
1394 IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, VOL. 10, NO. 3, JUNE 2023

Internet Financial Fraud Detection Based
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Abstract— The rapid development of information technology
such as the Internet of Things, Big Data, artificial intelligence,
and blockchain has changed the transaction mode of the financial
industry and greatly improved the convenience of financial
transactions, but it has also brought about new hidden frauds,
which have caused huge losses to the development of Internet and
IoT finance. As the size of financial transaction data continues
to grow, traditional machine-learning models are increasingly
difficult to use for financial fraud detection. Some graph-learning
methods have been widely used for Internet financial fraud
detection, however, these methods ignore the stronger structural
homogeneity and cannot aggregate features for two structurally
similar but distant nodes. To address this problem, in this
article, we propose a graph-learning algorithm TA-Struc2Vec for
Internet financial fraud detection, which can learn topological
features and transaction amount features in a financial trans-
action network graph and represent them as low-dimensional
dense vectors, allowing intelligent and efficient classification and
prediction by training classifier models. The proposed method
can improve the efficiency of Internet financial fraud detection
with better Precision, F1-score, and AUC.

Index Terms— Fraud detection, graph learning, Internet
finance.

I. INTRODUCTION

PEOPLE’S consumption habits have been dramatically
altered by the rapid growth of information technologies

such as the Internet of Things, Big Data, Artificial Intelligence,
Blockchain, and so on [1]. Mobile payment, IoT financial ser-
vices, and Internet financial wealth management have all per-
meated many facets of economic and social activity. Consumer
finance sector growth in China has been strong since 2014,
with a number of mobile e-commerce businesses entering the
market through installment payments and modest loans, which
has boosted the growth of associated industries. Customers
in China have been able to enjoy the convenience of online
shopping that allows them to pay for their purchases over time,
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thanks to the introduction of consumer credit-based internet
financial services like Ant Financial’s Huabei and Alipay’s
Alipay in China, JD.com’s Jingdong Baitiao, and Tencent’s
WeBank’s WeiLiDai.

As mobile and IoT financial payment systems have grown in
popularity, so has the number of hidden fraud threats that may
be exploited by criminals. There may be a fertile environment
for fraudulent actions because of the complicated network’s
secrecy. Fraud risks are becoming increasingly difficult to
control, and fraud cases are frequent, causing great property
losses and seriously jeopardizing social harmony. The detec-
tion of fraud on the Internet is crucial to protect the interests
of ordinary users and maintain the harmony of society.

Traditional machine learning has been used for financial
fraud detection [2]–[5]. However, using traditional machine
learning methods requires manual data processing and con-
sumes a lot of time on feature engineering. This problem is
becoming more and more serious as the volume of financial
transaction data grows. While graph learning can learn the
deep representation of node features directly in the topology of
the network graph, which not only avoids time-consuming fea-
ture engineering, but also enhances the feature representation
of nodes, which is beneficial for fraud detection in financial
transactions.

At present, graph learning has been developing rapidly,
and a large number of innovative graph neural networks
(GNNs) [6]–[10] have been proposed and applied in various
fields. The most central idea of GNNs is the message passing
mechanism, which updates the feature information of the cen-
tral node by the feature information of the neighboring nodes.
In the present GNN-based financial fraud detection meth-
ods [11]–[14], different neighbor node selection strategies are
proposed to improve the fraud detection effect. Among them,
FA-GNN [11] proposes three priority policy neighbor filtering
strategies based on transaction networks to filter out the
important neighbor nodes. GraphConsis [12] proposes a model
that combines contextual embedding and nodes, designs a
probabilistic sampling method for selective sampling of neigh-
boring nodes, and uses an attention mechanism for aggregation
of node features. CARE-CNN [13] obtains the similarity
between neighboring nodes by designing a layer of label-aware
similarity measures and uses reinforcement learning to find
the optimal number of neighbors. RioGNN [14] proposes an
enhanced relationship-aware neighbor selection mechanism to
identify the most similar neighbors from multiple relationship
views for aggregation and uses a label-aware neural similarity
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measure to avoid over-generalization of embeddings between
different types of nodes.

However, all these methods aggregate central node features
from neighboring nodes, so the final result learned is that
nodes in close proximity to each other tend to have similar
features. They both ignore the stronger structural homogene-
ity and cannot aggregate two nodes with similar structures
but far away from each other, while in the actual Internet
financial fraud scenario, two independent fraudulent users who
are not associated in different regions are highly likely to
have similar community structures. To address this problem,
in this article, we propose an Internet financial fraud detection
method, TA-Struc2Vec, which not only learns stronger struc-
tural homogeneity, but also further learns transaction amount
homogeneity considering the important property of transaction
amount in financial transaction networks. The financial trans-
action network is embedded in both structural homogeneity
and transaction financial homogeneity, and the features of
each user in the financial transaction network are extracted.
Finally, machine-learning classification algorithms are used
to classify the users in the financial transaction network to
detect fraudulent users in the financial transaction network.
Our contributions are as follows.

1) We propose a novel approach for Internet financial fraud
detection, which overcomes the limitation that existing
methods can only update the central node features from
the adjacent nodes. And it can learn a stronger structure
to aggregate the features of two extremely similar and
distant nodes.

2) In our proposed method, we perform embedding
learning for financial transaction networks from both
structural homogeneity and transactional amount homo-
geneity to extract feature information of each user in
the transaction network, which enhances the feature
representation and facilitates fraudulent user detection
in financial transactions.

3) By detecting phishing users in blockchain transactions,
the experimental results prove that TA-Struc2Vec is
indeed more competitive compared to other methods.

II. BACKGROUND AND RELATED WORK

A. Graph Embedding

Graphics is an important form of data representation,
appearing in a variety of real scenes. Effective graph analysis
allows users to have a deeper understanding of the meaning
behind the data, which is conducive to many useful applica-
tions such as node classification, node recommendation, and
link prediction. However, most graphical analysis methods
have the problems of a large amount of calculation and large
space overhead. Graph embedding is an effective method to
solve the problem of graph analysis. It converts the graphic
data into a low-dimensional space, in which the graphic struc-
ture information and graphic attributes are preserved to the
greatest extent. The methods of graph embedding are basically
divided into three categories: methods based on factorization,
methods based on random walks, and methods based on deep
learning.

The graph embedding algorithm based on factor decom-
position uses an adjacency matrix, Laplacian matrix, Katz
similarity matrix, and so on to represent the connection of
nodes and then decomposes the matrix to achieve the purpose
of embedding. Models related to factorization include local
linear embedding (LLE) [15], Laplacian feature mapping [16],
graph representation for learning global structure information
(GraRep) [17], and high-order proximity preserving embed-
ding (HOPE) [18].

The graph embedding algorithm based on a random walk,
combined with the idea of the Word2Vec algorithm, first
collects the node sequence according to different strategies and
treats the node sequence as a sentence. Then use the CBOW
or Skip-gram model to learn to get the representation vector of
the node. DeepWalk [19] uses a random walk strategy to obtain
the node sequence. node2vec [20] is similar to DeepWalk,
except that it uses a biased random walk, which is a tradeoff
between breadth-first and depth-first graph search.

Based on the deep-learning method, the graph is com-
bined with the neural network, and different GNN models
are constructed to learn the characteristic information of the
graph nodes. At present, GNN algorithms can be divided
into four categories, namely cyclic GNN, convolution GNN,
graph autoencoder, and spatio-temporal GNN. The cyclic
GNN repeatedly applies the same set of parameters to the
nodes in the graph to improve node representation. The work
of literature [21], [22] is performed on directed acyclic graphs,
the work of literature [23] is performed on undirected graphs,
and SSE [24] improves the scalability and can be embedded in
large graphs. The convolutional GNN is closely related to the
cyclic GNN. The convolutional GNN does not use contraction
constraints to iterate the node state but uses a fixed number
of layers with different weights for each layer to solve the
cyclic interdependence. Convolutional GNNs are divided into
two categories: one is based on the frequency domain, and the
other is based on the spatial domain. There are SDGNet [25],
AGCN [8] in the frequency domain, and NN4G [9], CGMM
[10] in the airspace. The graph autoencoder is a deep neural
network structure that maps nodes to latent feature space
and decodes graph information from the latent representation.
Literature [26], [27] uses the structure of graphs, while litera-
ture [28], [29] considers both the structural information of the
node and the characteristic information of the node. Spatio-
temporal GNN captures the space and time dependence of
graphs at the same time and has many applications in capturing
the dynamics of graphs. Among them, the literature based on
RNN [30], [31] and the literature based on CNN [32]–[34].

B. Graph-Based Fraud Detection

Graph learning is applied to different aspects of fraud detec-
tion, for example, disinformation detection in social media,
fraudulent user detection in financial trading systems, Ponzi
scheme detection, and so on.

For disinformation detection, FAHGT [35] uses a
type-aware feature mapping mechanism to process heteroge-
neous graph data in order to identify false comments and
solve the artifacts and inconsistencies in a uniform manner.
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SAFER [36], in order to detect fake news on social platforms,
models social networks in terms of several attributes such as
the nature of the disseminated content and the content sharing
behavior of users. DAGN-NN [37] can train the model with
fewer samples and break through the limitations of traditional
machine learning in the fake news detection task to achieve
cross-domain fake news detection. FANG [38] is able to detect
fake news on social platforms and can capture social context
to high-fidelity representation with strong scalability.

For fraudulent user detection, FdGars [39] uses content
features and behavioral features to analyze normal and mali-
cious users in order to detect fraudulent comments in Inter-
net systems and uses a graph convolutional neural network
approach to classify users based on the analyzed information.
SemiGNN [40], a semisupervised attention GNN, is proposed
to address the lack of labeled data in the network and uses
a hierarchical attention mechanism to perform fraudulent
user detection by embedding learning from multiple views.
GraphConsis [12] proposes a model that combines contex-
tual embedding and nodes by designing a GNN framework
and introducing the problem of contextual inconsistency to
detect fraudulent users, filtering neighboring nodes, and using
an attention mechanism for aggregation of node features.
CARE-CNN [13] analyzes both feature artifacts and relational
artifacts for fraudsters’ artifacts and proposes a new model
that enhances the GNN aggregation process and uses three
unique modules to combat artifacts. RioGNN [14] proposes
an enhanced relationship-aware neighbor selection mechanism
that identifies the most similar neighbors from multiple rela-
tionship views for aggregation and uses a label-aware neural
similarity metric to avoid over-generalization of embeddings
between different types of nodes.

For Ponzi scheme detection, unlike the machine learning
approaches [41], [42] used to detect vulnerabilities in Ethernet
smart contracts, the graph-based approaches focus more on
the construction of the Ethernet transaction network. Among
them, [43] constructs a transaction network using transactions
of target contracts and models the detection of Ponzi schemes
as a node classification task, based on a graph convolutional
network (GCN) for identification and detection. Jin et al. [44]
propose a heterogeneous feature enhancement approach to
capture heterogeneous information related to the use of line
patterns.

III. FRAMEWORK

In this section, we will first explain in detail how to use
graph-learning methods to detect fraud. It mainly includes
three parts: graph construction, graph embedding, and node
classification. The overall framework is shown in Fig. 1.
First, we will explain in detail how to construct a transaction
graph based on user transaction information in an online
financial platform. And then build an improved method based
on Struc2Vec [45] for embedding online financial transaction
graphs. This method not only considers the structure of the
node, but also considers the transaction amount. Finally, the
logistic algorithm is used to classify the transaction nodes in
an online financial platform and identify malicious nodes.

A. Graph Construction

To use our algorithm to extract features of transaction
nodes, we treat accounts and transactions in online financial
transaction data as nodes and edges. More importantly, we use
a time sliding window to obtain information about online
financial transactions over a certain period to construct a
weighted directed graph. In this graph, the edges between
nodes represent the transactions, and the transaction amounts
are used as the weights of the edges.

B. Graph Embedding

Generally, Struc2Vec can effectively learn potential repre-
sentations of structural identity. In an online financial trans-
action graph, each transaction has its inherent attribute, that
is, the amount. In order to be able to express the character-
istics of online financial transaction nodes more accurately,
we consider the transaction amount and the structure of the
node at the same time. And designed an improved algorithm
TA-Struc2Vec based on Struc2Vec. The core idea is that if two
nodes have the same degree and the same transaction amount,
then the two nodes are similar. If the two nodes have the
same neighbor degree and the same transaction amount, then
the similarity of these two nodes is higher than the former.

Let G = (V , E) denote a directed weighted graph, V denote
a set of nodes, and E denote a set of edges. We use n =
|V | to represent the number of nodes and d∗ to represent the
diameter of the graph, that is, the maximum distance between
any two points in the graph. We use Rk(u) to represent the
set of nodes whose distance to node u is k(k ≥ 0). D(S)
represents the sequence formed after the nodes in a certain
node set S are sorted from small to large according to the
degree, where S ⊆ V .

M(S) represents the sequence of node transaction amount
in a certain node set S and the order of the nodes is consistent
with D(S). s(S) represents a sequence formed by adding the
degree and the transaction amount of the node according to a
certain weight to the nodes in a certain node set S and sorting
them from small to large according to the size of the obtained
value

s(S) = α(D(S)) + β(M(S)). (1)

Among them, we set α/β = λ(λ ≥ 1) for more consideration
of the structure of nodes. Let fk(u, v) denote the similarity
of nodes u, v, taking into account their K-Hop neighborhood,
the initial value f−1 = 0. The fk(u, v) function is defined as
follows:

fk(u, v) = fk−1(u, v) + g(s(Rk(u), s(Rk(v)))

k ≥ 0 and |Rk(u)|, |Rk(v)| > 0. (2)

Among them, Rk(u) represents the set of vertices with a
distance of k from the vertex u and g(D1, D2) represents the
distance between two ordered queues. The calculation method
uses the DTW algorithm. The DTW algorithm is usually used
to calculate the similarity of two time series. It has a wide
range of applications in the field of speech recognition and is

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 06,2024 at 10:15:32 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: INTERNET FINANCIAL FRAUD DETECTION BASED ON GRAPH LEARNING 1397

Fig. 1. Architecture of the proposed framework for Internet financial fraud detection.

defined as follows:
d(a, b) = max(a, b)

min(a, b)
− 1. (3)

Then construct a multilayer weighted graph to encode the
structural similarity between nodes. Each layer is a complete
graph with weights, and the weight of each edge is defined as
follows:

wk(u, v) = e− fk (u,v), k = 0, . . . , k∗. (4)

The layers are connected by directed edges. Specifically, for
any node uk of the kth layer, there are directed edges (uk, uk−1)
and (uk, uk+1), The weights are

w(uk, uk+1) = log(Lk(u) + e), k = 0, . . . , k − 1

w(uk, uk−1) = 1, k = 1, . . . , k. (5)

Among them, Lk(u) represents the number of edges that point
to the u node in the k layer whose weight is greater than the
average weight of the layer. Defined as follows:

Lk(u) =
∑

v∈V

1(wk(u, v) > wk) (6)

where wk represents the average value of all edge weights
of the kth layer. Lk(u) actually indicates how many nodes in
the kth layer are similar to node u. If node u is similar to
many nodes, it must be at a low level and there is too little
information to consider. At this time, the value of Lk(u) will
be very high, and there will be a situation of w(uk, uk+1) >
w(uk, uk−1). In this case, the node of this layer is not suitable
for the context of the node, and you should consider jumping
to a higher layer to find a suitable context. After constructing
the multilayer weighted graph, use the random walk method
in DeepWalk to obtain a similar node sequence of a node.
In a certain layer, the probability of walking to other nodes
is related to the weight of the edge, that is, the probability is
obtained by normalizing the weight

Pk(u, v) = e− fk (u,v)

Qk(u)
. (7)

The denominator is the normalization factor

Qk(u) =
∑

v∈V
v �=u

e− fk (u,v). (8)

Algorithm 1 T A − Struc2V ec Algorithm
Input: The transaction graph G, embedding dimension d ,

walk length l, window size o, bias parameters α and β, the
order of the neighbor node K .

Output: Embedding features Z .
for i =0 to K do

for each node v ∈ V do
Get the neighbor node set S of node v;
Get s(S) with Equation 1;

end for
for each node u ∈ V do

for each node v ∈ V do
Calculate the similarity of nodes u, v with Equation 2;
Calculate the weight of nodes u, v with Equation 4;

end for
end for
Construct a weighted complete graph of the current layer;

end for
for i =0 to K do

Calculate the weights between layers with Equation 5 and
Equation 6;

end for
Calculate the probability of walking to other nodes with
Equation 7 and Equation 9;
Generate a node sequence of length l by random walk with
bias;
Z = Word2Vec(node sequence, d , o);
return Z .

If the layer is adjusted, it is divided into two directions, the
probability is also related to the weight of the edge

Pk(uk, uk+1) = w(uk, uk+1)

(w(uk, uk+1) + w(uk, uk−1)
Pk(uk, uk−1) = 1 − Pk(uk, uk+1). (9)

Finally, according to the node sequence obtained by sam-
pling, the Skip-gram model in Word2Vec is used for feature
extraction. The pseudocode of the proposed TA-Struc2Vec is
listed in Algorithm 1.
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Fig. 2. Visualization of nodes in 2-D; the yellow dots represent phishing nodes and the blue dots represent normal nodes. (a) DeepWalk. (b) GraphConsis.
(c) CARE-GNN. (d) RioGNN. (e) Struc2Vce. (f) TA-Struc2Vec.

C. Node Classification

After the feature extraction is completed by the
TA-Struc2Vec graph embedding method, we use machine-
learning methods to classify the nodes. In this article,
we mainly classify phishing nodes and ordinary nodes, which
is a two-class classification problem. Therefore, we can
use the logistic regression algorithm or the SVM algorithm
to analyze and identify the nodes of the online financial
transaction network and detect malicious nodes among
them. When multiple categories are involved, we can use
multiple classification algorithms [46] for classification and
recognition.

IV. EXPERIMENT

In this section, we first describe the dataset, then compare
TA-Struc2Vec with other algorithms, and perform visualization
and parametric analysis.

A. Dataset Description

Thanks to the work of the paper [47], a large amount of
Ethereum transaction data has been collected through the inter-
face provided by Etherscan. They started from the phishing
nodes that have been published in Ethersacn and crawled
a large-scale Ethereum transaction network from Ethereum
transaction records through a second-order breadth search.
The Ethereum transaction network has 2 973 382 nodes and
13 551 214 edges, of which 1157 are marked as phishing
nodes. First, we randomly obtain 200 marked phishing nodes
and 200 normal nodes and use these nodes as central nodes.

Then use the K -level sampling method to obtain 400 sub-
graphs and set k-in = 2 and k-out = 2. Finally, connect these
subgraphs to obtain an Ethereum transaction network with
6500 nodes.

B. Experimental Settings

1) Baselines: We comapare TA-Struc2Vec with seven base-
lines.

DeepWalk [19] uses a random walk method, starting from
a node, obtaining a certain long sequence of nodes, and
then stopping. Then combine the ideas in Word2Vec, use the
Skip-Gram model or CBOW model training, and extract the
embedding vector of each node.

node2vec [20] uses a breadth-first algorithm and depth-first
algorithm to replace the random walk in DeepWalk, which
enriches the strategy of sample collection.

Line [48] defines the first-order similarity and the second-
order similarity, where the first-order similarity refers to the
connection strength of the point pairs in the original space. The
first-order similarity is used to describe the global characteris-
tics of the graph. Second-order similarity refers to the strength
of the connection between a single point and its neighbors.
This feature is local and limited to describing the relationship
between the center point and its neighbors.

Struc2Vec [45] proposes a method to measure the similarity
of nodes. Two nodes are similar if they have the same degree,
and they are more similar if the neighbors of these two nodes
also have the same degree.

GraphConsis [12] proposes a model that combines contex-
tual embedding and nodes for selective sampling by generating
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Fig. 3. Sensitivity analysis among embedding dimension d, walk length l, and window size o. (a) d with l. (b) d with o. (c) l with o.

corresponding sampling probabilities and utilizes an attention
mechanism for aggregation of node features.

CARE-CNN [13] obtains the similarity between neigh-
boring nodes by designing a layer of label-aware similarity
measures and uses reinforcement learning to find the optimal
number of neighbors.

RioGNN [14] proposes an enhanced relationship-aware
neighbor selection mechanism to identify the most similar
neighbors from multiple relationship views for aggregation
and uses a label-aware neural similarity measure to avoid
overgeneralization of embeddings between different types of
nodes.

2) Experimental Design: We use graph learning algorithms
to embed the Ethernet transaction network, extract the fea-
tures of each user, and use logistic regression algorithms to
classify phishing users and normal users to detect phishing
users. Considering the imbalance of data, we use Precision,
Recall, F1-score, and AUC as the evaluation metrics for
the effectiveness of our experiments. And we compare the
experimental effects under different machine learning to verify
the effectiveness of the logistic regression algorithm.

C. Experimental Results

In the experiment, we set the training ratio to 80%, the
dimension of the embedding vector of each node to 128, the
window size to 5, and the sequence length of each node to
10. Among them, α is set to 0.2, and β is set to 0.02, and we
use the logistic regression algorithm to classify nodes.

The experimental results are shown in Table I.
TA-Struc2Vec outperforms RioGNN in Precision, F1-score,
and AUC metrics and outperforms other algorithms in all
metrics, which proves the effectiveness of TA-Struc2Vec
in fraudulent user detection. Furthermore, we demonstrate
the effectiveness of the logistic regression algorithm by
comparing the classification effect of the logistic regression
algorithm with SVM, decision tree, and random forest
algorithms using the features extracted by TA-Struc2Vec. The
comparison results are shown in Table II, and it can be seen
that the logistic regression algorithm is slightly inferior to
SVM except for Precision, which is due to other algorithms.

TABLE I

OVERALL PERFORMANCE COMPARISON

TABLE II

PERFORMANCE COMPARISON OF DIFFERENT CLASSIFIERS

D. Visualization

Our downstream task uses machine-learning algorithms for
the classification of phishing nodes and normal nodes using
machine-learning algorithms, which are very dependent on the
features of the nodes, and the more different the two features
are, the easier it is to classify them. We used the t-SNE [49]
nonlinear dimensionality reduction algorithm for visualization,
which reduces the high-dimensional features of nodes to a 2-D
space, where nodes with more similar features tend to cluster
together, so that we can directly observe the effect of feature
extraction by graph learning methods. When the nodes with the
same color are more obviously aggregated and the nodes with
different colors are more obviously separated, the extracted
features are better and facilitate the classification by machine
learning algorithms.

To show more clearly the effectiveness of TA-Struc2Vec,
we map the 128-dimensional node features extracted by Deep-
Walk, GraphCosis, CARE-GNN, RioGNN, and Struc2Vec to
2-D space, respectively. The visualized results are shown in
Fig. 2. We can see that phishing nodes are mixed with normal
nodes in the visualization of GraphCosis, CARE-GNN, and
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RioGNN algorithms. In contrast, the TA-Struc2Vec algorithm
has better results and clearly separates the phishing nodes from
the normal nodes.

E. Parameter Analysis

Now, we try to find the effect of hyperparameters on
TA-Struc2Vec, including embedding dimension d , walk length
l, and window size o. First, we evaluate the effect of d and l
by setting o to 5, the range of d to {8, 64, 128, 256}, and the
range of l to {10, 20, 30, 40, 50}. Then the effect of d and o is
evaluated by setting l to 20, the range of d is {8, 64, 128, 256},
and the range of o is {1, 3, 5, 7, 9}. Finally, the effect of l
and o is evaluated by setting d to 128, the range of l to
{10, 20, 30, 40, 50}, and the range of o to {1, 3, 5, 7, 9}. The
other parameters were set to optimal. To show the effect of
different parameter values, we take AUC in this study. The
experimental effect is shown in Fig. 3, where we can see that
AUC is stronger when d is between 64 and 128, l is between
20 and 40, and o is between 5 and 7.

V. CONCLUSION AND FUTURE WORK

In this article, we propose a graph-learning method
TA-Struc2Vec for fraudulent user detection in Internet finance,
which can learn the embedding of financial transaction net-
works in terms of both structural homogeneity and transac-
tion amount homogeneity and extract the feature information
of each user in the transaction network. It overcomes the
limitation that existing methods can only update the central
node features from neighboring nodes, enhances the feature
representation, and facilitates the detection of fraudulent users
in financial transactions. Experiments on the real-world dataset
show that TA-Struc2Vec outperforms other existing methods
for fraudulent user detection in Internet finance. In future
work, the algorithm will be improved and implemented in
conjunction with spatio-temporal properties to effectively learn
the features of newly generated vertices in a dynamic network
graph to achieve better financial fraud detection.
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