6.548

[57] Maxime Chevalier-Boisvert. Miniworld: Minimalistic 3d environment for rl & robotics re-549

search. https://github.com/maximecb/gym-miniworld, 2018.550

[58] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for551

biomedical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/552

abs/1505.04597.553

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image554

recognition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.555

Checklist556

1. For all authors...557

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s558

contributions and scope? [Yes]559

(b) Did you describe the limitations of your work? [Yes]560

(c) Did you discuss any potential negative societal impacts of your work? [No]561

(d) Have you read the ethics review guidelines and ensured that your paper conforms to562

them? [Yes]563

2. If you are including theoretical results...564

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Briefly in565

Section 4, and in full in the supplementary material.566

13

http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1802.09081
http://arxiv.org/abs/2005.08068
http://arxiv.org/abs/2005.08068
http://arxiv.org/abs/2005.08068
http://arxiv.org/abs/2011.03506
http://arxiv.org/abs/2106.10316
http://arxiv.org/abs/2106.10316
http://arxiv.org/abs/2106.10316
https://openreview.net/forum?id=xj2sE--Q90e
http://arxiv.org/abs/2110.02905
https://dare.uva.nl/search?identifier=0f7014ae-ee94-430e-a5d8-37d03d8d10e6
https://dare.uva.nl/search?identifier=0f7014ae-ee94-430e-a5d8-37d03d8d10e6
https://dare.uva.nl/search?identifier=0f7014ae-ee94-430e-a5d8-37d03d8d10e6
https://github.com/maximecb/gym-miniworld
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1512.03385

(b) Did you include complete proofs of all theoretical results? [Yes] See supplementary567

material.568

3. If you ran experiments...569

(a) Did you include the code, data, and instructions needed to reproduce the main exper-570

imental results (either in the supplemental material or as a URL)? [No] The code and571

data will be cleaned and released prior to final publication.572

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they573

were chosen)? [Yes] Briefly in Section 6, and in full in the supplementary material.574

(c) Did you report error bars (e.g., with respect to the random seed after running exper-575

iments multiple times)? [Yes] Briefly in Section 6, and in full in the supplementary576

material.577

(d) Did you include the total amount of compute and the type of resources used (e.g., type578

of GPUs, internal cluster, or cloud provider)? [Yes] See supplementary material.579

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...580

(a) If your work uses existing assets, did you cite the creators? [Yes]581

(b) Did you mention the license of the assets? [No]582

(c) Did you include any new assets either in the supplemental material or as a URL? [No]583

584

(d) Did you discuss whether and how consent was obtained from people whose data585

you’re using/curating? [N/A]586

(e) Did you discuss whether the data you are using/curating contains personally identifi-587

able information or offensive content? [N/A]588

5. If you used crowdsourcing or conducted research with human subjects...589

(a) Did you include the full text of instructions given to participants and screenshots, if590

applicable? [N/A]591

(b) Did you describe any potential participant risks, with links to Institutional Review592

Board (IRB) approvals, if applicable? [N/A]593

(c) Did you include the estimated hourly wage paid to participants and the total amount594

spent on participant compensation? [N/A]595

14

	Introduction
	Related work
	Preliminaries
	Symmetric Planning Framework
	Steerable Planning: planning on steerable feature fields
	Symmetric Planning: symmetry by equivariance

	Symmetric Planning in Practice
	Experiments
	Planning on given maps
	Planning on learned maps: simultaneously planning and mapping

	Discussion
	Outline
	Additional Discussion
	relation with other symmetric MDP
	(moved from main paper)
	Global and local gauge equivariance

	Additional Background (moved from main paper for now)
	Group action on feature fields
	more on steerable CNNs

	Additional Formulation (moved from main paper for now)
	Path planning in neural networks
	steerable planning / more on functions as feature fields
	(steerability condition)
	(old SymPlan from 4.2)
	moved: remark and discussion

	Proof
	Proof for equivariance of scalar-valued expected value operation
	Proof for expected value as steerable convolution
	Proof for equivariance of expected future value
	Proof for equivariance of convolutional value iteration

	Additional content for practice
	Additional Note
	Building Mapper Networks
	SymGPPN
	understand group conv and "augmented state"
	Implementation of max operation
	About quotient repr
	Understanding the Benefits of Implicitly Symmetric Planning

	Additional Experiments
	More setup details
	manipulation
	additional training curves
	Further Analysis

	(old background)
	Modeling Symmetry with MDP Homomorphisms
	Geometric Deep Learning

	Additional details
	Key concepts
	Steerable convolution vs. group convolution
	Group representation on feature fields: induced representations

