
Under review as a conference paper at ICLR 2024

STRUCTURE-RICH TEXT BENCHMARK FOR KNOWL-
EDGE INFERENCE EVALUATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We construct a benchmark for LLMs (Large Language Models) composed of
structure-rich and syntactically rigorous corpus with semantics-independent tasks,
in purpose of evaluating the abilities of knowledge inference from small structured
text and construction rules. The tasks also involve the capacity to generate strictly
formatted response given the specification, i.e. to output the same structure-rich
texts as the inputs. We also experimented on the popular LLMs with our bench-
mark to compare their competence to mine for information from syntax and con-
dense information into structure.

1 INTRODUCTION

1.1 BACKGROUND

The explosive growth in the digitization of information in the world today has seen an evolving shift
in the dynamics of textual data presentation. Textual communication, encapsulated traditionally
in natural human languages, has diversified into more structured formats for seamless interactions
among software programs. Notable examples include JavaScript Object Notation (JSON), Python,
C++, Yet Another Markup Language (YAML), among others. These structured texts serve as a
critical medium in various sectors like technology, health, engineering, finance, where they have
found widespread application in data representation, configuration files, and codebases.

Language models, the brain behind most AI technologies, develop a comprehensive understanding
of these structured formats. The ability for an artificial intelligence model to understand and generate
these structured texts, therefore, presents a significant stride in contemporary global digitalization
efforts. This understanding equates to unlocking a new level of competence and functionality in
language models. It promises better system interoperability, more efficient parsing and interpreting
of structured data, and an eventual enhancement in machine-learning-based applications. It also has
far-reaching implications on the development of more adaptive and complex AI systems. Therefore,
bringing language models to understand structured texts is not just a necessity, but a fundamental
requirement in fast-tracking our collective global digitalization strides.

1.2 MOTIVATION

Current attempts to bridge the gap between language models and understanding of these structured
texts have, however, met several limitations. Conventionally, language models have predominantly
focused on understanding natural human languages, with limited attention to structured texts like
JSON, YAML, and codebases. This insufficient attention can be attributed to the growing com-
plexity, diversity, and inherent characteristics of those structured languages, such as abstract data
types like trees and graphs. In recent years, significant efforts have centered on broadening the
understanding capabilities of language models, with the existing body of work demonstrating con-
siderable advancements in this regard.

However, these studies often operate within a narrow focus, primarily exploring the capacity of these
models in generating and interpreting codes—a crucial aspect of structured text understanding. Al-
though these approaches have generated promising results, their limited scope has left a critical part
of the solution space unexplored. They largely concentrate on analyzing language models’ abili-
ties to decipher programming languages like Python and C++, leaving out other forms of structured

1



Under review as a conference paper at ICLR 2024

you are a JSON file 
parser, you are 
required to answer 
questions pertaining 
to the given JSON 
file.

System

{
"id":"fdulib",
"name":"Fudan Library",
"location":"220 Handan Rd.",
"rooms":[

{
"id":"F3R401",
"capacity":"40",
"chairs":[

{
"id":"8048",
"size":"Large",
"subs":[]

},
{

"id":"1024",
"size":"Medium",
"subs":[]

}
],
"bulbs":[

{
"id":"b63e",
"type":"LED",
"subs":[]

},
{

"id":"b23f",
"type":"CFL",
"subs":[]

}
]

}
]

}

Input

Answer

{
"id":"8048",
"size":"Large",
"subs":[]

}

{
"id":"1024",
"size":"Medium",
"subs":[]

}

{
"id":"b63e",
"type":"LED",
"subs":[]

}

{
"id":"b23f",
"type":"CFL",
"subs":[]

}

{
"id":"8048",
"size":"Large",
"subs":[]

}

{
"id":"1024",
"size":"Medium",
"subs":[]

}

{
"id":"b63e",
"type":"LED",
"subs":[]

}

{
"id":"b23f",
"type":"CFL",
"subs":[]

}

Ground Truth

What are the most 
deeply nested objects, 
i.e., no value of type list 
or dict? The content 
should be an excerpt as 
they appear in the 
JSON file, separated by 
\n\n.

Question

Figure 1: Sample input and tasks of tree.

texts, most notably JSON and YAML. Moreover, these current works do not sufficiently account for
the understanding of intricate data structures (like trees and graphs) inherent in structured texts—an
essential competency for comprehensive textual understanding. This insufficiency in existing stud-
ies signals a compelling need to embark on further explorations. It exposes the urgency to develop
a more holistic approach predicated not just on understanding programming codes but on a broader
spectrum of structured texts.

1.3 OUR PROPOSAL

In this paper, we propose a novel benchmark for testing language models’ ability to understand and
generate different types of structured texts, like JSON, YAML, and programming languages like
Python.

1.4 OUR METHOD

We searched vastly structured texts that have well-documented syntax and are widely used in indus-
try and academies. We include both fully-structured and half-structured data to enrich the diversity
of our dataset. For each class of texts, we designed 3-5 tasks that are structure-related, some of
which are specific to their classification.

Based on the syntax and rules for construction, we randomly generate the input texts, and procedu-
rally generate the corresponding tasks data in the meantime. For some classes whose texts are easily

2



Under review as a conference paper at ICLR 2024

accessible, we collect the texts from Internet at first and make use of the available parsers to analyze
and extract the structure information that constitute the tasks to be constructed.

1.5 CONTRIBUTION

• We first thoroughly evaluated the LLMs’ ability to understand and manipulate structure-
rich texts.

• We present a taxonomy for structured texts and designed structure-related tasks for each
class.

• With a total of 9 text classes and several tasks for each class, we present 32 structure-
specific tasks and 2512 samples for our benchmark dataset.

• We also tested 4 LLMs and present the results under various metrics for assessment.

The remainder of this paper is arranged into 6 section. section 2 covers attempts in literature to build
better models for structural texts centered tasks and construct benchmarks and datasets for such
tasks, which have both focused on codebases and fell short of the diversity of structure-rich texts.
In section 3 we propose a taxonomy for structure-rich texts that are popular in LLMs’ use scenarios
and define their generation rules we used, common applications and tasks we designed for each
class. section 4 covers our method and framework for collecting input texts and QAs for out dataset.
section 5 shows our evaluation on the benchmark for 4 LLMs, namely, GPT-4, Spark, Minimax and
Ernie. In section 6 we discussed the performance (scores) distributed among the LLMs and different
input types. We wrap up our work and experiment results in section 7.

2 RELATED WORKS

Previous explorations over structural information in text have mainly focused on programming lan-
guage. Due to the difference between normal natural language texts and rich-structure texts, NLP
models trained on natural language perform worse than models curated for structural tasksMou et al.
(2016). Mou et al. (2016) built a tree-based convolutional neural network that outperformed NLP
models on functionality classification tasks and pattern detection tasks over programming languages.
Wang et al. (2020) achieved SOTA on code clone detection using graph neural networks and AST
representation augmented by control flow of programming language inputs, which is different in
architecture from common language models for NLP tasks. Zhou et al. (2019) built graph neural
network to perform classification over learned rich node representations gained considerably in-
creased accuracy and F1 scores. The weakness on structural text processing and achievements from
alternative architecture shows insufficiency of attention on the realm of rich-structure text from the
NLP models.

As for benchmark and datasets, previous works focus on codebases and scenarios of clone detec-
tion, vulnerability identification and so on. Svajlenko et al. (2014) proposed a benchmark over
Java codes targeting on code clone detection tasks, leaving the inner structure of codes texts un-
touched. Zhou et al. (2019) also built a dataset from diversified large-scale open-source C projects
(Linus, QEMU, Wireshark, FFmpeg) with a total of 48687 commits, manually labeled as vulner-
able or non-vulnerable used for vulnerable function identification. The CODESEARCHNETHusain
et al. (2019) for code query tasks consist of 6 million functions from open-source code, covering
six programming language. It is noteworthy that the construction of the dataset leveraged the infor-
mation in documentation associated with functions during data filtering. Our work also leveraged
the information beyond code texts of which documentation and comments are most typical, when
generating the ground truth for one of the python code tasks. Despite that Husain et al. (2019) used
it to collect model input instead of ground truth, the similarity of the intention lies in the utilization
of the semantic information as much as possible. However, rather than inspecting syntactic and
structural information, the tasks in Husain et al. (2019) are semantic code search, which is more
semantic-dominated. Other code related datasets include Raychev et al. (2016b) which contains
150000 JavaScript files with parsed ASTs, and Raychev et al. (2016a) which is the Python counter-
parts to the former one.

3



Under review as a conference paper at ICLR 2024

3 TAXONOMY

3.1 INFORMATION BEHIND STRUCTURE

Previous benchmarks on LLMs have largely relied on the tasks where semantic information is crit-
ical and central to the correct response, e.g., question answering, summarization and information
retrieval. Such tasks cover the majority of usage scenarios for language models, in which inputs are
mainly sequential. However, they fail to demonstrate the ability of understanding and manipulating
the structure of texts, which is too ubiquitous to be noticed in our daily use of texts.

The commonly used structure-rich texts are normally concise in volume. But through construction
rules, they convey ample information that is not explicitly present in the input texts, demonstrating
their expressiveness. Those implicit knowledges are inferred on-the-fly according to the rules and
structure, starting from the source texts. The rules or syntaxes serve as a function that procedu-
rally leads to different answers under different inputs(Such expressiveness is also characteristic of
functional programming where lazy-evaluation is the main trait).

The implicit information is dark, in the sense that it is not readily present or detectable in the given
input texts, but it dominates the construction and formation of texts (it is also massive in volume, if
explicitly elicited).

Based on the expressiveness and information obscurity of structure-rich texts. We conclude that
the abilities to understand these texts and tackle relevant tasks are critical to LLMs that excel in
inference and generalization.

3.2 TAXONOMY: STRUCTURED-RICH TEXT AND TASK

We searched present literature broadly and propose a overarching taxonomy that covers widely
used structure-rich texts, including structured texts (table in relational database), semi-structured
texts (XML, JSON, YAML, etc.), abstract data structure in ascii (Tree), and programming language
(Python). For every class of input texts, we designed 3-5 tasks regarding the structure and semantics
of the input texts. Most tasks are strongly correlated with the structure of input and their ground
truths can be derived using program. On the other hand, a few tasks are semantics dependent,
mostly when understanding the task instruction. Amongst all 32 tasks, only one task has answer
that can not be procedurally obtained from input text. The examples of the input texts and tasks for
each category are documented in A.4. For each task, we generated 20 sample input and constructed
a dataset of 2512 QAs in total. In this subsection we will introduce each format class as perspective
to their definition, application and tasks designed specifically. For a more detailed constructing rules
we used to generate input data, see A.1. For example data for each category, see A.4.

3.2.1 ABSTRACT DATA STRUCTURE

In the realm of digital information, data is organized in a structure that could easily be stored, parsed,
analyzed by machines. The theoretical model underlying these structures are abstract data structures,
e.g., tree, list, graph, queue, stack, etc. Abstract data structure decides how data is queried, inserted,
modified and deleted. These structures encode the relations and properties of data. The ability
to understand abstract data structure will enable LLMs to rigidly follow the relation of semantic
segments imposed from syntax, which is vital to data exchange between different format. The
ability of LLMs solving graph problems has been explored in previous work (Wang et al. (2023)).

Tree, from the view of graph, is acyclic connected undirected graph. It is defined in the same way
as a graph, i.e., a set of vertices and a set of edges connecting vertices thereof. Given the pervasive
influence of tree on other recursive structured texts such as JSON, YAML and XML, we focused on
tree structure and designed tree-specific tasks.

Regarding each tree, we designed 3 tasks pertaining to their structures, all of which are independent
of the content in the nodes. A sample of input texts of tree category along with its associated tasks
are shown in Figure 5. These tasks target on the ability to compose a path to a specified node and
decide the height or depth of a node.

4



Under review as a conference paper at ICLR 2024

3.2.2 STRUCTURED

Generally, structured data refer to those well-structured data that obey certain elaborate data model
which defines the relation of data elements and abstract models. Tabular data exported from data
tables in relational databases are typical of such structured data. Data that are structured according
to non-tabular data models are also deemed as structured data.

In this work, we focus on specific row-column structured text inputs. Such input denotes a set
of objects with the same set of fields defined by the first row. The subsequent rows denotes the
values of fields per object. The format is derived from tables in relational database, which has seen
overwhelming domination in the realm of database.

Due to the simplicity of the input, apart from a value lookup task, we built statistical tasks as well
as multiple-table tasks that are similar to inner join query, to better capture the features and practical
use scenarios of such input data.

3.2.3 SEMI-STRUCTURED

As opposed to structured texts, semi-structured data are structured data that do not fit in the conven-
tional data model (Buneman (1997)). Semi-structured data are structured and contain rich structural
marks or tags that are different from semantic elements and compose the structure they are de-
fined with. In this work, we focus specifically on texts with some extent of hierarchies designated
by marks and reserved tokens. They are neither sequential nor tabular, contrary to row-column
structured table as in subsubsection 3.2.2. Internally they are n-ary trees, which are dominated by
recursive construction rules. Semi-structured data are employed in information exchange between
application programming interfaces (JSON, YAML), storing well organized web pages on world
wide webs (XML) and typesetting journals or scientific articles (Markdown, Org, LaTeX). All of
these medium have been backbone of our digitalized world. In our effort to define subsets of these
formats (see A.1) and generate some sample input texts from the rules we found that a simple pat-
tern kept recurring in their construction. The pattern that intersects with every semi-structured text
type we covered here is recursion. Each type have some syntax that is simple and atomic, which
contribute little to the hierarchy or structural complexity, along with optional recursion, which is the
essence of hierarchy construction and non-sequential structure.

OBJECT NOTATION

Object Notation is a format that could be used in modeling the in-memory objects data conceptual-
ized in object-oriented programming language.

JSON

JSON is acronym for JavaScript Object Notation. It has been widely used in data storage, exchange,
transmission and inter-operation between different API. Main stream programming languages offer
complete support for exporting and importing JSON files, making it popular on occasions of compli-
cate structured data transmission. Therefore, LLMs having a better understanding and manipulating
ability with respect to JSON texts input will expedite the progress of LLMs bridging the gap between
different participants and procedures in digital data flow happened in real world.

Due to the inherit hierarchy structure of Object Notations, we adopted a recursive scheme to define
our input texts (see A.1.3). For JSON text, we built five tasks, inspecting abilities covering informa-
tion retrieval, structure traversal, path construction, syntax correction, and depth calculation.

It is noteworthy that the depth calculation task is in essential a task of tree structure, which is in
alignment with tree category in subsubsection 3.2.1. Another insights rooted in the fact that we used
the same tasks interchangeably with little modification to the generating code for JSON and YAML,
demonstrating their similarity internally.

YAML

YAML (Yet Another Markup Language or YAML Ain’t Markup Language) is a data-oriented
markup language that models object data. It supports a compact in-line style (although not rec-
ommended) that is equivalent in semantics to JSON. The difference lies in the additional syntax that

5



Under review as a conference paper at ICLR 2024

JSON does not support, e.g., comments. Besides, YAML is widely used in configuration files other
than object serialization.

XML

XML(extensible markup language) is a markup language, but it is also widely used in configuration
files and storing object and metadata. Here we focus mainly on its usage in object notation, instead
of marking up documents.

Its syntax defines the specifications for markup (tags are typical markups in XML) and contents
and recursive construction of elements constituted by tags, attributes and contents which could con-
tain nested elements. We designed tasks regarding syntax correction, tag-based text retrieval and
attribute-based text retrieval.

In terms of the influence in digitalization and importance of LLMs mastering YAML format, the
same trend applies to YAML. In addition, XML as the foundation of world wide web data, mastering
XML well will benefit LLMs in taking advantages of resources on the Internet better and promote
the level of intelligence of language model.

MARKUP LANGUAGE

The syntax rules in markup languages are used mainly for markup excerpts of texts rather than
modeling entities as others we mentioned above. Despite that the syntax of ORG, Markdown and
LaTeX are no less complicated than Object Notation languages as of Chomsky hierarchy (Chomsky
& Schützenberger (1959); Schützenberger (1963)), their common use scenarios are less dominated
by recursive structure objects. So our tasks focus more on text retrieval and shallow-nested structure
traversal. Nevertheless, we built longer input text to diversify our dataset.

Our construction of these formats used a small subset of legal commands with limited depth in
nested (sub)sections.

Markdown

Markdown is a lightweight markup language for formatting text using reserved characters scattered
among the content. The main goal of Markdown is to format text in a source-readable way. It has
gain great popularity in technical writing, blogging, and collaborative documentations despite the
syntax standardization is underway still and implementation is diverged.

Org

Org files are plain text files that include simple plain-text marks to express hierarchy. It is easy to
read (for most of the time, but it could be intricate too) in source code form, which is similar to
markdown. the syntax is intended to be read and modified by editors in a automated manner, which
is richer and more customizable than markdown.

It is designed specifically for Org-mode of Emacs editor. The editor can read the markups in Org files
and manipulate the hierarchy and other markups as a result of toggling outline objects or element
status, e.g., check off to-do list items with a simple keystroke under Org-mode in Emacs. Note-
taking and list management is Org’s forte.

LaTeX

LaTeX is a set of TeX macros that has gain great popularity. It has simple syntax and rich com-
mand set, being highly extensible. It has been heavily used in academia for typesetting scientific
documents.

Contrary to markdown and org, LaTeX file is hard to read and much more verbose. It has the most
features in all markup languages we covered as a full-fledged typesetting tool.

3.2.4 PROGRAMMING LANGUAGE

Python is a dynamically typed language that has seen exclusive application in mathematics and data
science. It has rich features that make it procedural, object-oriented and functional at the same time.
The main trait of Python is usability (garbage collection provided by language), and expressiveness
(it has syntax that captures most frequently recurring programming patterns, e.g., generators).

6



Under review as a conference paper at ICLR 2024

Due to its complexity in structure and syntax, we collected from Internet 1 1932 files instead of
procedural generation, and used ast module 2 and ast scope module 3 to parse the source codes into
abstract syntax tree. We designed problems regarding identifier scope and return type (when it is
annotated explicitly). The answers are derived from parser, i.e., static analysis. We also have a task
querying the purpose of the code, i.e., algorithm or model the code implements. For answering such
tasks, we used the information in the python file names (out of input texts) to get the answer. This
is the only task that require the understanding of input file semantics and can not be solved in a
systematic Al way.

4 DATA CONSTRUCTION

Based on the construction rules in A.1, we procedurally generated input texts with randomly gen-
erated placeholder content. And during the procedure of generating input texts, we have collected
informations regarding outline hierarchy, identifiers used in markup or syntax marks, statistical prop-
erties and mapping from identifier to contents. With these information, we can find the ground truth
to our designed tasks systematically. For the syntax correcting tasks, we will incorporate intentional
syntax error with a probability, and the input texts for such tasks are constructed individually.

Among all the file format we covered, python input texts are not procedurally generated, but rather
collected from Internet, which are rich in semantics with real-world application. The ground truth
tasks asking the algorithms or models the codes intend to implement is taken from the filenames of
python files which is an indicator of the models or algorithms under the hood.

Randomness is the core feature we tried to maintain during the procedural generation, since we want
to mangle the semantics of out input texts and focus solely on structural information. The contents
and identifiers used in syntax marks are randomly generated from a finite set of character elements.

Vocab: 
A,B,C,…,X,Y,Z

Syntax Framework Input Text

Task QA

Random 
Selection:
APX,XIT,…,TAP

Traverse Structure

What is the 
object with 
id XXX? 

{“id”:”TAP”,
…}

Figure 2: Process of input texts generation

5 EVALUATION

With a dataset composed of 2512 QAs, we evaluated on 4 LLMs through network API, and adopted
a heuristic elicitation method to offer more hints. To clarify, we queried each LLM with input
text concatenated with question, and the response is evaluated against ground truth by exact match,
rouge-1 score and T/F result from another judging LLM.

5.1 BASELINE

First we used GPT-4 as baseline (due to inaccessibility of GPT-4, the experiment evaluated
PYTHON and Org input on GPT3.5), i.e., only provide question with input text, without prompt

1https://github.com/TheAlgorithms/Python
2https://pypi.org/project/AST/
3https://pypi.org/project/ast-scope/

7

https://github.com/TheAlgorithms/Python
https://pypi.org/project/AST/
https://pypi.org/project/ast-scope/


Under review as a conference paper at ICLR 2024

engineering and techniques alike. Evaluation of other LLMs are conducted under the same baseline
setting, including Minimax 4, Spark from Xunfei 5 and Ernie from Baidu 6.

5.2 PROMPT ENGINEERING: HINT ELICITATION

Before you see the input file and start to 
answer, let’s come up with some potential 
difficulties and obstacles that might hinder 
your process of giving the correct answer.

Input: …
In your process of tackling the problem, there are
some potential difficulties and latent obstacles for
you to notice: …

Is there any structural error in this JSON? If  so, give the answer ‘True’ and spot them out. If  it is free 
from error, just give the answer ‘False’.

Missing or Extraneous Brackets

Now, let’s proceed to check for structural errors:
Missing or Extraneous Brackets: …
The JSON contains a structural error, and the 
answer is ‘True.’

Emphasis Heuristic

Incorrect Data Types

Nested Object Mismatch

Improper Key-Value Pair Format

Unicode Escaping Issues

Large JSON Size

Output Command

Figure 3: Process of eliciting hint from LLMs to improve prompt

Apart from baseline experiment, we also explored the ability of LLMs to think of hints for task
solution. The detailed framework is demonstrated in Figure 3. We use an eliciting query regarding
the task’s question to have LLMs generate some key points or obstacles before seeing the input
texts. After the hints collection step, we will repeat baseline experiment with a difference in attached
hints elicited before head, in hope that LLMs tackling these difficulties will help them think more
verbosely to avoid errors.

5.3 BACKGROUND KNOWLEDGE ENHANCEMENT

The structured text is pretty concise and expressive, most of its information is not readily explicit.
There are a large volume of data that need to be inferred combining the raw input and structure
information (or syntax rules). That leads to a intuitive conjecture that LLMs will likely to perform
better on these structure dominant tasks provided that they have enough background knowledge
about the syntax and construction rules for the rich-structure text in concern. To check the correlation
of background knowledge on structure and the ability to answer the questions in our dataset, we
conducted experiment with background knowledge included in the prompt when querying LLMs.

新实验：增加背景知识

{
"id": "p",
"Z": "h",
"subs": [
{
"id": "q",
"Y": "g",
"subs": [
{
"id": "r",
"X": "f",
"subs": []

}
]

}
]

}

Input

What are the most deeply nested objects, i.e., no value of type list or dict?The content should be an excerpt as they 
appear in the JSON file, separated by \n\n.

Question

you are a JSON file parser, you are required to answer questions pertaining to the given JSON file.

System

A JSON file consists of a dictionary or 
array. A dictionary is a set of key:value
(ordered) pairs separated by comma 
enclosed in {}. An array is a list of 
values separated by comma enclosed in 
[]. Value could be one of string, number, 
dictionary, array, null or boolean. Keys 
are strings.

JSON Construction

To find the object with specified 
key:value pair, you should lookup the 
whole input file for the pair. Once 
located, find its parent by searching the 
innermost {} pairs and that dictionary is 
the right answer. To find the deepest 
object(s), search for array or dictionary 
whose values do not contain array or 
dictionary.

Task Hint

{"id": "r",
"X": "f",
"subs": []}

Answer

{"id": "r",
"X": "f",
"subs": []}

GrdTruth

Figure 4: Adding background knowledge for JSON tasks

4https://api.minimax.chat/v1/text/chatcompletion_pro
5ws://spark-api.xf-yun.com/v1.1/chat
6https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/

eb-instant

8

https://api.minimax.chat/v1/text/chatcompletion_pro
ws://spark-api.xf-yun.com/v1.1/chat
https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant
https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/eb-instant


Under review as a conference paper at ICLR 2024

6 ANALYSIS

6.1 BASELINE

Under the baseline experiment setting, GPT-4 outperforms all other LLMs with a significant mar-
gin and obtained accuracy over 0.96 in JSON, YAML, XML data, showing its proficiency in text
retrieval, structure traversal, path construction, syntax correction, and depth calculation regarding
object notation input texts. It answers only around half of the questions about Tree and Org. Tree
input texts have the simplest syntax but require considerable calculation to rebuild the tree structure,
which could make them difficult tasks for generative architecture. The Org type has similar syntax
Markdown but with a relatively narrower niche in application and limited popularity. Such under-
exploration means the input texts and its syntax might be entirely strange for LLMs, leading to the
lack of necessary knowledge to do the inference towards solution. In terms of Tabular, Markdown,
LaTeX and PYTHON, GPT-4 has gain similar scores around 0.7, which reflect the less familiarity
over these inputs, given that the tasks are much easier as opposed to object notation input.

The performance of Minimax distribute over 8 types (other than Tree) similarly to GPT-4, except
that the respective score is lower by 0.1-0.2. It barely answers correctly on tasks regarding Tree
input.

As for Spark, its highest scores are earned in JSON and PYTHON tasks. YAML, XML and Mark-
down tasks shares scores around 0.5. Ratio of correct answers in Tabular, Latex and Org fell into
around 30 percent. The score for Tree is 0.089 and lowest, which is the same as other LLMs.

The Ernie model gains its highest score around 0.6-0.7 in object notation types, with sub-optimum
performance on Markdown and PYTHON, around accuracy of 50 percent. Tabular and LaTeX input
texts have seen a score around 0.36. On Tree input, it earned its lowest score of 0.133, which is a
marginal promotion over Minimax and Spark.

6.2 HINT ELICITATION

For all 9 classes, only Tree, tabular and PYTHON has seen enhancement in three LLMs from hint
eliciting prompt engineering. For object notation texts, hint has seen lower accuracy, with one
exception on Ernie for JSON tasks. For markup languages, hint improved accuracy on Ernie but
worsen the outcome on Minimax and Spark. In each cases, the baseline GPT4 possessed the highest
scores. A detailed demonstration is listed in A.3

6.3 BACKGROUND KNOWLEDGE

For background knowledge experiment, the result (see 8) from testing JSON input texts with back-
ground knowledge appended to query shows that such alternation is insufficient to enhance the
performance of LLMs. The result could also be attributed to diverse factors.

• The limited understanding on these background knowledge
• The additional background knowledge has been included in the training set of LLMs, mak-

ing the information superfluous
• The LLMs are currently unable to do complicate structul or logical inference, i.e., they

failed to apply given rules on the raw input texts

7 CONCLUSION

We presented a taxonomy involving 9 popular structure-rich texts, with diversity in structural com-
plexity and domain applied. We classified these inputs into 4 first level category by use scenarios
and demonstrated their definition, construction rules we used in generation and common applica-
tions. By procedural construction and parsing, we built a benchmark with 2512 QAs and evaluated
GPT-4, Minimax, Spark and Ernie. The experiment uncovered the under-exploration of structure-
rich input texts for LLMs other than GPT-4, among which Tree is the most typical and where poor
performance occurs. Prompt engineering of hint elicitation and additional background knowledge
have both failed to address such inefficiency well.

9



Under review as a conference paper at ICLR 2024

AUTHOR CONTRIBUTIONS

XXX

ACKNOWLEDGMENTS

XXX

REFERENCES

Peter Buneman. Semistructured data. In Proceedings of the sixteenth ACM SIGACT-SIGMOD-
SIGART symposium on Principles of database systems, pp. 117–121, 1997.

Noam Chomsky and Marcel P Schützenberger. The algebraic theory of context-free languages. In
Studies in Logic and the Foundations of Mathematics, volume 26, pp. 118–161. Elsevier, 1959.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc Brockschmidt.
Codesearchnet challenge: Evaluating the state of semantic code search. arXiv preprint
arXiv:1909.09436, 2019.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree
structures for programming language processing. In Proceedings of the AAAI conference on
artificial intelligence, volume 30, 2016.

Veselin Raychev, Pavol Bielik, and Martin Vechev. Probabilistic model for code with decision trees.
ACM SIGPLAN Notices, 51(10):731–747, 2016a.

Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning programs from noisy
data. ACM Sigplan Notices, 51(1):761–774, 2016b.

Marcel Paul Schützenberger. On context-free languages and push-down automata. Information and
control, 6(3):246–264, 1963.

Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy, and Mohammad Mamun Mia.
Towards a big data curated benchmark of inter-project code clones. In 2014 IEEE International
Conference on Software Maintenance and Evolution, pp. 476–480. IEEE, 2014.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov.
Can language models solve graph problems in natural language?, 2023.

Wenhan Wang, Ge Li, Bo Ma, Xin Xia, and Zhi Jin. Detecting code clones with graph neural
network and flow-augmented abstract syntax tree. In 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pp. 261–271. IEEE, 2020.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. Devign: Effective vulner-
ability identification by learning comprehensive program semantics via graph neural networks.
Advances in neural information processing systems, 32, 2019.

A APPENDIX

A.1 GENERATION OF INPUT TEXTS

A.1.1 TREE

We build tree-structured input as a list of edges in a tree, in a format of “father->child”,
separated by newline.

identifier := [a-z]+

Edge := identifier->identifier

Tree := Edge(\nEdge)*

10



Under review as a conference paper at ICLR 2024

A.1.2 TABULAR

Formally, input texts are classified as structured texts given that they are composed of a list of
newline separated lines, each of which is a list of text cells delimited by comma.

head := [A-Z][a-z]*
cell := [A-Za-z0-9]+

headline := identifier(, identifier)*
subline := cell(, cell)*
Tabular := headline(\nsubline)+

A.1.3 JSON

Due to the inherit hierarchy structure of Object Notations, we adopted a recursive scheme to define
our input texts.

lb(left bracket) := [[]

rb := []]

val := [a-z]+

key := [A-Z]+

JSON := {
"id":"val"

"subs":lbrb|lbJSON(, \nJSON)*rb

("key":"val"\n)+
}

A.1.4 YAML

The rules for constructing YAML and XML input are similarly recursive.

Y AML :=

id : val

subs : lbrb|(\n(\t) ∗ - Y AML)+

(key : val\n)+

A.1.5 XML

firstline := <?xml version="1.0" encoding="UTF-8"?>

XML :=

firstline

XMLObject

tag := [A-Z]+

val := [a-z]+

attr := [A-Z]+="val"

content := [a-z \n\t]*
XMLObject :=

<tag( attr) ∗ >
((\t) ∗XMLObject)∗
content

</tag>

11



Under review as a conference paper at ICLR 2024

A.1.6 LATEX

In LaTeX input texts, we include textbf and includegraphics commands to accommodate
for the text retrieval tasks. The headings serve as anchors for structure traversal.

command := \(section|subsection|subsubsection)
heading := command{[a-z]+}|[a-z]+

inclg :=

\includegraphics[width=0.5\textwidth]{[a-z]+[.](png|jpg|jpeg|gif)}
bf := \textbf{[a-z ]+}

content := ([a-z ]|bf |inclg)+
LaTeX := heading\ncontent(\nLaTeX)∗

A.1.7 MARKDOWN

In markdown input texts, the syntax counterparts for heading, text face and including figure are
employed in our dataset.

heading := [#]* [a-z]+

inclg := !lbaltrb\([a-z]+[.](png|jpg|jpeg|gif) "hover text"\)
bf := [*]{2}[a-z ]+[*]{2}

content := ([a-z ]|bf |inclg)+
Markdown := heading\ncontent(\nMarkdown)∗

A.1.8 ORG

In Org input texts, the syntax is obtained from JSON construction rules by replacing the markups
for heading, including figures and bold font face.

heading := [*]* [a-z]+

inclg := lb{2}[a-z]+[.](png|jpg|jpeg|gif)rb{2}
bf := [*][a-z ]+[*]

content := ([a-z ]|bf |inclg)+
Org := heading\ncontent(\nOrg)∗

A.1.9 PYTHON

Python input texts is the only type of texts that is not randomly generated but rather collected from
Internet, so the code text should conform with the python programming language syntax as docu-
mented in their websites https://docs.python.org.

A.2 EXPERIMENTAL DATA

Table 1: GPT-4 w/o prompt engineering

Metric Tree Tabular JSON YAML XML Markdown Org LaTeX PYTHON

Exact Match 0.52 0.78 0.64 0.93 0.9 0.36 0.25 0.38 0.259
Rouge-1 0.107 0.107 0.383 0.368 0.195 0.894 0.496 0.944 0.068

GPTJudge 0.556 0.7 0.983 0.967 0.972 0.736 0.5 0.819 0.787

12

https://docs.python.org


Under review as a conference paper at ICLR 2024

Table 2: Miminax w/o prompt engineering

Metric Tree Tabular JSON YAML XML Markdown Org LaTeX PYTHON

Exact Match 0.133 0.738 0.470 0.430 0.567 0.283 0.233 0.267 0.201
Rouge-1 0.101 0.105 0.501 0.490 0.206 0.690 0.506 0.742 0.091

GPTJudge 0.067 0.525 0.850 0.770 0.883 0.683 0.450 0.683 0.679

Table 3: Spark w/o prompt engineering

Metric Tree Tabular JSON YAML XML Markdown Org LaTeX PYTHON

Exact Match 0.383 0.975 0.310 0.540 0.433 0.333 0.250 0.267 0.263
Rouge-1 0.007 0.001 0.023 0.011 0.018 0.026 0.032 0.035 0.000

GPTJudge 0.089 0.280 0.800 0.472 0.533 0.529 0.300 0.296 0.702

Table 4: Ernie w/o prompt engineering

Metric Tree Tabular JSON YAML XML Markdown Org LaTeX PYTHON

Exact Match 0.167 0.637 0.200 0.240 0.200 0.217 0.133 0.117 0.295
Rouge-1 0.056 0.051 0.161 0.162 0.084 0.226 0.137 0.283 0.066

GPTJudge 0.133 0.375 0.700 0.660 0.617 0.433 0.200 0.350 0.550

Table 5: Miminax w/ prompt engineering

Metric Tree Tabular JSON YAML XML Markdown Org LaTeX PYTHON

Exact Match 0.150 0.738 0.390 0.400 0.517 0.250 0.183 0.233 0.205
Rouge-1 0.027 0.065 0.241 0.290 0.181 0.429 0.360 0.571 0.093

GPTJudge 0.183 0.575 0.850 0.730 0.850 0.600 0.433 0.683 0.708

Table 6: Spark w/ prompt engineering

Metric Tree Tabular JSON YAML XML Markdown Org LaTeX PYTHON

Exact Match 0.483 0.963 0.420 0.540 0.833 0.417 0.400 0.300 0.268
Rouge-1 0.002 0.001 0.003 0.004 0.006 0.029 0.015 0.027 0.000

GPTJudge 0.214 0.457 0.533 0.286 0.483 0.100 0.250 0.222 0.705

Table 7: Ernie w/ prompt engineering

Metric Tree Tabular JSON YAML XML Markdown Org LaTeX PYTHON

Exact Match 0.183 0.637 0.230 0.160 0.217 0.100 0.083 0.133 0.238
Rouge-1 0.042 0.041 0.167 0.115 0.101 0.143 0.104 0.115 0.044

GPTJudge 0.233 0.438 0.810 0.580 0.593 0.450 0.450 0.417 0.608

13



Under review as a conference paper at ICLR 2024

Table 8: JSON input with background knowledge

Background Knowledge Minimax:Base Minimax:Hint Ernie:Base Ernie:Hint

GPTJudege w/o 0.857 0.859 0.7 0.81
w/ 0.82 0.85 0.75 0.8

Exact Match w/o 0.469 0.394 0.2 0.23
w/ 0.42 0.33 0.25 0.19

Rouge-1 w/o 0.504 0.243 0.161 0.167
w/ 0.524 0.223 0.146 0.173

A.3 COMPARATION ON GPT JUDGED ACCURACY OF LLMS

0 0.2 0.4 0.6 0.8 1

GPT4

Spark

Minimax

Ernie

GPT Judged Accuracy

Tree task evaluation based on GPT judge

w/
w/o

0 0.2 0.4 0.6 0.8 1

GPT4

Spark

Minimax

Ernie

GPT Judged Accuracy

Tabular task evaluation based on GPT judge

w/
w/o

14



Under review as a conference paper at ICLR 2024

0 0.2 0.4 0.6 0.8 1

GPT4

Spark

Minimax

Ernie

GPT Judged Accuracy

JSON task evaluation based on GPT judge

w/
w/o

0 0.2 0.4 0.6 0.8 1

GPT4

Spark

Minimax

Ernie

GPT Judged Accuracy

YAML task evaluation based on GPT judge

w/
w/o

15



Under review as a conference paper at ICLR 2024

0 0.2 0.4 0.6 0.8 1

GPT4

Spark

Minimax

Ernie

GPT Judged Accuracy

XML task evaluation based on GPT judge

w/
w/o

0 0.2 0.4 0.6 0.8 1

GPT4

Spark

Minimax

Ernie

GPT Judged Accuracy

Markdown task evaluation based on GPT judge

w/
w/o

16



Under review as a conference paper at ICLR 2024

0 0.2 0.4 0.6 0.8 1

GPT3.5

Spark

Minimax

Ernie

GPT Judged Accuracy

Org task evaluation based on GPT judge

w/
w/o

0 0.2 0.4 0.6 0.8 1

GPT4

Spark

Minimax

Ernie

GPT Judged Accuracy

LaTeX task evaluation based on GPT judge

w/
w/o

17



Under review as a conference paper at ICLR 2024

0 0.2 0.4 0.6 0.8 1

GPT3.5

Spark

Minimax

Ernie

GPT Judged Accuracy

PYTHON task evaluation based on GPT judge

w/
w/o

A.4 SAMPLE OF INPUT AND TASKS

A.4.1 TREE

See Figure 5.

A.4.2 TABULAR

See Figure 6.

A.4.3 JSON

See Figure 7.

A.4.4 YAML

See Figure 8.

A.4.5 XML

See Figure 9.

A.4.6 LATEX

See Figure 10.

A.4.7 MARKDOWN

See Figure 11.

A.4.8 ORG

See Figure 12.

A.4.9 PYTHON CODE

See Figure 13.

18



Under review as a conference paper at ICLR 2024

o->p\np->q\nq->r\nq->s\nq->t\nq->u\np->v\nv->w\nv-
>x\nv->y\nv->z\np->ab\nab->bb\nab->cb\nab->db\nab-
>eb\np->fb\nfb->gb\nfb->hb\nfb->ib\nfb->jb\no-
>kb\nkb->lb\nlb->mb\nlb->nb\nlb->ob\nlb->pb\nkb-
>qb\nqb->rb\nqb->sb\nqb->tb\nqb->ub\nkb->vb\nvb-
>wb\nvb->xb\nvb->yb\nvb->zb\nkb->ac\nac->bc\nac-
>cc\nac->dc\nac->ec\no->fc\nfc->gc\ngc->hc\ngc-
>ic\ngc->jc\ngc->kc\nfc->lc\nlc->mc\nlc->nc\nlc-
>oc\nlc->pc\nfc->qc\nqc->rc\nqc->sc\nqc->tc\nqc-
>uc\nfc->vc\nvc->wc\nvc->xc\nvc->yc\nvc->zc\no-
>ad\nad->bd\nbd->cd\nbd->dd\nbd->ed\nbd->fd\nad-
>gd\ngd->hd\ngd->id\ngd->jd\ngd->kd\nad->ld\nld-
>md\nld->nd\nld->od\nld->pd\nad->qd\nqd->rd\nqd-
>sd\nqd->td\nqd->ud

What is the path from the root node to the node z. Answer should look like A->D->H.

Input

Question

o->p->v->z

Ground Truth

Task 1

What is the depth of node nd? Answer an integer, root is of depth 0.

Question

3

Ground Truth

Task 2

What is the height of the root node, i.e., the number of edges in the longest path from root node 
to any leaf nodes? Answer an integer, leaf is of height 0.

Question

3

Ground Truth

Task 3

Figure 5: Sample input and tasks of Tree.

19



Under review as a conference paper at ICLR 2024

primeKey gender age name height weight color
a female 23 n 157 144 olive
b male 39 o 191 104 swarthy
c male 14 p 134 162 black
d male 39 q 163 124 brown

primeKey status salary companylocation
a employed 460789 TwitterNY
b retired861910 NVIDIA GA
c retired360565 Meta CA
d employed 350426 Google GA

What is the color of record with primeKey c

Input

Question

black

Ground Truth

Task 1

How many people who work in IL are taller than 171?

Question

0

Ground Truth

Task 2

How many people work with salary more than 516275?

Question

1

Ground Truth

Task 3

How many people are female?

Question

1

Ground Truth

Task 4

Figure 6: Sample input and tasks of tabular data.

20



Under review as a conference paper at ICLR 2024

{"id":"o",
"Z":"u",
"subs":[
{
"id":"p",
"Y":"t",
"subs":[
{
"id":"q",
"X":"s",
"subs":[]
}]}

]
}

What is the first object’s id of subs?

Input

Question

p

Ground Truth

Task 1

What is the object with id p? The content should be an excerpt as it appears in the JSON file.

Question

{\n"id":"p",\n"Y":"t",\n"subs":[\n{\n"id":"q",\n"X":"s",\n"subs":[]}]}

Ground Truth

Task 2

How to access value ”u"? Answer should be like obj[key or index 1][key or index 2][key or 
index 3]...

Question

obj["Z"]

Ground Truth

Task 3

What are the most deeply nested objects, i.e., no value of type list or dict?The content should 
be an excerpt as they appear in the JSON file, separated by \\n\\n.

Question

{\n  "id":"q",\n  "X":"s",\n  "subs":[]\n  }

Ground Truth

Task 4

Is there any structural error in this JSON? If so, give the answer 'True' and spot them out. If it 
is free from error, just give the answer 'False'.

Question

True

Ground Truth

Task 5

{"id":"o",
"Z":"u",
"subs":[
{
"id":"p",
"Y":"t",
"subs":[
"id":"q",
"X":"s",
"subs":]
]}

]
}

Input for Task 5

Figure 7: Sample input and tasks of JSON.

21



Under review as a conference paper at ICLR 2024

id: "s"
Z: e,
subs: 
- id: "t"

Y: d,
subs: 
- id: "u"

X: c,
subs: []

What is the first object's id of subs?

Input

Question

t

Ground Truth

Task 1

How to access value ”d"? Answer should be like obj[key or index 1][key or index 2][key or 
index 3]...

Question

obj[“subs”][0][“Y”]

Ground Truth

Task 2

Is there any structural error in this YAML? If so, give the answer 'True' and spot them out. If it 
is free from error, just give the answer 'False'.

Question

True

Ground Truth

Task 3

id: "s"
Z: e,
subs: 
- id: "t"

Y: d
subs: 
- id: "u"

X:
subs: []

Input for Task 3

What is the object with id t? The content should be an excerpt as it appears in the YAML file.

Question

id: "t”\n  Y: d,\n  subs: \n  - id: "u”\n    X: c,\n    subs: []

Ground Truth

Task 4

What are the most deeply nested objects, i.e., no value of type list or dict?The content should 
be an excerpt as they appear in the YAML file, separated by \\n\\n.

Question

id: "u”\n    X: c,\n    subs: []

Ground Truth

Task 5

Figure 8: Sample input and tasks of YAML.
22



Under review as a conference paper at ICLR 2024

<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<A Z=\"v\">\n <B Y=\"u\">\n  <C>\n   <D>\n    dentist\n   
<E X=\"t\">\n    essence\n   </E>\n   <F W=\"s\">\n    far\n   <G V=\"r\">\n    groot\n   cafe\n  
<H>\n   <I>\n    idiot\n   <J>\n    jargon\n   <K>\n    kangaroo\n   </K>\n   <L>\n    lamb\n   
halo\n  <M U=\"q\">\n   <N T=\"p\">\n    nob\n   <O>\n    oops\n   <P S=\"o\">\n    perish\n   
<Q>\n    qualify\n   monkey\n  <R>\n   <S>\n    salvage\n   <T>\n    transformer\n   <U R=\"n\">\n    
unique\n   <V Q=\"m\">\n    vigor\n   ravish\n  banana\n <W P=\"l\">\n  <X>\n   <Y>\n    yogurt\n   
<Z O=\"k\">\n    zen\n   <AB>\n    apple banana\n   </AB>\n   <BB>\n    banana banana\n   X-ray\n  
</X>\n  <CB N=\"j\">\n   <DB>\n    dentist banana\n   <EB M=\"i\">\n    essence banana\n   <FB 
L=\"h\">\n    far banana\n   <GB>\n    groot banana\n   cafe banana\n  <HB K=\"g\">\n   <IB>\n    
idiot banana\n   <JB>\n    jargon banana\n   <KB>\n    kangaroo banana\n   </KB>\n   <LB J=\"f\">\n    
lamb banana\n   halo banana\n  <MB I=\"e\">\n   <NB H=\"d\">\n    nob banana\n   <OB G=\"c\">\n    
oops banana\n   <PB>\n    perish banana\n   <QB F=\"b\">\n    qualify banana\n   monkey banana\n  
wake\n <RB E=\"a\">\n  <SB D=\"zy\">\n   <TB C=\"yy\">\n    transformer banana\n   <UB>\n    unique 
banana\n   <VB B=\"xy\">\n    vigor banana\n   </VB>\n   <WB A=\"wy\">\n    wake banana\n   salvage 
banana\n  </SB>\n  <XB>\n   <YB>\n    yogurt banana\n   <ZB ZY=\"vy\">\n    zen banana\n   <AC>\n    
apple cafe\n   </AC>\n   <BC>\n    banana cafe\n   X-ray banana\n  </XB>\n  <CC>\n   <DC 
YY=\"uy\">\n    dentist cafe\n   <EC XY=\"ty\">\n    essence cafe\n   <FC WY=\"sy\">\n    far 
cafe\n   <GC>\n    groot cafe\n   cafe cafe\n  </CC>\n  <HC>\n   <IC VY=\"ry\">\n    idiot cafe\n   
<JC UY=\"qy\">\n    jargon cafe\n   <KC TY=\"py\">\n    kangaroo cafe\n   <LC>\n    lamb cafe\n   
halo cafe\n  ravish banana\n <MC>\n  <NC SY=\"oy\">\n   <OC>\n    oops cafe\n   <PC>\n    perish 
cafe\n   </PC>\n   <QC>\n    qualify cafe\n   <RC>\n    ravish cafe\n   nob cafe\n  <SC 
RY=\"ny\">\n   <TC>\n    transformer cafe\n   <UC>\n    unique cafe\n   <VC QY=\"my\">\n    vigor 
cafe\n   </VC>\n   <WC>\n    wake cafe\n   salvage cafe\n  </SC>\n  <XC>\n   <YC>\n    yogurt 
cafe\n   </YC>\n   <ZC PY=\"ly\">\n    zen cafe\n   <AD OY=\"ky\">\n    apple dentist\n   </AD>\n   
<BD>\n    banana dentist\n   X-ray cafe\n  <CD NY=\"jy\">\n   <DD>\n    dentist dentist\n   <ED 
MY=\"iy\">\n    essence dentist\n   <FD>\n    far dentist\n   <GD LY=\"hy\">\n    groot dentist\n   
cafe dentist\n  </CD>\n  monkey cafe\n apple

What is the content of tag HB? The content should be an excerpt as it appears in the XML file.

Input for Task 3

Question

<IB>\n  idiot banana\n </IB>\n <JB F=\"jy\">\n  jargon banana\n </JB>\n <KB>\n  kangaroo banana\n 
</KB>\n <LB>\n  lamb banana\n </LB>\n halo banana

Ground Truth

Task 1

What is the tag with attribute of value xy?

Question

N

Ground Truth

Task 2

Is there any structural error in this XML? If so, give the answer 'True' and spot them out. If it is 
free from error, just give the answer 'False'.

Question

True

Ground Truth

Task 3

<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<A>\n <B>\n  <C>\n   <D Z=\"d\">\n    dentist\n   
</D>\n   <E>\n    essence\n   </E>\n   <F>\n    far\n   </F>\n   <G Y=\"c\">\n    groot\n   </G>\n   
cafe\n  </C>\n  <H X=\"b\">\n   <I>\n    idiot\n   </I>\n   <J W=\"a\">\n    jargon\n   </J>\n   
<K>\n    kangaroo\n   </K>\n   <L V=\"zy\">\n    lamb\n   </L>\n   halo\n  </H>\n  <M U=\"yy\">\n   
<N T=\"xy\">\n    nob\n   </N>\n   <O S=\"wy\">\n    oops\n   </O>\n   <P R=\"vy\">\n    perish\n   
</P>\n   <Q Q=\"uy\">\n    qualify\n   </Q>\n   monkey\n  </M>\n  <R>\n   <S P=\"ty\">\n    
salvage\n   </S>\n   <T O=\"sy\">\n    transformer\n   </T>\n   <U>\n    unique\n   </U>\n   <V 
N=\"ry\">\n    vigor\n   </V>\n   ravish\n  </R>\n  banana\n </B>\n <W>\n  <X>\n   <Y M=\"qy\">\n    
yogurt\n   </Y>\n   <Z L=\"py\">\n    zen\n   </Z>\n   <AB>\n    apple banana\n   </AB>\n   <BB 
K=\"oy\">\n    banana banana\n   </BB>\n   X-ray\n  </X>\n  <CB>\n   <DB J=\"ny\">\n    dentist 
banana\n   </DB>\n   <EB I=\"my\">\n    essence banana\n   </EB>\n   <FB H=\"ly\">\n    far 
banana\n   </FB>\n   <GB>\n    groot banana\n   </GB>\n   cafe banana\n  </CB>\n  <HB G=\"ky\">\n   
<IB>\n    idiot banana\n   </IB>\n   <JB F=\"jy\">\n    jargon banana\n   </JB>\n   <KB>\n    
kangaroo banana\n   </KB>\n   <LB>\n    lamb banana\n   </LB>\n   halo banana\n  </HB>\n  <MB>\n   
<NB>\n    nob banana\n   </NB>\n   <OB E=\"iy\">\n    oops banana\n   </OB>\n   <PB>\n    perish 
banana\n   </PB>\n   <QB>\n    qualify banana\n   </QB>\n   monkey banana\n  </MB>\n  wake\n </W>\n 
<RB D=\"hy\">\n  <SB>\n   <TB>\n    transformer banana\n   </TB>\n   <UB>\n    unique banana\n   
</UB>\n   <VB C=\"gy\">\n    vigor banana\n   </VB>\n   <WB B=\"fy\">\n    wake banana\n   </WB>\n   
salvage banana\n  </SB>\n  <XB A=\"ey\">\n   <YB ZY=\"dy\">\n    yogurt banana\n   </YB>\n   <ZB>\n    
zen banana\n   </ZB>\n   <AC YY=\"cy\">\n    apple cafe\n   </AC>\n   <BC>\n    banana cafe\n   
</BC>\n   X-ray banana\n  </XB>\n  <CC XY=\"by\">\n   <DC WY=\"ay\">\n    dentist cafe\n   </DC>\n   
<EC VY=\"zx\">\n    essence cafe\n   </EC>\n   <FC UY=\"yx\">\n    far cafe\n   </FC>\n   <GC>\n    
groot cafe\n   </GC>\n   cafe cafe\n  </CC>\n  <HC TY=\"xx\">\n   <IC>\n    idiot cafe\n   </IC>\n   
<JC SY=\"wx\">\n    jargon cafe\n   </JC>\n   <KC RY=\"vx\">\n    kangaroo cafe\n   </KC>\n   
<LC>\n    lamb cafe\n   </LC>\n   halo cafe\n  </HC>\n  ravish banana\n </RB>\n <MC QY=\"ux\">\n  
<NC PY=\"tx\">\n   <OC>\n    oops cafe\n   </OC>\n   <PC OY=\"sx\">\n    perish cafe\n   </PC>\n   
<QC>\n    qualify cafe\n   </QC>\n   <RC NY=\"rx\">\n    ravish cafe\n   </RC>\n   nob cafe\n  
</NC>\n  <SC>\n   <TC MY=\"qx\">\n    transformer cafe\n   </TC>\n   <UC>\n    unique cafe\n   
</UC>\n   <VC>\n    vigor cafe\n   </VC>\n   <WC>\n    wake cafe\n   </WC>\n   salvage cafe\n  
</SC>\n  <XC LY=\"px\">\n   <YC KY=\"ox\">\n    yogurt cafe\n   </YC>\n   <ZC JY=\"nx\">\n    zen
cafe\n   </ZC>\n   <AD>\n    apple dentist\n   </AD>\n   <BD IY=\"mx\">\n    banana dentist\n   
</BD>\n   X-ray cafe\n  </XC>\n  <CD>\n   <DD HY=\"lx\">\n    dentist dentist\n   </DD>\n   <ED>\n    
essence dentist\n   </ED>\n   <FD GY=\"kx\">\n    far dentist\n   </FD>\n   <GD>\n    groot
dentist\n   </GD>\n   cafe dentist\n  </CD>\n  monkey cafe\n </MC>\n apple\n</A>

Input

Figure 9: Sample input and tasks of XML.

23



Under review as a conference paper at ICLR 2024

O
monkey \textbf{banana}nob wake yogurt groot wake 
jargon ravish
\section{p}
nob nob wake 
\textbf{cafe}yogur\includegraphics[width=0.5\textwid
th]{mh.jpeg}t groot wake jargon ravish
\subsection{q}
oops nob wake yogurt groot wake 
jargon\textbf{dentist} ravish

Extract all bold texts. Print those raw texts separated by \\n.

Input

Question

banana\ncafe\ndentist

Ground Truth

Task 1

Extract all included graph files. Print those file names separated by \\n.

Question

mh.jpeg

Ground Truth

Task 2

What is the content of 1th section? The content should be an excerpt as it appears in the LaTeX 
file, including the heading line and any sub-section.

Question

\section{p}
nob nob wake 
\textbf{cafe}yogur\includegraphics[width=0.5\textwidth]{mh.jpeg
}t groot wake jargon ravish
\subsection{q}
oops nob wake yogurt groot wake jargon\textbf{dentist} ravish

Ground Truth

Task 3

Figure 10: Sample input and tasks of LaTeX.

24



Under review as a conference paper at ICLR 2024

w
banana cafe vigor cafe peris![alt](mj.gif "hover 
text")h perish monkey wake
# x
cafe cafe vigor cafe perish peris**banana**h monkey 
wake
## y
dentist cafe vigor c**cafe**![alt](nj.jpg "hover 
text")afe perish perish monkey wake

Extract all bold texts. Print those raw texts separated by \\n.

Input

Question

cafe\nbanana

Ground Truth

Task 1

Extract all included image files. Print those file names separated by \\n.

Question

mj.gif\nnj.jpg

Ground Truth

Task 2

What is the content of 1th section? The content should be an excerpt as it appears in the 
markdown file, including the heading line and any sub-section.

Question

# x
cafe cafe vigor cafe perish peris**banana**h monkey wake
## y
dentist cafe vigor c**cafe**![alt](nj.jpg "hover text")afe
perish perish monkey wake

Ground Truth

Task 3

Figure 11: Sample input and tasks of Markdown.

25



Under review as a conference paper at ICLR 2024

p
kanga*lamb*roo zen yogurt X-ray halo zen nob qualify
* q
lamb zen yogurt X-ray halo zen nob qu[[ei.jpg]]alify
** r
monkey zen yogurt X-ray halo zen nob qualify

Extract all bold texts. Print those raw texts separated by \\n.

Input

Question

lamb

Ground Truth

Task 1

Extract all included image files. Print those file names separated by \\n.

Question

ei.jpg

Ground Truth

Task 2

What is the content of 1th subsection under 1th section? The content should be an excerpt as it 
appears in the org file, including the heading line and any sub-section.

Question

** r\nmonkey zen yogurt X-ray halo zen nob qualify

Ground Truth

Task 3

Figure 12: Sample input and tasks of Org.

26



Under review as a conference paper at ICLR 2024

"""
An AND Gate is a logic gate in boolean algebra which 
results to 1 (True) if both the
inputs are 1, and 0 (False) otherwise.
Following is the truth table of an AND Gate:

------------------------------
| Input 1 | Input 2 | Output |
------------------------------
|    0    |    0    |    0   |
|    0    |    1    |    0   |
|    1    |    0    |    0   |
|    1    |    1    |    1   |
------------------------------

Refer - https://www.geeksforgeeks.org/logic-gates-
in-python/

"""
def and_gate(input_1: int, input_2: int) -> int:

"""
Calculate AND of the input values
>>> and_gate(0, 0)
0
>>> and_gate(0, 1)
0
>>> and_gate(1, 0)
0
>>> and_gate(1, 1)
1
"""
return int((input_1, input_2).count(0) == 0)

def test_and_gate() -> None:
"""
Tests the and_gate function
"""
assert and_gate(0, 0) == 0
assert and_gate(0, 1) == 0
assert and_gate(1, 0) == 0
assert and_gate(1, 1) == 1

if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))

What is the return type of function test_and_gate?

Input

Question

NotDefined

Ground Truth

Task 1

Task 2

What is the scope for print?

Question

Global

Ground Truth

Task 3

What algorithm or model does the code implement?

Question

and_gate

Ground Truth

Figure 13: Sample input and tasks of Python codes.

27


	Introduction
	Background
	Motivation
	Our Proposal
	Our Method
	Contribution

	Related Works
	Taxonomy
	Information Behind Structure
	Taxonomy: Structured-Rich Text and Task
	Abstract Data Structure
	Structured
	Semi-Structured
	Programming Language


	Data Construction
	Evaluation
	Baseline
	Prompt Engineering: Hint Elicitation
	Background Knowledge Enhancement

	Analysis
	Baseline
	Hint Elicitation
	Background Knowledge

	Conclusion
	Appendix
	Generation of Input Texts
	Tree
	Tabular
	JSON
	YAML
	XML
	LaTeX
	Markdown
	Org
	Python

	Experimental Data
	Comparation on GPT Judged Accuracy of LLMs
	Sample of Input and Tasks
	Tree
	Tabular
	JSON
	YAML
	XML
	LaTeX
	Markdown
	Org
	Python Code



