Under review as a conference paper at ICLR 2025

ON THE OUT-OF-DISTRIBUTION GENERALIZATION OF
SELF-SUPERVISED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we focus on the out-of-distribution (OOD) generalization of self-
supervised learning (SSL). By analyzing the mini-batch construction during the
SSL training phase, we first give one plausible explanation for SSL having OOD
generalization. Then, from the perspective of data generation and causal infer-
ence, we analyze and conclude that SSL learns spurious correlations during the
training process, which leads to a reduction in OOD generalization. To address
this issue, we propose a post-intervention distribution (PID) grounded in the Struc-
tural Causal Model. PID offers a scenario where the spurious variable and label
variable is mutually independent. Besides, we demonstrate that if each mini-batch
during SSL training satisfies PID, the resulting SSL model can achieve optimal
worst-case OOD performance. This motivates us to develop a batch sampling
strategy that enforces PID constraints through the learning of a latent variable
model. Through theoretical analysis, we demonstrate the identifiability of the la-
tent variable model and validate the effectiveness of the proposed sampling strat-
egy. Experiments conducted on various downstream OOD tasks demonstrate the
effectiveness of the proposed sampling strategy.

1 INTRODUCTION

Self-supervised learning (SSL) has emerged as a powerful paradigm for training machine learning
models without relying on labeled data. SSL models aim to generate general-purpose representa-
tions and are typically used as pre-trained weights to effectively initialize downstream tasks. They
have demonstrated significant progress in computer vision, achieving competitive or superior perfor-
mance on various downstream tasks compared to supervised learning approaches (Chen et al., 2020;
Grill et al.l [2020a; Zbontar et al., 2021; |[He et al., [2022} [Tong et al., |2022). However, despite their
superior performance, SSL models face significant challenges in generalizing to out-of-distribution
(OOD) data. Understanding and improving the OOD generalization capabilities of SSL is crucial
for deploying these models in real-world scenarios where the data distribution can shift over time.

To investigate the OOD generalization properties of SSL, we propose examining the batch con-
struction process during training. SSL methods are generally categorized into two main types:
discrimination-based SSL (D-SSL) (Chen et al.|[2020; |Grill et al.,2020a)) and generation-based SSL
(G-SSL) (He et al.l |2022; [Tong et al., 2022). The core principle of D-SSL is augmentation invari-
ance, ensuring that the feature representations of two different augmentations of the same sample
are similar. In contrast, G-SSL focuses on the mask and reconstruction principle, where a portion
of a sample is masked and then reconstructed using an encoder-decoder structure. Leveraging these
principles, augmented samples derived from the same original sample, as well as samples before and
after masking, can be considered anchor-related pairs. During SSL training, each pair is treated as a
distinct class, effectively framing each mini-batch as a multi-class learning task. Consequently, the
SSL training process can be perceived as learning a distribution over tasks based on discrete training
tasks, enabling the trained SSL model to generalize to new, unseen tasks, thus demonstrating its
OOD generalization capability. However, machine learning is prone to learning spurious correla-
tions that vary between classes and environments (Wang et al., [2023a; |2022). Therefore, although
SSL is highly effective in OOD generalization, from a multi-task perspective, different mini-batches
in the SSL training process can be considered as different tasks or environments. Consequently, it
may still face the challenge of mitigating spurious correlations.”
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Building upon the analysis presented in Section[3] we examine the aforementioned challenge from
the perspectives of data generation and causal inference. First, we conclude that the similarity or
reconstruction between samples within a pair is affected by several unobservable factors, such as
background or texture information independent of the foreground. We also find that the spurious
correlation between the anchor and the unobservable variable can vary with the tasks, making it
difficult to eliminate it using the unified causal criterion proposed by (Pearl et al. |Pearl, [2009).
Furthermore, we demonstrate that, under these circumstances, the SSL model learns to measure
similarity or reconstruct using spurious causal factors. This reliance leads to a lack of discriminabil-
ity within each mini-batch task, preventing the SSL model from effectively learning the true task
distribution and consequently resulting in diminished OOD generalization. To address this issue,
we define a new distribution called the post-intervention distribution (PID), characterized by mutual
independence between the unobservable variable and the anchor. We demonstrate that when the
task distribution adheres to PID, the SSL model trained under this condition achieves the lowest
worst-case risk, thereby attaining optimal worst-case OOD performance. This insight motivates us
to design a new mini-batch sampling strategy that ensures the resulting mini-batches satisfy PID
constraints, thereby enhancing the OOD generalization capability of SSL.

Based on the above analysis and discussion, we propose a novel mini-batch sampling strategy con-
sisting of two stages. In the first stage, we aim to learn a latent variable model to capture the
correlations between different variables, i.e., conditional distributions. We prove the identifiability
and uniqueness of the resulting latent variable model under a given equivalence relation. In the sec-
ond stage, we propose a sufficient condition to obtain the balancing score. Using this, we obtain the
mini-batch samples through balancing score matching. We also provide a theoretical guarantee that
the mini-batches obtained by the proposed sampling strategy approximately satisfy the PID.

In summary, we make the following contributions: 1) Analysis of SSL Batch Construction: We pro-
vide a detailed analysis of how mini-batch construction in SSL influences OOD generalization; 2)
Causal Framework for SSL: We introduce a causal framework to understand and mitigate the impact
of spurious correlations on SSL models; 3) PID-Based Sampling Strategy: We propose a theoret-
ically grounded mini-batch sampling strategy that ensures the generated batches conform to PID,
improving OOD performance; 4) Empirical Validation: We validate our approach through extensive
experiments, demonstrating significant improvements in OOD generalization across multiple tasks.

2 REVISITING SSL FROM A PAIRWISE PERSPECTIVE

During the training phase, the training data is structured into mini-batches, with each mini-batch
denoted as X;, = {xi}f\él, where x; represents the ¢-th sample and N is the total number of
samples. In D-SSL methods such as SimCLR (Chen et al., 2020), BYOL (Grill et al.| [2020a)), and
Barlow Twins (Zbontar et al.,|2021), each sample in X}, undergoes stochastic data augmentation to
generate two augmented views, e.g., for z; € Xy, the augmented samples can be represented as
x}! and 22. For G-SSL methods, like MAE (He et al., 2022) and VideoMAE (Tong et al., [2022),
x; is first divided into multiple small blocks, with some blocks masked, and the remaining blocks
reassembled into a new sample, denoted as z}. The original sample is then referred to as 2. Thus,
the augmented dataset in SSL (whether D-SSL or G-SSL) is represented as XY = {z}, 22} ,.
The pair {22} forms the i-th pair, and SSL aims to learn a feature extractor f from these pairs.

The objective of D-SSL methods typically consists of two components: alignment and regularization
(Wang & Isola, [2020; (Chen et al.| [2021a). The alignment part is to maximize the similarity between
samples that share the same pair in the embedding space, and the regularization part aims to constrain
the learning behavior via inductive bias, e.g., SImCLR (Chen et al.l 2020) constrains the feature
distribution to satisfy a uniform distribution. Meanwhile, G-SSL methods (He et al., [2022) can
be regarded as implementing alignment of samples within a pair based on an encoding-decoding
structure, by inputting sample z} into this structure to generate a sample, and making it as consistent
as possible with sample z?. It is noteworthy that “alignment” in D-SSL is often implemented based
on anchor points, that is, viewing one sample in a pair as an anchor, the training process of such
SSL methods can be seen as gradually pulling the other sample in this pair towards the anchor.
The concept of anchor is also applicable to G-SSL, where x? is viewed as the anchor, and thus the
training process of such SSL methods can be viewed as gradually constraining z} to approach 2.
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Based on the above discussion, when we consider the anchor as the label or the center of clustering,
each mini-batch in the SSL training phase thus can be viewed as a multi-class classification task.
Specifically, X, = {z;F, 28hor} 2N consists of data from NV categories, where z; is the positive
sample of the i-th category whose clustering center is z3h°. Furthermore, the variability of data

across mini-batches implies that each mini-batch corresponds to a distinct training task or domain.

3 MOTIVATION AND CAUSAL ANALYSIS

In this section, we first offer a plausible explanation for the OOD generalization capability of SSL
models from a task distribution perspective. Next, based on data generation principle and causal in-
ference, we demonstrate that SSL methods may measure similarity or reconstruction using spurious
correlations between pairs, which reduces their OOD generalization performance. Finally, through
theoretical analysis, we present that even in the case of spurious associations, we can further improve
the OOD generalization of SSL by constraining the data distribution.

3.1 FORMATION OF THE PROBLEM: CAUSAL PERSPECTIVE

According to Section 2] different mini-batches correspond to distinct classification tasks. Therefore,
the training process of SSL can be described as follows: given a distribution over tasks and a data
distribution for each task (refer to Appendix |E| for more details), the SSL model is learned based
on various training tasks and their corresponding data. The performance of the SSL model is then
evaluated on test tasks that are disjoint from the training tasks. This learning paradigm involves
estimating the true task distribution from discrete training tasks, enabling the SSL model to gen-
eralize to new, unseen tasks (i.e., test tasks). This also explains well why the SSL. model exhibits
good performance in transfer tasks (Chen et al.| 2020; |Grill et al.,|2020a; Zbontar et al.| 2021}, i.e.,
it has good OOD generalization. However, machine learning models are prone to learning spurious
correlations during the training phase (Wang et al., [2023aj; |2022). For example, compared to the
foreground features of input data, researchers have found that machine learning models tend to rely
on the superficial texture information or background information of the data for decision-making
(Geirhos et al} [2018; [Qiang et al.l [2022; [ Xu et al.| 2020). Therefore, although the SSL model has
been effective in OOD generalization, we find that it still faces the challenge of spurious correlations.

We further analyze the above challenge from the
perspective of data generation and causal inference. S
Without loss of generality, for each pair in the SSL
training process, we denote the anchor as z'*"°' and
the other sample as z*. Based on (Zimmermann T

label
et al., 2021} |Von Kiigelgen et al., [2021), ™ can be e
regarded as caused by anchor z'*°!, an unobserved
latent variable s € IR™ and an independent noise Figure 1: The SCM for Equation (T)).
variable € with the following formulation:
x+ — F(S,xlabd) +e, (1)

where F' is a reversible injective function. From a causal perspective, Equation (1)) can be reformu-
lated as the Structural Causal Model (SCM) shown in Figure[I] The solid arrow indicates that there
is a direct causal relationship between the two variables, e.g., 2!2P°! — z1 states that z'2P°! is the
direct cause of obtaining 2 7. The dotted line indicates that the relationship between the variables
is not clear and varies with different environments. Notably, this paper focuses exclusively on sce-
narios where the semantic information within 2% is related only to 2'abel that is, s does not contain
any causal semantics related to the task. Next, we examine two examples illustrated in Figure
In Figure 2] (a), s represents the assigned color, for example, the color of numbers varies by cate-
gory, as in the ColoredMNIST dataset (Arjovsky et al., 2019). Here, e;q denotes the class index.
Consequently, within a batch during training, samples from different classes may have a different
texture color. In Figure@] (b), s indicates assigned stylistic attributes, e.g., sketches, cartoon styles,
or photographs, and e;q denotes the batch index. This scenario commonly occurs in multi-view or
domain generalization contexts, like the tasks in the PACS dataset (Li et al., 2017). Therefore, dur-
ing training, different batches may exhibit different styles, with samples under each style possessing
unique appearance attributes. In both figures, s does not capture the foreground semantics between
x'2bel and 2+, and the correlation between z'#P°! and 2 may vary depending on the settings.
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stylistic attributes of
samples, e.g.,
sketches, cartoon
images, photographs

backgrounds, textures,
etc. that are unique to

pair, e.g., the color of

small number is red.

[ € ] [ x+] [xlabel] :nngi [ € ]_.[ xt }_[xlabel] ﬁj{;gi

(a) Example within one batch (b) Example within multiple batches

Figure 2: Two specific instances illustrate the variability in the causal relationship between z'2P¢! and
s due to environmental changes. The black squares are variables and the arrows indicate causality.

Based on Figure [2] (a) and (b), we obtain that the causal relationship between z'*P°! and s changes

with unknown environmental variations, making it difficult to eliminate based on a unified causal
criterion proposed in (Pearl et al.). From Figure (a), due to the existence of path z'2¢!....5 — 27,
the following proposition states that the correlation between x'#P°! and z is influenced by s.

Proposition 3.1 Revisiting SSL from a pairwise perspective and assuming that the two samples in
each pair satisfy Equation (1)), we can obtain that the learned SSL model will use non-causal factor,
i.e., the unobserved latent variable s, to measure the similarity or reconstruct in a pair.

Detailed proof of Proposition [3.1]is provided in Appendix [A.T] Notably, when SSL models mea-
sure the similarity or reconstruct between paired elements using non-causal factors, the extracted
representations may incorporate semantics irrelevant to the task. From the pairwise perspective, this
may result in SSL failing to effectively learn each specific task, thereby hindering the modeling of
the task distribution and ultimately reducing the OOD generalization ability of SSL.

3.2 MOTIVATION: POST-INTERVENTION DISTRIBUTION

As shown in Figure regardless of the correlation between s and z'#P°!, the generation mechanism
of T is invariant. Becuase SCMs can also be considered as a joint probability distribution, thus, we
use the following distribution set to represent the joint probability distribution related to Figure [T}

D= {p($+7$label, S) — p(er‘xlabel, S)p(wlabEI)p(s|xlabel) p($label)7p(8|$lab61) > 0}. (2)

Instead of exploring what the specific structure of the unstable relation z'2P°! . . . .5 — 2, we

propose to consider using Post-Intervention Distribution (PID) to model p(z*, 2P, 5), which can
be defined as:

Definition 3.2 If p(z ™, 2'3P¢! 5) = p(zT|212Pe! 5)p(2'2P)p(s), then p(xt, 2122 5) is defined as

PID. In other words, £'**°" and s are independent in PID.
€ -S

We use p'! to denote distributions belonging to
the PID family. As we can see, p(zT |22l s) is
both a component of pF!(z+, x'2P°! 5) and a result
of the unchanged causal mechanism s — x7 <+
x'abel in Figure [I| Then, the corresponding SCM
of pPl(xzt, 2'3P¢ "s) is shown as Figure 3| In this
new distribution, because there are no paths between
s and z'**!, we can obtain that ™ and z'***" are  Figure 3: The SCM for pP!(z*, '8P, 5).
only correlated through the stable causal relation

at < z'abel Then, from a probabilistic perspective, what we argue is that compared to SSL models
trained on batches satisfying other distribution constraints in D, SSL models trained on batches that
meet the PID distribution constraint have the lowest worst-case risk. To support this statement, we
build upon (Pearl, 2009) by introducing an assumption regarding the invertibility of functions:

Assumption 3.3 There exist functions Fpve , Fs and noise variables €jave , €5 , such that
(xlabd, S) = F_l(JU+ — 6) = (leabel ($+ — €wlabe1)’ Fs($+ — 63)), and € aver Lprés.
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The above assumption implies that 2'#**! I pys|z+. Based on Section[2]and Section[3.1} both D-SSL
and G-SSL share a common learning objective: aligning the positive sample in a pair with its corre-
sponding anchor. Thus, the learning objectives of D-SSL and G-SSL can be unified as maximizing
p(z'2Pel2+). The difference lies in how they achieve p(2'2P!|zF): for example, SimCLR uses a
contrastive loss, while MAE employs the Ls-norm. We can then obtain the following conclusion:

Theorem 3.4 From a Bayesian perspective, the alignment part of the SSL learning objective, e.g.,
constrain samples under the same pair to be similar in the feature space, can be expressed as
max py(x'#P°lz). Given f, the risk on a batch with e € D as the distributional constraint can be
presented as: L(f) = Epe(p+ gavery — log pp(z'2Plz ), where p®(at, z'*P°) denotes the joint
distribution. Under Assumption3.3| when f* = argmin £°(f), s.t.e € PID, we have f* is the
minimax optimal across all elements in D, e.g., f* = arg; min max.epL* (py(2'abel|zt)).

Detailed proof of Theorem [3.4is provided in Appendix[A.2] Theorem [3.4]implies that when D is
sufficiently large and diverse, no other f obtained from training on any distribution can achieve bet-
ter worst-case OOD performance than the PID. Notablely, transferring Figure|I]to Figure[3]is similar
to backdoor adjustment in causal inference (Pearl et al.). However, from backdoor adjustment pe-
spective, it is straightforward to explain why PID can improve the OOD performance of D-SSL:
during the learning of each task, PID eliminates the influence of background semantic confound-
ing (Qiang et al., 2022)). However, for G-SSL, regardless of the relationship between s and xlabel
G-SSL inherently requires encoding background semantics. Thus, explaining the improvement of
OOD performance of G-SSL from the backdoor adjustment perspective is incorrect. Therefore,
Theorem [3.4]is provided to explain why PID can improve the OOD performance of both D-SSL
and G-SSL simultaneously. Meanwhlie, Theorem [3.4 motivates us to design a new batch sampling
strategy to ensure that the resulting batches satisfy the PID constraints, thereby improving the OOD
generalization of SSL models. Moreover, the intuitive explanation of Assumption[3.3]and Theorem
[3.4] can be found in Appendix [F}

4 THE PROPOSED METHOD

In this section, we present the proposed method which consists of two stages. In the first stage,
we use a latent variable model, e.g., variational autoencoder (VAE) (Kingma & Welling} 2013a)), to
learn the underlying distribution p(x T, 2Pl s) for each batch task. In the second stage, we use the
learned distribution to obtain a sampling strategy that can create a PID based on training data.

4.1 LEARNING LATENT VARIABLE MODEL

As shown in Equation , to learn the underlying joint distribution p(x*,z'@P¢! s) for each
batch task, we need to know p(zt|z'2P¢!, s), p(2'2Pe!), p(s|2'2Pe!) in each batch task. Because
that p(z+|z'ab¢! s) is the unchanged causal mechanism, so we can use a unified f to model
p(zT|z'2Pel ) in all tasks. Based on the discussion in Section |2} we obtain that z'2P¢! is regarded
as the label. So, p(xlabd) can be regarded as the label distribution, and we can represent it with the
same uniform distribution in all tasks. Based on the mean-field approximation (Blei et al.l 2017}
Sriperumbudur et al., 2013)) which can be expressed as a closed form of the true prior, we obtain
that when the causal relationship between the latent covariate and the label changes with the tasks,
an exponential family distribution has the ability to model the conditional distribution p(s|z!2bel),
thus, we have the following assumption for each batch task:

label

Assumption 4.1 Denote the batch task index as e, the correlation between x and s in the data

distribution p®(z T, 2'%P°! 5) of a task is characterized by:

k

P () = T e expl 3 T ()L @
=1 ¢

Jj=1

where n is the dimension of the latent variable s, k is the dimension of each sufficient statistic, s; is
the i-th element of s, Q = [Q;]: s — R™ is the base measure, T = [T;;]: s — R is the sufficient
statistics, K¢ = [K{]: 2'*P*! — R™ is the normalizing constraint, and \* = [X§;]: x'#P°! — R"*,
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Note that k£, Q, and T are determined by the type of chosen exponential family distribution and thus
independent of e, this guides us to constrain all batch tasks to share these parameters during the train-
ing phase. For ease of calculation, we set Q;(+) = exp(-/ — 2) and K¢ as the feature normalization
operator. For \°, since it varies with e, we implement it as the output of a network. Specifically, we
first average all the data of a batch, then feed it into a learnable network g, and output the correspond-
ing A¢. For T, we need to guarantee it to be a sufficient statistic, one simple way to implement this
is the constant transformation. Considering the identifiability of the parameters, we implement it as
T;;(-) = ai; x-, where A = [a;,] is a learnable parameter. Up to this point, we obtain the implemen-
tation of p. y. (s|z'**) as p, A (s|z'*>*"). Then, we implement the conditional generative model in

each e € D with parameters 6 = (f, g, A) as: p§(z7T, s|z12Pel) = p(xt]s, 2'ePl)p, A (s]x'aPel).

Motivated by the VAE, we estimate the above conditional generative model with the following reg-
ularized evidence lower bound (ELBO) in each batch distribution e:

LG 4 = By, (slat gover [log pe(z]s, olbel)] — KL(gg(s|zt, 2122 || py 4 (s]2'2PeY)) — o YA 4

where A. ; is the column vector of A, KL(+) is the KL-divergence, and « is a hyperparameter. As
for gg(slat, z'aPel) it is implemented by a learnable network ¢ that outputs the mean and variance,
and we use reparameterization trick (Kingma & Welling}, 2013b) to deal with it during training. The
last term of Equation (@) is to constrain the column vector orthogonality of A. The training process
of Equation @) is similar to meta-learning, e.g., Prototype Networks (Snell et al., 2017), because
that we construct a series of tasks during the training phase. Thus, from a meta-learning perspective,
training with Equation (4) also indicates that the learned 6 can be adaptable for all available tasks.

We further show that we can uniquely recover the model parameter 6 up to an equivalence relation.
Specifically, we first give the definition of the equivalence relation based on (Motiian et al., 2017):

Definition 4.2 (f, g, A)~w(f',g’, A"), if and ony if there exists an invertible matrix W € R™**nk
and a vector b € R™, such that A(f~1(z)) = WA'(f' " (z)) + b, V& € X9,

Then, motivated by (Khemakhem et al.|[2020)), the identifiability condition of # can be presented as:

Theorem 4.3 Suppose that pl(xz ™, s|z'2Pl) = pe(aT|s, z18P)p, 4 (s|z'2P<!) and the generation
process of Xt can be represented by the SCM depicted in Figure|l| a sufficient condition for 0 =
(f, g, A) to be ~ a-identifiable is given as: 1) Suppose that p.(z — (213! 5)) = p(zF|z'abel, 5),
. is the characteristic function of p.(x+ — f(2'2P°!, 5)), and the set {x*|¢p.(xT) = 0} has mea-
sure zero; 2) The sufficient statistics T are differentiable almost everywhere, and [T;;]1<j<) are
linearly independent on any subset of X+ with measure greater than zero; 3) There exist nk + 1
distinct pairs (zi2Pe!, eo\), oo (wlabelk e 1) such that the nk x nk matrix L = (X (xlabel) —
Neo (pibely oo \enk (glabel) _ Neo (plabely) g jnvertible.

Detailed proof of Theorem is provided in Appendix In Equation (@), we constrain the
column vector orthogonality of A, this can lead to the linearly independence of elements of T, thus,
the second assumption of Theorem [4.3] holds. Meanwhile, according to Section[2] we can obtain
that each ancestor training sample can be regarded as a class, by combining different classes with
each other, we can construct adequate tasks, thus, the third assumption of Theorem @] can easily
holds. Therefore, based on Theorem we can obtain that § can be uniquely recovered. Moreover,
the detailed explanation of the identifiability of spurious variable s is provided in Appendix |G|

4.2 THE PROPOSED MINI-BATCH SAMPLING STRATEGY

As shown in (Rosenbaum & Rubinl |1981), balancing score matching has become a useful tool in
the average treatment effect estimation. One of its purposes is to reveal the true causal relationship
from the observational data. It is defined as:

Definition 4.4 A balancing score ba(s) is a function of covariate s that satisfies: s 1.z'*°!|ba(s).
From (Rosenbaum & Rubin, [1981)), we can obtain that many functions can be used as a balancing

score, among them, propensity score p(z'2P¢!|s) is the coarsest one. Motivated by this, given the
batch task with nu pairs, we define the propensity score under the SSL scenario as:
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Definition 4.5 The propensity score for a batch task in SSL scenario is mi(s) = [p(:c;abews)]?il.

Then, given a function ba(s), we present a sufficient condition that it can be the balancing score:

Corollary 4.6 Let ba(s) be a function of s, a sufficient condition that ba(s) can be regarded as a
balancing score is that there exists a function v such that mi(s) = ¥ (ba(s)).

The proof of Corollary[.6|can be directly obtained based on Theorem 1 and Theorem 2 in[Rosen-
baum & Rubin| (1981). We use ba®(s) to denote the balancing score for a specific batch task e of
SSL. Then, the corresponding propensity score can be represented as mi¢(s) = [pe(ac;abews)]““

=t
which can be derived from pf, . (s|2'***!) as defined in Equation (3):

Dg,A (S|x;abel)pe (I,;_abel)
S Po.a (sl Npe ()

label
J

Based on Corollary we set 1) as identical transformation and propose to use the propensity
score computed from Equation (5)) directly as our balancing score, e.g., ba(s) = mi¢(s). Next, we
derive the proposed sampling strategy. When given the training data X" = {xj, plabelimu with
mu pairs, we can obtain \® of Equation based on the mean of the entire dataset. Then, for each
pair, we firstly obtain s based on the learned g (s|<™, 2'***!) and secondly obtain ba(s) by setting
nu = mu in Equation . Finally, the proposed sampling strategy is constructed by matching ba(s)
of the selected pair with 1 < a < N — 1 different pairs that have the same/closest balancing score.
The detailed sampling strategy is shown as follows:

pe (x;abel | S) _

®)

where p®(z**°!) = 1/nu, because that p®(«}#"°!) is defined empirically as a uniform distribution.

Algorithm 1: The Proposed Mini-Batch Sampling Strategy.

Input: Training datasets X" = {z;", zlabel}mu 4 balancing score ba(-) inferred from each
training pair (x}, z7), and a distance metrics d : ba(-) x ba(-) = R;

Output: A mini-batch of data D! consisting of a + 1 examples;

DP! < Empty; i < 0;

for i = 0do

Randomly sample a pair (", 212P°!) from X%, add it to D

Compute balancing score ba(s;) from (z;, zlabel);

Seti <7+ 1;

for1 <i<ado

J = argming + ¢ yeus, per d(ba(s;),ba(s;));

Add (a, 2b¥!) to DT,

Seti <1+ 1.

We denote the data distribution obtained from Algorithm |1|as p(z*, 2'2P¢! s), then we have:

Theorem 4.7 If d(ba(s;), ba(s;)) = 0 in Algorithm || the obtained mini-batch is regarded as sam-
pling from a PID, e.g., ﬁ(xlabel|s) _ pPI (xlabel).

Detailed proof and high-level explanation of Theorem is provided in Appendix [A.4] and [F]
Based on Theorem [4.7] if at each step, we achieve perfect matching (i.e., ba(s;) = ba(s;)), and the
obtained mini-batch samples can be regarded as sampled from the PID. However, an exact match
of the balancing score is unlikely during the SSL training phase (each pair has only one positive
sample), so a larger a can introduce noise. This can be mitigated by selecting a smaller a, which
increases the dependency between z'*¢! and s. Thus, in practice, the choice of @ reflects a trade-off
between the quality of balancing score matching and the degree of dependency between z'**! and s.

5 EXPERIMENTS

In this section, we first introduce the datasets used in experiments. Next, we evaluate our method
on multiple tasks, including unsupervised learning, semi-supervised learning, transfer learning, and
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few-shot learning. We introduce the experimental setups in the corresponding sections. Finally, we
perform ablation studies. All results reported are the averages of five runs performed on NVIDIA
RTX 4090 GPUs. More experiments are shown in Appendix [C]due to space limitations.

5.1 BENCHMARK DATASETS

For unsupervised learning, we select ImageNet-100 (Tian et al., 2020) and ImageNet (Deng et al.,
2009) for analysis. For semi-supervised learning, we select ImageNet (Deng et al., [2009) for eval-
uation. For transfer learning, we select PASCAL VOC (Everingham et al., [2010) and COCO (Lin
et al.l 2014) for analysis. For few-shot learning, we evaluate the proposed method on Omniglot
(Lake et al.,[2019), minilmageNet (Vinyals et al.}2016)), and CIFAR-FS (Bertinetto et al.|[2018).

5.2 EMPIRICAL ANALYSIS

In this article, we primarily addresses the OOD generalization of SSL. Our experimental design
consists of the following steps: First, we validate that the proposed sampling strategy enhances
the performance of SSL methods in in-distribution scenarios using unsupervised tasks. Second,
we classify OOD tasks by difficulty into semi-supervised tasks, transfer learning tasks, and few-shot
learning tasks, and subsequently evaluate the proposed sampling strategy on these tasks. Meanwhile,
we also conduct experiments on generative SSL, the evaluation are provided in Appendix [C.1]

Experimental setup. Our proposed sampling strategy can be applied to any D-SSL and G-SSL
models. It only changes the mini-batch generation mechanism without affecting the training process
or altering the hyperparameter settings. Therefore, the hyperparameter settings for all our experi-
ments are consistent with the methods we are comparing, and we will not elaborate on them here.

Results on unsupervised learning tasks. Table [I| shows the top-1 and top-5 linear classification
accuracies on ImageNet-100 and ImageNet for unsupervised learning task. We can observe that
applying the proposed method achieves stable performance improvement, and significantly outper-
forms the state-of-the-art (SOTA) methods on all datasets and all the SSL baselines.

Results on semi-supervised learning tasks. Table [2] shows the results on ImageNet for semi-
supervised learning task. We can observe that no matter 1% or 10% of the labels are available in
1000 epochs, the improvement brought by the proposed methods reaches more than 3% on Top-1
and 2% on Top-5 results. This further demonstrate the effectiveness of the proposed method.

Results on transfer learning tasks. Table [3|shows the results on the most commonly used object
detection and instance segmentation protocol |Chen et al.| (2020); |[Zbontar et al.| (2021)) for transfer
learning. The results shows that introducing the proposed method achieve stable improvements in
all the metrics, tasks, and baselines, reaching an average improvement of nearly 3.8%.

Results on few-shot learning tasks. Table[d]shows the effect of the proposed sampling strategy on
standard few-shot transfer learning tasks. From the results, we can see that compared to the orig-
inal baselines, introducing our proposed method achieves remarkable performance improvement,
achieving more than 5% improvement. These results demonstrate the superiority of the proposed
method under data-scarce conditions and further proves its effectiveness.

In summary, from all the experimental results, we can observe that when the SSL methods are
trained based on mini-batches generated by our proposed sampling strategy, they all further improve
their performance and by at least 2%. This shows that our sampling strategy is effective in further
reducing the false correlation information in the distribution of the mini-batch task, which leads to
better causal learning and improves the OOD generalization of the SSL model.

5.3 ABLATION STUDY

Influence of the batch size hyperparameter a. According to Algorithm[I] a is the hyperparameter
of the proposed sampling strategy, which represent the batch size. As shown in Theorem we
can obtain that a suitable a is important. To explore whether the SSL model is more sensitive to
the original batch size or to a, we conduct experiments based on ImageNet and BYOL, and the
corresponding results are shown in Figure[d] We can observe that the performance of BYOL rapidly
deteriorates with batch size. In contrast, the performance of BYOL + Ours remains stable over a
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Table 1:  The Top-1 and Top-5 classification Table 2: The semi-supervised learning accura-
accuracies of linear classifier on the ImageNet- cies (& 95% confidence interval) on the Ima-
100 dataset and the Top-1 results for ImageNet geNet dataset with the ResNet-50 pre-trained on

dataset with ResNet-50 as feature extractor. the Imagenet dataset.
agoNel e 1% 10%
Method ImageNet-100 ImageNet Method Epochs — ° — — ° —
Top-1 Top-5 400 Epochs 1000 Epochs op- op-5 op- op-5

SimCLR {Chen et al.12020] 70.15+0.16 8975+ 0.14 6924 +021 70.45 £ 0.30 MoCo (He etal.12020] __ 200 438+ 03 723£01 619501 846402
MoCo (He et al 2020 7280+ 0.12 9164+ 011 69.76+0.14 71.16+0.23 BYOL {Gnill ef al §7070b) 200 548+02 788401 680402 885402
SimSiam {Chen & He!2021] 73.01 £0.21 92,61 +£0.27 70.86 +0.34 71.37 £0.22 BYOL + Ours 200 465+02 744402 63.6+£03 856+02
Barlow Twins (Zbontar etal J2021|  75.97 023 92914019 7022+0.15 7329 +0.13 MoCo + Ours 200 574402 801402 71402 902+0.1
SwAY Jearen QL 75785016 9286 L0105 70.78+0.34 7532 £ 011 SimCLR [Chen ot al J2020] 1000 483+02 755401 656+01 878+02
DINO (Caron et al.. 2001 7543+ 0.18 93324019 71984026 73.94+0.29 MoCo (=St 1000 $23+01 779102 €S4-01 850L02
RELIC vZ {Tomasev ¢(al.J2022] 7588+ 0.5 93.52+0.13 71.84+£021 72.17 +020 BYOL e 1000 363502 796102 69702 $93+o01
MEC {Liu et al. | 202%4] 7538+ 0.17 9284+020 72914027 7507 %024 SimSia T 1000 34002 79502 680L01 $90L03
VICRegL {Bardes et al. £2022 7596 £0.19 92974026 72.14+020 75.07£023 Barlow Twins (Zbontar et alJ2021] 1000 55.0+0.1 79.2+0.0 67.7+02 893+02
SimCLR + Ours 7332+ 015 91.74+0.18 7224 +020 73.66+0.25 RELIC \.'2 (Tomasev et al.f 2022 1000 552+02 80.04+0.1 68.0+02 889+02
MoCo + Ours TAT1 022 0389+ 017 T204%021 7406 L 020 MEC (i eCal 077] 1000 54801 794402 700+01 89.1+0.1
SimSiam 4 Ours 75664018 05024021 72964022 13674017 VICREgT {Bardes et al. 2022 1000 54900 796+02 672401 89.4+02
Barlow Twins + Ours 7777+ 0.8 9499+020 73.08+021 7589 +0.17 SimCLR + Ours 1000 508+02 778+02 673+01 89.9+02
SWAV + Ours 7699 £0.11 9503020 7325024 77.42+021 MoCo + Ours 1000 539402 7894102 712401 8954+0.1
DINO + Ours 77474015 9601+0.17 74214020 7599 +0.17 BYOL + Ours 1000 589+02 819402 721402 912+0.1
VICRegL + Ours 7820+ 0.14 9507021 7491+0.14 77.77 021 Barlow Twins + Ours 1000 57.6£02 806+01 689402 918402

Table 3: The results of transfer learning on object detection and instance segmentation with C4-
backbone as the feature extractor. “AP” is the average precision, “APy”" represents the average
precision when the ToU (Intersection and Union Ratio) threshold is N %.

Method VOC 07 detection VOC 07+12 detection COCO detection COCO instance segmentation
ethor
APsg AP AP;s APsg AP AP;s APsg AP AP;; APgsk  Apmask  pApmask

Supervised 744 424 427 813 535 588 582 382 412 54.7 333 35.2
SimCLR (Chen et al.|[2020) 759 46.8  50.1 81.8 555 614 577 379 409 54.6 333 353
MoCo (He et al.|[2020) 77.1  46.8 525 825 574 640 589 393 425 55.8 34.4 36.5
BYOL (Grill et al.|[2020b) 77.1  47.0 499 814 553 611 578 379 409 54.3 332 35.0
SimSiam (Chen & He[|2021) 713 485 525 824 570 637 593 392 421 56.0 344 36.7
SWAV (Caron et al.[[2020) 755 465  49.6 826 56.1 627 586 384 413 552 33.8 359
MEC (Liu et al.[[2022a) 774 483 523 828 575 645 59.8 398 432 56.3 34.7 36.8
VICRegL (Bardes et al.|[2022) 759 474 523 82.6 564 629 59.2 398 421 56.5 35.1 36.8
SimCLR + Ours 716  50.1 51.7 853 584 639 59.2 406 439 57.1 35.9 37.1
MoCo + Ours 794 502 549 86.1 60.2 66.1 614 421 449 59.2 36.9 38.8
BYOL + Ours 79.1 504 519 839 587 64.1 60.6 399 437 56.2 35.1 38.6
SimSiam + Ours 80.5 50.8 544 852 595 66.1 623 425 439 58.1 37.2 39.8
SWAV + Ours 7719 493 518 849 581 658 62.1 402 439 56.9 373 37.9
VICRegL + Ours 7719 504 539 852 588 653 63.1 422 453 59.1 37.8 39.9

wide range of batch sizes from 256 to 4096, and only drops for smaller values. Thus, we can obtain
that although the proposed sampling strategy has a high requirement on a, the SSL method is less
sensitive to a compared to the original batch size, which implies the effectiveness of our strategy.

Influence of o.. In Equationfd] o as a hyperparameter, controls the weight of the term that constrains
the orthogonality of the column vectors in the matrix A. This constraint prevents the model from
learning redundant or interdependent features, enhancing its generalization and stability. To evaluate
its impact, we assess the performance of SImMCLR+Ours and MoCo+Ours with varying o (ranging
in [0.001,0.01,0.1, 1, 10]) on ImageNet-100, using the same configurations as in SSL. The results
in Figure[5]show that performance peaks at & = 1, which is also our setting.

6 RELATED WORK

SSL is an effective unsupervised representation learning paradigm, aimed at learning general rep-
resentations suitable for various downstream tasks. From (Jaiswal et al., 2020; Kang et al.| 2023)),
existing SSL models can be divided into two main types, i.e., D-SSL and G-SSL. The D-SSL meth-
ods, e.g., SIMCLR (Chen et al., 2020), BYOL (Grill et al., [2020a)), Barlow Twins (Zbontar et al.,
2021), DINO (Caron et al.l 2021), and Mocov3 (Chen et al., 2021b), are modeled based on the
augmentation invariance principle. The G-SSL methods, e.g., MAE (He et al. 2022), VideoMAE
(Tong et al.l 2022), iBOT (Zhou et al.), SMA (Xie et al., 2024), are modeled based on the mask
and reconstruction principle. In real-world scenarios, the data distribution can shift over time. Thus,
improving the OOD generalization of SSL is crucial. Ni et al. (N1 et al.| [2021)) proposed to increase
OOD generalization of SSL by meta-learning. MEC (Liu et al.l |2022b) presents that a generaliz-
able representation should be the one that admits the maximum entropy. AugSelf (Lee et al., 2021
encourages to preserve augmentation-aware information, which could be beneficial for feature trans-
ferability. KRR-ST (Lee et al.,|2023)) finds that distillation of SSL features using external knowledge
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Table 4: Few-shot transfer learning accuracies (£ 95% confidence interval) on minilmageNet, Om-
niglot, and CIFAR-FS datasets with C4 as the backbone.

Method Omniglot minilmageNet CIFAR-FS
G G5 @01 G [E5) @01 G G5 @o,1)

SimCLR (Chen et al.[2020)  90.83 £0.21 97.67 £0.21 81.67 £0.23 42324+0.38 51.10+£0.37 3636 +0.36 49.44+0.30 60.02+£0.29 39.29 4 0.30
MoCo (He et al.|[2020 87.83+£0.20 9552+£0.19 80.034+0.21 40.56+0.34 49414037 36.52+0.38 4535+£031 58114032 37.89+£0.32
SwAV (Caron et al.|[2020}) 9128 £0.19 97.21 £0.20 82.024+0.20 4439036 5491+£0.36 37.13+£0.37 49.39£029 622040.30 40.19+£0.32
SimCLR + Ours 95.05+£0.22 98.96+0.16 91.15+0.20 47.14+£021 62884021 39.97+0.16 53184024 6791+0.14 46.94+0.21
MoCo + Ours 9322+£0.21 97.93£0.19 88934+0.22 4693021 61.22+021 41.12+£0.24 51.76 £022 66.42+0.21 44.93£0.23
SWAV + Ours 96.24 £ 026 9876 £0.22 91.96 £0.21 49.15+0.21 64.28 £0.29 42.22+021 52.64+024 7018021 48.19+0.14
o 00 —e— SimCLR+Ours

£ 745 MoCo+0urs

[

n

87 74.0

£

o —_

&= -1.0 X735

s &

O >

g 8

2-15 5 73.0

o o

© O

5 < 72,5

o -2.0

n

©

I 72.0

§ —25/ —— BYOL

o —e— BYOL+Ours 715

4096 2048 1024 512 256 128 0.001 0.01 0.1 1 10
Batch Size ora+1 a
Figure 4: Influence of the hyperparameter a. Figure 5: Influence of the hyperparameter a.

can effectively improve OOD generalization. COLT (Bai et al., 2023) attempts to extend additional
training samples from OOD datasets for improved SSL long-tailed learning. While various methods
have been proposed with impressive performance, a remaining challenge is these approaches have
to contend with trade-offs between inductive biases or approaches without theoretical guarantees.
In this paper, we extend the understanding of SSL by analyzing its OOD generalization through the
lens of causal inference and batch construction. Our proposed method addresses the limitations of
existing approaches and offers a new direction for enhancing the OOD generalization of SSL.

Causality Analysis in SSL plays a crucial role by helping to identify and understand the underlying
relationships between variables. Recent works|Sontakke et al.|(2021));/Zuo et al.|(2021); Qiang et al.
(2022); Wang et al| (2024a) have focused on developing methods that leverage causal inference to
extract more robust feature representations. For instance, [Song et al.| (2023) used causal invariance
to obtain causal SSL representations and improve learning efficiency. [Von Kiigelgen et al.| (2021)
studied the identifiability of latent representations based on paired views of observations to study the
effect of data augmentation performed in practice. However, most of them build causal analysis on
in-distribution, but ignore the influence of spurious correlations under OOD generalization settings.
In this paper, we explore the essential reasons for spurious correlations in SSL and propose a method
that makes the relationships between variables free from the influence of spurious correlations.

7 CONCLUSION

In this paper, we focus on the OOD generalization of SSL models. First, we establish the connec-
tion between mini-batches formed during the SSL training phase and multi-class tasks. Next, we
explain the rationale for OOD generalization of SSL from a multi-task learning perspective. We
then analyze how existing SSL models, when learning mini-batch tasks, rely on spurious correla-
tions to measure sample similarity, leading to suboptimal performance. This reliance affects the SSL
model’s approximation of the task distribution, resulting in reduced OOD generalization. We pro-
vide a causal analysis of this issue and theoretically examine the intrinsic reasons for incorporating
spurious correlations during the learning process. Based on our causal analysis, we demonstrate that
when mini-batches satisfy a specific distribution, e.g., PID, SSL models achieve optimal worst-case
OOD performance. This insight guides us to propose a new mini-batch sampling strategy that en-
sures the resulting mini-batches satisfy the PID constraints. We provide a theoretical analysis of the
effectiveness of this method and validate its efficacy through various downstream tasks.

10
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REPRODUCIBILITY STATEMENT

For the theoretical results, this work offers clear assumptions and complete proofs in the Appendix.
The algorithm’s source code is also submitted as supplementary materials. For the experimental
datasets, detailed data processing steps and the experimental setup are provided in the Appendix.

REFERENCES

Aviad Aberdam, Ron Litman, Shahar Tsiper, Oron Anschel, Ron Slossberg, Shai Mazor, R Man-
matha, and Pietro Perona. Sequence-to-sequence contrastive learning for text recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15302—
15312, 2021.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv: Machine Learning,arXiv: Machine Learning, Jul 2019.

Jianhong Bai, Zuozhu Liu, Hualiang Wang, Jin Hao, Yang Feng, Huanpeng Chu, and Haoji Hu. On
the effectiveness of out-of-distribution data in self-supervised long-tail learning. arXiv preprint
arXiv:2306.04934, 2023.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicregl: Self-supervised learning of local visual
features. arXiv preprint arXiv:2210.01571, 2022.

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differ-
entiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational inference: A review for
statisticians. Journal of the American Statistical Association, pp. 859-877, Apr 2017. doi:
10.1080/01621459.2017.1285773.  URL http://dx.doi.org/10.1080/01621459.
2017.1285773.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin. Un-
supervised learning of visual features by contrasting cluster assignments. CoRR, abs/2006.09882,
2020. URL https://arxiv.org/abs/2006.09882.

Mathilde Caron, Hugo Touvron, Ishan Misra, Herve Jegou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), Oct 2021. doi: 10.1109/iccv48922.2021.
00951. URLhttp://dx.doi.org/10.1109/iccv48922.2021.00951.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,

pp. 1597-1607. PMLR, 2020.

Ting Chen, Calvin Luo, and Lala Li. Intriguing properties of contrastive losses. Advances in Neural
Information Processing Systems, 34:11834—11845, 2021a.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750-15758, 2021.

Xinlei Chen, Sihong Xie, and Kai He. An empirical study of training self-supervised vision trans-
formers. Cornell University - arXiv,Cornell University - arXiv, Apr 2021b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

11


http://dx.doi.org/10.1080/01621459.2017.1285773
http://dx.doi.org/10.1080/01621459.2017.1285773
https://arxiv.org/abs/2006.09882
http://dx.doi.org/10.1109/iccv48922.2021.00951

Under review as a conference paper at ICLR 2025

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303-338, 2010.

Itai Gat, Idan Schwartz, Alexander Schwing, and Tamir Hazan. Removing bias in multi-modal
classifiers: Regularization by maximizing functional entropies. Advances in Neural Information
Processing Systems, 33:3197-3208, 2020.

Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, FelixA. Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape
bias improves accuracy and robustness. [International Conference on Learning Representa-
tions,International Conference on Learning Representations, Sep 2018.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271-21284, 2020a.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. arXiv preprint
arXiv:2006.07733, 2020b.

K. Hamidieh, H. Zhang, S. Sankaranarayanan, and M. Ghassemi. Views can be deceiving: Improved
ssl through feature space augmentation. Proceedings of the International Conference on Machine
Learning, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961-2969, 2017.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 9729-9738, 2020.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollér, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Banerjee, and Fillia
Makedon. A survey on contrastive self-supervised learning. Technologies, 9(1):2, 2020.

Mingu Kang, Heon Song, Seonwook Park, Donggeun Yoo, and Sérgio Pereira. Benchmarking self-
supervised learning on diverse pathology datasets. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3344-3354, 2023.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoen-
coders and nonlinear ica: A unifying framework. In International conference on artificial intelli-
gence and statistics, pp. 2207-2217. PMLR, 2020.

Diederik P Kingma and Max Welling.  Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013a.

DiederikP. Kingma and Max Welling. Auto-encoding variational bayes. arXiv: Machine Learn-
ing,arXiv: Machine Learning, Dec 2013b.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. The omniglot challenge: a
3-year progress report. Current Opinion in Behavioral Sciences, 29:97-104, 2019.

12



Under review as a conference paper at ICLR 2025

Dong Bok Lee, Seanie Lee, Joonho Ko, Kenji Kawaguchi, Juho Lee, and Sung Ju Hwang. Self-
supervised dataset distillation for transfer learning. In The Twelfth International Conference on
Learning Representations, 2023.

Hankook Lee, Kibok Lee, Kimin Lee, Honglak Lee, and Jinwoo Shin. Improving transferability of
representations via augmentation-aware self-supervision. Advances in Neural Information Pro-
cessing Systems, 34:17710-17722, 2021.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization. In 2017 IEEE International Conference on Computer Vision (ICCV), Oct 2017.
doi: 10.1109/iccv.2017.591. URL http://dx.doi.org/10.1109/iccv.2017.591.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Tsung-Yi Lin, Piotr Dollér, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117-2125, 2017.

Xin Liu, Zhongdao Wang, Ya-Li Li, and Shengjin Wang. Self-supervised learning via maximum
entropy coding. Advances in Neural Information Processing Systems, 35:34091-34105, 2022a.

Xin Liu, Zhongdao Wang, Ya-Li Li, and Shengjin Wang. Self-supervised learning via maximum
entropy coding. Advances in Neural Information Processing Systems, 35:34091-34105, 2022b.

Saeid Motiian, Marco Piccirilli, Donald A. Adjeroh, and Gianfranco Doretto. Unified deep super-
vised domain adaptation and generalization. In 2017 IEEE International Conference on Com-
puter Vision (ICCV), Oct 2017. doi: 10.1109/iccv.2017.609. URL http://dx.doi.org/
10.1109/1iccv.2017.6009.

Renkun Ni, Manli Shu, Hossein Souri, Micah Goldblum, and Tom Goldstein. The close relation-
ship between contrastive learning and meta-learning. In International conference on learning
representations, 2021.

Geon Yeong Park, Chanyong Jung, Sangmin Lee, Jong Chul Ye, and Sang Wan Lee. Self-supervised
debiasing using low rank regularization. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 12395-12405, 2024.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl, Madelyn Glymour, Nicholas Jewell, Alex Balke, David Chickering, David Galles, Dan
Geiger, Moises Goldszmidt, Jin Kim, George Rebane, Ilya Shpitser, Jin Tian, Thomas Verma,
Elias Bareinboim, Bryant Chen, Andrew Forney, Ang Li, and Karthika Mohan. Causal inference
in statistics a primer.

Wenwen Qiang, Jiangmeng Li, Changwen Zheng, Bing Su, and Hui Xiong. Interventional con-
trastive learning with meta semantic regularizer. In International Conference on Machine Learn-
ing, pp. 18018-18030. PMLR, 2022.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821-8831. Pmlr, 2021.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Paul R. Rosenbaum and Donald B. Rubin. The central role of the propensity score in observational
studies for causal effects. Dec 1981. doi: 10.21236/adal14514. URL http://dx.doi.org/
10.21236/adall14514.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

13


http://dx.doi.org/10.1109/iccv.2017.591
http://dx.doi.org/10.1109/iccv.2017.609
http://dx.doi.org/10.1109/iccv.2017.609
http://dx.doi.org/10.21236/ada114514
http://dx.doi.org/10.21236/ada114514

Under review as a conference paper at ICLR 2025

Zeen Song, Xingzhe Su, Jingyao Wang, Wenwen Qiang, Changwen Zheng, and Fuchun
Sun. Towards the sparseness of projection head in self-supervised learning. arXiv preprint
arXiv:2307.08913, 2023.

Sumedh A Sontakke, Arash Mehrjou, Laurent Itti, and Bernhard Scholkopf. Causal curiosity: Rl
agents discovering self-supervised experiments for causal representation learning. In Inferna-
tional conference on machine learning, pp. 9848-9858. PMLR, 2021.

BharathK. Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyvirinen, and Revant Kumar.
Density estimation in infinite dimensional exponential families. arXiv: Statistics Theory,arXiv:
Statistics Theory, Dec 2013.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European
conference on computer vision, pp. 776-794. Springer, 2020.

Nenad Tomasev, loana Bica, Brian McWilliams, Lars Buesing, Razvan Pascanu, Charles Blundell,
and Jovana Mitrovic. Pushing the limits of self-supervised resnets: Can we outperform supervised
learning without labels on imagenet? arXiv preprint arXiv:2201.05119, 2022.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. Advances in neural information process-
ing systems, 35:10078-10093, 2022.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. Advances in neural information processing systems, 29, 2016.

Julius Von Kiigelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Scholkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
isolates content from style. Advances in neural information processing systems, 34:16451-16467,
2021.

Jingyao Wang, Wenwen Qiang, Yi Ren, Zeen Song, Xingzhe Su, and Changwen Zheng. Hacking
task confounder in meta-learning. arXiv preprint arXiv:2312.05771, 2023a.

Jingyao Wang, Zeen Song, Wenwen Qiang, and Changwen Zheng. Unleash model potential: Boot-
strapped meta self-supervised learning. arXiv preprint arXiv:2308.14267, 2023b.

Jingyao Wang, Wenwen Qiang, Xingzhe Su, Changwen Zheng, Fuchun Sun, and Hui Xiong. To-
wards task sampler learning for meta-learning. International Journal of Computer Vision, pp.
1-31, 2024a.

Jingyao Wang, Wenwen Qiang, and Changwen Zheng. Explicitly modeling generality into self-
supervised learning. arXiv preprint arXiv:2405.01053, 2024b.

Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
ment and uniformity on the hypersphere. In International Conference on Machine Learning, pp.
9929-9939. PMLR, 2020.

Xinyi Wang, Michael Saxon, Jiachen Li, Hongyang Zhang, Kun Zhang, and William Yang Wang.
Causal balancing for domain generalization. arXiv preprint arXiv:2206.05263, 2022.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron?2, 2019.

Johnathan Xie, Yoonho Lee, Annie S Chen, and Chelsea Finn. Self-guided masked autoencoders
for domain-agnostic self-supervised learning. arXiv preprint arXiv:2402.14789, 2024.

Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang.
Adversarial domain adaptation with domain mixup. Proceedings of the AAAI Conference on
Artificial Intelligence, pp. 6502—6509, Jun 2020. doi: 10.1609/aaai.v34i04.6123. URL http:
//dx.doi.org/10.1609/aaai.v34i04.6123|

Ujala Yasmeen, Jamal Hussain Shah, Muhammad Attique Khan, Ghulam Jillani Ansari, Saeced Ur
Rehman, Muhammad Sharif, Seifedine Kadry, and Yunyoung Nam. Text detection and classifi-
cation from low quality natural images. Intell. Autom. Soft Comput, 26(4):1251-1266, 2020.

14


https://github.com/facebookresearch/detectron2
http://dx.doi.org/10.1609/aaai.v34i04.6123
http://dx.doi.org/10.1609/aaai.v34i04.6123

Under review as a conference paper at ICLR 2025

Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, and Shuicheng Yan. Volo: Vision outlooker for
visual recognition. IEEE transactions on pattern analysis and machine intelligence, 45(5):6575—
6586, 2022.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. arXiv preprint arXiv:2103.03230, 2021.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer.

Weicheng Zhu, Sheng Liu, Carlos Fernandez-Granda, and Narges Razavian. Making self-supervised
learning robust to spurious correlation via learning-speed aware sampling. arXiv preprint
arXiv:2311.16361, 2023.

Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
Contrastive learning inverts the data generating process. In Infernational Conference on Machine
Learning, pp. 12979-12990. PMLR, 2021.

Xinyu Zuo, Pengfei Cao, Yubo Chen, Kang Liu, Jun Zhao, Weihua Peng, and Yuguang Chen.
Improving event causality identification via self-supervised representation learning on external
causal statement. arXiv preprint arXiv:2106.01654, 2021.

15



Under review as a conference paper at ICLR 2025

APPENDIX

The Appendix provides supplementary material and additional details to support the main findings
and methods proposed in this paper. It is organized into several sections:

* Appendix[A]contains the proofs of the presented theorems.
+ Appendix D] provides details for the experimental settings for each experiment.

* Appendix [C| showcases additional experiments that were omitted in the main text due to
page limitations.
* Appendix D] provides the related works for spurious correlation in SSL.

* Appendix [E] explains the differences and connections between task distribution and data
distribution.

* Appendix [F provides the intuitive explanation of several concepts, assumption, and theo-
rems mentioned in the proposed methodology.

* Appendix G| provides explanation of the identifiability of spurious variable.

A PROOFS

This section provides the complete proof of Proposition and Theorem in the main text.

A.1 PROOF OF PROPOSITION[3.]]

Before giving the detailed proofs of Proposition [’El we first provide the problem definition. Given
multiple pairs of samples in an SSL task, let 2'2P°Tbe the anchor of a specific pair, then the remaining
samples involving two classes of being 'P°! and not 2!2¢!, Let z'2P¢! and z'2b°! represent the label
variables of being 212Pel and not x'2Pel; since these are binary classification tasks, xlabel gpg plabel

belong to the set £1. Note that any multi-classification task can be decomposed into binary tasks.

We assume that the labels are drawn from two different probabilities, with balanced sampling prob-
abilities for label values, i.e., P(z'2P*! = 1) = P(z!#b¢! = —1) = 0.5. Our conclusions also hold
for imbalanced distributions. Next, we consider two d-dimensional factors F,+ and F; representing
the knowledge to tackle the two labels. Both are drawn from the Gaussian distribution:

Foi ~ j\/(;L'label * Ulabel, UlzabelI)
Fy ~ N (&1%Pel . g, 021)

where fijabel, fs € RY: denote the mean vectors, while 02, | and o2 denote the covariance vectors.
We examine the spurious correlations in SSL. To simplify our analysis, we define p;, as the varying
correlations that result from different spurious correlations across batches.

Proposition 3.1 Revisiting SSL from a pairwise perspective and assuming that the two samples in
each pair satisfy Equation (1)), we can obtain that the learned SSL model will use non-causal factor,
i.e., the unobserved latent variable s, to measure the similarity or reconstruct in a pair.

Proofs: Training a single model will result in the optimal model for the target incorporating non-
causal features from the other sample pairs. To substantiate this, we derive the optimal SSL. model
as follows:

P(l,laubcl7 Fm*,Fs)
P(Fac+>Fs)
P(xlabel’ Fa:+7Fs)
N Zzlabele{,l’l} P(xlabel7 F;c+7Fs)

P(xlabC1|Fm+7Fs) —
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where the probability P(2'#P¢! F, | F) can be written as:
P F F) = P FLL) - P(F, |2 By )

— P21 F,y ) - P(Fy|*P®))
— Pz ) - Z P(F,, 7label|label)

glabele{—1,1}

— P(£1*P) P(F,+ |2b°)) . Z P(F,|52be!) p(glabel | glabel)
glabele {11}

Assuming that F,+ and F, are drawn from Gaussian distributions, and P(Y;/;, F,+,F;) =
sigmoid (”;—“iFN + %FJ, where £xbel and ”—2 are the regression vectors for the optimal

1
-\ %label s label o
Bayesian classifier, we have:

P(xlab61,Fx+,FS) _ P(Z’labEI,Fw+) . P(Fs|xlabel,FI+)
— P(xlabel)P(F n |xlabel) X Z P(F |jlabel)P(§:1abel‘xlabel)

ilabele{—l,l}

mlabel_lllabel F I

label pg label pg
x -Es F —x -Es F
> e (psce T+ (1 _psC)e E S)

label [ p label [ 1
pla L'(glzabsz‘F'i_%Fs) 2 L'(alzabClFmﬁ—_%FS)
= Psc€ label s + (1 — psc)e label 5

Let:
label ]
6+: Iuga - Fm++'u7;F5
Olabel O
_ label
5 :u;er‘F_MiZFS
Olabel Os

Substituting 3+ and 5~ back into the original equation, we have:
1

14 pscemlabcl_lﬁ+(1_psc)em1abc1_ﬁ,
psce_mlabel_ﬁ#—+(1_psu)e_mlabe1_ﬁ_

P(xlabC1|Fx+7Fs) —

When the samples are easy to distinguish, e.g., the similarity of the augmented sample from different
pairs is not 1:

1
1 + exlabcl,(ﬁi»_t'_ﬁ*)

P(xlabcl‘Fz+7Fs) —

Combining with the expressions for 31 and 3, we get:
1

2glabel, %FHJF
1 + (A “label *

In this case, the optimal SSL model only utilizes its own factor F,+ and assigns zero weight to the
non-causal factor I from task 7;. Thus, if it is difficult to distinguish between the different pairs,
the optimal model has non-zero weights for non-causal factors for each task.

P(xlabel|FI+)Fs) —

When the samples are difficult to distinguish, e.g., in the most extreme case, the similarity of the
augmented sample from different pairs is equal to 1, we have:

abe ]'
P(T/l b 1|Fw+7FS) = 11 2albe Bt

Combining with the expressions for 3+ and 85—, we get:

1
Pz Fyu  Fl) =

label, [ Mlabel I
14 621“ e <q—°‘ < Fm'*""éFS)

“label

In this case, the optimal classifier incorporates both factors F,+ and F. Thus, if ps. # 0.5, the
optimal classifier assigns non-zero weights to non-causal factors for each task.
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A.2 PROOF OF THEOREM [3.4]

Theorem 3.4 From a Bayesian perspective, the alignment part of the SSL learning objective, e.g.,
constrain samples under the same pair to be similar in the feature space, can be expressed as
max py(z'2P°l2). Given f, the risk on a batch with e € D as the distributional constraint can be
presented as: L(f) = Epe (gt gravery — logps (2'3P¢! 2T, where p®(xt, 212P°Y) denotes the joint
distribution. Under Assumption when f* = argmax LFIP(f), we have f* is the minimax
optimal across all elements in D, e.g., f* = arg; min maxcepLC(ps(z'*Px)).

Proofs: Here, we provide proof of the minimax optimality of the SSL model trained on PID. The
SSL model trained on PID pFl(z ", z'2Pe!) has p(z'2Pel|xt) = pPI(z!abel|zT). Now, consider the
expected cross-entropy loss of this classifier on an unseen test distribution p®:

L(p"H (@2 T)) = —Epe(pt graver) log p*l (212 F)

pPI(l‘label)

o+ zlabel) log piPl o

e/, Pl label pPI(JflabEI)
=L (@) 4 Epe(x gtavel ) [log pPT (el 1) }

= —Epe(IJr’xlabel) IngPI(xlabel) + Epe(

PI/ label p" (')
— € abe

= ﬁ (p (fl; )) + ]Epe(rlabelﬁs) |:]EpPI(X|I1abel,s) |:10g pH(xlabewlﬂ]]
Consider that z'*P¢! | prs and z!2b°! | pys|z ™, we get:

e(, Pl label| + e/, PI/_label ppl(mlabel|5)
L: (p (1»' |$ )) = ,C (p (.T )) +Epe($label7s) |:EPPI($+Ilabel7s) |:10g }WW}]

PI( ..+
e(, PI/, label p o (zF]s)
= ,C (p (x )) —+ Ep“(wlab91,s) |:EPPI($+zlabel7s) |:10g W
- £e(ppl(xlabel)) — Epe(zlabel’S)KL[pPI (x+|xlabel, S)prl(xﬂs)].
Thus we have the cross entropy loss of p*!(z T, z!2P¢!) in any environment e is smaller than that of
pPI(z!Pe!) = L (random guess):
Ee(pPI(xlabel‘x+)) . Ee(pPI(mlabel)) § 7Epe(x1abcl7s)KL[pPI((£+|$1abel, s)|\pp1(x+|s)] S 0’
which means:
ma? Le' (pPI(xlab61|1'+)) B Le'(pPI(xlabel))] <0.
e'e

where the performance of pPl(z+, z'aPel) is at least as good as a random guess in any environ-

ment. Since we assume the environment diversity, that is for any p® with zlabel | s there exists an
environment ¢’ such that p®(z'2P¢!|z%) performs worse than a random guess. So we have:

ma? [ﬁe' (pPI(xlabel|x+)) N ﬁe' (pPI(xlabel))} <0< ma? [ﬁe/(pe(xlabel|x+)) N L:e' (pPI(xlabel))} )
e’'e e'e

Now we want to prove that Ve € &, z'@Pell s, g3l szt pe(z2Pel) =
pe(2'aPel|zt) = pPI(2'abel|z+). For any s € S, we have:

pe(xlabel|x+) _ pe(xlabe1|x+7 S)

1
m

— pe (xlabcl pe(z+‘xlabel7 5)
Epe (zlabel |S) [pe (.T+ |S, .’I;labEI)]
= pPl(glabel P (@]t 5)

]EpPI(Ilabel) [ppl(er s, xlabel)]
_ pPI (xlabel |$+ , 8) — pPI (xlabel |.13+ ) )
Thus we have the following minimax optimality:

pPI (xlabd|$+) labcl‘x+)).

= arg min max £L° T
gpf€.7: ecé (pw(
Thus, we have f* is the minimax optimal across all elements in D, e.g., f* =

arg ; min maxep L% (py(¢'*>¢ |z T)).
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A.3 PROOF OF THEOREM [4.3]

labcl) labcl) labcl)

Theorem 4.3 Suppose that p§(z™", s|z = pe(zT|s,x Do (s and the generation
process of X can be represented by the SCM depicted in Figure|l| a sufficient condition for § =
(f, g, A) to be ~ 5-identifiable is given as: 1) Suppose that p.(z+ — f(z12P¢! 5)) = pe(at|zlabel s),
b. is the characteristic function of p.(xT — f(z'2P°! 5)), and the set {x*|¢p.(x*) = 0} has mea-
sure zero; 2) The sufficient statistics T are dtﬁ‘erentlable almost everywhere, and [T;;]1< <k are
linearly independent on any subset of X+ with measure greater than zero; 3) There exist nk + 1

distinct pairs (z2P°! eg), -, (z12P°k, e,,1) such that the nk x nk matrix L = (\°(z}2Pel) —

€0 (‘:U%Jabel)7 . 7)\671]@( label) )\eo( label)) is invertible.

Proofs: We now establish Theorem[4.3] demonstrating the identifiability of the essential parameters
that capture spuriously correlated covariate features in the VAE. The proof consists of three steps:
(i) We use both e and z'2P°! as auxiliary variables; (ii) We include 212Pel in the causal mechanism of
generating 2+ by 2 = f(2!2P¢!, 5) 4 ¢ = flabel(z) 4 e,

First, we transform the equality of the marginal distributions over the observed data into the equality
of a noise-free distribution. Suppose we have two sets of parameters, § = (f,g,A) and §' =

(f',g', A"), such that py(z |22l e) = py: (zT|2'2P¢L ¢) for all € € Eqpgin. Then:

/ pg,A(Z“’Iflabel, e)pf (.’17+|Z, xlabel)dZ _ / Pg/yA/ (Z‘:I;label7 E)p}'(l’-‘— |Z7 xlabel)dZ
zZ zZ

/ Pa.a(Z]a™ e)pe(a™ — [27(2))dZ = / Py ar (2|2 e)pe(at — £ (2))dz
z zZ

(6

Then, we denote the volume of a matrix A as volA := y/det(ATA), J as the Jacobian, and change
the variable on the left-hand side to x+ = f1aP¢}(Z) and on the right-hand side to z+ = flabel( 7).
Since f is injective, we have f~1(z+) = (2!8P¢l 7). Here, we specifically use f~1(z*) to denote
the recovery of Z, i.e., f1(z*) = Z. Then, we get:

/d ﬁg,Ayf’zlabelye(E+)ps($+ - i’+)df+ = /d i)’g/,A/,f/Yzlabel,e(.’f-‘—)pg(II)+ - j+)d:i+ (7)
R R
®)

Next, we introduce

~ abel 1 abe
pg,A7f7xlabcl7e(I’+) = pg7A(falc bel ($+) |l’l b l, e)VOIJf:lEabelfl (:E+)]].§+ (I’Jr),
on the left-hand side, and similarly on the right-hand side:

(ﬁg,A,f,zlabel,e * pe)($+) = (ﬁg’,A’,f’,zlabel,e * PS)(1’+) (9)
(10)
Then, we use * for the convolution operator, and use F'[-] to designate the Fourier transform. The

characteristic function of ¢ is then ¢, = F'[p.]. Exploit the properties of the Fourier transform to
transform the convolution into a multiplication. This means that in the Fourier domain, we have

F[(Pg.a f.aavel ¢ * pe)(@T)] = F[Py A g g1a0e1 ] (W) - F[pe](w) Meanwhile, we dropped ¢ (w) from
both sides as it is non-zero almost everywhere (by assumption of the Theorem).

ﬁg7A7f-7zlabc1’e(£C+) = ﬁgl’Al’f/7llabcl’e(CC+). (11)

For the second step, in this step, we remove all terms that are either a function of z+ or zlabel or e

By taking logarithm on both sides of Equation |l 1{and replacing py a by its expression, we get:

k

log volJg-1 (x*) + Z(log Qi(f;1 )) log W¢ (z label Z )\e ( label))
i= j=1
n k
:10g VOlJf/—l(l‘+) + Z(IOg Q;(leil( )) ]()g W’P hbel Z )/\/e ( label)).
i=1 )
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Let (e, z¢""), (e1, 21, ..., (e, 2;73*') be the points provided by assumption (3) of the Theo-
rem. We evaluate the above equations at these points to obtain k£ + 1 equations, and subtract the first
equation from the remaining k equations to obtain:

label
(T (@), A% ) = X e +§:1 s e b§
1 r— re; ( label leo labcl 1 feo (x%)abcl)
S DN = N )+ Y e (12

i=1 T

Let £ be the matrix defined in assumption (3) and £’ similarly defined for \’ (£’ is not necessarily
’6' label e label
invertible). Define b, = Y7, log Wa (@6 "W, L") ynd b = [b,]1%,.

"0( 1~.be1)W’ﬁl( label)

Then Equation [I2]can be rewritten in the matrix form:

LYT(f M a™) = L7T'(fHah)) +b. (13)

We multiply both sides of Equationby LT to get:

T(f~'(z%)) = AT'(f M (2T)) +c (14)

Where A = £~7£’ and ¢ = £~ T'b. To complete the proof, we must demonstrate that A is invertible.
By the definition of T, its Jacobian exists and is an nk X n matrix with rank n. Consequently, the
Jacobian of T" o f’~1 also exists and has rank n, which implies that A is of rank n as well. We
mainly consider two cases:

If kK = 1, then A is invertible since A € R™"*",
If k> 1, define x = f~1(x) and T;(z;) = (T;.1(Zs), - - -, Ti 1k (T1))-

z¥, the family (d{;(f >,...,de(”§ )

pendent. This implies that T;(R) lies within a subspace of R¥ with a dimension of at most k& — 1.

Let h be a non-zero vector orthogonal to 7;(R). Then for all z € R, we have <d7;lix) , h> = 0. By

) is never linearly inde-

2
i Liy ey

Suppose for any choice of Z}

integrating, we find that (T;(z), h) = const.

Since this holds for all x € R and A # 0, we conclude that the distribution is not

strongly exponential Thus, by contradiction, there must exist k points z} ., Z¥ such that

(dTi(i%) dT; (J, ))
dz

dii} yoeeey

) 7’,..

are linearly independent.

Next, collect these points into k vectors (Z1, ..., z¥) and concatenate the k Jacobians Jr(Z!) eval-
uated at each of those vectors horizontally into the matrix Q = (Jr(z'),..., Jr(z*)). Similarly,
define Q' as the concatenation of the Jacobians of T”(f’~!o f(Z)) evaluated at those points. Then the
matrix @ is invertible. By differentiating Equationfor each 2!, we get Q = AQ’ The invertibility

of @ implies the invertibility of A and ’. This completes the proof.

A.4 PROOF OF THEOREM [4.7]

Theorem 4.7 If d(ba(s;), ba(s;)) = 0 in Algorithm || the obtained mini-batch is regarded as sam-
pling from a PID, e.g., p(x'2P°!|s) = pPl(z!abel),

label
alt

Proofs: In Algorithm (I} by uniformly sampling a different labels, we mean sampling =
{label glabel " plabell yging the following procedure:
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xllabel ~U{1,2,...,mu} \ {:Uleabel}

leabel ~ U{l’ 27 b mu} \ {xLabEI’ xllabel}

label label ,.label , label label
P ~U{L,2,...ymu} \ {z2°%, 2727, a5 x

e ol b
where U denotes the uniform distribution.

Suppose Datanced ~ P2 (z T, 2'2P¢!), and the data distribution D¢ ~ p(x T, 2'2P!). Assume we have
an exact match every time we match a balancing score. Then for all e € &, We have:

PP b () = plat®bac (). (1s)

By the definition of a balancing score, p(z'*°l|s) = p(z'2P!|ba®(s)) and pZ(z'2bl|s) =
pB (z12Pe!ba®(s)), then we have:

ﬁB (wlabel‘s) _ p(xlabe1|s>.

Thus, we have p?Z (2'2P¢l|s) = U{1, 2, ..., mu}, which means p& (z+, 212! 5) = pB(xT, 2label s).
This implies that Dy,janced can be regarded as sampled from a PID.

B EXPERIMENTAL SETTINGS

In this section, we provide the details of the settings and datasets for each experiment.

Unsupervised Learning Following the widely adopted protocol |Chen et al.| (2020); [Wang et al.
(2024b), we freeze the feature extractor and train a supervised linear classifier on top of it. The
Adam optimizer is used, with Momentum set to 0.8 and weight decay set to 10~%. The linear
classifier is trained for 500 epochs, with a batch size of 128. The learning rate starts at 5 x 1072
and decays to 5 x 105, For this experiment, we utilize several benchmark datasets to evaluate
the model’s performance. CIFAR-10 and CIFAR-100 are small-scale image classification datasets
consisting of 60,000 32x32 color images in 10 and 100 classes, respectively. STL-10 is another
small-scale dataset that contains 100,000 unlabeled images and 5,000 labeled examples from 10
classes, with a higher image resolution (96x96). Tiny ImageNet contains 100,000 64x64 images
across 200 classes and serves as a more challenging small-scale benchmark. For these datasets, we
use ResNet-18 as the feature extractor. For larger datasets, we employ ImageNet-100 (a subset of
ImageNet with 100 classes) and the full ImageNet dataset, which consists of over 1.2 million images
in 1,000 classes, using ResNet-50 as the feature extractor.

Semi-Supervised Learning In accordance with the standard protocol Zbontar et al.| (2021)), we
create two balanced subsets by sampling 1% and 10% of the training dataset. Specifically, we use
the ImageNet dataset, a large-scale benchmark for visual recognition tasks, comprising 1.2 million
images in 1,000 categories. The subsets contain 1% and 10% of the labeled training data, which are
used for fine-tuning the model. The models are fine-tuned for 50 epochs, with learning rates set to
0.05 and 1.0 for the classifier and 0.0001 and 0.01 for the backbone on the 1% and 10% subsets,
respectively.

Transfer Learning We conduct three transfer learning experiments, including object detection and
instance segmentation, transfer to other domains, and video-based tasks. For object detection, we
evaluate the model on two benchmark datasets: Pascal VOC and COCO. Pascal VOC is widely
used for object detection tasks, containing around 20,000 images across 20 categories. We train a
Faster R-CNN Ren et al.| (2015)) model on the combined VOC 2007 and 2012 datasets (VOC 07+12),
which contains around 16,000 images, and adjust the learning rate at 18K and 22K iterations. We
also conduct experiments on a smaller version of Pascal VOC, the VOC 07 set (5K images), with
a reduced number of iterations. For instance segmentation, we use the COCO 2017 dataset, which
contains over 118,000 images and covers 80 object categories. We train a Mask R-CNN [He et al.
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(2017) with the standard 1x schedule and C4-backbone |Wu et al.| (2019), reporting results on the
validation split.

Few-shot Learning The protocol outlined in Wang et al.| (2024b; [2023b)) is followed for few-shot
learning, where we evaluate the proposed method on three standard few-shot learning benchmarks:
minilmageNet, Omniglot, and CIFAR-FS. minilmageNet is a widely used few-shot learning bench-
mark derived from the ImageNet dataset, consisting of 60,000 84x84 images across 100 classes.
Omniglot is a dataset designed for character recognition, containing 1,623 different characters from
50 different alphabets, making it suitable for testing few-shot learning algorithms. CIFAR-FS is a
few-shot version of the CIFAR-100 dataset, specifically adapted for few-shot learning tasks, con-
taining 100 classes with 600 images per class. For each task, N samples without class-level overlap
are randomly selected, and K -times data augmentation is applied to create an N-way K -shot task.
The model is optimized using stochastic gradient descent (SGD) with momentum and weight de-
cay values set to 0.9 and 10~*, respectively. The trained model’s performance is then evaluated on
unseen samples drawn from new classes, testing its ability to generalize in few-shot scenarios.

C ADDITIONAL EXPERIMENTS

C.1 EVALUATION ON GENERATIVE SSL

To examine the model’s impact on generating SSL, we conducted a series of experiments using
the ImageNet-1K dataset (Deng et al.| [2009). We started with self-supervised pre-training on the
ImageNet-1K (IN1K) training set. Next, we evaluated the representations through supervised train-
ing using two methods: (i) end-to-end fine-tuning and (ii) linear probing. We reported the top-1
validation accuracy for a single 224x224 crop. For these experiments, we employed ViT-Large
(ViT-L/16) (Dosovitskiy et al., 2020)) as the backbone. ViT-Large is significantly larger (an order of
magnitude bigger) than ResNet-50 (He et al., [2016)) and has a tendency to overfit. The following
section provides a comparison of the models.

Table 5: Comparison between models.

Method \ scratch, original  scratch, our impl. baseline MAE MAE + Ours
Top 1 \ 76.5 82.5 84.9 86.4

Table 6: Comparisons with previous results on ImageNet-1K using the ImageNet-1K training set for
pre-training, except for the tokenizer in BEiT, which was pre-trained on 250M DALLE data (Ramesh
et al.,[2021).

Method \ pre-train data ~ ViT-B  ViT-L ViT-H = ViT-Hyys

DINO IN1K 82.8 - - -
MoCo IN1K 83.2 84.1 - -
BEiT IN1IK+DALLE  83.2 85.2 - -
MAE IN1K 83.6 85.9 86.9 87.8
MAE+Ours | IN1K 85.9 87.4 88.6 89.3

Comparisons with self-supervised methods. In Table[6|we compare the fine-tuning results of self-
supervised ViT models. Our method has shown steady improvement from bigger models. We obtain
88.6% accuracy using ViT-H (224 size). The previous best accuracy, among all methods, using only
INIK data, is 87.1% (512 size) (Yuan et al.}2022), based on advanced networks. We improve over
the state-of-the-art by a nontrivial margin in the highly competitive benchmark of IN1K (no external
data). Our result is based on vanilla ViT, and we expect advanced networks will perform better.

Object detection and segmentation. We fine-tune Mask R-CNN (He et al., |[2017) end-to-end on
COCO (Lin et al., |2014). The ViT backbone is adapted for use with FPN (Lin et al., 2017). We
apply this approach to all entries in Table 3. We report box AP for object detection and mask AP
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Table 7: COCO object detection and segmentation using a ViT Mask R-CNN baseline.

APbox APmask
ViT-B  ViT-L ViT-B ViT-L
supervised IN1K w/ labels  47.9 49.3 429 43.9

Method pre-train data

MoCo v3 IN1K 479 49.3 42.7 44.0
BEiT INIK+DALLE  49.8 533 44.4 471
MAE IN1IK 50.3 533 44.9 47.2
MAE + Ours IN1IK 52.5 55.9 46.4 49.7

Table 8: Performance on for text recognition.

Methods IIITSK  1IC03
SimCLR [Chen et al.|(2020) 1.7 3.8

SeqCLR |Aberdam et al.|(2021) 35.7 43.6
SimCLR + Ours 18.7 19.0
SeqCLR + Ours 38.5 474

for instance segmentation. Compared to supervised pre-training, our MAE performs better under all
configurations (Table|7).

C.2 EVALUATION ON MORE MODALITIES

The proposed method can be applied in various fields and domains, e.g., instance segmentation,
video tracking, sample generation, etc., as mentioned before. Here, we provide the experiments of
the proposed method on text modality-based datasets, i.e., IC03 and IIIT5K |Yasmeen et al.| (2020),
which we have conducted before. We follow the same experimental settings as mentioned in |Ab-
erdam et al.| (2021). The results shown in Table B] demonstrate that the proposed method achieves
stable effectiveness and robustness in various modalities combined with the above experiments.

Table 9: Performance comparison on PACS dataset.

Method | Photo | Sketch | Cartoon | Painting (Unseen) | Average
SimCLR 86.4 85.1 87.2 74.3 80.7
SimCLR+Ours | 88.0 87.4 90.1 79.2 85.0
BYOL 83.9 84.6 82.7 64.5 74.2
BYOL+Ours 84.2 86.9 85.0 70.8 78.9

C.3 EVALUATION ON OOD TASKS

In addition to validating the proposed method on Table 11: Performance comparison on Col-
standard and few-shot transfer learning scenarios, we oredMNIST dataset.
also specifically test it on benchmark datasets target- Method

. c L. . f Accuracy(%)
ing the out-of-distribution (OOD) problem, including SImCLR 852
PACS, OfficeHome, and ColoredMNIST. Specifically, SimCLR + Ours 88.6

we evaluate the performance of SSL baselines before
and after introducing the proposed PID on these three
datasets. For PACS, we follow the experimental setup in Section[5.2]to evaluate the most commonly
used SSL baselines, SimCLR and BYOL, on three domains—Photo, Sketch, and Cartoon—training
on these domains and testing on all four domains, including Photo, Art, Cartoon, and Sketch, as
well as the average performance. The results are shown in Table[9] For OfficeHome, we randomly
select one domain as the source domain for training and another as the target domain. The labels for
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Table 10: Performance comparison on OfficeHome dataset

Method |A>C|A-5P|A-R|C—A|[CHP|CH>R|P5A|[PC|PR|R3A|RSC|R-P
SimCLR 58.2 ‘ 63.5 ‘ 69.8 ‘ 78.9 ‘ 69.7 ‘ 66.8 ‘ 63.4 ‘ 52.3 ‘ 58.4 ‘ 56.1 ‘ 72.9 ‘ 71.0

SimCLR+Ours 61.1 65.2 71.9 81.1 72.0 68.2 67.5 59.1 59.9 61.2 74.8 73.5

the source domain are predefined, whereas the labels for all target domains are unknown. We then
evaluate the performance change of SimCLR before and after introducing PID, with results shown
in Table [I0} Finally, for ColoredMNIST, we follow the experimental setup in [Gat et al.| (2020),
assessing the model’s performance on new classes after training on base classes, with results shown
in Table The results demonstrate that PID consistently improves performance, confirming its
effectiveness on OOD tasks.

D DISCUSSION FOR SPURIOUS CORRELATION

In the recent work on SSL, there has been growing interest in understanding its vulnerability to
spurious correlations Hamidieh et al.[ (2024); [Wang et al.| (2022; |2023a). These correlations arise
when models learn associations from data that do not truly reflect the underlying causal structure, but
instead are coincidental or context-specific patterns |Pearl| (2009). This susceptibility can undermine
the effectiveness of SSL, particularly when dealing with diverse data environments.

Some works have been proposed to alleviate the effects of spurious correlations in SSL. Hamidieh
et al. Hamidieh et al.| (2024)) introduced a method that counteracts these correlations by expanding
the feature space, thereby providing more diverse training views to mitigate misleading associations.
Park et al. [Park et al.|(2024) proposed that spuriously correlated attributes make neural networks in-
ductively biased towards encoding lower effective rank representations and used rank regularization
to eliminate biased samples. Another notable contribution comes from Chen et al.Zhu et al.| (2023)),
who explored the use of a data reweighting strategy to reduce the importance of data samples that
may contain spurious correlations. These methods attempt to eliminate spurious correlations by
filtering or enhancing SSL samples at the sample level. Although this approach has proven effec-
tive—by excluding samples that may contain spurious correlations—it is difficult to ensure that the
learned features are still reliable due to the partial unobservability of spurious correlations and vari-
able coupling. In contrast, our work directly addresses the impact that spurious correlations might
cause, utilizing the independence between unobserved variables and anchors under post-intervention
distributions to ensure the reliability of the learned representations.

E TASK DISTRIBUTION & DATA DISTRIBUTION

Task Distribution: Task distribution refers to a set of tasks and their underlying distribution, where
each task has its own specific objectives and associated data distribution. It is often used in meta-
learning or multi-task learning scenarios to describe the diversity and variation across tasks.

For example, in a meta-learning scenario, the task distribution could include:

* A ”cat vs dog” classification task (Task 1).
* A car vs airplane” classification task (Task 2).

e A ”bird vs fish” classification task (Task 3).

These tasks form the task distribution, and the meta-learning model is trained across this task space.

Data Distribution: Data distribution refers to the statistical distribution of data samples within a
single task, typically described as the joint distribution P(X,Y") of input X and labels Y.

Task distribution describes the variability between tasks in a learning system, focusing on gener-
alization across tasks. Data distribution focuses on the variability within a single task, addressing
adaptation to specific data characteristics. The two concepts are hierarchical: task distribution gov-
erns the diversity of tasks, while each task has its own distinct data distribution.
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Reformulation of OOD generalization as generalization on task distributions: We organize the
whole process into the following steps:

Step 1: First, we provide the formal definition of task distribution.

Without loss of generality, let us use a classification task as an example We define X{. =
{( 2%, y®)}Y | as a training dataset, where x¢ represents a sample, y¢ represents the correspond-
ing label, a denotes the dataset index, and N denotes the number of samples in the dataset. For a
classification task, the goal is to learn a classifier p®(y¢|x¢), so that for any given sample ¢, the
corresponding label can be predicted.

If N = +o0, X/ can be approximated as containing all the information necessary for the classi-
fication task and can thus be regarded as a complete dataset for a classification task. Simply put,
the elements of a classification task include: the classifier and the dataset. We denote a task as
(X2, p*(y2|x?)). Then, the discrete distribution of tasks can be expressed as { X2, p®(y&|z2)}2L,,
where M represents the number of tasks.

Furthermore, when a is different, the label space corresponding to y¢ is also different. For example,
when a = 1, the label space is {]Cat, Dog}, and when a = 2, the label space is { Plane, Train}. If
M — o0, {Xtr, p(y2|x¢)}M | can be regarded as a complete task distribution.

Step 2: Next, we reformulate SSL from the perspective of task distribution.

In Section 2] l and Section [3.1] we explain why a mini-batch in SSL can be viewed as a task. Simply

aug __ i i 2N
put, for a given mini- batch it can be expressed as: Xy, = {4, T, 0n0r.a tie1» Where N denotes
the number of ancestor samples in the mini-batch, a represents the index of the mini-batch, and

xinchm ., can be regarded as the label of the augmented sample. Meanwhile, the classifier to be

learned for each mini-batch is modeled as p*(,,, 10y o |75,)-

Notably, the classifiers for all tasks in SSL are learned using the same classifier, i.e., the classifiers
for all tasks aim to learn p(zy,, .10, /7). For example, SimCLR models the classifier using a
contrastive loss, while MAE models it using the Lo-norm. Therefore, whether D-SSL or G-SSL
is used, as M — 400, {(Xfd, p(2%,chor.alTh)) }aly can be approximated as a task distribution,
where M represents the number of tasks.

Step 3: Finally, we reformulate the OOD generalization of SSL as generalization on task distribu-
tions.

In traditional machine learning, given training data, the goal is to learn p(y|x). This can be under-
stood as modeling the data distribution p(x, y) as p(z)p(y|z), where p(y|x) is learned from the train-
ing data and transferred to the test data distribution p(x). This approach assumes that the training
and test data are identically and independently distributed, i.e., p(@¢rqin) = P(Ztest) = p(x), and

p(xtrain;ytrain) - p(xtestvytest) = P(x»y) Conseqllenﬂy, ( )ptrazn(y|l.) = p( ) tESt(y|x)
leading to p"*"" (y|x) = p**** (y| ).

By analogy, when each data sample is treated as a task, the corresponding learning objective be-
comes p(p* (T por.a|Th) | Xira ). This learning goal is similar to that in meta-learning [1-2], where
the goal is to learn a function that can output the classifier for a given task dataset. Therefore, when
the training data are drawn from a task distribution, the learning objective is to model the task dis-
tribution, i.e., to learn p(p*(y|z)|p(task 7)), such that it applies to both training and test tasks. Since
training and test tasks are different, from the perspective of the training tasks, the test tasks represent
OOD scenarios. However, from the perspective of the task distribution, both training and test tasks

belong to the same task distribution.

Thus, from the viewpoint of traditional machine learning, SSL can be considered as training with
mini-batches of size 1, where each training sample is a training task. One open problem is how
to model p(p*(y|z)|p(task ¢)). Since we define the classifier p(z* Tonchor, .|z%) for each SSL training
task as identical, p(p’(y|z)|p(task i)) can be directly modeled as p(x? ¢, which applies to
any sample from any task.

Lanchor, a|

In conclusion, combining Step 1-3, we reformulate OOD generalization as generalization on task
distributions.
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F INTUITIVE EXPLANATION

Assumptionillustrates that regardless of whether e € D or e € PID, o is generated under the
control of two variables, s and 2'2"°!. Therefore, given ™+, s and 22! are conditionally indepen-
dent, regardless of the correlation between them.

From Assumption the optimal f should be F anei. However, without additional constraints, it
is difficult to obtain this optimal f. Theorem [3.4] provides a way to obtain another good f, defined
as f* in the theorem. Why is f* considered good? This is because Theorem [3.4]implies that when
D is sufficiently large and diverse, an optimal f* trained on one distribution will perform worse
than random guessing in some other environment. Under such conditions, no other f obtained from
training on any distribution can achieve better worst-case OOD performance than the PID. Why
is focusing on the worst-case scenario better than other cases? During training, we minimize the
worst-case scenario, which involves minimizing: max.cpL¢(py(2'2>°!|z*)).. For any f, the term
maxeepLé(py(212Pe21)) is always greater than or equal to £¢(ps(z'P!|zT)) for any specific
environment e. If we learn an f that minimizes the worst-case term max.cpL(py(z'2P¢!z 1)),
then we naturally minimize £¢(p(z'#P®!|zT)) for all e in D. This ensures robustness across all
scenarios, making the worst-case optimization strategy effective for improving OOD performance.

The high-level explanation of Theorem [4.7]can be presented as follows: 1) From Definition [4.4] it
follows that if ba(s) can be identified, then s and z'*P°! are conditionally independent given ba(s);
2) In this paper, ba(s) is implemented as described in Equation (5) in the main text. The key chal-
lenge lies in obtaining s. As shown in Section[d.1] we explain the identifiability of s, as well as how
each label is modeled using a distribution for s. During implementation, we sample from this distri-
bution to generate a series of discrete vectors that approximate s associated with a specific label; 3)
From Equation (2) in the main text, we have: p(z T, 212P¢l 5) = p(xt|z!abel s)p(2!abel)p(s|zlabel).
If we select sample pairs for a mini-batch such that all pairs share the same ba(s), the resulting
mini-batch can be considered as constructed under the same ba(s). In other words, the samples
in the mini-batch are conditioned on ba(s). Combined with the argument in Point 1), we have:
p(zT, 2’8l ) = p(at|x'aPel s)p(z!2Pe)p(s), which ensures that the mini-batch satisfies PID.
The key to achieving PID is ensuring that all sampled examples in the mini-batch have consistent
ba(s), i.e., the background information is the same. This allows SSL training to focus on foreground
information while disregarding background information.

G THE IDENTIFIABILITY OF SPURIOUS VARIABLE

To better address the identifiability of spurious variables in the context of SSL, we organize the
response into the following steps:

Step 1: First, we need to clarify that in Section [2]and Section[3.1] we propose a new perspective for
understanding SSL. Taking classification as an example, under this new perspective, each mini-batch
during the training phase of SSL can be treated as an independent multi-classification task. Different
mini-batches correspond to different classification tasks. In contrast, the traditional perspective of
SSL considers the entire dataset as a single task for unsupervised learning.

Therefore, under the new perspective, the training samples in each mini-batch can be considered
labeled. Whether these labels are accurate is not our concern for now, as this falls under the domain
of Bayesian error. Consequently, in this sense, spurious variables can be identifiable.

Step 2: We first explain what we mean by the distribution of tasks, using classification as an ex-
ample. A learning task can be narrowly defined as assigning a label to each sample in a dataset,
where the label types are finite. This dataset can represent the task, and the entirety of the dataset
can be regarded as the data distribution of that task. Thus, different tasks correspond to different
datasets, with distinct label types (tasks with the same label types are considered the same). In this
way, a task distribution is essentially the distribution over these datasets, with each element of the
task distribution corresponding to a specific dataset.

Step 3: Next, we point out that in this paper, the spurious variable s indeed takes values in an infinite
space since it is represented by a high-dimensional vector. The values of this vector can be arbitrary.
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We must define s as taking infinite values because, as discussed in Section [2] and Section [3.1 we
reinterpret SSL as learning a task distribution where the label types involved are infinite.

Different labels may correspond to different latent variables. These differences are represented
by different distributions, i.e., we model the distribution g, (s|z",z12P!) using a latent variable
model. This allows us to derive the distribution of the spurious variable s for any given label.
The values of the probability density can be understood as the degree of correlation between a
specific label and a particular value of the latent variable. Hence, given a label, once its conditional
distribution g, (s|z ™, x'abel) is determined, we can estimate the corresponding spurious variable s
through sampling.

Step 4: We do not theoretically prove that the latent variable model can directly identify the spurious
variable s. In this paper, the identification of s is based on a strong assumption—Assumption
in the paper. This assumption is justified as follows:

Based on the literature (Blei et al.,[2017} Sriperumbudur et al., |2013)), which expresses the true prior
in closed form, we deduce that when the causal relationship between the latent covariate and the label
changes with the tasks, an exponential family distribution is capable of modeling the conditional
distribution p(s|z'2Pel).

Combining Step 1, Step 2, and Step 3, we satisfy the condition that the causal relationship between
the latent covariate and the label changes with the tasks.

Step 5: Theorem [4.3]is also based on Assumption The key result of Theorem [4.3]is that we
can uniquely identify ¢ and (f, g, A). However, this strong assumption imposes certain limitations
on the accuracy of spurious variable identification, which is a topic for future research. Despite this
strong assumption, our experimental results demonstrate the effectiveness of our method.
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