
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

MATRYOSHKA QUANTIZATION

Pranav Ajit Nair∗ Puranjay Datta∗ Jeff Dean Prateek Jain Aditya Kusupati
Google DeepMind ∗Equal Contribution
{pranavajitnair, kusupati}@google.com

ABSTRACT

Quantizing model weights is critical for reducing the communication and inference
costs of large models. However, quantizing models – especially to low precisions
like int4 or int2 – requires a trade-off in model quality; int2, in particular, is known
to severely degrade model quality. Consequently, practitioners are often forced
to maintain multiple models with different quantization levels or serve a single
model that best satisfies the quality-latency trade-off. On the other hand, integer
data types, such as int8, inherently possess a nested (Matryoshka) structure where
smaller bit-width integers, like int4 or int2, are nested within the most significant
bits. Leveraging this insight, in this paper, we propose Matryoshka Quantiza-
tion (MatQuant), a novel multi-scale quantization technique that alleviates the
aforementioned challenge. This technique allows us to train and maintain a single
quantized model but serve it with the precision demanded by the deployment.
Furthermore, leveraging MatQuant’s co-training and co-distillation regularization,
int2 precision models extracted by MatQuant outperform standard int2 quan-
tization by up to to 4% and 7% with OmniQuant and QAT as base algorithms
respectively.

1 INTRODUCTION

11 01 1001

(a)

2 4 6 8
Effective bits per FFN parameter

40

50

60

70

Ta
sk

 A
ve

ra
ge

Gemma-2 9B

MatQuant
MatQuant-Interp.
Baseline
MinMax
Sliced int8

(b) (c)

Figure 1: (a) MatQuant is a multi-scale quantization training technique using the inherent Ma-
tryoshka structure of int8 → int4 → int2. (b) Empirical gains of MatQuant on downstream tasks,
especially > 8% for int2, on Gemma-2 9B with OmniQuant. (c) The right-shifted quantized weight
distribution as a consequence of MatQuant’s training mechanism that maximises accuracies across
all precisions.

Due to their impressive performance, there is a strong push to deploy deep learning models, particu-
larly large language models (LLMs) (G Team et al., 2024; Dubey et al., 2024; Achiam et al., 2023) in
a large number of scenarios. Due to auto-regressive nature of LLMs, decode latency tends to dominate
inference cost. Decode latency itself is dominated by communication cost of transferring model

1

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

weights from high-bandwidth memory (HBM) to the SRAM or due to transferring weights/activations
in a distributed cluster.

Quantizing weights and/or activations can significantly reduce the overall communication load and is,
therefore, one of the most popular techniques for reducing inference costs (Dettmers et al., 2022).
While floating-point representations are standard for training, integer data types such as int8, int4,
and int2 are appealing alternatives for inference. However, current methods for quantizing to these
varying integer precisions typically treat each target precision as an independent optimization problem,
leading to a collection of distinct models rather than a single, versatile one. Furthermore, quantizing
to extremely low precisions like int2 is known to be highly inaccurate. In this work, we pose the
question of whether both of the above challenges can be addressed; that is, can we train a single
model from which we can extract multiple accurate lower-precision models? We answer this question
in the affirmative by introducing Matryoshka Quantization (MatQuant), a novel multi-scale training
method that leverages the inherent nested (Matryoshka) structure (Kusupati et al., 2022) within integer
data types (Figure 1a). Specifically, slicing the most significant bits (MSBs) of an int8-quantized
weight can directly yield an int4 or int2 model. Existing quantization techniques often neglect this
structure, which limits the potential for multi-scale adaptable models operating at various bit-widths
with optimal performance.

Instead, MatQuant simultaneously optimizes model weights across multiple precision levels (e.g.,
int8, int4, int2). At a high level, we represent each model parameter at different precision levels
using shared MSBs, and then jointly optimize the loss for each precision level. This allows us to
develop a single quantized model that can effectively operate at any of the chosen bit-widths, offering
a spectrum of accuracy-vs-cost options. MatQuant is a general-purpose technique, applicable to
most learning-based quantization methods, such as Quantization Aware Training (QAT) (Jacob et al.,
2018) and OmniQuant (Shao et al., 2023).

We demonstrate the efficacy of MatQuant when applied to quantizing the Feed-Forward Network
(FFN) parameters of standard LLMs (Gemma-2 2B, 9B, and Mistral 7B) (Vaswani et al., 2017) – typ-
ically, FFN is the main latency block hence the focus on improving the most significant component’s
latency. Our results show that MatQuant produces int8 and int4 models with comparable accuracy
to independently trained baselines, despite the benefit of shared model parameters. Critically, the
int2 models generated by MatQuant significantly outperform their individually trained counterparts,
with 4% higher accuracy on downstream tasks (Figure 1b). We also extend MatQuant to quantize
all weights of a Transformer layer. In Figure 1c, we find that quantizing with MatQuant shifts
the quantized weight distribution toward higher values, contributing to improved int2 performance.
Finally, in Section G, we also demonstrate that using an extra bit to represent outliers significantly
boosts the performance for our sliced int2 models.

Beyond improving chosen precision performance, MatQuant allows for seamless extraction of
interpolative bit-widths, such as int6 and int3. MatQuant also admits a dense accuracy-vs-cost
trade-off by enabling layer-wise Mix’n’Match of different precisions. Therefore, even if the hardware
only supports int4 and int2, it’s possible to serve models at various effective precisions, tailored to
the deployment environment. Overall, MatQuant and its variants present a significant step toward
developing multi-scale models with high flexibility and performance, pushing the boundaries of
low-bit quantization for efficient LLM inference.

2 MATRYOSHKA QUANTIZATION

In this section, we elaborate on our novel proposed approach, MatQuant with preliminaries behind
QAT and OmniQuant covered in Appendix B.

MatQuant is a general purpose framework to develop a single model that can do well at any precision.
It is a multi-scale training technique that works with most learning-based quantization schemes like
QAT and OmniQuant discussed earlier. At its core, taking inspiration from Kusupati et al. (2022),
MatQuant optimizes the quantization loss for several target bit-widths jointly.

To have a single model for various integer precisions, we nest smaller bit-widths into large ones –
leveraging the inherent Matryoshka nature of the integer data type. So, if we want to extract a r-bit
model from a c-bit model (0 < r < c), we can just slice out the r most significant bits (MSBs) –
using a right shift, followed by a left shift of the same order. Formally, the S(qc, r) operator slices

2

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

the most significant r bits from a c-bit quantized vector qc:

S(qc, r) = clamp
(⌊

qc

2c−r

⌉
, 0, 2r − 1

)
∗ 2c−r (1)

Once we have this structure, we can optimize for several precisions by slicing the MSBs from the
largest bit-width we are optimizing for. Let R = {r1, r2, ..., rK} be the bit-widths we want to
optimize for, Q(·,) represent the quantization function of the base algorithm (i.e., any learning-based
quantization scheme), L(·) represent the loss function pertaining to the base algorithm, F (·) represent
the forward pass required to compute the loss, θ represent the set of model/auxiliary parameters we
are optimizing for and let WF represent the model parameters. MatQuant’s overall objective can be
formulated as follows:

min
P

1

N

∑
i∈[N]

∑
r∈R

λr · L (F (S(Q(θ, c), r), x′
i), y

′
i) (2)

where y′i = yi for QAT and y′i = Fl(W
l
F , X

i
l) for OmniQuant, and x′

i = xi for QAT and x′
i = Xi

l
for OmniQuant. λr is the loss reweighing factor for bit-width r.

In this work, we default to training MatQuant with three bit-widths, R = {8, 4, 2}, and subsequently
perform a grid search over λr. This process aims to optimize performance such that the model
performs well across all targeted precision levels. Further, while the focus of this paper is primarily on
integer data types, we discuss the possibility of extending MatQuant to floating-point representations
in Section D.5.

A key point to note is that MatQuant primarily alters the quantized weight distributions across
precision levels compared to the base quantization algorithm (OmniQuant or QAT). Figure 1c
illustrates the differences in the quantized weight histograms obtained with and without MatQuant
on Gemma-2 9B using OmniQuant. Upon close observation, we find that all the distributions of
MatQuant are shifted to the right; that is, weights quantized with MatQuant tend to use more
higher-valued weights. While this might not significantly impact int8 or even int4 models, int2
models benefit from utilizing more of the possible quantized weights compared to the baseline.
Because int2 favors higher-valued weights, this effect propagates to higher-valued weights for int4,
and then to int8. This observation highlights the potential overparameterization and freedom in the
int8 data type to accommodate the more stringent needs of int2 during joint training. We further
explore the effects of this phenomenon in Section D.3 to develop a better standalone quantization
technique for a single target precision.

2.0.1 INTERPOLATIVE BEHAVIOR

Slicing. Although we explicitly train MatQuant for three precisions (int8, int4, int2), we find that
the resulting model, when quantized to interpolated bit-widths like int6 & int3 by slicing (Eq. 1) the
int8 model, performs on par with a baseline trained explicitly for that precision. It is also significantly
better than slicing an int8 quantized model. We attribute this strong interpolation in bit-width space
to MatQuant, and present more results in Sections 3.1 & C.1.
Mix’n’Match. MatQuant also enables the use of different precisions at different layers through
layer-wise Mix’n’Match (Devvrit et al., 2023), even though we never trained for these combinatorial
possibilities. These large number of models, obtained at no cost, densely span the accuracy-vs-
memory trade-off. Section 3.2 for detailed experiments.

3 EXPERIMENTS

In this section, we present an empirical evaluation of MatQuant working with two popular learning-
based quantization methods: OmniQuant (Section 3.1) and QAT (Section C.1). We demonstrate
MatQuant’s efficiency on Transformer-based LLMs. Unless otherwise mentioned, our primary
focus is on weight quantization within the parameter-intensive FFN blocks of the Transformer layer.

For our experiments, we chose the default target quantization precisions to be int8, int4, and int2. Fur-
thermore, we showcase the interpolative nature of MatQuant through evaluations on int6 and int3, as
well as its elastic ability to densely span the accuracy-vs-cost trade-off using layer-wise Mix’n’Match
(Section 3.2). Finally, we ablate on improving the performance of MatQuant (Sections D.1 and D.2)
and extend MatQuant to the quantization of FFN and Attention parameters. (Section D.3). During
the process of extending MatQuant to all Transformer parameters, we uncovered an interesting

3

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 1: MatQuant with OmniQuant across Gemma-2 2B, 9B and Mistral 7B models. MatQuant
performs on par with the baseline for int4 and int8 while significantly outperforming it for int2. Even
the int3, int6 models obtained for free through interpolation from MatQuant perform comparably to
the explicitly trained baselines. Task Avg. is average accuracy on the evaluation tasks (↑) while log
pplx (perplexity) is computed on C4 validation set (↓).

Data type Method Gemma-2 2B Gemma-2 9B Mistral 7B

OmniQuant Task Avg. log pplx. Task Avg. log pplx. Task Avg. log pplx.

bfloat16 68.21 2.551 74.38 2.418 73.99 2.110

int8 Baseline 68.25 2.552 74.59 2.418 73.77 2.110
MatQuant 68.02 2.570 74.05 2.438 73.65 2.125

int4
Sliced int8 62.87 2.730 72.26 2.480 38.51 4.681
Baseline 67.03 2.598 74.33 2.451 73.62 2.136

MatQuant 66.58 2.618 73.83 2.491 73.06 2.153

int2
Sliced int8 39.78 17.030 38.11 15.226 37.29 11.579
Baseline 51.33 3.835 60.24 3.292 59.74 3.931

MatQuant 52.37 3.800 63.35 3.187 62.75 3.153

int6
Sliced int8 67.72 2.497 74.64 2.353 73.00 2.071
Baseline 68.06 2.554 74.23 2.420 74.10 2.112

MatQuant 67.52 2.574 73.92 2.440 73.63 2.127

int3
Sliced int8 41.35 6.024 54.18 3.977 39.21 10.792
Baseline 64.37 2.727 73.23 2.549 71.68 2.211

MatQuant 64.47 2.618 72.87 2.607 71.16 2.238

hybrid quantization algorithm (between Baseline and MatQuant). Section D.3 further details this
method, called Single Precison MatQuant, which stabilizes the otherwise QAT baseline for all
the Transformer weights. Finally, we also discuss extending MatQuant beyond integer data types
(Section D.5 and the considerations for effective deployment on current hardware (Section D.4).
Further training and fine-grained evaluation details are in the Appendix.

3.1 MatQuant WITH OMNIQUANT

Table 1 shows the efficacy of MatQuant when used with FFN-only OmniQuant and compared to
explicitly trained OmniQuant baselines for the target precisions, i.e., int8, int4, and int2, across all
the models. While the average downstream accuracy of MatQuant for int8 and int4 quantization
is within 0.5% of the corresponding independently trained baselines, the int2 quantized models
of MatQuant are 1.04%, 3.11%, and 3.01% more accurate for Gemma-2 2B, 9B, and Mistral
7B, respectively. Similar trends and improvements follow when measuring performance through
validation log perplexity. Further, the quantized int4 and int2 models sliced from the int8 OmniQuant
baseline suffer a significant drop in accuracy around int4, demonstrating that the nested structure of
int8 is not well utilized.

Sliced Interpolation. Beyond the target quantization granularities, MatQuant allows for inter-
polation to bit-widths not optimized during training. We find that the accuracy of the int6 and int3
models obtained by slicing the MatQuant models is comparable to explicitly trained baselines for
both precisions.

3.2 LAYERWISE MIX’N’MATCH

2 4 6 8
Effective bits per FFN parameter

60

65

70

75

Ta
sk

 A
ve

ra
ge

Gemma-2 9B

MatQuant
Mix'n'Match
MatQuant-Interp.
Baseline

Figure 2: Mix’n’Match on Gemma-2
9B model trained using MatQuant with
OmniQuant allows elastic accuracy-vs-
cost model extraction for free during de-
ployment.

MatQuant enables another form of elastic and interpola-
tive behavior through Mix’n’Match. Mix’n’Match pro-
vides a mechanism to obtain a combinatorial number of
strong models by using different quantization granularities,
from the training target bit-widths, across layers. Figure 2
shows the ability of Mix’n’Match to densely span the
accuracy-vs-bits-per-FFN-parameter (memory/cost) trade-
off for the Gemma-2 9B model trained using MatQuant
with OmniQuant. While there are many more feasi-
ble models, we only showcase the best models obtained
through the strategy described in Appendix F. Interest-
ingly, the Mix’n’Match model, with a sub-4-bit effective
width, is more accurate than the 4-bit sliced model. This
opens up possibilities for effective serving depending on
hardware support (Section D.4) .

4

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

REFERENCES

AmirAli Abdolrashidi, Lisa Wang, Shivani Agrawal, Jonathan Malmaud, Oleg Rybakov, Chas
Leichner, and Lukasz Lew. Pareto-optimal quantized resnet is mostly 4-bit. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3091–3099, 2021.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Edward H Adelson, Charles H Anderson, James R Bergen, Peter J Burt, and Joan M Ogden. Pyramid
methods in image processing. RCA engineer, 29(6):33–41, 1984.

Harshavardhan Adepu, Zhanpeng Zeng, Li Zhang, and Vikas Singh. Framequant: Flexible low-bit
quantization for transformers. arXiv preprint arXiv:2403.06082, 2024.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Martin Jaggi, Dan Alistarh,
Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in rotated llms. CoRR,
abs/2404.00456, 2024. doi: 10.48550/ARXIV.2404.00456. URL https://doi.org/10.
48550/arXiv.2404.00456.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 7432–7439. AAAI Press, 2020. doi:
10.1609/AAAI.V34I05.6239. URL https://doi.org/10.1609/aaai.v34i05.6239.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36,
2024.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, Yu Qiao, and
Ping Luo. Efficientqat: Efficient quantization-aware training for large language models. CoRR,
abs/2407.11062, 2024. doi: 10.48550/ARXIV.2407.11062. URL https://doi.org/10.
48550/arXiv.2407.11062.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. In Jill Burstein,
Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language Technologies,
NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp.
2924–2936. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1300. URL
https://doi.org/10.18653/v1/n19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018. URL http://arxiv.org/abs/1803.05457.

Emily L Denton, Soumith Chintala, Rob Fergus, et al. Deep generative image models using a
laplacian pyramid of adversarial networks. Advances in neural information processing systems, 28,
2015.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

5

https://doi.org/10.48550/arXiv.2404.00456
https://doi.org/10.48550/arXiv.2404.00456
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.48550/arXiv.2407.11062
https://doi.org/10.48550/arXiv.2407.11062
https://doi.org/10.18653/v1/n19-1300
http://arxiv.org/abs/1803.05457

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

F Devvrit, Sneha Kudugunta, Aditya Kusupati, Tim Dettmers, Kaifeng Chen, Inderjit Dhillon, Yulia
Tsvetkov, Hannaneh Hajishirzi, Sham Kakade, Ali Farhadi, Prateek Jain, et al. Matformer: Nested
transformer for elastic inference. arXiv preprint arXiv:2310.07707, 2023.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller:
Unleashing the potential of sub-4-bit llms via self-distillation. In Lun-Wei Ku, Andre Martins,
and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pp. 102–116. Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.
ACL-LONG.7. URL https://doi.org/10.18653/v1/2024.acl-long.7.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Gemini G Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

Gemma-Team. Gemma 2: Improving open language models at a practical size. ArXiv, abs/2408.00118,
2024. URL https://api.semanticscholar.org/CorpusID:270843326.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2704–2713, 2018.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023. doi: 10.
48550/ARXIV.2310.06825. URL https://doi.org/10.48550/arXiv.2310.06825.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W. Ma-
honey, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
2024. URL https://openreview.net/forum?id=0jpbpFia8m.

Aditya Kusupati, Gantavya Bhatt, Aniket Rege, Matthew Wallingford, Aditya Sinha, Vivek Ra-
manujan, William Howard-Snyder, Kaifeng Chen, Sham Kakade, Prateek Jain, et al. Matryoshka
representation learning. Advances in Neural Information Processing Systems, 35:30233–30249,
2022.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,
2023.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2117–2125, 2017.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: data-free quantization aware
training for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.),
Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and
virtual meeting, August 11-16, 2024, pp. 467–484. Association for Computational Linguistics,
2024a. doi: 10.18653/V1/2024.FINDINGS-ACL.26. URL https://doi.org/10.18653/
v1/2024.findings-acl.26.

6

https://doi.org/10.18653/v1/2024.acl-long.7
https://api.semanticscholar.org/CorpusID:270843326
https://doi.org/10.48550/arXiv.2310.06825
https://openreview.net/forum?id=0jpbpFia8m
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.18653/v1/2024.findings-acl.26

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman Krish-
namoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: LLM quantization
with learned rotations. CoRR, abs/2405.16406, 2024b. doi: 10.48550/ARXIV.2405.16406. URL
https://doi.org/10.48550/arXiv.2405.16406.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models.
arXiv preprint arXiv:2403.12544, 2024.

Pranav Ajit Nair and Arun Sai Suggala. Cdquant: Accurate post-training weight quantization of large
pre-trained models using greedy coordinate descent. CoRR, abs/2406.17542, 2024. doi: 10.48550/
ARXIV.2406.17542. URL https://doi.org/10.48550/arXiv.2406.17542.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Oren Rippel, Michael Gelbart, and Ryan Adams. Learning ordered representations with nested
dropout. In International Conference on Machine Learning, pp. 1746–1754. PMLR, 2014.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Con-
ference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020, pp. 8732–8740. AAAI Press, 2020. doi:
10.1609/AAAI.V34I05.6399. URL https://doi.org/10.1609/aaai.v34i05.6399.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for
large language models. In The Twelfth International Conference on Learning Representations, ICLR
2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.
net/forum?id=PxoFut3dWW.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Haichao Yu, Haoxiang Li, Humphrey Shi, Thomas S. Huang, and Gang Hua. Any-precision deep
neural networks. ArXiv, abs/1911.07346, 2019. URL https://api.semanticscholar.
org/CorpusID:208138922.

Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. Slimmable neural networks.
arXiv preprint arXiv:1812.08928, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In Anna Korhonen, David R. Traum, and Lluı́s Màrquez
(eds.), Proceedings of the 57th Conference of the Association for Computational Linguistics,
ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 4791–4800.
Association for Computational Linguistics, 2019. doi: 10.18653/V1/P19-1472. URL https:
//doi.org/10.18653/v1/p19-1472.

7

https://doi.org/10.48550/arXiv.2405.16406
https://doi.org/10.48550/arXiv.2406.17542
https://doi.org/10.1609/aaai.v34i05.6399
https://openreview.net/forum?id=PxoFut3dWW
https://openreview.net/forum?id=PxoFut3dWW
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:208138922
https://api.semanticscholar.org/CorpusID:208138922
https://doi.org/10.18653/v1/p19-1472
https://doi.org/10.18653/v1/p19-1472

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

A RELATED WORK

Model weight quantization is an extremely powerful and prevalent technique for making resource-
intensive neural networks suitable for deployment constraints – especially modern-day LLMs. Quanti-
zation algorithms can be categorized as either learning-free or learning-based. Learning-free methods
use limited data to calibrate model parameters without relying on gradient descent. Learning-based
methods, however, utilize gradient descent to update either model parameters or auxiliary parameters
to aid in quantization.

Learning-free Quantization Methods. Naive quantization methods, such as MinMax, absmax,
and zero-point quantization, aim to directly map the range of model weights to the target bit-width
– see (Dettmers et al., 2022) for a detailed background. Dettmers et al. (2022) further improved
this by identifying the need to handle outliers with higher precision than the rest of the model
weights. The core principle of more recent learning-free quantization methods remains similar
while improving various aspects of it and using small amounts of data for calibration. For example,
GPTQ (Frantar et al., 2022) improves upon min-max quantization by iterating over all the coordinates,
quantizing them one at a time, and updating the remaining full-precision coordinates to minimize
the layer-wise activation reconstruction error. AWQ (Lin et al., 2023), SmoothQuant (Xiao et al.,
2023), and AffineQuant (Ma et al., 2024) scale the weights and activations to reduce outliers, thus
making them easier to quantize. QuIP (Chee et al., 2024), FrameQuant (Adepu et al., 2024), and
QuaRoT (Ashkboos et al., 2024) multiply the weights and activations by orthonormal matrices before
quantizing to reduce the number of outliers. SqueezeLLM (Kim et al., 2024) uses clustering to obtain
the optimal buckets for quantization, and CDQuant (Nair & Suggala, 2024) improves upon GPTQ by
greedily choosing the coordinates to descend along. While learning-free methods are inexpensive and
work well at higher bit-widths, they are often suboptimal in the low-precision regime, which benefits
greatly from learning-based techniques.

Learning-based Quantization Methods. Quantization Aware Training (QAT) (Jacob et al., 2018;
Abdolrashidi et al., 2021) is a logical approach to ensure that models are easy to quantize during
inference while retaining high accuracy. However, because QAT involves updating all the model
parameters, its adoption for LLMs has been limited. Several recent works improve the performance
and efficiency of QAT. LLM-QAT (Liu et al., 2024a) and BitDistiller (Du et al., 2024) enhance QAT
with knowledge distillation from the full-precision model. EfficientQAT (Chen et al., 2024) minimizes
the block-wise reconstruction error before performing end-to-end training. This significantly reduces
the time it takes for QAT to converge. On the other hand, some techniques significantly reduce the
overhead by learning only the auxiliary parameters, such as scaling factors and zero-points, that
aid in quantization instead of updating the actual weight matrices. For example, OmniQuant (Shao
et al., 2023) does not update the model parameters; instead, it learns additional scales and shifting
parameters (that aid with quantization) through gradient descent over the block-wise reconstruction
error and achieves better accuracy than most QAT techniques. Likewise, SpinQuant (Liu et al.,
2024b) uses gradient descent to learn its rotation matrices. This class of learning-based quantization
techniques (OmniQuant, SpinQuant, etc.) is widely adopted due to their appeal of achieving QAT-
level accuracy at a fraction of the cost.

Multi-scale Training. Training across multiple data scales (resolutions) was heavily popularized in
computer vision for both recognition and generation (Adelson et al., 1984; Lin et al., 2017; Denton
et al., 2015). More recently, the paradigm of multi-scale training has shifted to models (Rippel et al.,
2014; Yu et al., 2018; Kusupati et al., 2022; Devvrit et al., 2023), where the data remains the same,
and models of varying capacity, all nested within one large model, are trained jointly. This joint,
nested (Matryoshka-style) learning with varying model sizes results in a smooth accuracy-vs-compute
trade-off and is beneficial in many downstream applications and real-world deployments. However,
the most obvious structure with a nested nature is the bit structure of the integer data type. Given the
success of multi-scale training for inputs, outputs, and model weights, it is imperative to explore it
further for integer data types, especially in the context of quantization, which aids in the deployment
of resource-intensive LLMs. Following this idea, Yu et al. (2019) have successfully trained a single
model that can do well at any precision. However, the experiments were limited to ConvNets and
small Neural Networks. In this paper, we extend the idea of nested precision to LLMs and show
that it indeed works at scale. We also show that, for the first time, our models are quality neutral
for intermediate precisions such as int3 and int6 that we never trained for, and densely span the
accuracy-vs-bits trade-off. In Section D.3, we show that even to train models for a fixed target

8

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

precision, having loss over the sliced bits of an 8-bit model does better than training a model explicitly
for that precision, indicating that MatQuant is a fundamentally better way to do low-bit quantization.

B MATRYOSHKA QUANTIZATION

B.1 PRELIMINARIES

B.1.1 QUANTIZED AWARE TRAINING

Quantized Aware Training (QAT) learns a c-bit quantized model by optimizing for the end-to-end
cross entropy loss using gradient descent. It uses the quantized weights for the forward pass and a
straight through estimator (STE) (Bengio et al., 2013) to propagate gradients through the quantization
operator during the backward pass.

To mathematically formulate QAT, we define MinMax quantization of a real-valued vector w in c bits
as follows:

QMM(w, c) = clamp
(⌊w

α
+ z

⌉
, 0, 2c − 1

)
α =

max(w)−min(w)

2c − 1
, z = −min(w)

α

(3)

where QMM(w, c) is the c-bit quantized version of w, α is the scaling factor and z is the zero point.

Let WF represent weights of a Transformer LLM and let D = {(x1, y1), . . . , (xN , yN)} be a labelled
dataset where xi and yi represent the input and output respectively. With LCE as the cross entropy
loss, the optimization of QAT is:

min
WF

1

N

∑
i∈[N]

LCE (F (xi;QMM (WF , c)), yi) (4)

where F (·) represents the LLM’s forward pass.

B.1.2 OMNIQUANT

OmniQuant, unlike QAT, does not update the model parameters. Instead, it learns additional scaling
and shifting parameters through gradient descent over layer-wise L2 error reconstruction. These
auxiliary parameters aid with quantization. Similar to QAT, OmniQuant also uses a straight through
estimator during optimization. However, unlike QAT, OmniQuant operates with limited data, making
it much more attractive for resource-scarce settings.

OmniQuant adds two learnable scales, γ and β, to MinMax quantization as follows:

QOmni(w, c) = clamp
(⌊w

α
+ z

⌉
, 0, 2c − 1

)
α =

γ ·max(w)− β ·min(w)

2c − 1
, z = −β ·min(w)

α

(5)

OmniQuant also adds another set of learnable shifting and scaling parameters to the FFN’s affine
projections as follows:

XW + b → ((X − δ)⊘ s) ·QOmni(W ⊙ s) + b+ δ ·W (6)

where X ∈ Rn×d is the input to the affine transformation, W ∈ Rd×do is the linear projection
associated with the affine transformation, b ∈ Rdo is the bias vector, δ ∈ Rd and s ∈ Rd are learnable
shift and scale parameters respectively.

With the goal of optimizing the layer-wise L2 error (where a layer consists of an Attention block
followed by an FFN block), OmniQuant’s overall objective can be portrayed as follows:

min
γ,β,δ,s

||Fl(W
l
F), Xl)− Fl(QOmni(W

l
F), Xl)||22 (7)

where Fl(·) represents the forward pass for a single layer l, W l
F represents the layer parameters and

Xl represents the layer’s input. Note that the above objective is optimized independently for each of
the L Transformer layers.

9

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

C EXPERIMENTS

In this section, we present an empirical evaluation of MatQuant working with two popular learning-
based quantization methods: OmniQuant (Section 3.1) and QAT (Section C.1). We demonstrate
MatQuant’s efficiency on Transformer-based LLMs. Unless otherwise mentioned, our primary
focus is on weight only quantization within the parameter-intensive FFN blocks of the Transformer
layer.

For our experiments, we chose the default target quantization precisions to be int8, int4, and int2. Fur-
thermore, we showcase the interpolative nature of MatQuant through evaluations on int6 and int3, as
well as its elastic ability to densely span the accuracy-vs-cost trade-off using layer-wise Mix’n’Match
(Section 3.2). Finally, we ablate on improving the performance of MatQuant (Sections D.1 and D.2)
and extend MatQuant to the quantization of FFN and Attention parameters. (Section D.3). Further
training and fine-grained evaluation details are in the Appendix.

Models and Data. We experiment with Gemma-2 (Gemma-Team, 2024) 2B, 9B, and Mistral
7B (Jiang et al., 2023) models. For OmniQuant experiments, we sample 128 examples with a
sequence length of 2048 from the C4 dataset (Raffel et al., 2020) and train using a batch size of 4.
We train for a total of 10M tokens for all models except the int2 baseline, where we train the model
for 20M tokens (Shao et al., 2023). For QAT experiments, we sample a fixed set of 100M tokens
from the C4 dataset and train all our models using a batch size of 16 and a sequence length of 8192
for a single epoch.

Baselines. For OmniQuant and QAT, our primary baselines (referred to as “Baseline” in the tables
and figures) are models trained explicitly for a given precision. When interpolating the models
trained with MatQuant for int6 and int3, we do not perform any additional training. However, the
baselines are trained explicitly for 6 and 3 bits respectively. We also compare against a sliced int8
OmniQuant/QAT baseline model to the corresponding precision (referred to as “Sliced int8” in the
tables).

Table 2: MatQuant with QAT across Gemma-2 2B, 9B and Mistral 7B models. MatQuant performs
on par with the baseline for int4 and int8 while significantly outperforming it for int2. Even the
int3, int6 models obtained for free through interpolation from MatQuant perform comparably to the
explicitly trained baselines. Task Avg. is average accuracy on the evaluation tasks (↑) while log pplx
(perplexity) is computed on C4 validation set (↓).

Data type Method Gemma-2 2B Gemma-2 9B Mistral 7B

QAT Task Avg. log pplx. Task Avg. log pplx. Task Avg. log pplx.

bfloat16 68.21 2.551 74.38 2.418 73.99 2.110

int8 Baseline 67.82 2.458 74.17 2.29 73.48 2.084
MatQuant 67.44 2.449 74.52 2.262 72.58 2.104

int4
Sliced int8 67.13 2.483 73.36 2.276 71.76 2.18
Baseline 67.03 2.512 73.26 2.324 72.13 2.105

MatQuant 66.59 2.499 73.24 2.429 71.99 2.148

int2
Sliced int8 39.27 10.217 40.40 7.259 37.41 9.573
Baseline 47.74 3.433 56.02 2.923 54.95 2.699

MatQuant 52.20 3.055 62.29 2.265 61.97 2.524

int6
Sliced int8 67.53 2.401 74.15 2.232 73.35 2.097
Baseline 67.75 2.460 74.31 2.293 72.71 2.077

MatQuant 67.33 2.453 74.30 2.265 72.59 2.106

int3
Sliced int8 59.56 2.882 68.70 2.512 64.33 2.493
Baseline 61.75 2.678 69.9 2.43 68.82 2.197

MatQuant 60.76 2.734 70.41 2.429 67.16 2.324

Evaluation Datasets. Following recent work (Frantar et al., 2022; Ma et al., 2024), we evaluate all
the methods based on log perplexity and average zero-shot accuracy across a collection of downstream
tasks. We use C4’s test set to calculate perplexity, and for downstream evaluations, we test on ARC-c,
ARC-e (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), PIQA (Bisk
et al., 2020), and Winogrande (Sakaguchi et al., 2020).

10

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 3: Design choice ablation for loss re-weighting of the 3 target bit-widths (int8, int4, int2) that
MatQuant explicitly optimizes. Note that MatQuant (0, 0, 1) ≡ Single Precison MatQuant.

Data type Weightings Gemma-2 2B Gemma-2 9B Mistral 7B

Task Avg.

int8

(0.1, 0.1, 1) 68.02 74.05 73.27
(0.2, 0.2, 1) 67.91 73.91 73.44
(0.3, 0.3, 1) 68.01 73.88 73.56
(0.4, 0.4, 1) 67.95 73.84 73.65

int4

(0.1, 0.1, 1) 66.58 73.83 72.76
(0.2, 0.2, 1) 67.47 73.8 73.16
(0.3, 0.3, 1) 66.97 73.25 73.47
(0.4, 0.4, 1) 67.48 74.32 73.66

int2

(0.1, 0.1, 1) 52.37 63.35 63.25
(0.2, 0.2, 1) 51.88 64.04 63.99
(0.3, 0.3, 1) 51.05 64.1 63.6
(0.4, 0.4, 1) 51.69 61.98 62.75

C.1 MatQuant WITH QAT

To further demonstrate the generality of MatQuant, we experiment on the same models using the
popular QAT technique. Following the trend of experimental results with OmniQuant, we show in
Table 2 that the models trained using MatQuant with QAT are comparable to the explicitly trained
baselines for all the targeted bit-widths of int8 and int4. However, int2 quantized models using
MatQuant are 4.46%, 6.27%, and 7.02% more accurate for Gemma-2 2B, 9B, and Mistral 7B,
respectively.

Sliced Interpolation. Models trained using MatQuant with QAT exhibit strong interpolative
performance similar to that of MatQuant with OmniQuant. We find that the accuracy of the int6 and
int3 models obtained by slicing the MatQuant models is comparable to explicitly trained baselines
for both interpolated bit-widths.

While OmniQuant only trains the auxiliary parameters needed for quantization, QAT also updates
the weight parameters. This potentially results in severe overfitting to the C4 subset used in the
experiments. We observe this overfitting in all the experiments presented in Table 2, where the log
perplexities improve for QAT compared to OmniQuant, while the downstream accuracies suffer. This
also highlights the need for high-quality data for QAT to realize its benefits; otherwise, users are
better off using resource-friendly methods like OmniQuant.

D ABLATIONS AND DISCUSSION

In this section, we present design ablations to improve MatQuant. Section D.1 discusses the
effect of non-uniform weighting across target precisions (int8, int4, int2), and Section D.2 explores
enabling co-distillation of lower precision levels (int4, int2) from the highest precision quantized
model (int8). During the process of extending MatQuant to all Transformer parameters, not just
the FFN block, we uncovered an interesting hybrid quantization algorithm (between Baseline and
MatQuant). Section D.3 further details this method, called Single Precison MatQuant, which
stabilizes the otherwise QAT baseline for all the Transformer weights. Finally, we also discuss
extending MatQuant beyond integer data types and the considerations for effective deployment on
current hardware.

D.1 WEIGHTINGS (λr) FOR MatQuant

Depending on the constraints, we may wish to maximize the accuracy of one of the target bit-widths
in MatQuant. Equation 2 provides a general formulation of MatQuant that supports searching
over the weight λr for bit-width r. The results in Section C are with the weights that have balanced

11

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 4: Design choice ablations for co-distillation within MatQuant. x → y represents distilling
the y-bit model from the x-bit model. We note that the accuracy for int2 has significantly improved
while minimally impacting the other bit-widths.

Gemma-2 9B OmniQuant QAT

Data type Config. Task Avg. log pplx. Task Avg. log pplx.

int8

[8, 4, 2] 74.05 2.438 74.52 2.262
[8, 4, 8 → 2] 72.76 2.473 74.75 2.242
[8, 4, 2, 8 → 2] 73.99 2.435 74.87 2.240
[8, 4, 2, 8 → 4; 2] 73.85 2.437 74.81 2.240

int4

[8, 4, 2] 73.83 2.491 73.24 2.295
[8, 4, 8 → 2] 72.65 2.519 73.76 2.279
[8, 4, 2, 8 → 2] 73.63 2.486 73.77 2.276
[8, 4, 2, 8 → 4; 2] 73.55 2.478 73.93 2.277

int2

[8, 4, 2] 63.35 3.187 62.29 2.660
[8, 4, 8 → 2] 62.64 3.289 62.31 2.670
[8, 4, 2, 8 → 2] 62.91 3.138 62.70 2.673
[8, 4, 2, 8 → 4; 2] 64.32 3.227 62.60 2.670

performance across target precisions. Table 3 shows the weight multiplier ablation results for Gemma-
2 2B, 9B, and Mistral 7B. We find that a higher relative value for λ2 is essential in attaining good int2
performance. Increasing λ4, λ8 to improve int8 and int4 models often results in accuracy drop for the
int2 models. In general, we can see that a higher relative weight for a specific precision results in
increased accuracy for that bit-width. We can consider re-weighting as scaling the importance of the
bits during training, and finding an optimal re-weighting recipe is an interesting research question.

D.2 CO-DISTILLATION FOR MatQuant

Given the nested nature of the models trained using MatQuant, we explored co-distillation, where
the outputs from a higher-precision model are used as the target for the lower-precision nested model,
either in a standalone fashion or alongside the ground truth target (weighted equally). Table 4 shows
the effects of co-distillation applied to MatQuant with both OmniQuant and QAT on Gemma-2 9B.
While int8 and int4 show no significant improvement, the nested int2 model benefits substantially
from the int8 supervision, reaching 0.97% higher accuracy than the non-co-distilled MatQuant with
OmniQuant. Co-distillation in MatQuant opens up avenues for interesting design choices that can
further leverage the inherent nested structure of integer data types.

D.3 Single Precison MatQuant

In Tables 1 and 2, MatQuant performs on par with the explicitly trained baselines for int4, int8,
and the interpolated int3 and int6 precisions. However, the int2 models show a significant accuracy
improvement. To investigate this, we conducted a simple ablation in MatQuant by removing the
loss terms for int4 and int8 (i.e., R = {2} in Equation 2 or setting λ4 = λ8 = 0) and present

Table 5: Single Precison MatQuant significantly improves upon the baseline for int2 and, at times,
outperforms MatQuant. Crucially, int8 and int4 performances of Single Precison MatQuant
experience a significant accuracy decrease (as shown in Tables 23 & 24) in Appendix L).

int2 Gemma-2 2B Gemma-2 9B Mistral 7B

Method Task Avg. log pplx. Task Avg. log pplx. Task Avg. log pplx.

OmniQuant 51.33 3.835 60.24 3.292 59.74 3.931
S.P. MatQuant 53.42 3.631 64.02 3.171 63.58 2.976
MatQuant 52.37 3.800 63.35 3.187 62.75 3.153

QAT 47.74 3.433 56.02 2.923 54.95 2.699
S.P. MatQuant 52.08 3.054 62.66 2.656 61.48 2.509
MatQuant 52.20 3.055 62.29 2.660 61.97 2.524

12

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 6: Extending MatQuant with QAT to FFN + Attention parameters. Baseline QAT destabilizes
for int2 and int3 but improves significantly through MatQuant & Single Precison MatQuant.

Data type Method Gemma-2 9B Mistral 7B

QAT Task Avg. log pplx. Task Avg. log pplx.

bfloat16 74.38 2.418 73.99 2.110

int8 Baseline 74.61 2.353 73.73 2.091
MatQuant 74.85 2.333 73.88 2.182

int4
Sliced int8 73.15 2.362 71.46 2.290
Baseline 72.98 2.40 71.87 2.132

MatQuant 74.01 2.396 71.44 2.441

int2

Sliced int8 38.97 23.467 35.06 10.640
Baseline - - - -

S.P. MatQuant 45.69 3.780 35.35 7.761
MatQuant 44.19 3.826 38.36 10.971

int6
Sliced int8 74.49 2.290 73.61 2.104
Baseline 74.65 2.357 73.72 2.093

MatQuant 74.57 2.340 74.04 2.161

int3

Sliced int8 64.19 2.895 39.01 6.018
Baseline - - - -

S.P. MatQuant 67.68 2.520 67.59 2.335
MatQuant 63.63 2.937 40.55 4.776

the results in Table 5. We call this version of MatQuant as Single Precison MatQuant. With
Single Precison MatQuant, we observe a further boost of up to 1.05%, in the accuracy of int2
models at a ∼2% accuracy drop in the corresponding int4 and int8 models – int2 is still nested within
int8. This improvement likely stems from the six additional bits available during MatQuant-style
training to optimize the int2 representation.

In the case of Single Precison MatQuant, gradient descent is free to tune these six additional
bits to improve the overall quality of the int2 model. In MatQuant, since we have additional
losses to preserve the performance of the int4 and int8, the int2 performance is slightly worse than
Single Precison MatQuant. However, since the int4 and int8 models are typically very close in
accuracy to the bfloat16 model, MatQuant can shift some of the weights to improve the int2 model.
As int4 and int8 models have substantially more quantized buckets than int2, we hypothesize that
shifting some weights into adjacent buckets may not significantly affect their performance; however,
it can significantly impact int2’s performance. In fact, in the weight distributions presented in Fig 1c,
we observe that MatQuant results in a model where larger number of weights are assigned to the
higher-valued buckets. Conclusively, MatQuant and Single Precison MatQuant inherently seem
to be a better way of performing low-bit quantization.

FFN + Attention Weight Quantization. We present results for FFN + Attention quantization for
QAT in Table 6. For int8, int4 and the interpolated int6 model, MatQuant performs on par with the
Baseline. However, we found int2 and int3 to be very unstable while quantizing both, the FFN and
the Attention parameters. Most recent works that do QAT for both the blocks Chen et al. (2024); Liu
et al. (2024a); Du et al. (2024) either do some form of warm starting for the quantized parameters, or
have additional distillation and auxiliary loss functions. In the naive setup of minimizing the loss with
respect to the ground truth, we find QAT to be very unstable at lower precisions. On the other hand,
both MatQuant and Single Precison MatQuant are very stable further highlighting the benefits
brought by MatQuant style training.

D.4 DEPLOYMENT CONSIDERATIONS

Current hardware accelerators have native support for serving int8 and int4 quantized models.
Additionally, custom-implemented CUDA kernels can can support various low-precision bit-widths,
like int2 and int3 (Chee et al., 2024; Frantar et al., 2022). MatQuant can generate a large number

13

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

of models at inference time. Depending on the serving environment, we can choose between
Mix’n’Match models and homogeneous sliced models. For example, suppose the serving environment
has a memory constraint equivalent to an int3 model but lacks optimized support for int3, while
supporting int2. In this case, a Mix’n’Match model with a small performance drop when compared
to the sliced int3 model could be deployed. More generally, as depicted in Figure 2, MatQuant
densely spans the memory-versus-accuracy curve and can be leveraged to obtain performant model for
several serving constraints. MatQuant can enable further research on hardware software co-design
to effectively support elastic bit-widths on-the-fly during inference.

D.5 EXTENSION TO FLOATING POINT

Extending MatQuant to floating-point representations, such as FP8 and FP4, presents significant
challenges. Given that the exponent is encoded within the bit representation and contributes to
the value as a power of 2 (i.e., effectively log2), slicing it results in buckets whose sizes increase
exponentially, unlike the integer case, where bucket sizes are constant. For example, slicing the first
two bits from int8 yields buckets of 0, 64, 128, 192. Here, the bucket size (64) is constant; however,
this would not be the case when slicing two exponent bits from FP8. This is a promising avenue
for future research that could further unlock the benefits of MatQuant, even during large-scale
pretraining.

E PARTICULARS OF THE SLICING OPERATION.

To extract a r-bit model from a c-bit model, we start by slicing out the most significant r − 1 bits.
We use 1 for the rth bit if the (r + 1)th, else, we use 0. This is captured by the round function in
Equation 1 and is done to push values to higher buckets as we expect them to be more informative (Sun
et al., 2024). For example, consider the the unsigned int8 value 53. The first two MSBs are 0s.
Naively slicing them would round down 53 to 0, however, we want to round it up to 1. Since the bit
corresponding to 32 is set, i.e., the (r + 1)th MSB, instead of rounding 53 down to 0, we round it up
to 1.
The clamp(·) operation is also equally important. The rounding operation in Equation 1 will round
240 down to 4, however, unsigned int2 operates with only 0, 1, 2, 3. clamp(·) here would make sure
that 4 is clamped down to 3.

F ADDITION TRAINING DETAILS

We run all our experiments on TPUv5e chips. For OmniQuant experiments, we use a constant
learning rate of 1e − 3 and for QAT experiments, we linearly warmup the learning rate to 1e − 5
for 150 and use a consine decay schedule thereafter. For OmniQuant experiments, we sample 128
examples with a sequence length of 2048 from the C4 dataset (Raffel et al., 2020) and train using
a batch size of 4. We train for a total of 10M tokens for all models except the int2 baseline, where
we train the model for 20M tokens (Shao et al., 2023). For Co-distillation experiments where
OmniQuant is the base algorithm, we train for a total of 8.3M tokens. For QAT experiments, we
sample a fixed set of 100M tokens from the C4 dataset and train all our models using a batch size
of 16 and a sequence length of 8192 for a single epoch. For Attn + FFN experiments with QAT,
we sample a fixed set of 300M tokens from C4 and train with a batch size of 16 for a single epoch.
We use (λ8, λ4, λ2) = (0.1, 0.1, 1.0) for all our Gemma experiments unless otherwise stated. In
the case of Mistral 7B, for OmniQuant experiments, we use (λ8, λ4, λ2) = (0.4, 0.4, 1.0), and for
QAT experiments we use (λ8, λ4, λ2) = (0.2, 0.2, 1.0). For all our Extra Precison MatQuant
experiments, we use (λ8, λ4, λ2) = (1.0, 1.0, 1.0).

Mix’n’Match For a fixed effective bits-per-FFN layer, where each layer was quantized to either
int2, int4, or int8, we explored four different quantization strategies: Pyramid, Reverse Pyramid,
Increasing, and Decreasing. In the Pyramid strategy, the initial and final layers were quantized to int2,
the central layers to int8, with int4 serving as an intermediate step. The Reverse Pyramid strategy
followed the opposite approach, assigning int8 to the initial and final layers, int2 to the central layers,
and int4 in between. The Increasing and Decreasing strategies assigned bit precision in ascending
and descending order, respectively, across the layers. Our experimental results demonstrated that,
for a given effective bits per FFN layer, the Pyramid strategy consistently outperformed the others.

14

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Allocating higher precision (int8) to the middle layers helped preserve critical information, while
the initial and final layers performed adequately with lower bit precision (int2 and int4), leading to a
more efficient and effective quantization scheme.
Table 7: Results comparing MatQuant with Extra Precison MatQuant for Gemma-2 2B, 9B, and
Mistral 7B, with OmniQuant as the base algorithm. We find that for the 2-bit model, having an extra
bucket significantly boosts the performance, however, this is not the case with the higher precisions.

Method Gemma-2 2B Gemma-2 9B Mistral 7B

OmniQuant Avg. Bits Task Avg. log pplx. Avg. Bits Task Avg. log pplx. Avg. Bits Task Avg. log pplx.

bfloat16 68.21 2.551 74.38 2.418 73.99 2.110

MatQuant 8 68.02 2.570 8 74.05 2.438 8 73.65 2.125
Extra Precison MatQuant 8 67.85 2.580 8 74.33 2.446 8 73.46 2.132

MatQuant 4 66.58 2.618 4 73.83 2.491 4 73.06 2.153
Extra Precison MatQuant 4.023 66.54 2.617 4.022 74.26 2.470 4.022 73.13 2.155

MatQuant 2 52.37 3.800 2 63.35 3.187 2 62.75 3.153
Extra Precison MatQuant 2.052 55.70 3.355 2.050 68.25 2.823 2.051 65.99 2.569

MatQuant 6 67.52 2.574 6 73.92 2.440 6 73.63 2.127
Extra Precison MatQuant 6.018 68.01 2.582 6.018 74.50 2.446 6.018 73.59 2.139

MatQuant 3 64.47 2.618 3 72.87 2.607 3 71.16 2.238
Extra Precison MatQuant 3.031 63.24 2.757 3.029 73.25 2.535 3.030 71.55 2.228

G EXTRA PRECISION MATQUANT

Equation 8 clearly allows an extra bucket to be included into the quantization range, i.e, a r-bit model
would have 2r + 1 possible values instead of 2r.

S(qc, r) =

(⌊
qc

2c−r

⌉)
∗ 2c−r (8)

For example, consider slicing the first two MSBs from an unsigned int8 value, 234. As per Equation 1,
234 first gets rounded to 4, following which it gets clipped to 3, and finally is scaled up to 3∗64 = 192
(Note that MatQuant int2 allows for 0, 64, 128, 192). However, since the clipping operation is
missing in Equation 8, 4 is never clipped down to 3, and S(qc, r) is now 4 ∗ 64 = 256 Thus, for
certain int2 values in our final quantized model, we will have to store an extra bit. This is the case with
int3, int4 and int6 as well where an extra bit is required to represent certain values. In Table 7, we can
see that the fraction of parameters that fall into this extra bucket is very small. However, for our 2-bit
models, this additional bucket gives significant improvements in performance, for example, in Table 7
int2 Gemma-2 9B’s average downstream accuracy goes up by 5% when trained with an additional
bucket (referred to as Extra Precison MatQuant in Table 7). This number is further boosted to 6%
with co-distillation, as evidenced by Table 8. We hypothesize that this additional bucket helps with
capturing the outliers and thus leads to a significant performance boost. As highlighted by recent
work (Dettmers et al., 2023; Kim et al., 2024), it is crucial to store certain outliers full precision.
Interestingly, we show that even a single bit is enough to capture several of these outliers, especially
for low bit quantization. Finally, note that this performance boost is not very evident in higher
precisions where there are enough buckets to account for the outliers.

Mix’n’Match As shown in Figure 3 with a strong int2 model (i.e., 2.050 bits on average),
Extra Precison MatQuant Mix’n’Match densely spans the Pareto-optimal accuracy-vs-bits-per-
FFN-parameter (memory/cost) trade-off for Gemma-2 9B model trained using MatQuant with
Omni-Quant – sometimes even improving on the bfloat16 model accuracy. Consequently, hardware
supporting only int2 and int4 data types can still accommodate a model with a memory footprint
similar to that of an int3 quantized model, and quality comparable or superior to int3; the additional
bits required in the case of int2 can be packed into int2/int4. However, custom CUDA kernel would
be required to enable sparse additions of these additional bits to the model weights.

H DETAILED DOWNSTREAM EVALUATIONS FOR OMNIQUANT AND QAT

Tables 9, 10, 11, 12, 13, and 14 present downstream evaluation results on Gemma-2 2B, Gemma-2
9B and Mistral 7B with OmniQuant and QAT.

15

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 8: Design choice ablations for co-distillation within Extra Precison MatQuant. x → y
represents distilling the y-bit model from the x-bit model. We note that the accuracy for 2.050 avg.
bits has significantly improved while minimally impacting the other bit-widths.

Gemma-2 9B OmniQuant

MatQuant E.P. MatQuant

Avg. Bits Config. Task Avg. log pplx. Task Avg. log pplx.

(8, 8)

[8, 4, 2] 74.05 2.438 73.97 2.451
[8, 4, 8 → 2] 72.76 2.473 73.40 2.467
[8, 4, 2, 8 → 2] 73.99 2.435 73.46 2.466
[8, 4, 2, 8 → 4; 2] 73.85 2.437 73.32 2.466

(4, 4.022)

[8, 4, 2] 73.83 2.491 73.88 2.481
[8, 4, 8 → 2] 72.65 2.519 73.84 2.488
[8, 4, 2, 8 → 2] 73.63 2.486 73.01 2.495
[8, 4, 2, 8 → 4; 2] 73.55 2.478 73.12 2.518

(2, 2.050)

[8, 4, 2] 63.35 3.187 68.52 2.809
[8, 4, 8 → 2] 62.64 3.289 69.2 2.796
[8, 4, 2, 8 → 2] 62.91 3.138 70.17 2.778
[8, 4, 2, 8 → 4; 2] 64.32 3.227 69.72 2.804

2 4 6 8
Effective bits per FFN parameter

60

65

70

75

Ta
sk

 A
ve

ra
ge

Gemma-2 9B

E.P. MatQuant
E.P. Mix'n'Match
E.P. MatQuant-Interp.
Baseline

Figure 3: Mix’n’Match on Gemma-2 9B model trained using Extra Precison MatQuant with
OmniQuant as the base algorithm allows elastic pareto-optimal accuracy-vs-cost model extraction for
free during deployment.

I DETAILED DOWNSTREAM EVALUATIONS FOR MatQuant RE-WEIGHTING

Tables 15, 17, and 16 present downstream evaluation results for OmniQuant reweighting experiments
on Gemma-2 2B, Gemma-2 9B and Mistral 7B.

J DETAILED DOWNSTREAM EVALUATIONS FOR CO-DISTILLATION

Tables 18 and 19 present the downstream evaluation and perplexity results for MatQuant with
co-distillation on Gemma-2 9B. We present results with both, OmniQuant and QAT as the base
algorithms.

K DETAILED EVALUATIONS FOR FFN + ATTENTION QUANTIZATION

Tables 20 and 21 present the downstream evaluation and perplexity results for FFN + Attention
quantization on Gemma-2 9B and Mistral 7B with OmniQuant and QAT.

16

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

L DETAILED EVALUATION FOR Single Precison MatQuant

Tables 22, 23, 24, and 25 present the downstream evaluation results comparing
Single Precison MatQuant to MatQuant and the Baseline for int2 quantization of Gemma-2 2B,
Gemma-2 9B and Mistral 7B with OmniQuant and QAT. Since Single Precison MatQuant slices
2 bits from an 8-bit model and computes loss only over the first two bits, we can evaluate the
Single Precison MatQuant model trained for 2-bits on int4 and int8. Downstream evaluation and
perplexity results for this are presented in Tables 23 and 24. We also plot the weight distribution for
Single Precison MatQuant in Figure 4.

Figure 4: The Figure presents the weight distribution for Gemma-2 9B when trained with
Single Precison MatQuant for int2 quantization. The right-shifted quantized weight distribution is
a consequence of Single Precison MatQuant’s training mechanism that heavily optimizes for the
first 2 MSBs of the int8 representation.

M DETAILED EVALUATION FOR Extra Precison MatQuant

Tables 26, 27, and 28 present downstream evaluation results for Extra Precison MatQuant when
applied to Gemma-2 2B, 9B, and Mistral 7B with OmniQuant as the base algorithm. Table 29 presents
downstream evaluation and perplexity results for our Extra Precison MatQuant co-distillation
experiments on Gemma-2 9B with OmniQuant as the base algorithm.

17

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 9: Table presents the downstream evaluation results for MatQuant when applied to OmniQuant
on Gemma-2 2B.

Data type Method Gemma-2 2B

OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 50.09 71.59 76.45 69.69 78.29 63.14 68.21

int8 Baseline 50 71.46 76.36 69.76 78.24 63.69 68.25
MatQuant 49.66 71.00 76.73 68.85 78.56 63.30 68.02

int4
Sliced int8 41.55 66.12 72.02 62.34 75.79 59.43 62.87
Baseline 48.46 70.96 74.22 67.66 77.26 63.61 67.03

MatQuant 47.27 70.79 73.76 66.85 78.07 62.75 66.58

int2
Sliced int8 23.55 27.65 59.63 24.09 51.58 52.17 39.78
Baseline 31.31 53.58 62.2 40.78 66.05 54.06 51.33

MatQuant 29.95 54.21 64.40 44.37 66.81 54.46 52.37

int6
Sliced int8 48.72 71.13 76.06 69.12 78.45 62.83 67.72
Baseline 49.32 71.76 76.48 69.52 78.56 62.75 68.06

MatQuant 48.89 70.50 75.69 68.89 78.40 62.75 67.52

int3
Sliced int8 22.35 34.97 56.94 29.49 55.44 48.93 41.35
Baseline 46.25 68.64 72.97 62.24 76.06 60.06 64.37

MatQuant 44.03 67.09 74.25 62.78 77.26 61.40 64.47

Table 10: Table presents the downstream evaluation results for MatQuant when applied to Omni-
Quant on Gemma-2 9B.

Data type Method Gemma-2 9B

OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 58.96 77.57 83.33 77.31 81.12 67.96 74.38

int8 Baseline 59.47 77.31 83.94 77.35 81.39 68.11 74.59
MatQuant 57.59 77.02 84.01 76.61 81.18 67.88 74.05

int4
Sliced int8 55.80 75.04 82.32 73.56 80.47 66.38 72.26
Baseline 58.79 78.37 83.55 76.71 81.45 67.09 74.33

MatQuant 58.02 78.11 83.24 76.08 80.96 66.54 73.83

int2
Sliced int8 24.57 26.43 52.97 24.67 50.16 49.88 38.11
Baseline 39.16 63.43 72.11 52.24 72.63 61.88 60.24

MatQuant 40.78 67.85 73.64 60.56 72.09 65.19 63.35

int6
Sliced int8 59.04 77.61 84.62 77.10 81.18 68.27 74.64
Baseline 59.22 77.27 83.21 77.1 81.12 67.48 74.23

MatQuant 57.25 76.94 84.04 76.63 81.34 67.32 73.92

int3
Sliced int8 34.30 55.47 66.36 46.91 67.19 54.85 54.18
Baseline 57.17 77.06 83.79 74.45 80.36 66.54 73.23

MatQuant 55.80 76.89 81.99 74.27 80.14 68.11 72.87

18

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 11: Table presents the downstream evaluation results for MatQuant when applied to Omni-
Quant on Mistral 7B.

Data type Method Mistral 7B

OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 49.57 73.74 84.4 80.61 81.18 74.43 73.99

int8 Baseline 49.23 73.19 83.88 80.41 81.39 74.51 73.77
MatQuant 49.06 72.52 84.74 79.21 81.45 74.90 73.65

int4
Sliced int8 21.33 33.67 42.08 28.62 55.66 49.72 38.51
Baseline 49.23 73.23 83.94 79.9 81.34 74.11 73.62

MatQuant 47.87 71.55 83.88 78.85 81.34 74.90 73.06

int2
Sliced int8 24.32 23.44 49.72 24.71 51.74 49.80 37.29
Baseline 36.69 61.36 70.06 57.47 70.67 62.19 59.74

MatQuant 37.88 62.58 73.15 65.89 73.88 63.14 62.75

int6
Sliced int8 48.21 71.09 83.21 79.93 81.28 74.27 73.00
Baseline 50.26 73.65 84.04 80.55 81.66 74.43 74.1

MatQuant 49.40 72.47 84.68 79.52 81.34 74.35 73.63

int3
Sliced int8 25.26 25.76 61.99 24.67 48.31 49.25 39.21
Baseline 46.33 70.71 82.72 77.74 80.74 71.82 71.68

MatQuant 47.35 71.00 80.00 76.96 80.30 71.35 71.16

Table 12: Table presents the downstream evaluation results for MatQuant when applied to QAT on
Gemma-2 2B.

Data type Method Gemma-2 2B

QAT ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 50.09 71.59 76.45 69.69 78.29 63.14 68.21

int8 Baseline 47.78 70.66 75.08 69.92 78.35 65.11 67.82
MatQuant 45.39 71.21 75.99 68.74 78.40 64.88 67.44

int4
Sliced int8 46.16 69.53 75.35 68.49 78.18 65.04 67.13
Baseline 46.16 71.59 73.73 68.72 78.62 63.38 67.03

MatQuant 44.03 69.53 75.84 68.03 77.80 64.33 66.59

int2
Sliced int8 24.06 26.94 59.05 25.57 51.85 48.15 39.27
Baseline 24.66 43.22 62.17 38.39 64.42 53.59 47.74

MatQuant 28.33 51.85 63.64 46.94 68.28 54.14 52.20

int6
Sliced int8 47.87 70.83 74.25 69.80 77.86 64.56 67.53
Baseline 47.7 70.88 74.92 69.72 78.07 65.19 67.75

MatQuant 45.39 71.17 76.15 68.33 78.13 64.80 67.33

int3
Sliced int8 37.97 62.67 64.71 58.01 74.27 59.75 59.56
Baseline 39.68 65.28 67.03 62.68 77.04 58.8 61.75

MatQuant 36.95 66.20 64.25 61.03 75.19 60.93 60.76

19

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 13: Table presents the downstream evaluation results for MatQuant when applied to QAT on
Gemma-2 9B.

Data type Method Gemma-2 9B

QAT ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 58.96 77.57 83.33 77.31 81.12 67.96 74.38

int8 Baseline 58.11 75.38 80.12 78.7 81.5 71.19 74.17
MatQuant 57.68 76.09 82.23 78.41 82.26 70.48 74.52

int4
Sliced int8 56.91 75.17 78.78 77.02 81.18 71.11 73.36
Baseline 56.91 75.42 75.38 78.06 81.39 72.38 73.26

MatQuant 56.66 75.72 77.55 77.30 81.23 70.96 73.24

int2
Sliced int8 23.46 28.28 57.09 29.76 53.48 50.36 40.40
Baseline 33.45 55.43 62.26 54.8 70.51 59.67 56.02

MatQuant 41.21 66.84 65.41 63.61 75.41 61.25 62.29

int6
Sliced int8 57.68 75.17 80.73 78.66 81.77 70.88 74.15
Baseline 57.94 76.14 79.63 78.93 82.1 71.11 74.31

MatQuant 57.25 76.01 81.83 78.25 81.77 70.72 74.30

int3
Sliced int8 50.60 67.85 75.54 71.07 79.11 68.03 68.70
Baseline 53.07 75.04 66.61 74.94 80.03 69.69 69.9

MatQuant 51.19 71.80 78.69 73.18 79.49 68.11 70.41

Table 14: Table presents the downstream evaluation results for MatQuant when applied to QAT on
Mistral 7B.

Data type Method Mistral 7B

QAT ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 49.57 73.74 84.4 80.61 81.18 74.43 73.99

int8 Baseline 48.89 71.63 82.42 81.69 81.18 75.06 73.48
MatQuant 47.44 71.21 82.08 80.31 80.74 73.72 72.58

int4
Sliced int8 47.61 70.41 80.21 79.74 79.98 72.61 71.76
Baseline 47.27 70.62 81.28 78.95 81.12 73.56 72.13

MatQuant 45.99 72.22 81.90 79.08 80.36 72.38 71.99

int2
Sliced int8 24.40 25.97 47.52 24.66 50.27 51.62 37.41
Baseline 29.78 48.23 64.5 55.11 70.84 61.25 54.95

MatQuant 35.58 56.36 72.66 66.68 74.32 66.22 61.97

int6
Sliced int8 48.55 71.76 82.57 81.67 81.39 74.19 73.35
Baseline 47.7 71.3 82.23 79.84 80.79 74.43 72.71

MatQuant 46.93 71.34 81.96 80.27 80.52 74.51 72.59

int3
Sliced int8 38.99 61.11 72.54 65.65 77.48 70.24 64.33
Baseline 44.54 67.97 73.98 76.31 79.65 70.48 68.82

MatQuant 40.10 62.42 79.05 73.82 77.31 70.24 67.16

20

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 15: Tables presents the downstream evaluation results on Gemma-2 2B for MatQuant loss
reweighting when applied to OmniQuant. Weightings: (x, y, z) → (λ8, λ4, λ2) (from Equation 2).

Gemma-2 2B

Data type Weightings ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

int8

(0.1, 0.1, 1) 49.66 71 76.73 68.85 78.56 63.3 68.02
(0.2, 0.2, 1) 49.4 71.3 76.21 68.97 78.29 63.3 67.91
(0.3, 0.3, 1) 48.81 71.72 76.57 68.95 78.4 63.61 68.01
(0.4, 0.4, 1) 48.72 71.72 76.61 68.92 78.73 62.98 67.95
(0.5, 0.5, 1) 49.06 71.34 76.15 68.86 78.45 62.98 67.81

int4

(0.1, 0.1, 1) 47.27 70.79 73.76 66.85 78.07 62.75 66.58
(0.2, 0.2, 1) 48.63 71 76.06 68.11 77.97 63.06 67.47
(0.3, 0.3, 1) 47.7 71.17 75.08 67.57 77.69 62.59 66.97
(0.4, 0.4, 1) 48.29 71.25 76.76 67.46 77.58 63.54 67.48
(0.5, 0.5, 1) 48.04 70.66 75.9 67.57 78.4 64.01 67.43

int2

(0.1, 0.1, 1) 29.95 54.21 64.4 44.37 66.81 54.46 52.37
(0.2, 0.2, 1) 30.03 52.78 62.39 44.66 66.81 54.62 51.88
(0.3, 0.3, 1) 29.18 52.61 62.57 41.41 65.94 54.62 51.05
(0.4, 0.4, 1) 28.75 54.88 62.17 42.53 66.16 55.64 51.69
(0.5, 0.5, 1) 27.13 51.05 60.95 39.94 65.56 54.3 49.82

int6

(0.1, 0.1, 1) 48.89 70.5 75.69 68.89 78.4 62.75 67.52
(0.2, 0.2, 1) 49.32 70.96 75.87 68.93 78.29 62.67 67.67
(0.3, 0.3, 1) 48.98 71.63 76.21 68.68 78.73 63.46 67.95
(0.4, 0.4, 1) 48.98 71.72 75.75 68.83 78.67 63.61 67.93
(0.5, 0.5, 1) 49.4 71.59 76.21 68.63 78.29 63.85 67.99

int3

(0.1, 0.1, 1) 44.03 67.09 74.25 62.78 77.26 61.4 64.47
(0.2, 0.2, 1) 43.09 65.7 67.19 59.57 75.3 60.38 61.87
(0.3, 0.3, 1) 43.94 68.35 71.87 59.54 75.79 59.98 63.24
(0.4, 0.4, 1) 41.81 65.53 72.91 61.42 75.03 61.88 63.1
(0.5, 0.5, 1) 41.64 67.34 71.87 61.15 74.54 61.64 63.03

21

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 16: Tables presents the downstream evaluation results on Gemma-2 9B for MatQuant loss
reweighting when applied to OmniQuant. Weightings: (x, y, z) → (λ8, λ4, λ2) (from Equation 2).

Gemma-2 9B

Data type Weightings ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

int8

(0.1, 0.1, 1) 57.59 77.02 84.01 76.61 81.18 67.88 74.05
(0.2, 0.2, 1) 57.76 76.73 83.73 76.5 81.34 67.4 73.91
(0.3, 0.3, 1) 57.94 76.64 83.36 76.56 81.01 67.8 73.88
(0.4, 0.4, 1) 58.28 76.52 83.15 76.74 80.96 67.4 73.84
(0.5, 0.5, 1) 57.68 76.68 83.39 76.62 81.07 67.09 73.75

int4

(0.1, 0.1, 1) 58.02 78.11 83.24 76.08 80.96 66.54 73.83
(0.2, 0.2, 1) 58.96 77.9 82.57 76.14 81.07 66.14 73.8
(0.3, 0.3, 1) 57.42 77.23 81.62 75.72 80.85 66.69 73.25
(0.4, 0.4, 1) 58.96 78.32 84.53 76.17 81.45 66.46 74.32
(0.5, 0.5, 1) 57.08 77.02 84.65 76.11 81.56 66.06 73.75

int2

(0.1, 0.1, 1) 40.78 67.85 73.64 60.56 72.09 65.19 63.35
(0.2, 0.2, 1) 40.53 67.97 75.57 60.83 72.25 67.09 64.04
(0.3, 0.3, 1) 39.42 67.68 79.08 60.79 72.47 65.19 64.1
(0.4, 0.4, 1) 39.68 66.54 66.24 61.08 73.07 65.27 61.98
(0.5, 0.5, 1) 40.02 66.16 69.08 60.54 73.23 64.88 62.32

int6

(0.1, 0.1, 1) 57.25 76.94 84.04 76.63 81.34 67.32 73.92
(0.2, 0.2, 1) 57.25 76.6 83.79 76.46 81.12 67.64 73.81
(0.3, 0.3, 1) 58.7 76.98 83.09 76.63 80.69 67.32 73.9
(0.4, 0.4, 1) 58.28 76.43 83.15 76.76 81.18 67.09 73.81
(0.5, 0.5, 1) 58.28 76.3 83.33 76.68 81.18 66.93 73.78

int3

(0.1, 0.1, 1) 55.8 76.89 81.99 74.27 80.14 68.11 72.87
(0.2, 0.2, 1) 54.69 76.56 79.79 73.92 79.92 66.77 71.94
(0.3, 0.3, 1) 56.48 77.53 83.09 73.71 80.69 67.32 73.14
(0.4, 0.4, 1) 56.23 77.86 83.79 74.12 80.69 68.98 73.61
(0.5, 0.5, 1) 54.35 76.3 83.67 74.21 80.09 68.03 72.77

22

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 17: Tables presents the downstream evaluation results on Mistral 7B for MatQuant loss
reweighting when applied to OmniQuant. Weightings: (x, y, z) → (λ8, λ4, λ2) (from Equation 2).

Mistral 7B

Data type Weightings ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

int8

(0.1, 0.1, 1) 49.23 71.84 83.94 78.9 81.39 74.35 73.27
(0.2, 0.2, 1) 49.23 71.97 83.91 79.04 81.5 74.98 73.44
(0.3, 0.3, 1) 49.32 72.39 84.43 79.24 81.23 74.74 73.56
(0.4, 0.4, 1) 49.06 72.52 84.74 79.21 81.45 74.9 73.65
(0.5, 0.5, 1) 49.15 72.64 84.65 79.37 81.72 74.82 73.72

int4

(0.1, 0.1, 1) 47.61 71.59 83.3 78.32 81.61 74.11 72.76
(0.2, 0.2, 1) 48.12 72.14 84.07 78.72 81.45 74.43 73.16
(0.3, 0.3, 1) 48.21 72.81 84.4 79.02 81.18 75.22 73.47
(0.4, 0.4, 1) 47.87 71.55 83.88 78.85 81.34 74.9 73.06
(0.5, 0.5, 1) 48.21 71.97 83.82 79.03 81.39 74.35 73.13

int2

(0.1, 0.1, 1) 37.46 63.43 71.53 66.22 75.24 65.59 63.25
(0.2, 0.2, 1) 37.54 64.81 71.8 66.57 74.37 65.27 63.39
(0.3, 0.3, 1) 37.46 62.92 75.35 67.2 74.43 64.25 63.6
(0.4, 0.4, 1) 37.88 62.58 73.15 65.89 73.88 63.14 62.75
(0.5, 0.5, 1) 37.29 62.75 69.36 64.99 72.36 64.25 61.83

int6

(0.1, 0.1, 1) 49.57 71.72 83.76 78.87 81.28 74.03 73.2
(0.2, 0.2, 1) 49.49 72.52 84.22 79.08 81.39 74.19 73.48
(0.3, 0.3, 1) 48.89 72.01 83.85 79.2 81.39 74.35 73.28
(0.4, 0.4, 1) 49.4 72.47 84.68 79.52 81.34 74.35 73.63
(0.5, 0.5, 1) 49.4 72.39 84.31 79.5 81.28 74.27 73.52

int3

(0.1, 0.1, 1) 44.88 68.22 81.96 76.13 80.69 71.35 70.54
(0.2, 0.2, 1) 43.94 67.85 81.56 76.55 79.76 72.61 70.38
(0.3, 0.3, 1) 45.39 67.89 80.92 77.13 80.47 72.06 70.64
(0.4, 0.4, 1) 47.35 71 80 76.96 80.3 71.35 71.16
(0.5, 0.5, 1) 46.76 70.29 82.17 77.32 80.9 71.11 71.43

Table 18: Table presents the downstream evaluation and perplexity results for our MatQuant co-
distillation experiments on Gemma-2 9B with OmniQuant.

OmniQuant Gemma-2 9B

Data type Config. ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

int8
[8, 4, 8 → 2] 57.51 76.26 83.30 73.35 80.74 65.43 72.76 2.473
[8, 4, 2, 8 → 2] 58.19 76.89 83.73 76.75 81.39 67.01 73.99 2.435
[8, 4, 2, 8 → 4; 2] 57.68 77.06 83.00 76.76 81.45 67.17 73.85 2.437

int4
[8, 4, 8 → 2] 56.23 76.47 82.63 73.03 80.69 66.85 72.65 2.519
[8, 4, 2, 8 → 2] 57.51 76.73 83.36 76.23 80.85 67.09 73.63 2.486
[8, 4, 2, 8 → 4; 2] 57.51 76.68 83.27 75.85 81.61 66.38 73.55 2.478

int2
[8, 4, 8 → 2] 38.14 66.50 76.73 59.70 71.11 63.69 62.64 3.289
[8, 4, 2, 8 → 2] 40.61 67.55 71.07 60.80 72.96 64.48 62.91 3.138
[8, 4, 2, 8 → 4; 2] 42.75 69.65 74.40 60.53 72.42 66.14 64.32 3.227

int6
[8, 4, 8 → 2] 57.59 76.30 83.55 73.41 80.85 65.51 72.87 2.469
[8, 4, 2, 8 → 2] 58.28 76.85 83.43 76.91 81.18 67.01 73.94 2.438
[8, 4, 2, 8 → 4; 2] 58.11 76.98 83.33 76.70 81.45 67.48 74.01 2.439

int3
[8, 4, 8 → 2] 52.30 75.25 78.26 71.08 79.49 65.35 70.29 2.651
[8, 4, 2, 8 → 2] 54.44 75.97 82.20 73.84 80.20 66.46 72.19 2.603
[8, 4, 2, 8 → 4; 2] 54.44 76.26 81.90 73.89 79.92 65.75 72.03 2.604

23

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 19: Table presents the downstream evaluation and perplexity results for our MatQuant co-
distillation experiments on Gemma-2 9B with QAT.

QAT Gemma-2 9B

Data type Config. ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

int8
[8, 4, 8 → 2] 57.68 76.09 82.60 78.75 82.48 70.88 74.75 2.242
[8, 4, 2, 8 → 2] 57.76 76.35 81.50 79.13 82.43 72.06 74.87 2.240
[8, 4, 2, 8 → 4; 2] 58.19 76.05 81.62 78.92 82.21 71.90 74.81 2.240

int4
[8, 4, 8 → 2] 57.85 76.81 78.47 77.62 80.96 70.88 73.76 2.279
[8, 4, 2, 8 → 2] 57.08 75.88 78.47 77.65 81.34 72.22 73.77 2.276
[8, 4, 2, 8 → 4; 2] 57.34 75.80 78.99 77.67 81.50 72.30 73.93 2.277

int2
[8, 4, 8 → 2] 40.61 67.17 67.37 63.10 75.24 60.38 62.31 2.670
[8, 4, 2, 8 → 2] 40.53 66.71 67.89 63.29 75.46 62.35 62.70 2.673
[8, 4, 2, 8 → 4; 2] 40.10 66.37 67.86 63.14 75.08 63.06 62.60 2.670

int6
[8, 4, 8 → 2] 57.85 76.05 82.23 78.70 82.10 71.43 74.73 2.245
[8, 4, 2, 8 → 2] 58.11 75.93 82.14 79.10 82.26 71.19 74.79 2.243
[8, 4, 2, 8 → 4; 2] 58.19 75.67 81.31 78.80 82.15 71.27 74.56 2.243

int3
[8, 4, 8 → 2] 51.19 71.00 76.67 73.07 79.54 68.03 69.92 2.441
[8, 4, 2, 8 → 2] 51.71 71.46 76.85 73.00 79.00 67.88 69.98 2.437
[8, 4, 2, 8 → 4; 2] 51.28 71.34 76.12 72.96 79.33 68.98 70.00 2.435

Table 20: Table presents the downstream evaluation results for MatQuant FFN + Attention quantiza-
tion on Gemma-2 9B with QAT.

Data type Method Gemma-2 9B

ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 58.96 77.57 83.33 77.31 81.12 67.96 74.38

int8 Baseline 58.62 77.02 83.43 79.01 81.34 68.27 74.61
MatQuant 59.47 77.99 84.13 77.85 81.23 68.43 74.85

int4
Sliced int8 57.42 76.01 80.86 76.34 80.03 68.27 73.15
Baseline 56.06 74.96 79.27 77.83 80.25 69.53 72.98

MatQuant 58.79 75.80 84.89 76.26 81.23 67.09 74.01

int2
Sliced int8 26.37 25.34 58.10 25.60 49.08 49.33 38.97
Baseline - - - - - - -

S.P. MatQuant 25.26 38.47 62.14 35.09 61.70 51.46 45.69
MatQuant 23.72 36.62 62.17 33.72 59.36 49.57 44.19

int6
Sliced int8 58.53 77.10 83.00 78.81 81.07 68.43 74.49
Baseline 58.87 77.06 83.12 78.81 81.23 68.82 74.65

MatQuant 58.96 78.03 83.30 77.72 80.96 68.43 74.57

int3
Sliced int8 44.71 65.28 71.56 65.25 75.84 62.51 64.19
Baseline - - - - - - -

S.P. MatQuant 48.55 71.25 68.38 72.12 79.00 66.77 67.68
MatQuant 43.34 61.91 75.96 65.20 75.46 59.91 63.63

24

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 21: Table presents the downstream evaluation results for MatQuant FFN + Attention quantiza-
tion on Mistral 7B with QAT.

Data type Method Mistral 7B

ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 49.57 73.74 84.4 80.61 81.18 74.43 73.99

int8 Baseline 49.23 72.9 83.49 80.26 81.28 75.22 73.73
MatQuant 50.09 73.44 83.73 80.73 81.39 73.88 73.88

int4
Sliced int8 45.99 71.55 81.19 76.90 80.58 72.53 71.46
Baseline 48.04 71.72 78.87 78.93 80.36 73.32 71.87

MatQuant 46.59 70.29 81.65 77.34 80.25 72.53 71.44

int2
Sliced int8 22.61 25.38 37.86 24.40 49.13 50.99 35.06
Baseline - - - - - - -

S.P. MatQuant 22.53 25.51 38.90 24.13 50.92 50.12 35.35
MatQuant 21.33 25.59 57.37 24.85 50.92 50.12 38.36

int6
Sliced int8 49.32 73.53 82.60 80.28 80.96 74.98 73.61
Baseline 49.32 73.4 82.48 80.24 81.28 75.61 73.72

MatQuant 50.00 73.78 83.55 80.74 81.66 74.51 74.04

int3
Sliced int8 19.97 30.72 46.79 27.22 58.43 50.91 39.01
Baseline - - - - - - -

S.P. MatQuant 43.86 67.51 70.43 73.97 80.36 69.38 67.59
MatQuant 20.82 33.42 53.30 27.77 58.76 49.25 40.55

Table 22: Table presents downstream evaluation and perplexity results for
Single Precison MatQuant, comparing it with MatQuant and the Baseline for int2 quati-
zation of Gemma-2 2B with OmniQuant and QAT.

int2 Gemma2-2B

Method ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Task Avg. log pplx.

OmniQuant
S.P. MatQuant 29.78 57.70 63.39 44.32 68.66 56.67 53.42 3.631

Baseline 31.31 53.58 62.2 40.78 66.05 54.06 51.33 3.835
MatQuant 29.95 54.21 64.40 44.37 66.81 54.46 52.37 3.800

QAT
S.P. MatQuant 28.07 52.36 62.87 46.80 68.88 53.51 52.08 3.054

Baseline 24.66 43.22 62.17 38.39 64.42 53.59 47.74 3.433
MatQuant 28.33 51.85 63.64 46.94 68.28 54.14 52.20 3.055

Table 23: Table presents downstream evaluation and perplexity results for
Single Precison MatQuant, comparing it with MatQuant and the Baseline for int2, int4,
int8 quatization of Gemma-2 9B with Baseline. Note that the model was trained with
Single Precison MatQuant for int2; the int4 and int8 model were sliced post training.

Gemma-2 9B

Data type Method ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

int8
S.P. MatQuant 57.94 76.64 82.66 76.98 81.01 67.56 73.80 2.372

Baseline 59.47 77.31 83.94 77.35 81.39 68.11 74.59 2.418
MatQuant 57.59 77.02 84.01 76.61 81.18 67.88 74.05 2.438

int4
S.P. MatQuant 57.17 76.39 81.47 75.81 80.85 66.38 73.01 2.420

Baseline 58.79 78.37 83.55 76.71 81.45 67.09 74.33 2.451
MatQuant 58.02 78.11 83.24 76.08 80.96 66.54 73.83 2.491

int2
S.P. MatQuant 40.44 66.75 77.92 60.42 72.52 66.06 64.02 3.171

Baseline 39.16 63.43 72.11 52.24 72.63 61.88 60.24 3.292
MatQuant 40.78 67.85 73.64 60.56 72.09 65.19 63.35 3.187

25

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 24: Table presents downstream evaluation and perplexity results for
Single Precison MatQuant, comparing it with MatQuant and the Baseline for int2, int4,
int8 quatization of Gemma-2 9B with Baseline. Note that the model was trained with
Single Precison MatQuant for int2; the int4 and int8 model were sliced post training.

Gemma-2 9B

Data type Method ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

int8
S.P. MatQuant 55.89 75.84 79.57 75.47 81.07 68.43 72.71 2.363

Baseline 58.11 75.38 80.12 78.7 81.5 71.19 74.17 2.29
MatQuant 57.68 76.09 82.23 78.41 82.26 70.48 74.52 2.262

int4
S.P. MatQuant 54.95 75.59 75.05 74.60 80.79 69.06 71.67 2.394

Baseline 56.91 75.42 75.38 78.06 81.39 72.38 73.26 2.324
MatQuant 56.66 75.72 77.55 77.30 81.23 70.96 73.24 2.295

int2
S.P. MatQuant 40.53 67.38 66.91 63.62 75.63 61.88 62.66 2.656

Baseline 33.45 55.43 62.26 54.8 70.51 59.67 56.02 2.923
MatQuant 41.21 66.84 65.41 63.61 75.41 61.25 62.29 2.660

Table 25: Table presents downstream evaluation and perplexity results for
Single Precison MatQuant, comparing it with MatQuant, and the Baseline for int2 quati-
zation of Mistral 7B. Results are presented for both, OmniQuant and QAT as the base algorithms.

int2 Mistral 7B

Method ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Task Avg. log pplx.

OmniQuant
S.P. MatQuant 37.63 64.14 72.45 67.47 74.81 64.96 63.58 2.976

Baseline 36.69 61.36 70.06 57.47 70.67 62.19 59.74 3.931
MatQuant 37.88 62.58 73.15 65.89 73.88 63.14 62.75 3.153

QAT
S.P. MatQuant 35.24 57.15 69.88 66.02 75.41 65.19 61.48 2.509

Baseline 29.78 48.23 64.5 55.11 70.84 61.25 54.95 2.694
MatQuant 35.58 56.36 72.66 66.68 74.32 66.22 61.97 2.524

Table 26: Table presents the downstream evaluation results for Extra Precison MatQuant when
applied to OmniQuant on Gemma-2 2B.

Avg. Bits Method Gemma-2 2B

OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 50.09 71.59 76.45 69.69 78.29 63.14 68.21

8 MatQuant 49.66 71.00 76.73 68.85 78.56 63.30 68.02
8 Extra Precison MatQuant 48.04 71.8 75.78 67.64 78.07 63.22 67.42

4 MatQuant 47.27 70.79 73.76 66.85 78.07 62.75 66.58
4.023 Extra Precison MatQuant 45.65 70.29 74.8 66.07 77.58 62.27 66.11

2 MatQuant 29.95 54.21 64.40 44.37 66.81 54.46 52.37
2.052 Extra Precison MatQuant 34.39 59.64 62.69 52.11 69.86 55.56 55.71

6 MatQuant 48.89 70.50 75.69 68.89 78.40 62.75 67.52
6.018 Extra Precison MatQuant 47.1 71.46 76.02 67.47 77.91 63.61 67.26

3 MatQuant 44.03 67.09 74.25 62.78 77.26 61.40 64.47
3.031 Extra Precison MatQuant 44.45 68.56 69.11 62.28 75.95 62.59 63.82

26

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 27: Table presents the downstream evaluation results for Extra Precison MatQuant when
applied to OmniQuant on Gemma-2 9B.

Avg. Bits Method Gemma-2 9B

OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 58.96 77.57 83.33 77.31 81.12 67.96 74.38

8 MatQuant 57.59 77.02 84.01 76.61 81.18 67.88 74.05
8 Extra Precison MatQuant 58.11 78.03 83.27 76.17 81.18 67.09 73.97

4 MatQuant 58.02 78.11 83.24 76.08 80.96 66.54 73.83
4.022 Extra Precison MatQuant 57.25 77.36 84.86 75.52 81.5 66.77 73.88

2 MatQuant 40.78 67.85 73.64 60.56 72.09 65.19 63.35
2.050 Extra Precison MatQuant 48.72 72.18 79.2 68.11 76.17 66.77 68.52

6 MatQuant 57.25 76.94 84.04 76.63 81.34 67.32 73.92
6.018 Extra Precison MatQuant 58.87 78.03 83.61 76.18 81.45 67.09 74.21

3 MatQuant 55.80 76.89 81.99 74.27 80.14 68.11 72.87
3.029 Extra Precison MatQuant 55.46 76.14 84.04 74.49 80.14 67.32 72.93

Table 28: Table presents the downstream evaluation results for Extra Precison MatQuant when
applied to OmniQuant on Mistral 7B.

Data type Method Mistral 7B

OmniQuant ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average

bfloat16 49.57 73.74 84.4 80.61 81.18 74.43 73.99

8 MatQuant 49.06 72.52 84.74 79.21 81.45 74.90 73.65
8 Extra Precison MatQuant 48.04 73.44 84.13 79.37 81.12 74.66 73.46

4 MatQuant 47.87 71.55 83.88 78.85 81.34 74.90 73.06
4.022 Extra Precison MatQuant 48.21 72.69 83.49 78.82 81.12 74.43 73.13

2 MatQuant 37.88 62.58 73.15 65.89 73.88 63.14 62.75
2.051 Extra Precison MatQuant 41.38 67.42 71.62 71.98 77.86 65.67 65.99

6 MatQuant 49.40 72.47 84.68 79.52 81.34 74.35 73.63
6.018 Extra Precison MatQuant 48.46 72.98 84.07 79.64 81.18 75.22 73.59

3 MatQuant 47.35 71.00 80.00 76.96 80.30 71.35 71.16
3.030 Extra Precison MatQuant 45.65 71.21 80.43 78.31 81.07 72.61 71.55

Table 29: Table presents the downstream evaluation and perplexity results for our
Extra Precison MatQuant co-distillation experiments on Gemma-2 9B with OmniQuant.

OmniQuant Gemma-2 9B

Avg. Bits Config. ARC-c ARC-e BoolQ HellaSwag PIQA Winogrande Average log pplx.

8
[8, 4, 8 → 2] 57.59 77.27 81.83 75.48 81.01 67.25 73.4 2.467
[8, 4, 2, 8 → 2] 57.17 77.36 82.2 75.82 80.96 67.25 73.46 2.466
[8, 4, 2, 8 → 4; 2] 56.4 77.82 82.32 75.02 80.63 67.72 73.32 2.466

4.022
[8, 4, 8 → 2] 57.68 78.45 82.97 75.5 80.85 67.56 73.84 2.488
[8, 4, 2, 8 → 2] 57.51 77.61 80.46 74.74 81.12 66.61 73.01 2.495
[8, 4, 2, 8 → 4; 2] 56.57 77.99 82.54 74.77 80.58 66.3 73.12 2.518

2.050
[8, 4, 8 → 2] 48.81 74.03 81.65 68.1 77.48 65.11 69.2 2.796
[8, 4, 2, 8 → 2] 49.15 75.34 83.12 68.79 77.64 67.01 70.17 2.778
[8, 4, 2, 8 → 4; 2] 49.83 75.04 79.79 68.38 77.86 67.4 69.72 2.804

6.018
[8, 4, 8 → 2] 57.42 77.19 81.87 75.42 81.01 67.8 73.45 2.468
[8, 4, 2, 8 → 2] 57.51 77.48 82.32 75.88 81.07 66.61 73.48 2.467
[8, 4, 2, 8 → 4; 2] 56.4 78.03 82.63 75.14 80.79 67.4 73.4 2.498

3.029
[8, 4, 8 → 2] 55.63 75.88 80.12 74.01 80.36 67.96 72.33 2.549
[8, 4, 2, 8 → 2] 54.35 76.85 79.33 74.6 80.47 67.4 72.17 2.543
[8, 4, 2, 8 → 4; 2] 55.2 76.98 82.45 73.59 80.41 68.43 72.84 2.58

27

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Table 30: Table presents downstream task average and log pplx (perplexity) when applied to Omni-
Quant and QAT on Gemma-2 2B, 9B and Mistral 7B models.

int2 Gemma-2 2B Gemma-2 9B Mistral 7B

Method Task Avg. log pplx. Task Avg. log pplx. Task Avg. log pplx.

OmniQuant 51.33 3.835 60.24 3.292 59.74 3.931
S.P. MatQuant 53.42 3.631 64.02 3.171 63.58 2.976
MatQuant 52.37 3.800 63.35 3.187 62.75 3.153

S.P. E.P. MatQuant 57.38 3.185 68.58 2.857 67.36 2.464
E.P. MatQuant 55.71 3.292 68.52 2.809 65.99 2.569

QAT 47.74 3.433 56.02 2.923 54.95 2.699
S.P. MatQuant 52.08 3.054 62.66 2.656 61.48 2.509
MatQuant 52.20 3.055 62.29 2.660 61.97 2.524

S.P. E.P. MatQuant 53.18 3.090 62.53 2.706 61.55 2.435
E.P. MatQuant 52.43 3.153 62.32 2.756 61.29 2.474

28

	Introduction
	Matryoshka Quantization
	Interpolative Behavior

	Experiments
	MatQuant with OmniQuant
	Layerwise Mix'n'Match

	Related Work
	Matryoshka Quantization
	Preliminaries
	Quantized Aware Training
	OmniQuant

	Experiments
	MatQuant with QAT

	Ablations and Discussion
	Weightings (r) for MatQuant
	Co-distillation for MatQuant
	Single Precison MatQuant
	Deployment Considerations
	Extension to Floating Point

	Particulars of the Slicing Operation.
	Addition Training Details
	Extra Precision MatQuant
	Detailed Downstream Evaluations for OmniQuant and QAT
	Detailed Downstream Evaluations for MatQuant Re-weighting
	Detailed Downstream Evaluations for Co-Distillation
	Detailed Evaluations for FFN + Attention Quantization
	Detailed Evaluation for Single Precison MatQuant
	Detailed Evaluation for Extra Precison MatQuant

