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1 INTRODUCTION

Somatic copy number alterations (CNAs) are genomic regions amplified or deleted during somatic
cell replication, playing a critical role in cancer development by driving oncogene amplification
(Zhang & Pellman, 2022; Kim et al., 2020; Rosswog et al., 2021). Accurate CNA profiling is
essential for downstream analysis. Despite advances in ’omics and deep learning, CNA callers have
seen limited innovation, due to sequence length limitations of transformers. To address this, we
propose araCNA, a deep learning-based approach to improve CNA calling, leveraging state-space-
like models that enable genome-scale modeling.

2 METHODS

We first define the mathematical construction, similar to that first shown in (Van Loo et al., 2010).
We define CT,i, CP,i, CM,i, CB,i as the total, paternal, maternal and B-allele copy number at locus
i in the tumour. We further define ρ as the purity of the tumour sample (the proportion of tumour vs
non-tumour) and rd as the expected number of sequencing reads per copy number, which are both
unknown. Finally, we have Ri, the total number of reads at a locus and Bi, the B allele frequency
(BAF), both measured data. The sequence data is therefore a collection {Ri, Bi}Li=1 for L loci. The
generating process from {CM,i, CP,i, rd, ρ} → {Ri, Bi} is well understood, Figure S1, Appendix
A.1, what remains difficult is the inference process, {Ri, Bi} → {AM,i, Am,i, rd, ρ}. Here major
and minor parental copy numbers, AM = max(CM , CP ) and Am = min(CM , CP ), are introduced
due to the non-identifiability of (CM , CP ).

The function of araCNA can be summarised as fθ({Ri, Bi}) → ({pi,k}, ρ̂) where fθ is a state-
space- like model (i.e Hyena, (Poli et al., 2023) or Mamba, (Gu & Dao, 2024)) parameterised by
network weights θ, Figure 1. ρ̂ is araCNA’s global purity estimate. While pk,i is the probability
that araCNA assigns the locus as belonging to copy number profile Kk. The profile categories
K1, . . . ,KJ correspond to major/minor parental copy number combinations. From these, we can
also estimate r̂d, Appendix A.1.

We trained our model using simulated datasets where the ground truth copy numbers and purity are
known. The loss function consists of a supervised sequence loss for copy numbers and a global loss
for purity and read depth predictions. The model was trained by iteratively increasing the complexity
of the simulated data. For details see Appendix A.2. Figure 2 demonstrates the complexity of real
data samples that araCNA learns to infer.

Figure 1: Overview of A) training of araCNA B) high-level model, C) araCNA architecture.

3 RESULTS

We first compared results from our two araCNA variants (araCNA-mamba and
araCNA-hyena) using simulated data, Figure 3A, simulation procedure in Appendix A.3.

1



Published at LMRL Workshop at ICLR 2025

Figure 2: Representative TCGA ovarian cancer
sample. Comparison of predicted profiles from
ASCAT and araCNA-mamba

Both models achieve high copy number classi-
fication accuracy for the task though araCNA-
mamba slightly outperforms araCNA-hyena.
In this case, we know the ground truth so can
directly measure accuracy.

We next compare results araCNA to several
existing popular CNA calling tools for whole
genome sequencing data by analysing a selec-
tion of 50 tumour samples chosen from the
Cancer Genome Atlas (TCGA). Since there are
no ground truth copy number profiles for these
tumours, we compare methods to each other,
using concordance Figure 3B, and use proxy
measures such as reconstruction error to pro-
vide an unsupervised metric for performance,
where better methods will be expected to have
low reconstruction error Figure 3C. However, a
low reconstruction error accompanied by a large number of segments may suggest overfitting, while
high copy number calls at high read depth regions will have a lower reconstruction error but are
likely less plausible.

Using both araCNA variants for zero-shot inference of the copy number states gives compara-
ble reconstruction performance to the existing CNA calling methods while using similar numbers
of segments. ASCAT and Battenberg achieve slightly improved reconstruction error performance,
however, assign as high as 100 copies to localised genomic regions,Figure 3C. Conversely, araCNA
achieves this performance despite being limited to calling a total copy number of 8.

Figure 3: A) Accuracy and RMSE from 100 simulated genomic samples of length 650k, drawn
from same distribution as training data. B) Concordance and RMSE between different callers on
50 TCGA cancer samples on WGS data C) Boxplots showing the B-allele-frequency reconstruction
RMSE, read-depth mean absolute error (MAE), copy number distribution of top 5% of copy number
calls and the number of different copy number segments identified across the 50 samples.

4 CONCLUSION

Here, we present a novel deep-learning approach, araCNA, trained only on simulated data that can
accurately predict CNAs in real WGS cancer genomes. araCNA uses novel transformer alternatives
(e.g Mamba) to handle genomic-scale sequence lengths (∼ 1M) and learn long-range interactions.
Results are extremely accurate on simulated data, and this zero-shot approach is on par with existing
methods when applied to 50 WGS samples from the cancer genome atlas. Notably, our approach
requires only a tumour sample and not a matched normal sample, has fewer markers of overfitting,
and performs inference in only a few minutes.
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MEANINGFULNESS STATEMENT

What is more literal to “life” than DNA. Here we seek to uncover the true representation of regions of
patient DNA that have been amplified or deleted due to cancerous aberrations, measured using whole
genome sequencing (WGS). Unlike traditional methods, we use novel deep-learning architectures
that learn to represent (an analogue of) the posterior distribution of copy number profiles from WGS
data. We use simulated data to circumvent the unknown ground-truth problem that affects much
of biology. Our approach demonstrates a proof-of-concept for biological applications where the
generating process is understood but inference is challenging.
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A APPENDIX

A.1 GENERATING PROCESS

For a pure tumour sample, we have the total copy number as:
CT,i = CP,i + CM,i

Considering sample impurity, we define the sample copy number Cs
T as:

Cs
T,i = ρCT,i + 2(1− ρ),

where we assume the contaminating normal cells have copy number 2 at all loci. While normal cells
may possess some copy number variants, the size of these regions are typically negligible compared
to the cancer-associated alterations we aim to detect and so we ignore these for simplicity.

The B allele copy number is defined as:
CB,i = sp,iCP,i + sm,iCM,i

where (sp,i, sm,i) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} denotes whether the paternal and maternal chro-
mosomes respectively have the specified SNP B allele at locus i.

Adding sample impurity we have:
Cs

B,i = sp,i((1− ρ) + ρCP,i) + sm,i((1− ρ) + ρCM,i)

The total number of reads at a locus Ri are then:
Ri = rdC

s
T,i

While the B allele frequency (BAF) Bi at locus i is given by:

Bi =
Cs

B,i

Cs
T,i

To determine the copy number profiles, we must infer ,̂ {ĈM,i, Ĉm,i}. From these we can also
estimate r̂d = µrobust(R)/(E[Ĉs]), where µrobust(R) is the robust or trimmed mean of the read depth
vector and E[Ĉs] is the expected value of the overall sample copy number (ploidy).

Figure S1 illustrates the link between the mathematical construction and measured data from a tissue
sample.

A.2 LOSS AND TRAINING PROCEDURE

The loss used to train araCNA is given by:

Lss = − 1

L

L∑
i=1

J∑
j=1

I{ci = Kj} log(pk,i) + λr|rd − r̂d|+ λρ|ρ− ρ̂|

where L is the sequence length, ci ∈ K1 . . .KJ is the known target profile of a genomic locus.

The first term is supervised sequence loss is the cross entropy, while the last two terms are supervised
global parameter losses. We found λr = λρ = 1 to work well.

To train araCNA we adopted an iterative warmup procedure, gradually increasing the complexity of
the problem. We found this was necessary for the model to learn, and a similar approach was taken
in (Nguyen et al., 2023) with gradually increasing the sequence length.

The training procedure was:
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Figure S1: Mathematical construction of copy number calling. Illustration of how purity, copy
number, read depth per-copy number and heterozygous loci (major/minor haplotypes denoted sM ,
sm) result in measured read depth and B allele frequency.

1. Begin the synthetic data generating procedure with ρ = 1, and without sampling the
noise parameters. Use only up to a maximum total copy number of 2, that is profiles,
(AM , Am) ∈ {(0, 0), (1, 0), (1, 1), (2, 0)}. Sample rd, and start with sequence length
10000. Train until convergence.

2. Using the previously trained model weights as initialisation, add in purity and noise param-
eter sampling. Train until convergence.

3. Using the previously trained model weights as initialisation, slowly increase the maximum
total copy number to 8. Train until convergence.

4. Using the previously trained model weights as initialisation, slowly increase the maximum
sequence length to 650,000. Train until convergence.

A.3 SYNTHETIC DATA SIMULATION

We generated synthetic copy number profiles using the following procedures:

1) Sampling the number of segments. We sample the approximate number of copy number segments,
N̂s using a mixture approach; first, we sample a uniform variable, u such that under a user-defined
swap probability, qs, the number of segments is sampled uniformly between 1 and N . When u > qs,
a Poisson distribution is used to skew sampling towards smaller total segments. This is to oversample
harder cases with fewer segments where it is harder to estimate global parameters like read depth
per copy number and purity.

2) Sampling the segment breakpoints. This is done by randomly sampling b1, . . . , bN̂s
breakpoints

from 1 . . . L, the unique set of these breakpoints defines the segments, and Ns = |b1, . . . , bN̂s
|. We

only keep the segments that have a minimum segment length of Lmin.

3) Sampling the segment profiles. We sample AM , Am of each segment from the possible copy
number profiles. We inject logic here to preferentially sample profiles closer in copy number to
1-1 when there are fewer segments. This is due to the identifiability issue. When there are more
segments, profiles are sampled more uniformly but still with a preference for lower copy numbers,
to inject an implicit bias towards lower ploidy solutions when the model is unsure.

From a sampled profile, we simulate the sequencing read depth and B allele frequency data. Each
of the L loci is considered a commonly varying single nucleotide polymorphism, SNP. For both
parental alleles, AM , Am, we sample each SNP as binomial with a probability of 0.5, we also
sample the purity, ρ, uniformly from a range between 0.5 and 1. This gives the sample minor allele
copy number, Cs

B,i and the sample total copy number, Cs
T,i. The read depth per copy number, rd is

sampled uniformly between 5 and 70, and together with Cs
T,i the overall read depth, Ri is sampled
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from this mean with additional noise. The BAF, Bi is sampled using total reads sampled based on
Ri and the subset of B-allele reads using a binomial probability of Cs

B,i/C
s
T,i, with added noise.

In real data, there exist regions of prolonged homozygosity that can be attributed to identity-by-
descent (IBD) regions (i.e identical regions inherited from both parents due to a common ancestor).
To emulate this, we also randomly inject regions of prolonged homozygosity into the model. In
these IBD regions, the BAF cannot be used to infer copy-number, and the model must use context
from before/after the homozygous region for correct prediction.

From this sampling procedure, we therefore have a set of targets ({AM,i, Am,i}, ρ, rd) that generate
inputs {Ri, Bi}, which together are used in the training of araCNA. Hence, araCNA can be in-
terpreted as performing inference on the above statistical approach, when ({AM,i, Am,i}, ρ, rd) are
treated as unknowns.
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