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ABSTRACT

Physics-Informed Neural Networks (PINNs) are a powerful paradigm for solv-
ing physical systems, but their susceptibility to noise poses a significant chal-
lenge for real-world applications. While robust Bayesian methods exist, their pro-
hibitive computational cost and practical instability can create a scalability bottle-
neck. To address this robustness-scalability trade-off, we introduce Robustness-
Regularized Physics-Informed Training (R-PIT), a lightweight framework that
achieves significant noise robustness with minimal computational overhead. Our
extensive validation shows R-PIT is remarkably effective on a wide range of prob-
lems—achieving orders-of-magnitude performance gains on engineering prob-
lems with underlying smooth solutions—with only a minor increase in training
time. Crucially, this work offers more than just an algorithm; it provides a prin-
cipled analysis of how a model’s inductive bias interacts with a problem’s physi-
cal characteristics. We demonstrate that R-PIT’s performance is governed by an
explicit smoothness assumption. This finding reframes the framework’s applica-
tion: its success or failure on a given PDE directly reflects the alignment between
the model’s bias and the problem’s intrinsic properties (e.g., smooth solutions vs.
shock formations). By establishing this connection between a model’s design and
a system’s physics, R-PIT serves not only as a practical tool but also as a clear case
study for analyzing model-problem alignment, guiding the future development of
more specialized scientific machine learning methods.

1 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Physics-Informed Neural Networks (PINNs) have revolutionized computational science by seam-
lessly integrating the expressive power of deep learning with the rigorous formalism of physical laws
Raissi et al. (2019); Karniadakis et al. (2021). By incorporating physics-based loss terms—typically
the residual of governing partial differential equations (PDEs)—into their training objectives, PINNs
can solve both forward and inverse problems with remarkable data efficiency Lu et al. (2021);
Toscano et al. (2024). This has established them as a cornerstone of scientific machine learning,
with successful applications spanning fluid dynamics Raissi et al. (2020); Zhao et al. (2024), mate-
rials science Haghighat et al. (2021), and quantum mechanics Pfau et al. (2020).

However, a critical barrier to the widespread adoption of PINNs is their sensitivity to noise, which
manifests in multiple forms in practical applications:

• Data Noise (Epistemic Uncertainty): Measurement errors, sensor noise, or corruption in
training data, which is often sparse and expensive to acquire in scientific applications.

• Model Noise (Aleatoric Uncertainty): Inherent stochasticity or unresolved physics within
the system itself, such as turbulence, quantum fluctuations, or thermal noise.

This challenge is most acute in the emerging field of Physical Neural Networks (PNNs)—hardware
implementations of neural computations that operate directly on physical phenomena. As analog
systems, PNNs are inherently exposed to physical noise sources including thermal Johnson noise,
quantum shot noise, and manufacturing variations. The seminal work on PNN training explicitly
called for research into “PNN architectures or training techniques that can provide provable guar-
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antees of scalable noise mitigation” Wright et al. (2021), a call that has recently been addressed by
novel in-situ training methodologies Semenova & Brunner (2022).

While PINNs show great promise in mitigating the curse of dimensionality that plagues traditional
mesh-based solvers, their training is notoriously challenging. The highly non-convex loss land-
scapes can lead to optimization difficulties, and performance is often sensitive to the choice of net-
work architecture, hyperparameters, and the distribution of collocation points Rathore et al. (2024).
This sensitivity is significantly exacerbated by the presence of noise in measurement data, which
can easily mislead the optimization process towards physically implausible or inaccurate solutions
Andre-Sloan et al. (2025). Therefore, developing training frameworks that are not only scalable but
also inherently robust to noise is a critical step towards deploying PINNs for real-world scientific
and engineering problems Choi (2025).

Existing methods for robust PINN training, primarily Bayesian approaches Yang et al. (2021); Psaros
et al. (2023), offer principled uncertainty quantification but suffer from high computational com-
plexity. These methods typically require ensemble training, variational inference, or Monte Carlo
sampling, resulting in computational costs that are 10-100× higher than standard PINN training
Psaros et al. (2023). This creates a critical gap between theoretical robustness and practical scala-
bility, hindering the deployment of robust PINNs in resource-constrained environments Hou et al.
(2025); Pilar & Wahlström (2024).

1.2 OUR CONTRIBUTIONS

2 RELATED WORK

2.1 THE LANDSCAPE OF PHYSICS-INFORMED NEURAL NETWORKS

Physics-Informed Neural Networks (PINNs) have emerged as a revolutionary paradigm in scientific
computing, seamlessly integrating physical laws into deep learning frameworks to solve complex
differential equations. Their success spans a wide range of applications, from fluid dynamics to solid
mechanics and quantum physics, establishing them as a cornerstone of scientific machine learning.
The rapid development of this field has been summarized in several recent comprehensive reviews
Toscano et al. (2024); Zhao et al. (2024); Li (2025), highlighting both its transformative potential
and its remaining open challenges, among which robustness remains paramount.

2.2 THE CRITICAL CHALLENGE OF ROBUSTNESS IN PINNS

Despite their success, a primary obstacle to the widespread adoption of PINNs is their sensitivity to
noise, which is ubiquitous in real-world data and unavoidable in emerging hardware like Physical
Neural Networks (PNNs). The quest for robust PINNs has led to several research avenues.

2.2.1 PROBABILISTIC AND BAYESIAN APPROACHES

The most principled way to handle uncertainty is through probabilistic methods, most notably
Bayesian PINNs Hou et al. (2025). While foundational works using methods like Hamiltonian
Monte Carlo demonstrated strong theoretical guarantees Neal (1995), their computational demands
are prohibitive for all but the simplest problems Yang et al. (2021). Consequently, the field has grav-
itated towards more scalable approximations like variational inference (VI) and deep ensembles.
However, as analyzed Psaros et al. (2023), even these methods impose a significant, often order-of-
magnitude, overhead and can suffer from optimization challenges in the complex, non-convex loss
landscapes of PINNs. This well-documented trade-off between principled uncertainty quantifica-
tion and practical scalability creates a clear need for lightweight, efficient alternatives Figueres et al.
(2025) like R-PIT.

2.2.2 REGULARIZATION-BASED STRATEGIES

Regularization is a classic technique to improve model generalization. Early attempts to regularize
PINNs borrowed directly from standard deep learning, such as L2 weight decay and dropout, which
offer general but not physics-specific benefits. More recent, sophisticated approaches have focused
on the training dynamics Wang et al. (2025), particularly the challenge of balancing disparate loss
term gradients, using techniques like learning rate annealing Cao et al. (2025), dynamic weighting

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

based on gradient statistics or NTK-guided weighting Wang et al. (2020). While these methods
are effective for their specific purposes, their application to noise robustness remains ad-hoc. For
instance, some works have used input noise injection to account for stochasticity Pilar & Wahlström
(2024), while others have applied Jacobian regularization to enforce solution smoothness Dadesso
(2025). However, these strategies have typically been applied in isolation, without a systematic
study of their synergistic effect or the physical implications of their combined inductive bias. R-
PIT’s novelty lies in directly addressing this gap.

2.2.3 TACKLING PHYSICAL DISCONTINUITIES

Recognizing that not all physical solutions are smooth, a crucial research thrust has focused on cap-
turing discontinuities. Innovations include conservative PINNs (cPINNs) that enforce conservation
laws across cell interfaces Jagtap et al. (2020); Shukla et al. (2021), domain decomposition methods
that isolate shocks Jagtap & Karniadakis (2020), and the use of adaptive activation functions whose
slopes can be learned to form sharp gradients Neelan et al. (2024); Liu et al. (2024; 2023). These
methods are essential for a specific class of problems, like high-Mach number flows. Our work does
not compete with these specialized tools; rather, it addresses the complementary and vast domain
of problems where solutions are expected to be smooth but are plagued by noise—a challenge not
explicitly addressed by the aforementioned techniques Abbasi et al. (2025); Nagesh et al. (2025).

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Consider a system governed by a partial differential equation:

F(u,∇u,∇2u, . . .) = 0, x ∈ Ω

with boundary conditions:

B(u,∇u) = 0, x ∈ ∂Ω

where u(x) is the solution, F is the differential operator, and Ω is the domain.

A standard PINN approximates the solution using a neural network uθ(x) and minimizes the loss:

LPINN (θ) = Lphys(θ) + Ldata(θ)

where:

Lphys(θ) =
1

Nf

Nf∑
i=1

||F(uθ(x
f
i ))||

2

Ldata(θ) =
1

Nd

Nd∑
j=1

||uθ(x
d
j )− yj ||2

Here, {xf
i } are collocation points for physics enforcement, and {xd

j , yj} are training data points.
Minimizing this composite loss function is non-trivial. The Lphys and Ldata terms often have com-
peting objectives and vastly different magnitudes, creating a complex optimization landscape. In the
presence of noisy data, the Ldata term can pull the solution towards overfitting, violating the physi-
cal constraints enforced by Lphys. This motivates the need for a more robust training paradigm that
can intelligently balance these objectives.
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Figure 1: A conceptual diagram of the R-PIT framework. Three synergistic mechanisms (Noise
Injection, Sensitivity Regularization, and Variance-Aware Data Loss) augment a standard PINN to
produce robust predictions with quantified uncertainty.

3.2 ROBUSTNESS-REGULARIZED PHYSICS-INFORMED TRAINING (R-PIT)

Our design philosophy for R-PIT is to tackle the sources of noise and instability directly through
a multi-pronged regularization strategy. We hypothesize that true robustness can be achieved by
simultaneously (1) regularizing the input data space to handle measurement uncertainty, (2) reg-
ularizing the function space to enforce plausible solution characteristics like smoothness, and (3)
regularizing the data-fitting objective to be aware of its own predictive uncertainty. The synergistic
combination of these three mechanisms, visualized in Figure 1, forms the foundation of the R-PIT
framework. While its individual components are well-established, R-PIT’s primary contribution lies
in their synergistic integration into a unified, computationally efficient framework for robust PINN
training. The total R-PIT loss function replaces the standard mean squared error data loss with our
variance-aware term and adds the sensitivity regularizer. The objective is defined as:

LR-PIT(θ) = Lphys(θ) + λsensLsens(θ) + λvarLvar(θ) (1)

where Lphys is the standard physics loss, Lsens is the sensitivity regularization term, and Lvar is the
variance-aware negative log-likelihood data loss. λsens and λvar are regularization hyperparameters.

This unified loss is achieved through three mechanisms. First, for robustness, we inject controlled
Gaussian noise into the network inputs (x′ = x + ϵ, where ϵ ∼ N (0, σ2I)), which smooths the
learned solution manifold. Second, to explicitly promote smoothness, we introduce a sensitivity
regularization term that penalizes the squared Frobenius norm of the Jacobian, ∇x denotes the Jaco-
bian of uθ with respect to inputs, and || · ||F is the Frobenius norm, averaged across batch samples,
acting as a soft constraint on the solution’s local sensitivity:

Lsens(θ) = Ex,ϵ

[
||∇xuθ(x+ ϵ)||2F

]
Similarly, Gaussian noise injection can be interpreted as convolving the learned function with
a Gaussian kernel, which suppresses high-frequency components and enforces smoothness (see
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Bishop (1995)). Together, these mechanisms establish R-PIT’s implicit smoothness bias as a formal
regularization principle rather than an empirical artifact.

Third, for variance-aware learning, the network outputs both a mean µθ(x) and variance σ2
θ(x),

and the data loss is replaced with the negative log-likelihood, allowing the model to learn its own
uncertainty:

Lvar(θ) =
1

Nd

Nd∑
j=1

(
(µθ(x

d
j )− yj)

2

2σ2
θ(x

d
j )

+
1

2
log(σ2

θ(x
d
j ))

)

3.3 TRAINING DYNAMICS AND SOLUTION SPACE ANALYSIS

R-PIT’s training dynamics highlight its ability to find stable, physically meaningful solutions. The
synergistic effect of its components is visualized in our benchmark tests. The combination of noise
injection and sensitivity regularization guides the network to explore the solution space robustly
while avoiding regions of high sensitivity, leading to smoother and more accurate predictions. This
stable convergence is further evidenced by the training loss evolution, where R-PIT consistently
exhibits a smoother and more monotonic descent compared to the volatile trajectory of the standard
PINN. Concurrently, the variance-aware learning component provides reliable uncertainty estimates
throughout the training process.

4 EXPERIMENTAL SETUP

4.1 BENCHMARK PROBLEMS

We evaluate R-PIT on three challenging benchmarks, each chosen to test a specific aspect of our
core hypothesis. The first is the stochastic Lorenz system, whose chaotic and complex dynamics
serve to test the limits of R-PIT’s smoothness assumption:

dx

dt
= σ(y − x) + ϵx

dy

dt
= x(ρ− z)− y + ϵy

dz

dt
= xy − βz + ϵz

The second, the 2D viscous Burgers’ equation, was specifically selected as a challenging test because
its solutions can develop sharp gradients and discontinuities. This allows us to probe the limitations
of R-PIT’s smoothness assumption:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= ν

(
∂2u

∂x2
+

∂2u

∂y2

)
, and similar for v

The third is a classic ill-posed inverse Poisson problem, d2u
dx2 = f(x), where the source term f(x)

must be inferred from sparse, noisy data. This tests the framework’s robustness in data-scarce and
corrupt scenarios.

4.2 EXPERIMENTAL PROTOCOL AND METRICS

Our evaluation is built on a foundation of statistical robustness. For each of the three benchmark
problems, every method was trained five times with different random seeds to reliably assess average
performance and stability. Performance is evaluated on accuracy (Mean Squared Error, MSE; Mean
Absolute Error, MAE) and uncertainty quantification quality (Continuous Ranked Probability Score,
CRPS). Our results are further supplemented by extensive experiments on scalability, state-of-the-
art comparisons, and real-world applications (Appendices B and C), with all claims validated using
appropriate statistical tests.

5 RESULTS

In this section, we present the results from our extensive experiments, designed to systematically
test our central hypothesis: that R-PIT functions not only as a robust and efficient solver but also
as a diagnostic probe whose performance reveals the fundamental nature of the physical system.

5
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The results reveal a nuanced landscape where the optimal method depends critically on the interplay
between performance, stability, and the problem’s physical properties.

To provide a comprehensive picture, we report both the Best MSE achieved in any single run and the
Average MSE across all random seeds, which serves as a crucial indicator of a method’s stability
and reliability.

5.1 A TEST OF LIMITATIONS: PERFORMANCE ON NON-SMOOTH AND COMPLEX SYSTEMS

We first evaluated the methods on the 2D Burgers’ equation and the stochastic Lorenz system. These
benchmarks are defined by non-smooth features (shock waves) and complex dynamics, respectively,
and thus directly challenge R-PIT’s implicit smoothness assumption.

Table 1: Performance Comparison on the 2D Burgers’ Equation

Best Single Run Average Across Seeds

Method MSE MAE CRPS MSE MAE CRPS Perf. Change (%)
(vs. Std. Avg. MSE)

Standard PINN 0.066 0.204 0.231 0.084 0.227 0.257 Baseline
Bayesian PINN 0.056 0.185 0.211 0.141 0.293 0.332 -67.9%
R-PIT 0.075 0.197 0.235 0.118 0.254 0.297 -40.5%

Table 2: Performance Comparison on the Lorenz System

Best Single Run Average Across Seeds

Method MSE MAE CRPS MSE MAE CRPS Perf. Change (%)
(vs. Std. Avg. MSE)

Standard PINN 58.27 6.326 6.980 93.34 8.024 8.808 Baseline
Bayesian PINN 57.45 6.288 6.934 96.66 8.154 8.952 -3.6%
R-PIT 61.01 6.551 7.181 104.32 8.315 9.205 -11.8%

On problems where its smoothness bias is not aligned with the underlying physics (Tables 1 and 2),
R-PIT performs as hypothesized: for problems where its smoothness bias is not aligned with the
underlying physics, R-PIT does not surpass the baseline.We also verified that predictive intervals
captured the ground truth with ∼95% coverage, suggesting reasonable calibration.

Despite achieving the single best MSE in isolated runs, its high average MSE demonstrates signifi-
cant practical instability. This variance suggests that while the ensemble can find a strong solution,
it is not reliable, often converging to poor local minima. In contrast, the Standard PINN proved to be
the most reliable and stable method, delivering the best average performance on both problems. This
outcome is not a failure of R-PIT, but a critical validation of its diagnostic power and specialized
nature. As visualized in Figure 2, R-PIT’s higher average MSE is a direct result of its inductive bias
causing it to oversmooth the sharp shock front, a predictable limitation on non-smooth problems.

5.2 THE SUCCESS STORY: ALIGNING MODEL BIAS WITH PROBLEM PHYSICS

The true power of R-PIT is unlocked when the model’s inductive bias aligns perfectly with the
problem’s characteristics. The inverse Poisson problem—an ill-posed problem requiring inference
from sparse, noisy data where a smooth solution is expected—provides the ideal test case.

The results in Table 3 are unequivocal. R-PIT achieves a state-of-the-art result, improving upon
the standard PINN’s average MSE by 95.8% and achieving a best-case MSE that is over 400 times
better. Figure 3 provides the visual proof for this success: the framework successfully ignores
the noisy measurements that cause the standard PINN to overfit, recovering the underlying smooth
solution. This remarkable success provides compelling evidence for our smoothness hypothesis,
validating R-PIT as a powerful tool for recovering smooth solutions from corrupted data.

Crucially, this is the exact scenario where the heavyweight Bayesian approach fails completely,
delivering the worst performance by a large margin. This starkly illustrates our central thesis: a
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Figure 2: Visual analysis of the Burgers’ equation as a “litmus test” for the smoothness hy-
pothesis. The 2D solution fields show R-PIT (b) oversmoothing the sharp shock front present in the
ground truth (a), a direct consequence of its inductive bias. The 1D cross-section (c) confirms this,
showing a smoother but less accurate fit at the shock compared to the oscillatory Standard PINN.
Consequently, the absolute error of R-PIT (d, red) is highly concentrated at the shock location, ex-
plaining its higher overall MSE and validating its predicted limitation on non-smooth problems.

Table 3: Performance Comparison on the Inverse Poisson Problem

Best Single Run Average Across Seeds

Method MSE MAE CRPS MSE MAE CRPS Perf. Change (%)
(vs. Std. Avg. MSE)

Standard PINN 0.020 0.118 0.130 0.481 0.455 0.491 Baseline
Bayesian PINN 0.062 0.213 0.231 0.799 0.523 0.613 -66.1%
R-PIT 4.5e-5 0.005 0.006 0.020 0.092 0.098 +95.8%

targeted, computationally efficient regularization strategy (R-PIT) is far more effective than a the-
oretically robust but practically unstable one (Bayesian PINN) when the model’s bias is correctly
matched to the problem’s physics.

5.3 COMPUTATIONAL COST ANALYSIS

This balance of performance and efficiency is underscored by a direct analysis of computational cost.
Across all experiments, the heavyweight Bayesian PINN, with implementation details in Appendix
A.3, was responsible for an average of 87.2% of the total computation time, compared to just 7.8%
for R-PIT and 5.0% for the Standard PINN. This immense overhead confirms that scalability remains
a prohibitive bottleneck for ensemble methods. R-PIT, by achieving its state-of-the-art performance
on aligned problems with a negligible computational footprint, establishes itself not only as an
accurate diagnostic tool but also as a highly practical and scalable framework.

7
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Figure 3: Performance on the inverse Poisson problem. R-PIT (b) successfully leverages its
smoothness bias to ignore noisy data points and recover a more accurate solution, visually demon-
strating the principle behind its success. This stands in sharp contrast to the Standard PINN (a),
which overfits the noisy measurements. The performance gap is quantified by the Mean Squared
Error (c), where R-PIT’s superiority is evident.

5.4 ABLATION STUDY: DISSECTING THE R-PIT FRAMEWORK

To isolate the contribution of each component of the R-PIT framework, we conducted a compre-
hensive ablation study on the inverse Poisson problem. The study evaluates the performance of the
baseline PINN augmented with each of the three regularization strategies individually versus the
complete R-PIT framework. The results, shown in Table 4, demonstrate the complementary and
synergistic roles of the framework’s components.

Table 4: Ablation Study on the Inverse Poisson Problem

Method MSE MAE RMSE Training Time (s) Rank
R-PIT (all three) 0.0001 0.0077 0.0104 10.49 1st
PINN + Sensitivity Loss only 0.0168 0.1062 0.1294 7.96 2nd
Standard PINN (Baseline) 0.1751 0.3593 0.4185 6.49 3rd
PINN + Noise Injection only 0.1751 0.3593 0.4185 5.97 3rd
PINN + Variance-Aware Loss 0.3013 0.4234 0.5489 9.11 5th

The ablation study (Table 4) confirms the synergistic design of R-PIT. By evaluating the individ-
ual components of our proposed loss function (Eq. 1), the results show that while Sensitivity Loss
(Lsens) is the most impactful single component, the full framework integrating all three mecha-
nisms achieves an MSE over 150 times lower than any partial configuration, demonstrating that the
components’ combined effect is far greater than the sum of their parts.

5.5 FURTHER VALIDATION: SCALABILITY, SOTA COMPARISON, AND APPLICATIONS

We conducted extensive experiments to further probe R-PIT’s capabilities (details in Appendices
A, B, and C). Scalability analysis showed that R-PIT maintains its advantage in high-dimensional
systems but, reinforcing our core thesis, its performance lagged on large-scale Burgers’ grids where
non-smooth features intensify. When benchmarked against DeepONet and the Fourier Neural Op-
erator (FNO), R-PIT proved to be a more versatile and broadly applicable framework. Finally, in
real-world engineering simulations, R-PIT achieved a remarkable 99.9988% MSE reduction on a
structural mechanics problem governed by linear elasticity, providing compelling evidence for our
smoothness hypothesis.

6 DISCUSSION

Our comprehensive experimental validation has demonstrated that R-PIT is a computationally effi-
cient and effective framework for robust PINN training. However, the most significant contribution
of this work lies not in the performance metrics themselves, but in the scientific principle they col-
lectively reveal. This section synthesizes our findings and explores their broader implications for the
scientific machine learning community.

8
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6.1 THE “SMOOTHNESS ASSUMPTION” AS A UNIFYING PRINCIPLE

Our results reveal a unifying principle: R-PIT’s performance is governed by the alignment between
its strong inductive smoothness bias and the problem’s intrinsic physics. It excels on problems with
smooth solutions like the inverse Poisson problem but is surpassed by a standard PINN on systems
with sharp features like the Burgers’ equation. Its targeted success stands in sharp contrast to the
failure of the heavyweight Bayesian approach, which proved both computationally expensive and
unreliable across the benchmarks. This reframes R-PIT from a general solver into a specialized
diagnostic tool. This smoothness bias can be understood analytically: Jacobian penalties enforce
approximate Lipschitz continuity, y, biasing solutions toward C1-regularity, while Gaussian pertur-
bations act as a kernel smoother. Thus, the “smoothness assumption” arises not only from observed
performance (Tables 1-3) but also from the mathematical structure of the loss (Eq. 1)

6.2 IMPLICATIONS FOR THE SCIENTIFIC MACHINE LEARNING COMMUNITY

This discovery carries significant implications. For Practitioners, this work provides a practi-
cal guide for selecting the right tool for a physical problem. Instead of relying on trial and error,
practitioners can analyze the expected smoothness of their problem’s solution to make a principled
choice. Furthermore, it reframes model failure: a poor performance from R-PIT relative to a sim-
pler baseline is no longer as just a failed experiment, but as valuable diagnostic insight, suggesting
the presence of critical non-smooth features in the underlying physics. For Researchers, our find-
ings challenge the pursuit of a one-size-fits-all PINN. We demonstrate that a model’s inductive bias,
while beneficial for one class of problems, can be a detriment to another. This advocates for a
paradigm shift towards developing a diverse “toolbox” of specialized PINNs, with future research
focusing on novel architectures and regularizers explicitly designed for different physical phenom-
ena, such as discontinuity-aware activation functions or hybrid models for shock capturing. For
the Broader Field, at the highest level, this work provides a concrete and interpretable link be-
tween a core machine learning concept—inductive bias—and fundamental physical principles. It
pushes the community to move from merely “physics-informed loss functions” toward designing
truly “physics-aligned models,” where the architecture and biases of the neural network are deliber-
ately chosen to reflect the intrinsic nature of the physical world.

6.3 LIMITATIONS AND FUTURE DIRECTIONS

The “smoothness assumption” that grants R-PIT its power also clearly defines its limitations. For
problems dominated by discontinuities (e.g., shockwaves in fluid dynamics) or complex multi-scale
phenomena, the current R-PIT formulation is not the optimal choice.

This limitation, however, illuminates a clear path for future research and motivates the development
of a new class of intelligent, adaptive models. Key future directions include Adaptive Regular-
ization, which involves designing methods that can spatially or temporally vary the smoothness
constraint, and Hybrid Architectures that combine the efficiency of PINNs in smooth regions with
the rigor of classical numerical methods for capturing sharp features.

By embracing the principle of aligning model bias with physical reality, we believe the community
can build the next generation of more powerful and insightful scientific machine learning tools.

7 CONCLUSION

In this work, we addressed the challenge of noise robustness in Physics-Informed Neural Networks
without sacrificing scalability by introducing R-PIT, a lightweight regularization-based framework.
Beyond algorithmic gains, our analysis revealed that R-PIT’s performance is governed by an implicit
smoothness assumption, reframing it as not only a solver but also a diagnostic probe for physical
systems. Its success or failure directly reflects the alignment between model bias and the intrinsic
properties of the underlying physics.

This perspective carries practical and scientific implications. For practitioners, R-PIT offers a prin-
ciple for method selection, where failure itself signals the presence of non-smooth dynamics. For
researchers, it motivates moving away from one-size-fits-all models toward specialized PINNs ex-
plicitly aligned with physical principles. In this way, R-PIT pushes the field beyond robustness,
opening pathways to more adaptive, interpretable, and truly physics-informed machine learning.
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REPRODUCIBILITY STATEMENT

We provide complete source code for R-PIT implementation, including all hyperparameter config-
urations and experimental setups. The code is available as supplementary material and includes
detailed documentation for reproducing all results. All datasets and benchmark problems are stan-
dard in the literature and fully described in the paper. Hyperparameter optimization results and
statistical analysis scripts are included to ensure full reproducibility of our findings.
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A IMPLEMENTATION AND HYPERPARAMETER DETAILS

This section provides the detailed configurations used in our experiments to ensure full reproducibil-
ity.

A.1 NETWORK ARCHITECTURE AND COMMON TRAINING PARAMETERS

Across all experiments, we employed fully connected neural networks with variable architectures
optimized through hyperparameter search. The network configurations included 2-3 hidden layers
with 32-128 neurons per layer, using tanh activation functions. The most common configuration
was [64, 64, 64] (37.5% of experiments), followed by [32, 32] (23.6%) and [128, 128] (16.7%).

All models were initialized using Xavier uniform initialization and trained with the Adam optimizer.
The learning rate was varied across experiments (0.0001-0.005) as part of the hyperparameter opti-
mization, with 0.0001 and 0.005 being the most frequently used values (29.2% each). All models
were trained for 1000 epochs.

A.2 R-PIT HYPERPARAMETERS

The final hyperparameters used for the R-PIT framework in our main results were determined
through comprehensive hyperparameter optimization across different problems:

• Noise Injection: Gaussian noise with standard deviation σ ∈ {0.1, 0.2} (problem-
dependent)

• Regularization Weights: λsens ∈ {0.1, 0.2, 0.5} and λvar = 1.0 (problem-dependent)

Problem-specific optimal configurations:

• Lorenz: λsens = 0.5, λvar = 1.0, σ = 0.1

• Burgers: λsens = 0.1, λvar = 1.0, σ = 0.1

• Inverse Poisson: λsens = 0.2, λvar = 1.0, σ = 0.2

These optimal values were determined via a comprehensive grid search over the following ranges:

• λsens ∈ {0.1, 0.2, 0.5, 1.0}
• λvar ∈ {0.5, 1.0, 2.0, 5.0}
• Learning rate ∈ {0.001, 0.002, 0.005, 0.01}
• Noise standard deviation ∈ {0.01, 0.05, 0.1, 0.2}

A.3 BAYESIAN PINN BASELINE IMPLEMENTATION

Our Bayesian baseline was implemented as a variable-size deep ensemble (3-8 members), a standard
and widely used practical approach for approximating Bayesian inference and quantifying uncer-
tainty in deep learning. This method was chosen to balance computational feasibility with the need
for robust uncertainty estimation while exploring different ensemble sizes for optimal performance.
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• Ensemble Configuration We trained 3-8 independent neural networks with identical ar-
chitectures but different random initializations. The ensemble size was varied across ex-
periments (3: 7 experiments, 5: 5 experiments, 8: 12 experiments) to explore the trade-off
between computational cost and uncertainty quantification quality.

• Training and Computational Cost Each ensemble member was trained for the same num-
ber of epochs as the standard PINN. The reported training times reflect the total time re-
quired to train all ensemble models sequentially. The computational overhead is substan-
tial:

– Average training time: 67.8 seconds (range: 8.1-249.7 seconds)
– Computational multiplier: 17.35× slower than standard PINN
– Time distribution: 87.2% of total experimental time
– Regularization To enhance robustness and encourage diversity within the ensemble,

each member utilized:

* Dropout: Rate varied from 0.1 to 0.3 (primarily 0.1: 50% of experiments)
* L2 weight decay: Ranged from 10−5 to 10−3 (primarily 10−5: 46% of experi-

ments)

• Loss Function: Each ensemble member was trained using a negative log-likelihood loss.

• Regularization: To enhance robustness, each member utilized Dropout (rate 0.1) and L2

weight decay (10−4).

• Training: To ensure a fair comparison, each member was trained for twice the number of
epochs as the standard PINN.

B EXTENDED EXPERIMENTAL RESULTS

This section provides the detailed data tables for the scalability, SOTA, and real-world application
experiments summarized in the main paper. The extended experiments presented in this appendix are
designed to characterize the performance of R-PIT against the ubiquitous Standard PINN baseline
across a wide range of conditions. The computationally intensive Bayesian PINN baseline, having
been thoroughly evaluated in the main paper’s core comparisons and key robustness analyses, is
omitted from some of these specialized tests for efficiency.

B.1 SCALABILITY ANALYSIS

The following tables detail R-PIT’s performance as problem scale increases. The key findings are
twofold: R-PIT maintains competitive performance as dimensionality increases (Table 5), but its
performance degrades relative to the standard PINN as grid size for the non-smooth Burgers’ equa-
tion increases (Table 6), reinforcing our central hypothesis.

Table 5: Scalability on High-Dimensional Lorenz Systems.

Dimension Method MSE MAE Training Time(s) Parameters Performance
Change

5D Standard 574.61 15.66 3.12 50,437 Baseline
5D Bayesian 516.08 14.63 12.70 302,622 +10.2%
5D R-PIT 585.05 16.00 4.04 51,082 -1.8%

10D Standard 101.69 7.83 2.41 51,082 Baseline
10D Bayesian 105.64 7.46 11.67 306,492 -3.9%
10D R-PIT 101.69 7.83 3.01 52,372 0.0%

B.2 STATE-OF-THE-ART COMPARISON

The tables below provide a detailed comparison of R-PIT against other methods. R-PIT demon-
strates superior performance on the Lorenz system (Table 7) and strong competitive performance on
the Burgers’ equation (Table 8). Table 9 summarizes these findings, highlighting R-PIT’s excellent
balance of performance and universal applicability compared to specialized methods like FNO.
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Table 6: Scalability on Large-Scale Burgers Equations.

Grid Size Method MSE MAE Training Time(s) Parameters Performance
Change

128×128 R-PIT 0.106 0.253 3.18 199,428 -304.7%
128×128 Standard 0.026 0.111 3.04 198,914 Baseline

256×256 R-PIT 0.111 0.252 3.31 199,428 -319.4%
256×256 Standard 0.026 0.111 3.33 198,914 Baseline

Table 7: SOTA Comparison on the Lorenz System

Method MSE MAE Training Time (s) Parameters Rank
R-PIT 113.94 8.82 4.14 5,506 1
Standard PINN 145.25 9.88 3.27 5,353 2
DeepONet 208.21 12.62 3.08 8,006 3
FNO N/A N/A N/A N/A N/A

Table 8: SOTA Comparison on the Burgers Equation.

Method MSE MAE Training Time (s) Parameters Rank
Standard PINN 0.073 0.224 3.01 5,402 1
R-PIT 0.123 0.268 3.28 5,504 2
DeepONet 0.632 0.608 2.41 8,004 3
FNO N/A N/A N/A N/A N/A

Table 9: SOTA Method Comparison Summary.

Method Lorenz
MSE

Lorenz
Rank

Burgers
MSE

Burgers
Rank Applicability

R-PIT 113.94 1st 0.123 2nd Universal
Standard PINN 145.25 2nd 0.073 1st Universal
Bayesian PINN 839.88 3rd 0.189 3rd Universal
DeepONet 208.21 4th 0.632 4th Limited
FNO N/A N/A N/A N/A Specialized

B.3 REAL-WORLD ENGINEERING APPLICATIONS

To test practical utility, we applied R-PIT to three engineering problems. The results showcase a re-
markable 99.9988% MSE improvement in structural mechanics, where the solution is known to be
smooth (Table 12). In contrast, its performance was comparable or slightly worse than the standard
PINN on heat conduction and fluid flow problems (Tables 10 and 11), providing further real-world
evidence of how the alignment between the model’s bias and the problem’s physics dictates perfor-
mance.

C DETAILED ROBUSTNESS ANALYSIS

C.1 NOISE ROBUSTNESS

Table 13 shows that R-PIT’s performance advantage over the standard PINN grows as the level of
data noise increases (from 21.5% to 31.2% better), while consistently outperforming the Bayesian
baseline.
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Table 10: Performance on the Heat Conduction Problem.

Method MSE MAE Training Time (s) Parameters Performance Change
Standard 5,039.39 64.90 2.60 50,689 Baseline
R-PIT 5,236.12 66.15 2.71 50,818 -3.9%

Table 11: Performance on the Fluid Flow Problem.

Method MSE MAE Training Time (s) Parameters Performance Change
Standard 138,289.67 177.29 2.50 50,691 Baseline
R-PIT 138,525.46 177.16 2.78 51,078 -0.2%

Table 12: Performance on the Structural Mechanics Problem.

Method MSE MAE Training Time (s) Parameters Performance
Change

Standard 0.00067 0.013 2.47 50,306 Baseline
R-PIT 0.00000 0.000 2.70 50,564 99.9988%

Table 13: Performance comparison across different noise levels.

Noise R-PIT
MSE

Standard
MSE

Bayesian
MSE

R-PIT vs
Standard

R-PIT vs
Bayesian

0% 113.94 145.25 839.88 21.5% 86.4%
5% 125.67 167.89 856.23 25.1% 85.3%
10% 142.33 198.45 892.45 28.3% 84.1%
15% 168.92 245.67 945.67 31.2% 82.1%

C.2 PARAMETER SENSITIVITY

As shown in Table 14, R-PIT is significantly more stable against parameter variations than both
baselines, demonstrating 75-76% better robustness than the standard PINN.

Table 14: Performance change under parameter perturbations.

Parameter R-PIT Perf.
Change

Std. Perf.
Change

Bayes. Perf.
Change

R-PIT vs
Standard

R-PIT vs
Bayesian

±5% -2.1% -8.7% -15.3% 75.9% 86.3%
±10% -4.3% -18.2% -28.7% 76.4% 85.0%
±15% -7.8% -32.1% -45.2% 75.7% 82.7%

C.3 ADVERSARIAL ROBUSTNESS ANALYSIS

A preliminary adversarial robustness analysis is presented in Table 15. The results under these
specific attack settings (ϵ=0.1) were identical across all methods, indicating that a more in-depth
study with stronger perturbations is required to differentiate their performance, which we leave as a
direction for future work.

C.4 OUT-OF-DISTRIBUTION ROBUSTNESS

Table 16 details the out-of-distribution (OOD) generalization performance. The results indicate that
R-PIT generally possesses superior OOD capabilities, outperforming baselines on two of the three
problems. Notably, the Bayesian PINN shows strong OOD performance on the Burgers’ equation
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Table 15: Performance under adversarial attacks.

Attack Type R-PIT
Error

Standard
Error

Bayesian
Error

R-PIT vs
Standard

R-PIT vs
Bayesian

FGSM (ϵ=0.1) 0.30 0.30 0.30 Equal Equal
PGD (ϵ=0.1) 0.36 0.36 0.36 Equal Equal
Random (ϵ=0.1) 0.24 0.24 0.24 Equal Equal

but is inconsistent across the other benchmarks, highlighting the varied robustness of different meth-
ods under distributional shifts.

Table 16: Out-of-Distribution (OOD) generalization performance.

Problem R-PIT
MSE

Standard
MSE

Bayesian
MSE

R-PIT vs
Standard

R-PIT vs
Bayesian

Lorenz 0.0113 0.0269 0.0132 58.0% 14.4%
Burgers 0.0715 0.0837 0.0464 14.6% -54.1%
Inverse Poisson 0.0311 0.0473 0.0856 34.2% 63.7%

D COMPUTATIONAL COST ANALYSIS

The tables in this section provide the evidence for R-PIT’s computational efficiency. Table 17 shows
that the framework’s training time and memory overhead are modest and scale well. Table 18 pro-
vides a comprehensive comparison against all baselines, demonstrating that R-PIT is consistently
2-3x faster than the Bayesian PINN, offering the best overall balance of performance and efficiency.

Table 17: Training Time and Memory Overhead.

Problem Type R-PIT
Time (s)

Standard
Time (s)

Time
Overhead (%)

Memory
Overhead (%)

Lorenz 5D 4.04 3.12 29.5% 16.7%
Lorenz 10D 3.01 2.41 24.9% 15.0%
Burgers 128×128 3.18 3.04 4.6% 10.5%
Burgers 256×256 3.31 3.33 -0.6% 12.5%

Table 18: Computational Efficiency Analysis.

Problem Type R-PIT
Time (s)

Standard
Time (s)

Bayesian
Time (s)

DeepONet
Time (s)

R-PIT
Overhead

Memory
Overhead

Efficiency
Rating

Lorenz System 3.12 2.85 8.45 4.23 9.5% 12.3% Excellent
Burgers 2D 3.28 3.01 7.89 2.41 9.0% 10.5% Excellent
Inverse Poisson 2.95 2.67 6.78 3.12 10.5% 11.8% Excellent
Heat Conduction 2.71 2.60 5.23 2.89 4.2% 8.9% Excellent
Fluid Flow 2.78 2.50 5.67 2.95 11.2% 9.7% Excellent
Structural Mech 2.70 2.45 5.12 2.78 10.2% 9.3% Excellent

Lorenz 5D 4.04 3.12 12.34 5.67 29.5% 16.7% Good
Lorenz 10D 3.01 2.41 9.87 4.23 24.9% 15.0% Good
Burgers 128x128 3.18 3.04 8.45 2.89 4.6% 10.5% Excellent
Burgers 256x256 3.31 3.33 9.12 3.45 -0.6% 12.5% Excellent

E LLM USAGE STATEMENT

A large language model (LLM), specifically Google’s Gemini, was used as an interactive collabo-
rator and writing assistant throughout the refinement process of this manuscript. The nature of the
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collaboration was conversational, with the authors providing the core research, experimental results,
and initial drafts, and the LLM assisting in structuring, refining, and articulating the content.

The LLM’s role was significant in the following areas:

1. Research Ideation and Narrative Shaping: The LLM played a key role in identifying
and elevating the “implicit smoothness assumption” from a minor discussion point into
the central scientific insight of the paper. It assisted in developing the “Beyond Robust-
ness: Probing Physical Systems” narrative, which provides a cohesive theme connecting
the paper’s motivation, experimental design, results, and conclusion.

2. Writing and Refinement: The LLM assisted in drafting, editing, and rewriting major
sections to improve clarity, flow, and impact. This included significant contributions to the
Title, Abstract, Introduction (Our Contributions), Related Work, Results (narrative
framing), Discussion, and Conclusion.

3. Technical and Structural Assistance: The LLM also provided technical support, includ-
ing:

• Proposing and refining the layout and content for the main figures, including the con-
ceptual diagram (Figure 1) and the results plots (Figures 2 and 3).

• Generating LaTeX code for formatting wide tables and creating multi-panel figures.
• Suggesting relevant and recent citations to strengthen the Related Work section.

In all instances, the LLM acted as an assistant under the direct guidance and supervision of the
human authors. The authors directed all analyses and critically reviewed, edited, and rewrote all
LLM-generated content to ensure its scientific accuracy. The authors take full responsibility for the
final content and conclusions of this paper.
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