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ABSTRACT

Empirical studies have demonstrated that the noise in stochastic gradient descent
(SGD) aligns favorably with the local geometry of loss landscape. However,
theoretical and quantitative explanations for this phenomenon remain sparse. In this
paper, we offer a comprehensive theoretical investigation into the aforementioned
noise geometry for over-parameterized linear (OLMs) models and two-layer neural
networks. We scrutinize both average and directional alignments, paying special
attention to how factors like sample size and input data degeneracy affect the
alignment strength. As a specific application, we leverage our noise geometry
characterizations to study how SGD escapes from sharp minima, revealing that the
escape direction has significant components along flat directions. This is in stark
contrast to GD, which escapes only along the sharpest directions. To substantiate
our theoretical findings, both synthetic and real-world experiments are provided.

1 INTRODUCTION

Stochastic gradient descent (SGD) and its variants have become the de facto optimizers for training
machine learning models (Bottou, 1991). Unlike full-batch gradient descent (GD), SGD uses only
mini-batches of data in each iteration, which injects noise into the optimization process. This noise
can have a pronounced impact on both the convergence behavior (Thomas et al., 2020; Wojtowytsch,
2023; Feng and Tu, 2021; Simsekli et al., 2019) and the generalization capabilities (Zhang et al.,
2017; Keskar et al., 2017; Wu et al., 2017; Zhu et al., 2019; Smith et al., 2020) of the algorithm.

Zhu et al. (2019); Wu et al. (2020); Xie et al. (2020) showed that SGD noise is highly anisotropic and
in particular, the noise covariance matrix aligns well with the Hessian matrix. As such, they propose
a Hessian-based approximation of the noise covariance: Σ(θ) ≈ σ2H(θ), where Σ(θ) and H(θ)
denote the noise covariance and Hessian matrices at θ, respectively and σ serves as a small constant
denoting the noise magnitude. Subsequent works (Feng and Tu, 2021; Mori et al., 2022; Wojtowytsch,
2021; Liu et al., 2021) presented an improved Hessian-based approximation: Σ(θ) ≈ 2L(θ)H(θ) for
regression problems with square loss, where L(θ) denotes the loss value. This refined approximation
acknowledges the fact that the noise magnitude is proportional to the loss value.

However, the alignment between SGD noise and local landscape geometry remains empirical observa-
tions, lacking quantitative characterization and theoretical grounding. Hessian-based approximations
are not accurate, as underscored by Thomas et al. (2020). A recent effort by Wu et al. (2022)
employed a normalized cosine similarity between Σ(θ)–which is close to the Hessian matrix in low
loss regions–and the empirical Fisher matrix G(θ) as a metric to quantify the alignment. This metric
is inspired by analyzing the dynamical stability of SGD (Wu et al., 2018) and can be interpreted
as certain type of average alignment. Nevertheless, the analysis in Wu et al. (2022) is restricted to
over-parameterized linear models (OLMs) and operates under the assumption of infinite data, leaving
open questions about the generalizability of such alignment in more practically relevant settings.

Our contribution. Let n, d denote the sample size, input dimension, respectively. Then, our
contributions can be summarized as follows.

• We first extend the average alignment analysis (Wu et al., 2022) to finite sample scenarios,
offering a comprehensive investigation of how factors like sample size and input data degeneracy
impact the alignment strength. We establish that, as long as deff ≳ log n, the alignment strength
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is lower-bounded for both OLMs and two-layer neural networks–models not considered in Wu
et al. (2022). Here, deff represents an effective input dimension, and this condition accommodates
the important regimes like n ∼ log(deff) (for sparse recovery) and n ∼ deff (the proportional
scaling).

• We then delve into a directional alignment analysis, probing whether the component of noise
energy along a specific direction is proportional to the curvature in that direction. Our results
show that for OLMs, as long as n ≳ d, the strength of directional alignment is lower-bounded
acorss all directions and the entire parameter space.

• Lastly, we provide a detailed analysis of the mechanisms by which SGD escapes from sharp
minima by leveraging our noise geometry results. We show that the escape direction of SGD
exhibits significant components along flat directions of the local landscape. This stands in stark
contrast to GD, which escapes from minima only along the sharpest direction. We also discuss
the implications of this unique escape behavior, providing a preliminary explaination of how
cyclical learning rate (Smith, 2017; Loshchilov and Hutter, 2017) can help find flatter minima.

It is worh noting that our theoretical guarantees apply effectively to both isotropic and anisotropic
inputs, and the guaranteed alignment strength is independent of the degree of overparameterization.
In addition, all theoretical findings are supported by numerical experiments conducted on both
small-scale and larger-scale models. To justify the practical relevance, experiments of classifying
CIFAR-10 dataset using VGG nets and ResNets are also provided in Section 6. Overall, our work
advances the theoretical understanding of the geometry of SGD noise and provides insights into how
SGD navigates the loss landscape.

1.1 OTHER RELATED WORK

Noise geometry. Ziyin et al. (2022) provides a detailed analysis of the noise structure of online
SGD for linear regression. We instead consider nonlinear models and finite-sample regimes. We also
acknowledge the existence of works such as Simsekli et al. (2019); Zhou et al. (2020), which argue
that the magnitude of SGD noise is heavy-tailed. However, our particular focus is on the noise shape
and the observation that the noise magnitude is directly proportional to the loss value.

Escape from minima and saddle points The phenomenon of SGD escaping from sharp minima
exponentially fast was initially studied in Zhu et al. (2019) as an indicator of how much SGD dislikes
sharp minima. This provides an explanation of the famous “flat minima hypothesis” (Hochreiter and
Schmidhuber, 1997; Keskar et al., 2017; Wu and Su, 2023)—one of the most important observations in
explaining the implicit regularization of SGD. However, existing analyses of the escape phenomenon
have primarily focused on the escape rate (Wu et al., 2018; Zhu et al., 2019; Xie et al., 2020; Mori
et al., 2022; Ziyin et al., 2022). In contrast, we extends this focus by providing analysis of escape
direction, which is enabled by our characterizations of the noise geometry. Kleinberg et al. (2018)
introduced an alternative perspective, positing that SGD circumvents local minima by navigating
an effective loss landscape that results from the convolution of the original landscape with SGD
noise. In this context, our noise geometry characterizations can be beneficial in understanding the
effective loss landscape. In addition, prior works like (Daneshmand et al., 2018; Xie et al., 2022) has
illustrated that the alignment of noise with local geometry facilitates the rapid saddle-point escape of
SGD. Our work offers theoretical substantiation for the alignment assumptions in these studies.

2 PRELIMINARIES

Notation. We use bold letters for vectors and lowercase letters for scalars, e.g. x = (x1, · · · , xd)⊤.
We use ⟨·, ·⟩ for the Euclidean inner product and ∥·∥p for the lp norm of a vector or the spectral
norm of a matrix. Denote by N (µ, S) the Gaussian distribution with mean µ and covariance
matrix S, while we define U(Ω) as the uniform distribution on a set Ω. For a matrix A, we refer
to its eigenvalues in a decreasing order as {λj(A)}j . For a positive definitive matrix A, we use
cond(A) := λmax(A)/λmin(A) and srk(A) := Tr(A)/ ∥A∥2 to denote the condition number and
the stable rank of A, respectively. We use a ≲ b to mean there exist an an absolute constant C > 0
such that a ≤ Cb and a ≳ b is defined analogously. We write a ∼ b if there exist absolute constants
C1, C2 > 0 such that C1b ≤ a ≤ C2b.

Let {(xi, yi)}ni=1 ⊂ Rd × R be the training set and f(·;θ) : Rd → R be the model parameterized
by θ ∈ Rp. Let ℓi(θ) = 1

2 (f(xi;θ)− yi)
2 be the square loss at the i-th sample and L(θ) =
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1
n

∑n
i=1 ℓi(θ) be the empirical risk. To minimize L(·), the mini-batch SGD updates as follows

θ(t+ 1) = θ(t)− η

B

∑
i∈Bt

∇ℓi(θ(t)), (1)

where Bt = {γt,1, · · · , γt,B} is a batch with size |Bt| = B, and γt,1, · · · , γt,B i.i.d.∼ U([n]).

To isolate the impact of noise, the SGD update (1) is often reformulated as follows

θ(t+ 1) = θ(t)− η (∇L(θ(t)) + ξ(t)) , (2)

where ∇L(θ(t)) is the full-batch gradient and ξ(t) represents the mini-batch noise satisfying
E[ξ(t)] = 0,E[ξ(t)ξ(t)⊤] = Σ(θ(t))/B with the noise covariance given by

Σ(θ) =
1

n

n∑
i=1

∇ℓi(θ)∇ℓi(θ)⊤ −∇L(θ)∇L(θ)⊤. (3)

In the above setup, the Hessian matrix of the empirical risk is given by

H(θ) = G(θ) +
1

n

n∑
i=1

(f(xi;θ)− yi)∇2f(xi;θ), (4)

where G(θ) = 1
n

∑n
i=1 ∇f(xi;θ)∇f(xi;θ)⊤ is the empirical Fisher matrix. Eqn. (4) implies that

when the fit errors are small, we haveG(θ) ≈ H(θ) and in particular, for global minima θ∗,H(θ∗) =
G(θ∗). Additionally, for linear regression f(x;θ) = θ⊤x, H(θ) = G(θ) ≡ 1

n

∑n
i=1 xix

⊤
i .

Over-parameterized linear models (OLMs). An OLM is defined as f(x;θ) = F (θ)⊤x, where
F : Rp → Rd denotes a general re-parameterization function. Although f(·;θ) only represents linear
functions, the corresponding loss landscape can be highly non-convex. Some typical examples include
(i) the linear model F (w) = w; (ii) the diagonal linear network: F (θ) = (α2

1 − β2
1 , . . . , α

2
d − β2

d)
⊤;

and (iii) the linear network: F (θ) = W1W2 · · ·WL. Notably, OLMs have been widely used to
analyze the optimization and implicit bias of SGD (Arora et al., 2019; Woodworth et al., 2020; Pesme
et al., 2021; HaoChen et al., 2021; Azulay et al., 2021).

Noise Geometry. Before proceeding to our refined characterization of the noise geometry, we first
recall two existing results on quantifying the geometry of SGD noise.

• Mori et al. (2022) proposed the following Hessian-based approximation:

Σ(θ) ≈ 2L(θ)G(θ). (5)

It reveals 1) the noise magnitude is proportional to the loss value; 2) the noise covariance aligns
with the Fisher matrix. This approximation is intuitive and helpful for understanding, but it
cannot be accurate in general.

• Online SGD for OLMs with Gaussian inputs. Suppose x ∼ N (0, S) and n = ∞ (i.e., online
SGD). For OLMs, Wu et al. (2022) derived the following analytical expression

Σ(θ) = 2L(θ)G(θ) +∇L(θ)∇L(θ)⊤. (6)

In this case, the approximation (5) fails to capture the extra rank-1 term.

3 AVERAGE ALIGNMENT

Let Σ1(θ) = 1
n

∑n
i=1 ∇ℓi(θ)∇ℓi(θ)⊤,Σ2(θ) = ∇L(θ)∇L(θ)⊤. Then Σ(θ) = Σ1(θ) − Σ2(θ).

Following Wu et al. (2022), we consider the following metrics of quantifying average alignment:

µ̃(θ) =
Tr (Σ(θ)G(θ))

2L(θ)∥G(θ)∥2F
, µ(θ) :=

Tr(Σ1(θ)G(θ))

2L(θ) ∥G(θ)∥2F
. (7)

It is commonly believed that the magnitude of the full-batch gradient ∇L is relatively small compared
to the sample gradients {∇ℓi}i. Consequently, the influence of Σ2(θ) would be negligible compared
to Σ1(θ) and thus, µ̃(θ) and µ(θ) often behave similarly. Specifically, Wu et al. (2022) has provably
demonstrated that the difference between µ̃(θ) and µ(θ) is neglibile in terms of controling the
dynamical stability of SGD. We refer to Wu et al. (2022) for more details about the difference. Thus,
we only focus on studying µ(·) in this section.
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3.1 OVER-PARAMETERIZED LINEAR MODELS

The analytical expression (6) guarantees µ(θ) ≥ 1 in an infinite data scenario. The following theorem
extends it to finite-sample cases and the proof can be found in Appendix B. To simplify the statement,
we define the effective dimension of inputs as follows

deff := min{srk(S), srk(S2)},
where S represents the input covariance matrix and srk(S) = tr(S)/∥S∥2 is the stable rank of S. In
particular, when S is isotropic, we have deff = d.

Theorem 3.1. Consider OLMs and assume x1,x2, . . . ,xn
i.i.d.∼ N (0, S). For any ϵ, δ ∈ (0, 1),

(a) if n/ log(n/δ) ≳ 1/ϵ2 and deff ≳ log(n/δ)/ϵ2, then w.p. at least 1 − δ, it holds that
infθ∈Rp µ(θ) ≥ (1−ϵ)2

(1+ϵ)2cond2(∇F (θ)∇F (θ)⊤)
;

(b) if n ≳ d+ log(1/δ), then w.p. at least 1− δ, it holds that infθ∈Rp µ(θ) ≳ 1.

Result (a) is established by leveraging the high dimensionality of inputs, as stated by the condition
deff ≳ log n, which is particularly relevant for low-sample regimes. Notably, this includes the
important regimes like n ∼ log(deff) (for sparse recovery) and n ∼ deff (the proportional scaling). In
contrast, result (b) is pertinent to the enough-data regime where n ≳ d. Notably, the alignment holds
no matter how degenerate the covariance matrix is. This is obtained by scrutinizing the concentration
around the population alignment as characterized in equation (6). In a summary, these two results are
complementary and collectively span all the regimes of interest.

Example. Consider the isotropic case where S = Id and linear regression F (w) = w. In this case,
∇F (w) ≡ Id and thus, Theorem 3.1 implies that it holds that infθ∈Rp µ(θ) ≳ 1 as long as n ≳ 1.
Remark 3.2. We would like to emphasize that the conditions presented in Theorem 3.1 are independent
of the model size p. Consequently, these alignment results can be effectively applied to linear networks
regardless of their width and depth.

3.2 TWO-LAYER NEURAL NETWORKS

Consider two-layer neural networks given by f(x;θ) =
∑m
k=1 akϕ(b

⊤
k x) with ak ∈ {±1} to be

fixed. We use θ = (b⊤1 , · · · , b⊤m)⊤ ∈ Rmd to denote the concatenation of all trainable parameters.
Here, ϕ : R 7→ R is an activation function with a nondegenerate derivative as defined below.

Assumption 3.3. There exist constants β > α > 0 such that α ≤ ϕ′(z) ≤ β holds for any z ∈ R.

Example 3.4. (i) A typical activation function that satisfies Assumption 3.3 is α-Leacky ReLU: ϕ(z) =
max{αz, z}, where α ∈ (0, 1). (ii) Moreover, the assumption also holds for Sigmoid with the trunca-
tion trick (to prevent gradient vanishing of Sigmoid): ϕ(z) = 1/(1 + exp(−sgn(z)min{|z|,M})),
where M > 0 is the truncation constant.

Theorem 3.5. Consider the two-layer network f(·;θ) with the activation function satisfying Assump-

tion 3.3 and assume x1, · · · ,xn i.i.d.∼ N (0, S). For any ϵ, δ ∈ (0, 1), if n/ log(n/δ) ≳ 1/ϵ2 and
deff ≳ log(n/δ)/ϵ2, then w.p. at least 1− δ, it holds that inf

θ∈Rmd
µ(θ) ≥ α2(1−ϵ)2

β2(1+ϵ)2 .

This theorem establishes a uniform lower bound for the alignment strength, quantified by µ(θ).
Importantly, the number of samples required remains independent of the network width m. The
proof follows a similar approach to that of Theorem 3.1 and can be found in Appendix B. Note
that we impose two specific conditions: the activation gradient must be non-degenerate and the
output-layer coefficients are non-trainable. We stress that these conditions are obligatory soly for
establishing alignment across the entire loss landscape. In practice, such stringent conditions may
not be necessary, as the focus is on regions navigated by SGD. Figure 1b corroborates that alignment
is indeed observed for standard two-layer ReLU networks trained by SGD.

3.3 NUMERICAL VALIDATIONS

In this section, we present small-scale experiments to corroborate our theoretical results with a 4-layer
linear network and two-layer ReLU network (both layers are trainable). Both isotropic and anistropic
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input distributions are examined and in parituclar, for the anistropic case, we set λ2k(S) = 1/
√
k. As

for sample size, we set n = 5 log(deff) to focus on the low-sample regime. The results are reported
in Figure 1 and it is evident that across all examined scenarios, the alignment strength is consistently
lower-bounded and independent of the model size.
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Figure 1: The alignment strength is independent of model size. Two types of models: 4-layer linear network,
and two-layer neural network are examined. In experiments, we set n = 5 log(deff), deff = 50. The error bar
corresponds to the standard deviation over 20 independent runs.

4 DIRECTIONAL ALIGNMENT

In Section 3, we focused solely on average alignment. Subsequently, we delve into a specific type of
directional alignment: whether noise energy along a direction is proportional to the curvature of loss
landscape along that direction. To this end, we define the following metric to measure the strength of
directional alignment.
Definition 4.1 (Directional Alignment). Given v ∈ Rp, the alignment along v is defined as

g(θ;v) :=
v⊤Σ(θ)v

2L(θ) (v⊤G(θ)v)
, (8)

where v⊤Σ(θ)v = E[(ξ(θ)⊤v)2] denotes the noise energy along direction v, v⊤G(θ)v is the
curvature of loss landscape along v, and 2L(θ) is only a scaling factor inspired by (5).

Theorem 4.2 (One-sided bound). Consider OLMs and assume x1,x2, . . . ,xn
i.i.d.∼ N (0, S). For

any δ ∈ (0, 1), if n ≳ d+ log(1/δ), then w.p. at least 1− δ, we have infθ,v∈Rp g(θ;v) ≳ 1.

This theorem establishes that a sample size satisfying n ≳ d is sufficient to guarantee a uniform lower
bound for alignment across all directions and the entire parameter space. The subsequent theorem
builds upon this by offering a two-sided bound on alignment strength, albeit at the cost of requiring a
larger sample size.

Theorem 4.3 (Two-sided bound). Consider OLMs and assume x1,x2, . . . ,xn
i.i.d.∼ N (0, S). For

any ϵ, δ ∈ (0, 1), if n ≳ max
{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
, then

w.p. at least 1− δ, we have the following two-side uniform bounds for the directional alignment:

(i).
1− ϵ

(1 + ϵ)2
≤ inf

θ,v∈Rp
g(θ;v) ≤ sup

θ,v∈Rp
g(θ;v) ≤ 2 + ϵ

(1− ϵ)2
,

(ii).
1− ϵ

(1 + ϵ)2
≤ inf

θ∈Rp,⟨v,∇L(θ)⟩=0
g(θ;v) ≤ sup

θ∈Rp,⟨v,∇L(θ)⟩=0

g(θ;v) ≤ 1 + ϵ

(1− ϵ)2
.

Notably, for directions satisfying v ⊥ ∇L(θ), the alignment strength is nearly 1. The proofs of the
above two theorems are deferred to Appendix C.
Remark 4.4. It is worth noting that the above theorems establish the directional alignment for all
directions and the entire landscape. Consequently, the requirement of sample size is much more
restricted. However, in practice, what matters are the solutions and directions explored by a certain
optimizer such as SGD. This is the gap between the practice and our theory. Our experiments in Figure
2 show that indeed the directional alignment holds very well for SGD solutions and eigen-directions
even when n ≪ d. On the one hand, to formalize this insight into a theorem is challenging as it
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requires a precise characterization what “SGD solutions” means. On the other hand, our theorems
are also more general in the sense that it reveals that the alignment property is a intrisic property of
mini-batch noise and applicable to optimizers beyond SGD.

Numerical validations. In this experiment, we consider the alignment along the eigen-directions of
Hessian matrix. Let G(θ) =

∑
k λk(θ)uk(θ)uk(θ)

⊤ be the eigen-decomposition of G(θ) respec-
tively, where {λk(θ)}k are the eigenvalues in a decreasing order and {uk(θ)} are the corresponding
eigen-directions. Note that λk(θ) is the curvature of local landscape along uk(θ). Decompose
SGD noise along these eigen-directions: ξ(θ) =

∑
k rk(θ)uk(θ), where rk(θ) = ξ(θ)⊤uk(θ)

denotes the noise component in the direction of uk(θ). Consequently, the (scaled) expected noise
magnitude in the direction uk(θ) is given by αk(θ) = E[r2k(θ)]/2L(θ) = u⊤

k Σ(θ)uk(θ)/2L(θ).
For comparison, let {µk(θ)}k denote the eigenvalues of Σ(θ)/2L(θ). When clear from the context,
we will omit dependence on θ for simplicity.

In Figure 2a, we examine linear regression in the regimes with limited data. Surprisingly, even
with significantly fewer samples, we still observed that the noise energy along each eigen-direction
remained roughly proportional to the corresponding curvature and the ratio is close 1. However,
we noticed that the eigenvalues of Σ(θ)/2L(θ) decayed much faster than that of G(θ), indicating
that the condition n ≳ d stated in Theorem 4.2 is necessary to ensure uniform alignment across all
directions. In Figure 2b, we further consider the classification of CIFAR-10 with a small convolutional
neural network (CNN) and fully-connected neural network (FNN). We can see that the obsevation is
consistent with Figure 2a, where the alignment along eigen-directions is significant.
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Figure 2: How the components of noise energy in eigen-directions {αk}k are proportional to the corresponding
curvatures {λk}k. αk/λk can reflect the directional alignment (8) along the eigen-directions of the local
landscape. The eigenvalues of Σ/2L are also plotted as comparison. (a) Linear models on Gaussian data in the
regimes with limited data, where we fix d = 103 and change n accordingly (n = d/4, n = 8 log d). (b) 4-layer
CNN and 4-layer FNN on CIFAR-10 dataset. For more experimental details, we refer to Appendix A.

5 HOW SGD ESCAPES FROM SHARP MINIMA

Existing analyses of the escape behavior focues on the escape rate. In this section, we provide
a further analysis of the escape direction by leveraging the directional alignment. Let θ∗ be the
minimum of interest. The local escape behavior can be fully characterized by linearizing the SGD
dynamics, which corresponds to the linearized model f(·;θ) ≈ f(·;θ∗) + ⟨∇f(·;θ∗),θ − θ∗⟩. We
refer to (Wu et al., 2022, Section 3.2) for more details. Thus, without loss of generality, we can
simply consider the linearized model in the subsequent analysis.

Let w = θ − θ∗ and zi = ∇f(xi;θ∗). Then, G(θ∗) = 1
n

∑n
i=1 ziz

⊤
i and the linearized SGD of

iterates as follows
w(t+ 1) = w(t)− η (G(θ∗)w(t) + ξ(t)) ,

where ξ(t) is the SGD noise. In addition, in this section, we simply use L(w) = 1
2w

TG(θ∗)w to
denote the corresponding loss. We make the following assumption on the noise alignment.

Assumption 5.1 (Eigen-directional alignment). let G(θ∗) =
∑d
i=1 λiuiu

⊤
i be the eigen decomposi-

tion of G(θ∗). Assume that there exist A1, A2 > 0 such that it holds for any w ∈ Rd

A1L(w)λi ≤ E[|ξ(w)⊤ui|2] ≤ A2L(w)λi.

For linear models under the setting of Theorem 4.3, Assumption 5.1 is provably valid. It is important
to clarify, however, that the above assumption only requires the alingment along eigen-directions,
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which is considerably less stringent compared to the uniform directional alignment specified in
Theorem 4.3. Consequently, it is plausible that Assumption 5.1 enjoys broader applicability. As
empirical evidence, Figure 2b corroborates the eigen-direction alignment for fully-connected networks
and CNNs when trained via SGD.

Eigen-decomposition of SGD. By leveraging Assumption 5.1, we can analyze the SGD dynamics
in the eigenspace. Let w(t) =

∑d
i=1 wi(t)ui with wi(t) = u⊤

i w(t). Then, wi(t + 1) = (1 −
ηλi)wi(t) + ηξ(t)⊤ui. Taking the expectation of the square of both sides, we obtain

E
[
w2
i (t+ 1)

]
= (1− ηλi)

2E
[
w2
i (t)

]
+ η2E[|u⊤

i ξ(t)|2], (9)

where the noise term: E[|u⊤
i ξ(t)|2] ∼ λiL(wt) according to Assumption 5.1.

Let Xt =
∑k
i=1 λiE[w2

i (t)], Yt =
∑d
i=k+1 λiE[w2

i (t)], denoting the components of loss energy
along sharp and flat directions, respectively. Let Dk(t) = Yt/Xt, which measures the concentration
of loss energy along flat directions. Analogously, let Pk(t) =

∑d
i=k+1 E[w2

i (t)]/
∑k
i=1 E[w2

i (t)],
which measure the concentration of variance along flat directions. It is easy to show that Pk(t) ≥
Dk(t)λk/λk+1. Therefore, when λk/λk+1 is lower bounded, a concentration of loss energy along
flat directions can lead to a similar concentration in terms of variance.
Theorem 5.2 (Escape of SGD). Suppose Assumption 5.1 holds and let η = β

∥G(θ∗)∥F . Then, there
exists absolute constants c1, c2 > 0 such that if β ≥ c1, then SGD will escape from that minima and

for any k ∈ [d], it holds that when t ≥ max
{
1,

log
(
c2/η(

∑k
i=1 λ

2
i )

1/2
)

log β

}
: Dk(t) ≳

∑d
i=k+1 λ

2
i∑k

i=1 λ
2
i

.

The proof can be found in Appendix D. This theorem reveals that during SGD’s escape process, the
loss rapidly accumulates a significant component along flat directions of the loss landscape. The
precise loss ratio between the flat and sharp directions is governed by the spectrum of Hessian matrix.
In particular, D1(t) ≳ srk(G2)− 1, indicating that in high dimension, i.e., srk(G2) ≫ 1, the loss
energy along the sharpest directions becomes negligible during the SGD’s escape process. This
stands in stark contrast to GD, which always escapes along the sharpest direction:
Proposition 5.3 (Escape of GD). Consider GD with learning rate η = β/λ1. If β > 2, then
D1(t) ≤

∑d
i=2

λi(1−ηλi)2tw2
i (0)

λ1(1−ηλ1)2tw2
1(0)

.
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Figure 3: Comparison of escape directions between
SGD and GD. The problem is linear regression and both
SGD and GD are initialized near the global minimum
by w(0) ∼ N (w∗, e−10Id/d). To ensure escape, we
choose η = 1.2/ ∥G∥F and η = 4/(λ1+λ2) for SGD
and GD, respectively. Please refer to Appendix A for
more experimental details.

In particular, if w1(0) ̸= 0 and λ1 > λ2, then the
above proposition implies that D1(t) decreases
to 0 exponentially fast for GD.

Figure 3 presents numerical comparisons of the
escaping directions between SGD and GD. It
is evident that D1(t) exponentially decreases to
zero for GD, indicating that GD escapes along the
sharpest direction. In contrast, for SGD, D1(t)
remains significantly large, indicating that SGD
retains a substantial component along the flat
directions during the escape process. Furher-
more, the value of D1(t) positively correlates
with srk(G2), as predicted by our Theorem 5.2.
These observations provide empirical confirma-
tion of our theoretical predictions.

5.1 EXPLAINING THE IMPLICIT BIAS OF CYCLICAL LEARNING RATE

Gaining insights into the escape direction of SGD can be valuable for understanding its optimization
dynamics, generalization properties, and the overall behavior. A more detailed discussion on this
topic is available in Section 7. In this section, however, we concentrate a specific example, illustrating
the role of escape direction in enhancing the implicit bias of SGD through Cyclical Learning Rate
(CLR) (Smith, 2017; Loshchilov and Hutter, 2017). As shown in Figure 2 of Huang et al. (2018),
utilizing CLR enables SGD to cyclically escapes from (when increasing LR) and slides into (when
decreasing LR) sharp regions, ultimately progressing towards flatter minima. We hypothesize that
escape along flat directions plays a pivotal role in guiding SGD towards flatter region in this process.
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Figure 4: Visualization of the trajectories of
SGD+CLR v.s. GD+CLR for our toy model.
Both cases use the same CLR schedule. We
can observe that SGD+CLR moves signifi-
cantly towards flatter region, while GD+CLR
only osccilates along the sharpest direction.
We have extensively tuned the learning rates
for GD+CLR but do not obseve significant
movement towards flatter region in any case.

Following Ma et al. (2022), we consider a toy OLM
f(x;w) = (w2/

√
w2

1 + 1)x with x ∼ N (0, 1). For sim-
plicity, we consider the online setting, where the landscape

L(w) = w2
2/[2(w

2
1 + 1)].

The global minima valley is S = {w : w2 = 0} and for
w ∈ S, tr[∇2L(w)] = 1/(1+w2

1). Hence, the minimum
gets flatter along the valley S when |w1| grows up. In
Figure 4, we visualize the trajectories for both SGD+CLR
and GD+CLR. One can observe that

• SGD escape from the minima along both the flat
direction e1 and sharp direction e2. The component
of along e1 leads to considerable increase in w2

1(t),
facilitating the movement towards flatter region along
the minimum valley S.

• On the contrary, GD escapes only along e2, yielding
no increase in w2

1(t). Thus, we cannot observe clear
movement towards flatter region for GD+CLR.

Thus, in this toy model, the fact that SGD escapes along flat directions is crucial in amplifying the
implicit bias towards flat minima.

Nonetheless, understanding how the above mechanism manifests in practice remains an open question
that warrants further investigation. We defer this topic to future work, as the primary focus of this
paper is to understand the noise geometry rather than exhaustively explore its applications.

6 LARGER-SCALE EXPERIMENTS FOR DEEP NEURAL NETWORKS

We have already provided small-scale experiments to confirm our theoretical findings. We now turn
to justify the practical relevance by examining the classification of CIFAR-10 dataset (Krizhevsky
and Hinton, 2009) with practical VGG nets (Simonyan and Zisserman, 2015) and ResNets (He et al.,
2016). Note that larger-scale experiments on average alignment have been previously presented in Wu
et al. (2022). Thus, our focus here is on investigate the directional alignment and escape direction of
SGD. We refer to Appendix A for experimental details.

The directional alignment along eigen-directions. Figure 5 presents the directional align-
ments of SGD noise for ResNet-38 and VGG-13. The alignment is examined along the eigen-
directions of the local landscape. The three quantities: λk, αk, and µk under ℓ1 normalization
(i.e., λk/ ∥λ∥1, αk/ ∥α∥1, µk/ ∥µ∥1) are plotted. Here, λk and αk represent the curvature and the
component of noise energy along the k-th eigen-direction, respectively. µk corresponds to the k-th
eigenvalue of the noise covariance matrix, which is included for comparison. One can see that
the alignment between αk and λk still exists for ResNet-38 and VGG-13, but the ratio between
them becomes significantly larger. As a comparison, we refer to Figure 2b, where the ratio is well-
controlled for small-scale networks trained for classifying the same dataset. We hypothesize that thiis
observation is consistent with our theoretical results in Section 4: one-sided bounds require much
less samples.

The escape direction of SGD. For large models, it is computationally prohibitive to compute the
quantity Dk(t) since it needs to compute the whole spectrum. Thus, we consider to measure the
component along different directions without reweighting. Let θ∗ be the minimum of interest
and θ(t) be SGD/GD solution at step t. Define pk(t) = ⟨θ(t)− θ∗,u1⟩ for k = 1 and pk(t) =

(
∑k
i=1 ⟨θ(t)− θ∗,ui⟩2)1/2 for k > 1; rk(t) = (∥θ(t)− θ∗∥2−p2k(t))1/2. Notably, pk(t) and rk(t)

represent the component along sharp and flat directions, respectively.

In Figure 6, we plot (pk(t), rk(t)) for VGG-19 and ResNet-110, where we examine various k values.
The plots clearly demonstrate that the escape direction of SGD exhibits significant components along
the flat directions. On the other hand, GD tends to escape along much sharper directions. These
empirical findings align well with our theoretical findings in Section 5.
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7 CONCLUSION AND FUTURE WORK

In this paper, we present a comprehensive investigation of the geometry of SGD noise, demonstrating
both average and directional alignment between the noise and local geometry. We substantiate
these claims through both theoretical analyses and empirical evidence. Furthermore, we explore the
implications of these findings by analyzing the escape direction of SGD and its role in enhancing the
implicit bias toward flatter minima through cyclical learning rate.

Understanding the noise geometry is crucial for comprehending many aspects of stochastic optimiza-
tion, including but not limited to convergence rates, generalization capabilities, and dynamic behavior.
We offer an illustrative example through analyzing the escape direction of SGD. Another particularly
relevant application of our noise geometry framework lies in deciphering the Edge of Stability (EoS)
and the associated unstable convergence phenomena, as elaborated below.

• Studies (Cohen et al., 2020; Wu et al., 2018) showed that in training neural networks, GD typically
occurs in a EoS phase, where the the stability condition is violated. During EoS phase, GD
repeatedly slides into sharp regions and then, escapes from there. Due to the fact that GD escapes
along the sharpest direction (as stated in our Proposition 5.3), GD in the EoS phase will keep
oscillating along the sharpest directions and decreasing the loss along other flat directions. Thus,
EoS facilitates the unstable convergence of GD (Ahn et al., 2022). Similar EoS-related phenomena
and unstable convergence patterns are also observed in SGD (Lee and Jang, 2022). However, to
fully characterize the EoS phase in the context of SGD, it is imperative to understand the underlying
noise structure. Specifically, one must elucidate the mechanism by which noise compels SGD to
move away from sharp minima.

• In addition, our finding can potentially be used to explain why the training curve of SGD can be
more stable than that of GD—A very counter-intuitive phenomenon. As shown in Fig. 2 of Geiping
et al. (2021), GD training often encounters sudden large loss spikes and in contrast, SGD training
does not have this issue (although there are small loss fluctuations), implying that minibatch noise
can stabilizes the training to some extent. This can potentially be explained by our theory as
follows. For both SGD and GD, the unstable dynamics is inevitable in training neural networks
due to progressive sharpening, i.e., entering the EoS phase. During the EoS phase, GD escapes
along the sharpest direction, leading to a sudden large loss spike if the curvature along the sharpest
direction becomes extremely large. In contrast, for SGD, the escape happens along much flatter
directions, for which it is unlikely to trigger a large loss spike.
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A EXPERIMENTAL SETUPS

In this section, we provide the experiment details for directional alignment experiments (in Figure 2
and Figure 5) and escaping experiments (in Figure 3 and Figure 6).

Small-scale experiments (Figure 2 and 3).

• In Figure 2, we conduct experiments on linear regression and a 4-layer linear network: d→
m→ m→ m→ 1 with m = 50. The inputs {xi}ni=1 are drawn from N (0, Id). In the first
three experiments, we fix d = 103 and change n accordingly (n = 4d2, n = d, n = d/4).
For the last experiment, we set d = 104 and n = log d. Regarding the parameter θ, it is
drawn from N (0, Ip).

• In Figure 3, we conduct escaping experiments on linear regression with w∗ = 0. Both SGD
and GD are initialized near the global minimum by w(0) ∼ N (0, e−10Id/d). To ensure
escaping, we choose η = 1.2/ ∥G∥F and η = 4/(λ1 + λ2) for SGD and GD, respectively.
We fix n = 105 and d = 103, and the inputs {xi}ni=1 are drawn from N (0,diag(λ)/d),
where λ ∈ Rd and λ1 ≥ λ2 = · · · = λd ≥ 0. Moreover, we set λ1 = 1 change λ2
accordingly to obtain different srk(G2).

Larger-scale experiments (Figure 5 and 6).

• Dataset. For the experiments in Figure 5 and 6, we use the CIFAR-10 dataset with label=0, 1
and the full CIFAR-10 dataset to train our models, respectively.

• Models. We conduct experiments on large-scale models: 4-layer CNN (p = 43, 072),
4-layer FNN (p = 219, 200), ResNet-38 (p = 558, 222), VGG-13 (p = 605, 458), ResNet-
110 (p = 1, 720, 138), and VGG-19 (p = 20, 091, 338).
Specifically, we use standard ResNets (He et al., 2016) and VGG nets (Simonyan and
Zisserman, 2015) without batch normalization. For ResNets, we follow Zhang et al. (2019)
to use the fixup initialization in order to ensure that the model can be trained without batch
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normalization. Moreover, the architecture of 4-layer CNN is Conv(3, 6, 5) → ReLU →
MPool(2, 2) → Conv(6, 16, 5) → ReLU → MPool(2, 2) → Linear(400, 100) →
ReLU → Linear(100, 2). and the 4-layer FNN is a ReLU-activated fully-connected
network with the architecture: 784 → 256 → 64 → 32 → 2.

• Training. All explicit regularizations (including weight decay, dropout, data augmentation,
batch normalization, learning rate decay) are removed, and a simple constant-LR SGD is
used to train our models. Specifically, all these models are trained by SGD with learning
rate η = 0.1 and batch size B = 32 until the training loss becomes smaller than 10−4.

Efficient computations of the top-k eigen-decomposition of G and Σ. We utilize the functions
eigsh and LinearOperator in scipy.sparse.linalg to calculate top-k eigenvalues and
eigenvectors of G and Σ, and the key step is to efficiently calculate Gv and Σv for any given v ∈ Rp.

• For small-scale experiments, they can be calculated directly.
• For the large-scale models, we need further approximations since the computation complex-

ity O(np) is prohibitive in this case. To illustrate our method, we will use Gv as an example
and apply a similar approach to Σv. Notice that the formulation Gv = 1

n

∑n
i=1(x

⊤
i v)xi

are all in the form of sample average, which allows us to perform Monte-Carlo approxi-
mation. Specifically, we randomly choose b samples {xij}bj=1 from x1, . . . ,xn and use
1
b

∑b
j=1(x

⊤
ij
v)xij estimate Gv, with the computation complexity O(bp). For the experi-

ments on CIFAR-10, we test b’s with different values and find that b = 2k is sufficient to
obtain a reliable approximation of the top-k eigenvalues and eigenvectors. Hence, for all
large-scale experiments in this paper, we use b = 2k to speed up the computation of the
top-k eigenvalues and eigenvectors.

B PROOFS IN SECTION 3: AVERAGE ALIGNMENT

B.1 PROOF OF THEOREM 3.1 (A)

For clarity, in a slightly different order from the main text, we first prove for the linear model
(Example) and then for the OLM (Theorem 3.1). This is also convenient for us to compare the
difference between the proof for the two-layer neural network (Theorem 3.5) and the proof for the
linear model.

Step I. Proof for linear models.

For the linear model, i.e., θ = w and F (w) = w in OLMs, we have

µ(w) =
Tr (Σ(w)G(w))

2L(w) ∥G(w)∥2F

=

Tr

((
1
n

n∑
j=1

xjx
⊤
j

)(
1
n
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1
n

n∑
j=1

(
x⊤
i xj

)2 ≥
min
i∈[n]

∥xi∥4 + (n− 1) min
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i xj)

2

max
i∈[n]

∥xi∥4 + (n− 1)max
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i xj)

2
.

(10)

Then we only need to estimate ∥xi∥4 and 1
n−1

∑
j ̸=i

(x⊤
i xj)

2 for each i ∈ [n], respectively.

14
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Step I (i). Estimation of ∥xi∥4.

Let yi = S1/2xi, then ∥xi∥2 = y⊤
i Syi and y1, · · · ,yn i.i.d.∼ N (0, Id).

For a fix i ∈ [n], by Lemma E.2, there exists an absolute constant C1 > 0 such that for any ϵ ∈ (0, 1),
we have

P
(∣∣∣y⊤

i Syi − Tr(S)
∣∣∣ ≥ ϵTr(S)

)
≤ 2 exp

(
−C1 min

{
ϵ2 Tr2(S)

∥S∥2F
,
ϵTr(S)

∥S∥2

})
.

Noticing that Tr(S) ∥S∥2 = λ1
∑
i λi ≥

∑
i λ

2
i = ∥S∥F , we thus have

Tr2(S)

∥S∥2F
≥ Tr(S)

∥S∥2
= srk(S).

Therefore,

P
(∣∣∣y⊤

i Syi − Tr(S)
∣∣∣ ≥ ϵTr(S)

)
≤ 2 exp

(
−C1

Tr(S)

∥S∥2
min

{
ϵ, ϵ2

})
= 2 exp

(
−C1ϵ

2srk(S)
)
.

Applying a union bound over all i ∈ [n], we have

P
(∣∣∣ ∥xi∥2 − Tr(S)

∣∣∣ ≥ ϵTr(S),∀i ∈ [n]
)
≤ 2n exp

(
−C1ϵ

2srk(S)
)
.

In the other word, for any ϵ, δ ∈ (0, 1), if srk(S) ≳ log(n)/ϵ2, then w.p. at least 1− δ/3, we have

(1− ϵ)2 ≤ ∥xi∥42
Tr2(S)

≤ (1 + ϵ)2, ∀i ∈ [n].

Step I (ii). Estimation of 1
n−1

∑
j ̸=i

(x⊤
i xj)

2.

First, we fix i ∈ [n]. Notice that (x⊤
i xj)

2 (j ̸= i) are not independent, so we need estimate by some
decoupling tricks.

We denote yi := S−1/2xi, then y1, · · · ,yn i.i.d.∼ N (0, Id) and (x⊤
i xj)

2 = (y⊤
i Syj)

2.

For any fixed v ∈ Sd−1, by Lemma E.1, for any ϵ ∈ (0, 1), we have

P

∣∣∣ 1

n− 1

∑
j ̸=i

(v⊤yj)
2 − 1

∣∣∣ ≥ ϵ


≤P

∣∣∣ 1

n− 1

∑
j ̸=i

(v⊤yj)
2 − 1

∣∣∣ ≥ ϵ

 ≤ 2 exp
(
−C2(n− 1)ϵ2

)
,

where C2 > 0 is an absolute constant, independent of v and ϵ.

Then we have

P

∣∣∣ 1

n− 1

∑
j ̸=i

(x⊤
i xj)

2 − x⊤
i Sxi

∣∣∣ ≥ ϵx⊤
i Sxi


=P

∣∣∣ 1

n− 1

∑
j ̸=i

(y⊤
i Syj)

2 − ∥Syi∥22
∣∣∣ ≥ ϵ ∥Syi∥22


zi:=Syi/∥Syi∥2= P

∣∣∣ 1

n− 1

∑
j ̸=i

(z⊤
i yj)

2 − 1
∣∣∣ ≥ ϵ


=E

I
∣∣∣ 1

n− 1

∑
j ̸=i

(z⊤
i yj)

2 − 1
∣∣∣ ≥ 1




15
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=Ezi

E
I
∣∣∣ 1

n− 1

∑
j ̸=i

(z⊤
i yj)

2 − 1
∣∣∣ ≥ 1


∣∣∣∣∣zi


≤Ezi

[
2 exp

(
−C2(n− 1)ϵ2

)]
= 2 exp

(
−C2(n− 1)ϵ2

)
.

Applying a union bound over all i ∈ [n], we have

P

∣∣∣ 1

n− 1

∑
j ̸=i

(x⊤
i xj)

2 − x⊤
i Sxi

∣∣∣ ≥ ϵx⊤
i Sxi,∀i ∈ [n]

 ≤ 2n exp
(
−C2(n− 1)ϵ2

)
.

In the other word, for any ϵ, δ ∈ (0, 1), if n/ log(n/δ) ≳ 1/ϵ2, then w.p. at least 1− δ/3, we have

1− ϵ ≤
1

n−1

∑
j ̸=i(x

⊤
i xj)

2

x⊤
i Sxi

≤ 1 + ϵ, ∀i ∈ [n].

Step I (iii). Estimation of x⊤
i Sxi.

Let yi = S1/2xi, then x⊤
i Sxi = y⊤

i S
2yi and y1, · · · ,yn i.i.d.∼ N (0, Id).

In the same way as Step I(i), we obtain that: for any ϵ, δ ∈ (0, 1), if srk(S2) ≳ log(n)/ϵ2, then
w.p. at least 1− δ/3, we have

1− ϵ ≤ x⊤
i Sxi

Tr(S2)
≤ 1 + ϵ, ∀i ∈ [n].

Combining our results in Step I (i), Step I (ii), and Step I (iii), we obtain the result for Linear Model:
for any ϵ, δ ∈ (0, 1), if n/ log(n/δ) ≳ 1/ϵ2 and min{srk(S), srk(S2)} ≳ log(n)/ϵ2, then w.p. at
least 1− δ/3− δ/3− δ/3 = 1− δ, we have

µ(w) ≥
(1− ϵ)2 Tr2(S) + (n− 1)(1− ϵ) min

i∈[n]
x⊤
i Sxi

(1 + ϵ)2 Tr2(S) + (n− 1)(1 + ϵ)max
i∈[n]

x⊤
i Sxi

≥ (1− ϵ)2 Tr2(S) + (n− 1)(1− ϵ)2 Tr(S2)

(1 + ϵ)2 Tr2(S) + (n− 1)(1 + ϵ)2 Tr(S2)
=

(1− ϵ)2

(1 + ϵ)2
.

From the arbitrary of w, we have infw∈Rd µ(w) ≥ (1−ϵ)2
(1+ϵ)2 .
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Step II. Proof for OLMs.

µ(θ) =
Tr (Σ(θ)G(θ))

2L(θ) ∥G(θ)∥2F

=

Tr

((
1
n

n∑
j=1

(∇F (θ)⊤xj)(∇F (θ)⊤xj)⊤
)(

1
n

n∑
i=1

(F (θ)⊤xi)
2(∇F (θ)⊤xi)(∇F (θ)⊤xi)⊤

))
(

1
n

n∑
i=1

(F (θ)⊤xi)2
)(

1
n2

n∑
i=1

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2)

=

1
n2

n∑
i=1

n∑
j=1

(F (θ)⊤xi)
2
(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2
(

1
n

n∑
i=1

(F (θ)⊤xi)2
)(

1
n2

n∑
i=1

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2)

≥

(
1
n

n∑
i=1

(F (θ)⊤xi)
2
)(

min
i∈[n]

1
n

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2)
(

1
n

n∑
i=1

(F (θ)⊤xi)2
)(

1
n2

n∑
i=1

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2) =

min
i∈[n]

1
n

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2
max
i∈[n]

1
n

n∑
j=1

(
x⊤
i ∇F (θ)∇F (θ)⊤xj

)2

≥
min
i∈[n]

∥∥∇F (θ)⊤xi∥∥4 + (n− 1) min
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i ∇F (θ)∇F (θ)⊤xj)2

max
i∈[n]

∥∇F (θ)⊤xi∥4 + (n− 1)max
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i ∇F (θ)∇F (θ)⊤xj)2

.

(11)
We can still prove the theorem by the similar way as Step I.

By replacing xi and xj (j ̸= i) in Step I (i) with ∇F (θ)∇F (θ)⊤xi and xj (j ̸= i), respectively, in
the similar way as Step I (i), we can obtain: for any ϵ, δ ∈ (0, 1), if n/ log(n/δ) ≳ 1/ϵ2, then w.p. at
least 1− δ, we have

1− ϵ ≤
1

n−1

∑
j ̸=i(x

⊤
i ∇F (θ)∇F (θ)⊤xj)2

x⊤
i ∇F (θ)∇F (θ)⊤S∇F (θ)∇F (θ)⊤xi

≤ 1 + ϵ, ∀i ∈ [n];

Combining the estimation above with Step I (ii) and Step I (iii), we obtain that: for any ϵ, δ ∈ (0, 1),
if n/ log(n/δ) ≳ 1/ϵ2 and srk(S2) ≳ log(n)/ϵ2, then w.p. at least 1− δ, we have

1− ϵ ≤
1

n−1

∑
j ̸=i(x

⊤
i ∇F (θ)∇F (θ)⊤xj)2

x⊤
i ∇F (θ)∇F (θ)⊤S∇F (θ)∇F (θ)⊤xi

≤ 1 + ϵ, ∀i ∈ [n];

(1− ϵ)2 ≤ ∥xi∥42
Tr2(S)

≤ (1 + ϵ)2, ∀i ∈ [n];

1− ϵ ≤ x⊤
i Sxi

Tr(S2)
≤ 1 + ϵ, ∀i ∈ [n].

These inequalities imply that:

µ(θ) ≥
min
i∈[n]

λ2min(∇F (θ)∇F (θ)⊤) ∥xi∥42 + (n− 1) min
i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i ∇F (θ)∇F (θ)⊤xj)2

max
i∈[n]

λ2min(∇F (θ)∇F (θ)⊤) ∥xi∥
4
2 + (n− 1)max

i∈[n]

1
n−1

∑
j ̸=i

(x⊤
i ∇F (θ)∇F (θ)⊤xj)2

≥
(1− ϵ)2 min

i∈[n]
λ2min(∇F (θ)∇F (θ)⊤) Tr2(S) + (n− 1)(1− ϵ) min

i∈[n]
x⊤
i ∇F (θ)∇F (θ)⊤S∇F (θ)∇F (θ)⊤xi

(1− ϵ)2 max
i∈[n]

λ2max(∇F (θ)∇F (θ)⊤) Tr2(S) + (n− 1)(1 + ϵ)max
i∈[n]

x⊤
i ∇F (θ)∇F (θ)⊤S∇F (θ)∇F (θ)⊤xi

≥
(1− ϵ)2 min

i∈[n]
λ2min(∇F (θ)∇F (θ)⊤) Tr2(S) + (n− 1)(1− ϵ)λ2min(∇F (θ)∇F (θ)⊤) min

i∈[n]
x⊤
i Sxi

(1 + ϵ)2 max
i∈[n]

λ2max(∇F (θ)∇F (θ)⊤) Tr2(S) + (n− 1)(1 + ϵ)λ2max(∇F (θ)∇F (θ)⊤)max
i∈[n]

x⊤
i Sxi
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≥
(1− ϵ)2 min

i∈[n]
λ2min(∇F (θ)∇F (θ)⊤) Tr2(S) + (n− 1)(1− ϵ)2λ2min(∇F (θ)∇F (θ)⊤) Tr(S2)

(1 + ϵ)2 max
i∈[n]

λ2max(∇F (θ)∇F (θ)⊤) Tr2(S) + (n− 1)(1 + ϵ)2λ2max(∇F (θ)∇F (θ)⊤) Tr(S2)

=
(1− ϵ)2

(1 + ϵ)2cond2(∇F (θ)∇F (θ)⊤)
.

Hence, we have proved Theorem 3.1.

B.2 PROOF OF THEOREM 3.1 (B)

This result is a direct corollary of Theorem 4.2, which is proved in Appendix C.

Under the same setting as Theorem 4.2, Theorem 4.2 gives us the uniform lower bound: there exists
an absolute constant C > 0 such that

inf
θ,v∈Rp

g(θ;v) ≥ C,

which means that for any θ ∈ Rp,v ∈ Sp−1, we have

v⊤Σ(θ)v ≥ C · 2L(θ)v⊤G(θ)v.

Consider the orthogonal decomposition of G(θ): G(θ) =
∑p
k=1 λkuku

⊤
k . Notice that

Tr(Σ(θ)G(θ)) =

p∑
k=1

λku
⊤
k Σ(θ)uk,

∥G(θ)∥F = Tr(G(θ)G(θ)) =

p∑
k=1

λku
⊤
k G(θ)uk.

Then we obtain

Tr(Σ(θ)G(θ)) ≥ C · 2L(θ)
p∑
k=1

λku
⊤
k G(θ)uk = C · 2L(θ) ∥G(θ)∥2F ,

which means µ(θ) ≥ C. From the arbitrariness of θ, it holds that infθ∈Rp µ(θ) ≥ C.

B.3 PROOF OF THEOREM 3.5

For two-layer neural networks with fixed output layer, the gradient is

∇f(xi;θ) =
(
a1σ

′(b⊤1 xi)x
⊤
i , · · · , amσ′(b⊤mxi)x

⊤
i

)⊤ ∈ Rmd.

For simplicity, denote ∇fi(θ) := ∇f(xi;θ), ui(θ) := fi(θ)− fi(θ
∗). Then we have:

L(θ) = 1

2n

n∑
i=1

u2i (θ), G(θ) =
1

n

n∑
i=1

∇fi(θ)∇fi(θ)⊤, Σ(θ) =
1

n

n∑
i=1

u2i (θ)∇fi(θ)∇fi(θ)⊤.

µ(θ) =

Tr

((
1
n

n∑
i=1

∇fi(θ)∇fi(θ)⊤
)(

1
n

n∑
i=1

u2i (θ)∇fi(θ)∇fi(θ)⊤
))

(
1
n

n∑
i=1

u2i (θ)

)(
1
n2

n∑
i=1

n∑
j=1

(∇fi(θ)⊤∇fi(θ))2
)

=

1
n

n∑
i=1

u2i (θ)
1
n

n∑
j=1

(
∇fi(θ)⊤∇fj(θ)

)2
(

1
n

n∑
i=1

u2i (θ)

)(
1
n2

n∑
i=1

n∑
j=1

(∇fi(θ)⊤∇fi(θ))2
)
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≥
min
i∈[n]

1
n

n∑
j=1

(
∇fi(θ)⊤∇fj(θ)

)2
1
n2

n∑
i=1

n∑
i=1

(∇fi(θ)⊤∇fj(θ))2
≥

min
i∈[n]

1
n

n∑
j=1

(
α2mx⊤

i xj
)2

1
n2

n∑
i=1

n∑
i=1

(
β2mx⊤

i xj
)2 =

α2

β2

min
i∈[n]

1
n

n∑
j=1

(
x⊤
i xj

)2
1
n2

n∑
i=1

n∑
i=1

(
x⊤
i xj

)2 .

Notice that the last term
min
i∈[n]

1
n

n∑
j=1

(x⊤
i xj)

2

1
n2

n∑
i=1

n∑
i=1

(x⊤
i xj)

2
is independent of θ and the same as (10) for the linear

model . Then repeating the same proof of Linear Model, the result of this theorem differs from Linear
Model by only the factor α2/β2. In other words, under the same condition with Linear Model, w.p. at
least 1− δ, we have

inf
θ∈Rmd

µ(θ) ≥ α2

β2

(1− ϵ)2

(1 + ϵ)2
.

C PROOFS IN SECTION 4: DIRECTIONAL ALIGNMENT

For the OLM f(x;θ) = F (θ)Tx, let r(θ) = F (θ)− F (θ∗). Then, we have

Ĝ(θ) =
1

n

n∑
i=1

∇F⊤(θ)xix
⊤
i ∇F (θ)

L̂(θ) = 1

2n

n∑
i=1

(
u⊤(θ)xi

)2
Σ̂(θ) =

1

n

n∑
i=1

(
r⊤(θ)xi

)2∇F⊤(θ)xix
⊤
i ∇F (θ),

(12)

and for the population case:

G(θ) = E
[
∇F⊤(θ)xx⊤∇F (θ)

]
= ∇F⊤(θ)S∇F (θ)

L(θ) = 1

2
E
[(
r⊤(θ)x

)2]
=

1

2
r(θ)⊤Sr(θ)

Σ(θ) = E
[(
r⊤(θ)x

)2∇F⊤(θ)xx⊤∇F (θ)
]

Lemma C.1 (Proposition 2.3 in (Wu et al., 2022)). Let the data distribution be N (0, S). Then we
have

Σ(θ) = ∇L(θ)∇L(θ)⊤ + 2L(θ)G(θ).
Lemma C.2. Under the same conditions in Lemma C.1, if u(θ) ̸= 0 and ∇F (θ)v ̸= 0, then we
have: (

∇L(θ)⊤v
)2 ≤ 2L(θ)v⊤G(θ)v.

Proof. Noticing that L(θ) = 1
2r(θ)

⊤Sr(θ), we have ∇L(θ) = ∇F (θ)⊤Su(θ). Hence,(
∇L(θ)⊤v

)2
= v⊤∇F (θ)⊤Sr(θ)r(θ)⊤S∇F (θ)v = ⟨∇F (θ)v, r(θ)⟩2S

Lemma E.6
≤ ∥∇F (θ)v∥2S ∥r(θ)∥

2
S = 2L(θ)

(
v∇F (θ)⊤S∇F (θ)v

)
= 2L(θ)v⊤G(θ)v.

Lemma C.3. Let x1, · · · ,xn i.i.d.∼ N (0, Id). For any ϵ, δ ∈ (0, 1), if we choose n ≳
(d+ log(1/δ)) /ϵ2, then w.p. at least 1− δ, we have:

sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(v⊤xi)
2 − 1

∣∣∣∣∣ ≤ ϵ.
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Proof. By Lemma E.3 with K =
√
C1, we know that: w.p. at least 1− 2 exp(−u), we have∥∥∥∥∥ 1n

n∑
i=1

xix
⊤
i − Id

∥∥∥∥∥ ≤ C2

(√
d+ u

n
+
d+ u

n

)
,

where C2 is an absolute positive constant. Equivalently, we can rewrite this conclusion. For any
ϵ, δ ∈ (0, 1), if we choose n ≳ (d+ log(1/δ)) /ϵ2, then w.p. at least 1− δ, we have:

sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(v⊤xi)
2 − 1

∣∣∣∣∣ ≤
∥∥∥∥∥ 1n

n∑
i=1

xix
⊤
i − Id

∥∥∥∥∥ ≤ ϵ.

Lemma C.4 (Corollary 2 in (Cai et al., 2022)). Let x1, · · · ,xn i.i.d.∼ N (0, Id). There exists absolute
constants C1, C2, C3 > 0, such that if n ≥ C3d, then w.p. at least 1− exp(−C2n), we have

inf
u,v∈Sd−1

1

n

n∑
i=1

(x⊤
i u)

2(x⊤
i v)

2 ≥ C1.

With the preparation of Lemma C.3 and Lemma C.4, now we give the proof of Theorem 4.2.

C.1 PROOF OF THEOREM 4.2

Let yi = S−1/2xi, then y1, · · · ,yn i.i.d.∼ N (0, Id).

g(θ;v) = =

1
n

n∑
i=1

(
r⊤(θ)xi

)2((
∇F (θ)v

)⊤
xi

)2
1
n

n∑
i=1

(
r⊤(θ)xi

)2
· 1
n

n∑
i=1

((
∇F (θ)v

)⊤
xi

)2

=

1
n

n∑
i=1

(
(S1/2r(θ))⊤yi

)2((
S1/2∇F (θ)v

)⊤
yi

)2
1
n

n∑
i=1

(
(S1/2r(θ))⊤yi

)2
· 1
n

n∑
i=1

((
S1/2∇F (θ)v

)⊤
yi

)2 ,
Case(i). If S1/2r(θ) = 0 or S1/2∇F (θ)v = 0, we have g(θ;v) = 0

0 = 1, this theorem holds.

Case (ii). If S1/2r(θ) ̸= 0 and S1/2∇F (θ)v ̸= 0, we define the following normalized vectors:

r̃(θ) :=
S1/2r(θ)∥∥S1/2r(θ)

∥∥ ∈ Sd−1 w̃(θ;v) :=
S1/2∇F (θ)v∥∥S1/2∇F (θ)v

∥∥ ∈ Sd−1.

From the homogeneity of g(θ;v), we have:

g(θ;v) =

1
n

n∑
i=1

(
r̃(θ)⊤yi

)2(
w̃(θ;v)⊤yi

)2
1
n

n∑
i=1

(
r̃(θ)⊤yi

)2
· 1
n

n∑
i=1

(
w̃(θ;v)⊤yi

)2 .
One the one hand, with the help of Lemma C.4, there exists C1 > 0 such that if we choose
n ≳ d+ log(1/δ), then w.p. at least 1− δ/2, we have:

inf
w,u∈Sd−1

1

n

n∑
i=1

(w⊤yi)
2(u⊤yi)

2 ≥ C1.

On the other hand, with the help of Lemma C.3, if we choose ϵ = 1/2 and n ≳ d+ log(1/δ), then
w.p. at least 1− δ/2, we have:

sup
w∈Sd−1

1

n

n∑
i=1

(w⊤yi)
2 ≥ 1 +

1

2
=

3

2
,
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Combining these two bounds, we obtain that: if we choose ϵ = 1/2 and n ≳ d + log(1/δ), then
w.p. at least 1− δ, we have:

inf
w,u∈Sd−1

1
n

∑n
i=1(w

⊤yi)
2(u⊤yi)

2

1
n

∑n
i=1(w

⊤yi)2 · 1
n

∑n
i=1(u

⊤yi)2

≥
inf

w,u∈Sd−1

1
n

∑n
i=1(w

⊤yi)
2(u⊤yi)

2(
sup

w∈Sd−1

1
n

∑n
i=1(w

⊤yi)2
)2 ≥ 4C1

9
,

which implies that

inf
θ,v∈Rp

g(θ;v) ≥ min

{
1, inf

w,u∈Sd−1

1
n

∑n
i=1(w

⊤yi)
2(u⊤yi)

2

1
n

∑n
i=1(w

⊤yi)2 · 1
n

∑n
i=1(u

⊤yi)2

}
≥min

{
1,

4C1

9

}
.

C.2 PROOF OF THEOREM 4.3

We first need a few lemmas.

Lemma C.5. Let y1, · · · ,yn i.i.d.∼ N (0, Id). If n ≳ d2 + log2(1/δ), then w.p. at least 1 − δ, we
have

sup
v∈Sd−1

1

n

n∑
i=1

(y⊤
i v)

4 ≤ 8.

Proof. For Sd−1, its covering number has the bound:(
1

ρ

)d
≤ N (Sd−1, ρ) ≤

(
2

ρ
+ 1

)d
,

so there exist a ρ-net on Sd−1: V ⊂ Sd−1, s.t. |V| ≤
(

2
ρ + 1

)d
.

Step I. Bounding the term on the ρ-net.

For a fixed v ∈ V , due to yi
i.i.d.∼ N (0, Id), we can verify (y⊤

i v)
4 is sub-Weibull random variable:

E exp
((

(y⊤
i v)

4
)1/2)

= E exp
(
(y⊤
i v)

2
)
≲ 1,

which means that there exist an absolute constant C1 ≥ 1 s.t.
∥∥(y⊤

i v)
4
∥∥
ψ1/2

≤ C1.

By the concentration inequality for Sub-Weibull distribution with β = 1/2 (Lemma E.5) and
E
[
(y⊤v)4

]
= 3, there exists an absolute constant C2 ≥ 1 s.t.

P

(∣∣∣∣∣ 1n
n∑
i=1

[
(y⊤
i v)

4
]
− 3

∣∣∣∣∣ > ϕ(n; δ)

)
≤ 2δ,

where ϕ(n; δ) = C2(
√

log(1/δ)
n + log2(1/δ)

n ). Applying a union bound over v ∈ V , we have:

P

(
∃v ∈ Vs.t.

∣∣∣∣∣ 1n
n∑
i=1

[
(y⊤
i v)

4
]
− 3

∣∣∣∣∣ > ϕ(n; δ)

)

≤P

(⋃
v∈V

{∣∣∣∣∣ 1n
n∑
i=1

[
(y⊤
i v)

4
]
− 3

∣∣∣∣∣ > ϕ(n; δ)

})
≤
∑
v∈V

P

(∣∣∣∣∣ 1n
n∑
i=1

[
(y⊤
i v)

4
]
− 3

∣∣∣∣∣ > ϕ(n; δ)

)
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≤2|V| exp
(
− n

C2
2

)
= 2

(
2

ρ
+ 1

)d
δ.

So w.p. at least 1− 2
(

2
ρ + 1

)d
δ, we have:

max
v∈V

1

n

n∑
i=1

[
(y⊤
i v)

4
]
≤ 3 + ϕ(n; δ).

Step II. Estimate the error of the ρ-net approximation.

For simplicity, we denote

P := max
v∈Sd−1

1

n

n∑
i=1

[
(y⊤
i v)

4
]

, Q := max
v∈V

1

n

n∑
i=1

[
(y⊤
i v)

4
]
.

Let v ∈ Sd−1 such that 1
n

∑n
i=1

[
(y⊤
i v)

4
]
= P , then there exist v0 ∈ V , s.t. ∥v − v0∥ ≤ ρ.

On the one hand,∣∣∣∣∣ 1n
n∑
i=1

(y⊤
i v)

4 − 1

n

n∑
i=1

(y⊤
i v0)

4

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

(
(y⊤
i v)

4 − (y⊤
i v0)

4
)∣∣∣∣∣

=

∣∣∣∣∣ 1n
n∑
i=1

(
y⊤
i (v − v0)

) (
y⊤
i (v + v0)

) (
(y⊤
i v)

2 + (y⊤
i v0)

2
)∣∣∣∣∣

≤
∣∣∣∣∣ 1n

n∑
i=1

(
y⊤
i (v − v0)

) (
y⊤
i (v + v0)

)
(y⊤
i v)

2

∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

(
y⊤
i (v − v0)

) (
y⊤
i (v + v0)

)
(y⊤
i v0)

2

∣∣∣∣∣
≤

√√√√ 1

n

n∑
i=1

(
y⊤
i (v − v0)

)2 (
y⊤
i (v + v0)

)2√√√√ 1

n

n∑
i=1

(y⊤
i v)

4 +

√√√√ 1

n

n∑
i=1

(y⊤
i v0)4


≤ 4

√√√√ 1

n

n∑
i=1

(
y⊤
i (v − v0)

)4 4

√√√√ 1

n

n∑
i=1

(
y⊤
i (v + v0)

)4√√√√ 1

n

n∑
i=1

(y⊤
i v)

4 +

√√√√ 1

n

n∑
i=1

(y⊤
i v0)4


≤∥v − v0∥P 1/4 ∥v + v0∥P 1/4(

√
P +

√
Q) ≤ 2ρ

√
P (

√
P +

√
Q)

On the other hand,∣∣∣∣∣ 1n
n∑
i=1

(y⊤
i v)

4 − 1

n

n∑
i=1

(y⊤
i v0)

4

∣∣∣∣∣ ≥ P −
n∑
i=1

(y⊤
i v0)

4 ≥ P −Q.

Hence, we obtain

P −Q ≤ 2ρ
√
P (

√
P +

√
Q),

which means that

P ≤
(

1

1− 2ρ

)2

Q.

Step III. The bound for any v ∈ Sd−1.

Select ρ = 1
2 (1 − 1√

2
) and denote δ′ = 2( 2ρ + 1)dδ. And we choose n ≳ d2 + log2(1/δ′), which

ensures ϕ(n; δ) ≤ 1.
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Then combining the results in Step I and Step II, we know that: w.p. at least 1− δ′, we have:

max
v∈V

1

n

n∑
i=1

[
(y⊤
i v)

4
]
≤ 3 + 1 = 4; max

v∈Sd−1

1

n

n∑
i=1

[
(y⊤
i v)

4
]
≤ 2max

v∈V

1

n

n∑
i=1

[
(y⊤
i v)

4
]
,

which means

max
v∈Sd−1

1

n

n∑
i=1

[
(y⊤
i v)

4
]
≤ 2 · 4 = 8.

Lemma C.6. Let x1, · · · ,xn i.i.d.∼ N (0, Id). For any ϵ, δ ∈ (0, 1), if we choose

n ≳ max
{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
,

then w.p. at least 1− δ, we have:

sup
w,v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x1)

2(v⊤x1)
2
]∣∣∣∣∣ ≤ ϵ.

Proof. For Sd−1, its covering number has the bound:(
1

ρ

)d
≤ N (Sd−1, ρ) ≤

(
2

ρ
+ 1

)d
,

so there exist two ρ-nets on Sd−1: W ⊂ Sd−1 and V ⊂ Sd−1, s.t.

|W| ≤
(
2

ρ
+ 1

)d
, |V| ≤

(
2

ρ
+ 1

)d
.

Step I. Bounding the term on the ρ-net.

In this step, will estimate the term
∣∣∣ 1n∑n

i=1(w
⊤xi)

2(v⊤xi)
2 − E

[
(w⊤x)2(v⊤x)2

]∣∣∣ for any w ∈
W and v ∈ V .

For fixed w ∈ W and v ∈ V , we denote Xw,v
i := (w⊤xi)

2(v⊤xi)
2. We can verify Xi is a

sub-Weibull random variable with β = 1/2 (Definition E.4):

E

[
exp

( ∣∣(w⊤xi)
2(v⊤xi)

∣∣1/2 )] = E

[
exp

(
|w⊤xi||v⊤xi|

)]

≤E

[
exp

(
(w⊤xi)

2 + (v⊤xi)
2

2

)]
= E

[
exp

( (w⊤xi)
2

2

)
exp

( (v⊤xi)
2

2

)]

Lemma E.6
≤

√√√√E

[
exp

(
(w⊤xi)2

)
·

√√√√E

[
exp

(
(v⊤xi)2

)] ∥(v⊤xi)
2∥
ψ1

≤C3

≲ 1,

which means that there exists an absolute constant C4 ≥ 1, s.t. ∥Xw,v
i ∥ψ1/2

≤ C4. By the
concentration inequality for Sub-Weibull distribution with β = 1/2 (Lemma E.5), there exists an
absolute constant C5 ≥ 1, s.t.

P

(∣∣∣∣∣ 1n
n∑
i=1

Xw,v
i − 1

n

n∑
i=1

E
[
Xw,v
i

]∣∣∣∣∣ > ψ(n; δ)

)
≤ δ.

where ψ(n; δ) = C5

(√
log(1/δ)

n + (log(1/δ))2

n

)
.
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Applying an union bound over w ∈ W and v ∈ V , we have:

P

(
∃w ∈ W,v ∈ V, s.t.

∣∣∣∣∣ 1n
n∑
i=1

Xw,v
i − 1

n

n∑
i=1

E
[
Xw,v
i

]∣∣∣∣∣ > ψ(n; δ)

)

≤P

 ⋃
(w,v)∈W×V

{
∃w ∈ W,v ∈ V, s.t.

∣∣∣∣∣ 1n
n∑
i=1

Xw,v
i − 1

n

n∑
i=1

E
[
Xw,v
i

]∣∣∣∣∣ > ψ(n; δ)

}
≤

∑
(w,v)∈W×V

P

(
∃w ∈ W,v ∈ V, s.t.

∣∣∣∣∣ 1n
n∑
i=1

Xw,v
i − 1

n

n∑
i=1

E
[
Xw,v
i

]∣∣∣∣∣ > ψ(n; δ)

)

≤2|W||V|δ ≤ 2

(
2

ρ
+ 1

)2d

δ.

So w.p. at least 1− 2
(

2
ρ + 1

)2d
δ, we have:

sup
w∈W,v∈V

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣ ≤ ψ(n; δ).

Step II. Estimate the population error of the ρ-net approximation.

Let w,v,w0,v0 ∈ Sd−1, s.t. ∥w −w0∥ ≤ ρ and ∥v − v0∥ ≤ ρ. For the population error, we have∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣

=
∣∣∣E[((w⊤x)2 − (w⊤

0 x)
2
)
(v⊤x)2

]
+ E

[
(w⊤

0 x)
2
(
(v⊤x)2 − (v⊤

0 x)
2
)]∣∣∣

≤
∣∣∣E[((w⊤x)2 − (w⊤

0 x)
2
)
(v⊤x)2

]∣∣∣+ ∣∣∣E[(w⊤
0 x)

2
(
(v⊤x)2 − (v⊤

0 x)
2
)]∣∣∣

We first bound
∣∣∣E[((w⊤x)2 − (w⊤

0 x)
2
)
(v⊤x)2

]∣∣∣:∣∣∣E[((w⊤x)2 − (w⊤
0 x)

2
)
(v⊤x)2

]∣∣∣ = ∣∣∣E[((w −w0)
⊤xx⊤(w +w0)(v

⊤x)2
]∣∣∣

≤
(
E
[(
(w −w0)

⊤xx⊤(w +w0)
)2])1/2 (E [(v⊤x)4

])1/2
≤
(
E
[(
(w −w0)

⊤x
)4])1/4 (E [((w +w0)

⊤x
)4])1/4 (E [(v⊤x)4

])1/2
≤3 ∥(w −w0)∥ ∥(w +w0)∥ ∥v∥2 ≤ 6ρ.

Repeating the proof above, we also have:∣∣∣E[((w⊤x)2 − (w⊤
0 x)

2
)
(v⊤x)2

]∣∣∣ ≤ 6ρ.

Combining these two inequalities, we have:∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣ ≤ 6ρ+ 6ρ = 12ρ.

Due to the arbitrariness of w,v,w0,v0, we obtain

sup
w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣ ≤ 12ρ.

Step III. Estimate the empirical error of the ρ-net approximation.
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Let w,v,w0,v0 ∈ Sd−1, s.t. ∥w −w0∥ ≤ ρ and ∥v − v0∥ ≤ ρ. For the empirical error, we have∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

[(
(w⊤xi)

2 − (w⊤
0 xi)

2
)
(v⊤xi)

2
]
+

1

n

n∑
i=1

[
(w⊤

0 xi)
2
(
(v⊤xi)

2 − (v⊤
0 xi)

2
)]∣∣∣∣∣

≤
∣∣∣∣∣ 1n

n∑
i=1

[(
(w⊤xi)

2 − (w⊤
0 xi)

2
)
(v⊤xi)

2
]∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

[
(w⊤

0 xi)
2
(
(v⊤xi)

2 − (v⊤
0 xi)

2
)]∣∣∣∣∣

We first bound
∣∣∣ 1n∑n

i=1

[(
(w⊤xi)

2 − (w⊤
0 xi)

2
)
(v⊤xi)

2
]∣∣∣:∣∣∣∣∣ 1n

n∑
i=1

[(
(w⊤xi)

2 − (w⊤
0 xi)

2
)
(v⊤xi)

2
]∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

[(
(w −w0)

⊤xix
⊤
i (w +w0)(v

⊤xi)
2
]∣∣∣∣∣

≤2ρ sup
u∈Sd−1

1

n

n∑
i=1

(x⊤
i u)

4.

Repeating the proof above, we also have
∣∣∣ 1n∑n

i=1

[
(w⊤

0 xi)
2
(
(v⊤xi)

2 − (v⊤
0 xi)

2
)]∣∣∣ ≤

2ρ sup
u∈Sd−1

1
n

∑n
i=1(x

⊤
i u)

4. Combining these two bounds, we have:∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣ ≤ 4ρ sup
u∈Sd−1

1

n

n∑
i=1

(x⊤
i u)

4.

Using Lemma C.5, if n ≳ d2 + log2(1/δ′), then w.p. at least 1 − δ′/2, we have
sup

u∈Sd−1

1
n

∑n
i=1(x

⊤
i u)

4 ≤ 8.

Hence, w.p. at least 1− δ′/2, we have∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣ ≤ 32ρ.

Due to the arbitrariness of w,v,w0,v0, we obtain

sup
w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣ ≤ 32ρ.

Step IV. The bound for any w,v ∈ Sd−1.

Combining the results in Step I, II, and II, we know that w.p. at least 1− δ′

2 − ( 2ρ + 1)d, we have

sup
w∈W,v∈V

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣ ≤ ψ(n; δ),

sup
w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣ ≤ 12ρ,

sup
w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣ ≤ 32ρ.

Then for any w,v ∈ Sd−1, there exists w0 ∈ W,v0 ∈ V s.t. ∥w −w0∥ ≤ ρ and ∥v − v0∥ ≤ ρ, so∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣
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=

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2 +
1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

− E
[
(w⊤

0 x)
2(v⊤

0 x)
2
]
+ E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]
− E

[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣
≤
∣∣∣∣∣ 1n

n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2 − E
[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣∣∣+

∣∣∣∣∣E[(w⊤
0 x)

2(v⊤
0 x)

2
]
− E

[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣
≤ sup

w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − 1

n

n∑
i=1

(w⊤
0 xi)

2(v⊤
0 xi)

2

∣∣∣∣∣
+ sup

w∈W,v∈V

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣
+ sup

w,v,w0,v0∈Sd−1

∥w−w0∥≤ρ,∥v−v0∥≤ρ

∣∣∣E[(w⊤x)2(v⊤x)2
]
− E

[
(w⊤

0 x)
2(v⊤

0 x)
2
]∣∣∣

≤32ρ+ ψ(n; δ) + 12ρ = 44ρ+ ψ(n; δ).

Due to the arbitrariness of w,v, we have

sup
w,v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣ ≤ 44ρ+ ψ(n; δ)

Select ρ = ϵ
66 and δ′/2 = 2(1 + 2

ρ )
2dδ. And we choose

n ≳ max
{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
,

which satisfies ψ(n; δ) ≤ ϵ/3.

Then w.p. at least 1− δ′/2− δ′/2 = 1− δ′, we have

sup
w,v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(w⊤xi)
2(v⊤xi)

2 − E
[
(w⊤x)2(v⊤x)2

]∣∣∣∣∣ ≤ 44

66
ϵ+

1

3
ϵ = ϵ.

With the preparation of Lemma C.1, C.3, and C.6, now we give the proof of Theorem 4.3.

Proof of Theorem 4.3. Let yi = S−1/2xi, then y1, · · · ,yn i.i.d.∼ N (0, Id).

g(θ;v) =

1
n

n∑
i=1

(
r⊤(θ)xi

)2((
∇F (θ)v

)⊤
xi

)2
1
n

n∑
i=1

(
r⊤(θ)xi

)2
· 1
n

n∑
i=1

((
∇F (θ)v

)⊤
xi

)2

=

1
n

n∑
i=1

(
(S1/2r(θ))⊤yi

)2((
S1/2∇F (θ)v

)⊤
yi

)2
1
n

n∑
i=1

(
(S1/2r(θ))⊤yi

)2
· 1
n

n∑
i=1

((
S1/2∇F (θ)v

)⊤
yi

)2 ,
Case (i). If S1/2r(θ) = 0 or S1/2∇F (θ)v = 0, we have g(θ;v) = 0

0 = 1, this theorem holds.
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Case (ii). If S1/2r(θ) ̸= 0 and S1/2∇F (θ)v ̸= 0, we define the following normalized vectors:

r̃(θ) :=
S1/2r(θ)∥∥S1/2r(θ)

∥∥ ∈ Sd−1 w̃(θ;v) :=
S1/2∇F (θ)v∥∥S1/2∇F (θ)v

∥∥ ∈ Sd−1.

From the homogeneity of g(θ;v), we have:

g(θ;v) =

1
n

n∑
i=1

(
r̃(θ)⊤yi

)2(
w̃(θ;v)⊤yi

)2
1
n

n∑
i=1

(
r̃(θ)⊤yi

)2
· 1
n

n∑
i=1

(
w̃(θ;v)⊤yi

)2 .
By Lemma C.3 and C.6, for any ϵ, δ ∈ (0, 1), if we choose

n ≳ max
{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
,

then w.p. at least 1− δ, the following inequalities hold:

sup
v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(v⊤yi)
2 − 1

∣∣∣∣∣ ≤ ϵ,

sup
w,v∈Sd−1

∣∣∣∣∣ 1n
n∑
i=1

(w⊤yi)
2(v⊤yi)

2 − E
[
(w⊤y1)

2(v⊤y1)
2
]∣∣∣∣∣ ≤ ϵ;

These imply that for any θ,v ∈ Rp, we have:

E
[
(r̃(θ)⊤y)2(w̃(θ;v)⊤y)2

]
− ϵ

(1 + ϵ)2
≤ g(θ;v) ≤

E
[
(r̃(θ)⊤y1)

2(w̃(θ;v)⊤y1)
2
]
+ ϵ

(1− ϵ)2
. (13)

First, we derive the upper bound for (13):

RHS =
ϵ

(1− ϵ)2
+

E
[
(r̃(θ)⊤y)2(w̃(θ;v)⊤y)2

]
(1− ϵ)2

(
r̃(θ)⊤r̃(θ)

)(
w̃(θ;v)⊤w̃(θ;v)

)
Homogeneity

=
ϵ

(1− ϵ)2
+

E
[
((S1/2r(θ))⊤y)2((S1/2∇F (θ)v)⊤y)2

]
(1− ϵ)2

((
S1/2r(θ)

)⊤
S1/2r(θ)

)((
S1/2∇F (θ)v

)⊤(
S1/2∇F (θ)v

))
=

ϵ

(1− ϵ)2
+

v⊤Σ(θ)v

2(1− ϵ)2L(θ)v⊤G(θ)v

Lemma C.1
=

ϵ

(1− ϵ)2
+

2L(θ)v⊤G(θ)v +
(
∇L(θ)⊤v

)2
2(1− ϵ)2L(θ)v⊤G(θ)v

=
1 + ϵ

(1− ϵ)2
+

(
∇L(θ)⊤v

)2
2(1− ϵ)2L(θ)v⊤G(θ)v

Lemma C.2
≤ 1 + ϵ

(1− ϵ)2
+

1

(1− ϵ)2
=

2 + ϵ

(1− ϵ)2
.

Moreover, if ⟨v,L(θ)⟩ = 0, then the bound is

RHS ≤ 1 + ϵ

(1− ϵ)2
.

In the similar way, we can derive the lower bound for (13):

LHS =
v⊤Σ(θ)v

2(1 + ϵ)2L(θ)v⊤G(θ)v
− ϵ

(1 + ϵ)2
Lemma C.1

=
2L(θ)v⊤G(θ)v +

(
∇L(θ)⊤v

)2
2(1 + ϵ)2L(θ)v⊤G(θ)v

− ϵ

(1 + ϵ)2

≥ 1

(1 + ϵ)2
− ϵ

(1 + ϵ)2
=

1− ϵ

(1 + ϵ)2
.

So for any S1/2u(θ) ̸= 0,S1/2∇F (θ)v ̸= 0, we have

1− ϵ

(1 + ϵ)2
≤ g(θ;v) ≤ 2 + ϵ

(1− ϵ)2
.
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Moreover, if ⟨v,∇L(θ)⟩ = 0, then

1− ϵ

(1 + ϵ)2
≤ g(θ;v) ≤ 1 + ϵ

(1− ϵ)2
.

Hence, we have proved this theorem: For any ϵ, δ > 0, if n ≳
max

{(
d2 log2 (1/ϵ) + log2(1/δ)

)
/ϵ, (d log (1/ϵ) + log(1/δ)) /ϵ2

}
, then w.p. at least 1 − δ,

the strong alignment holds uniformly:

(i).
1− ϵ

(1 + ϵ)2
≤ inf

θ,v∈Rp
g(θ;v) ≤ sup

θ,v∈Rp
g(θ;v) ≤ 2 + ϵ

(1− ϵ)2
,

(ii).
1− ϵ

(1 + ϵ)2
≤ inf

θ∈Rp,⟨v,∇L(θ)⟩=0
g(θ;v) ≤ sup

θ∈Rp,⟨v,∇L(θ)⟩=0

g(θ;v) ≤ 1 + ϵ

(1− ϵ)2
.

D PROOFS IN SECTION 5: ESCAPE DIRECTION OF SGD

D.1 PROOF OF THEOREM 5.2

Recall that w(t) =
∑d
i=1 wi(t)ui with wi(t) = u⊤

i w(t). Then, wi(t + 1) = (1 − ηλi)wi(t) +
ηξ(t)⊤ui. Taking the expectation of the square of both sides, we obtain

E
[
w2
i (t+ 1)

]
= (1− ηλi)

2E
[
w2
i (t)

]
+ η2E[|u⊤

i ξ(t)|2],
According to Assumption 5.1, there exists A1, A2 > 0 such that for any i ∈ [d],

A1λiL(wt) ≤ E[|uTi ξ(t)|] ≤ A2λiL(wt).

Let Xt =
∑k
i=1 λiE[w2

i (t)], Yt =
∑d
i=k+1 λiE[w2

i (t)] denote the components of loss energy along
sharp and flat directions, respectively. And we denote Dk(t) := Yt/Xt.

Plugging the fact that 2L(w(t)) = Xt + Yt into the two formulations above, we can obtain the
following component dynamics:

Xt+1 ≤ αkXt +A2η
2(

k∑
i=1

λ2i )(Xt + Yt),

Xt+1 ≥ A1η
2(

k∑
i=1

λ2i )(Xt + Yt),

Yt+1 ≥ A1η
2
( d∑
i=k+1

λ2i
)
(Xt + Yt),

(14)

where αk ≤ maxi=1,...,k |1− ηλi|2. The terms αkXt and βkYt capture the impact of the gradient,
while the remaining terms originate from the noise.

From (14), we have the following estimate about Dk(t+ 1):

Dk(t+ 1) =
Yt+1

Xt+1
≥ A1η

2
(∑d

i=k+1 λ
2
i

)
(Xt + Yt)

αkXt +A2η2(
∑k
i=1 λ

2
i )(Xt + Yt)

=
A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 + αk
A2η2

∑d
i=k+1 λ

2
i

Xt
Xt+Yt

≥A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 +
max

1≤i≤k
|1−ηλi|2

A2η2
∑k
i=1 λ

2
i

Xt
Xt+Yt

.

(15)
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We will prove this theorem for the learning rate η = β
∥G(θ∗)∥F

, where β ≥ 1.1√
A1

.

Case (I). Small learning rate η ∈ [ 1.1√
A1∥G(θ∗)∥F

, 1
λ1
].

In this step, we consider η = β
∥G(θ∗)∥F

such that β ≥ 1.1√
A1

and η ≤ 1
λ1

. Then we have:

max
1≤i≤k

|1− ηλi|2

A2η2
∑d
i=k+1 λ

2
i

≤ 1

A2η2
∑k
i=1 λ

2
i

.

Notice that (14) also ensures:

(Xt+1 + Yt+1) ≥ A1η
2
( d∑
i=1

λ2i
)
(Xt + Yt).

Combining this inequality with (14), we have the estimate:

Xt+1

Xt+1 + Yt+1
≤ αkXt +A2η

2(
∑k
i=1 λ

2
i )(Xt + Yt)

Xt+1 + Yt+1

≤ αkXt

A1η2
(∑d

i=1 λ
2
i

)
(Xt + Yt)

+
A2(

∑k
i=1 λ

2
i )

A1

(∑d
i=1 λ

2
i

)
For simplicity, we denote Wt :=

Xt
Xt+Yt

, A := αk

A1η2
(∑d

i=1 λ
2
i

) , and B :=
A2(

∑k
i=1 λ

2
i )

A1

(∑d
i=1 λ

2
i

) .

From η ≤ 1/3, we have αk ≤ 1 and A ≤ 1

A1η2
(∑d

i=1 λ
2
i

) = 1
A1β2 < 1. Moreover, it holds that

Wt+1 ≤AWt +B ≤ A(AWt−1 +B) +B = A2Wt−1 +B(1 +A)

≤ · · · ≤ At+1W0 +B(1 +A+ · · ·+At) = At+1W0 +
1−At+1

1−A
B

On the one hand, if we choose

t ≥
log
(
1/W0A2η

2
∑k
i=1 λ

2
i

)
log (A1β2)

,

then we have

AtW0 ≤
(

αk

A1η2(
∑d
i=1 λ

2
i )

)t
W0≤

(
1

A1β2

)t
W0 ≤ A2η

2
k∑
i=1

λ2i .

On the other hand, if we choose t ≥ 1, then it holds that

1−At

1−A
B ≤ B =

A2(
∑k
i=1 λ

2
i )

A1

(∑d
i=1 λ

2
i

) ≤ A2η
2

k∑
i=1

λ2i .

Hence, if we choose

t ≥ max

1,
log
(
1/W0A2η

2
∑k
i=1 λ

2
i

)
log (A1β2)

 ,

then we have

Xt

Xt + Yt
=Wt ≤ AtW0 +

1−At

1−A
B ≤ 2A2η

2
k∑
i=1

λ2i ,
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which implies that

RHS of (15) ≥ A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 +
max

1≤i≤k
|1−ηλi|2

A2η2
∑k
i=1 λ

2
i

Xt
Xt+Yt

≥A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 + 1
A2η2

∑k
i=1 λ

2
i

· 2A2η2
∑k
i=1 λ

2
i

=
A1

∑d
i=k+1 λ

2
i

3A2

∑k
i=1 λ

2
i

.

Case (II). Large learning rate η ≥ 1/λ1.

In this step, we consider η ≥ 1
λ1

. Then for any t ≥ 0, we have:

RHS of (15) =
A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 + αk∑d
i=k+1 λ

2
i

Xt
Xt+Yt

≥ A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 +
max
i∈[k]

|1−ηλi|2

A2η2
∑k
i=1 λ

2
i

≥A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 + max{1,|1−ηλ1|2}
A2η2

∑k
i=1 λ

2
i

≥ A1

∑d
i=k+1 λ

2
i

A2

∑k
i=1 λ

2
i

· 1

1 + 1
A2

=
A1

∑d
i=k+1 λ

2
i

(A2 + 1)
∑k
i=1 λ

2
i

.

Combining Case (I) and (II), we obtain this theorem: If we choose the learning rate η = β
∥G(θ)∥F

,

where β ≥ 1.1√
A1

, then for any

t ≥ max

1,
log
(
1/W0A2η

2
∑k
i=1 λ

2
i

)
log (A1β2)

 ,

we have

Dk(t+ 1) ≥ A1

∑d
i=k+1 λ

2
i

max{3A2, A2 + 1}∑k
i=1 λ

2
i

.

D.2 PROOF OF PROPOSITION 5.3

Recall that w(t) =
∑d
i=1 wi(t)ui withwi(t) = u⊤

i w(t). Then, for GD,wi(t+1) = (1−ηλi)wi(t),
which implies:

wi(t) = (1− ηλi)
twi(0).

Therefore, for η = β/λ1 (β > 2), it holds that

D1(t) =

∑d
i=2 λiw

2
i (t)

λ1w2
1(t)

=

∑d
i=2 λi(1− ηλi)

2tw2
i (0)

λ1(1− ηλ1)2tw2
1(0)

.

E USEFUL INEQUALITIES

Lemma E.1 (Bernstein’s Inequality (Vershynin, 2018)). Suppose {X1, · · · , Xn} are independent
sub-Exponential random variables with ∥Xi∥ψ1

≤ K. Then there exists an absolute constant c > 0
such that for any t ≥ 0, we have:

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n

n∑
i=1

E
[
Xi

]∣∣∣∣∣ > t

)
≤ 2 exp

(
−cnmin

{ t

K
,
t2

K2

})
.
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Lemma E.2 (Hanson-Wright’s Inequality (Vershynin, 2018)). Let X = (X1, · · · , Xn) ∈ Rn be a
random vector with independent mean zero sub-Gaussian coordinates. Let A be an n× n matrix.
Then, there exists an absolute constant c such that for every t ≥ 0, we have

P
(∣∣X⊤AX − E[X⊤AX]

∣∣ ≥ t
)
≤ 2 exp

(
−cmin

{
t2

K4 ∥A∥2F
,

t

K2 ∥A∥2

})
,

where K = maxi ∥Xi∥ψ2
.

Lemma E.3 (Covariance Estimate for sub-Gaussian Distribution (Vershynin, 2018)). Let
x,x1, · · · ,xn be i.i.d. random vectors in Rd. More precisely, assume that there exists K ≥ 1
s.t. ∥⟨x,v⟩∥ψ2

≤ K ∥⟨x,v⟩∥L2
for any v ∈ Sd−1, Then for any u ≥ 0, w.p. at least 1− 2 exp(−u)

one has ∥∥∥∥∥ 1n
n∑
i=1

xix
⊤
i − E

[
xx⊤]∥∥∥∥∥ ≤ CK2

(√
d+ u

n
+
d+ u

n

)∥∥E[xx⊤]∥∥ ,
where C is an absolute positive constant.

Definition E.4 (Sub-Weibull Distribution). We define X as a sub-Weibull random variable if it has a
bounded ψβ-norm. The ψβ-norm of X for any β > 0 is defined as

∥X∥ψβ := inf
{
C > 0 : E

[
exp(|X|β/Cβ)

]
≤ 2
}
.

Particularly, when β = 1 or 2, sub-Weibull random variables reduce to sub-Exponential or sub-
Gaussian random variables, respectively.
Lemma E.5 (Concentration Inequality for Sub-Weibull Distribution, Theorem 3.1 in (Hao et al.,
2019)). Suppose {Xi}ni=1 are independent sub-Weibull random variables with ∥Xi∥ψβ ≤ K. Then
there exists an absolute constant Cβ only depending on β such that for any δ ∈ (0, 1/e2), w.p. at
least 1− δ, we have∣∣∣∣∣ 1n

n∑
i=1

Xi −
1

n

n∑
i=1

E
[
Xi

]∣∣∣∣∣ ≤ CβK

(( log(1/δ)
n

)1/2
+

(
log(1/δ)

)1/β
n

)
.

Lemma E.6 (Cauchy-Schwarz Inequalities).
(1) Let S ∈ Rn×n be a positive symmetric definite matrix. For any x,y ∈ Rn, we denote ⟨x,y⟩S :=

x⊤Sy and ∥x∥S :=
√
⟨x,x⟩S , then we have |⟨x,y⟩S | ≤ ∥x∥S ∥y∥S .

(2) Given two random variables X and Y , it holds that |E[XY ]| ≤
√
E[X2]

√
E[Y 2].

31


	Introduction
	Other Related Work

	Preliminaries
	Average Alignment
	Over-parameterized Linear Models
	Two-layer Neural Networks
	Numerical Validations

	Directional Alignment
	How SGD Escapes from Sharp Minima
	Explaining the implicit bias of cyclical learning rate

	Larger-scale Experiments for Deep Neural Networks
	Conclusion and Future Work
	Experimental Setups
	Proofs in Section 3: Average alignment
	Proof of Theorem 3.1 (a)
	Proof of Theorem 3.1 (b)
	Proof of Theorem 3.5

	Proofs in Section 4: Directional Alignment
	Proof of Theorem 4.2
	Proof of Theorem 4.3

	Proofs in Section 5: Escape direction of SGD
	Proof of Theorem 5.2
	Proof of Proposition 5.3

	Useful Inequalities

