
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a workshop paper at ICLR 2025

WHEN LESS IS MORE: ONE STRATEGIC STEP IN LLM
REFINEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Addressing hallucinations in LLMs for Math World Problems (MWPs) is key to
reliability and efficiency. We optimize the trade-off between accuracy and compu-
tation in CoT reasoning by verifying only the first step before proceeding. A ver-
ifier assesses correctness, halting generation if incorrect. This approach reduces
token generation time by 30% with under 5% accuracy loss, while corrections im-
prove accuracy by up to 10%. By skipping flawed reasoning early, our method
balances accuracy and efficiency, cutting unnecessary computation.

1 INTRODUCTION

Large Language Models (LLMs) exhibit strong reasoning but are prone to hallucinations (Xu et al.,
2024; Li et al., 2024; Huang et al., 2024b), especially in Math Word Problems (MWPs), where early
errors can propagate. Detecting and correcting mistakes early is key to improving reliability and
efficiency. Our approach optimizes this balance by introducing a verification mechanism that halts
incorrect reasoning early, reducing computational overhead while preserving accuracy.

LLM reasoning methods include CoT (Wei et al., 2022; Lyu et al., 2024; Zhang et al., 2023), sub-
question decomposition (Min et al., 2019; Radhakrishnan et al., 2023; Perez et al., 2020; Shridhar
et al., 2022), and Program of Thought (PoT) (Chen et al., 2023). Subquestioning improves reliability,
while verification methods like Chain-of-Verification and self-refinement refine outputs iteratively.
Relevant works include QuestCoT (Jain et al., 2024), which prioritizes a strong first step but lacks
verification, and ART (Shridhar et al., 2023b), which verifies reasoning but increases token costs.
Our method integrates QuestCoT’s emphasis on the first step with ART’s verification, making it
more efficient.

We prompt an LLM to generate only the first reasoning step, which a separate verifier evaluates.
If incorrect, generation halts, preventing wasted computation. Refining incorrect first steps further
enhances accuracy while reducing token usage. Evaluated on GSM8K (Cobbe et al., 2021), our
method achieves an optimal trade-off between accuracy and efficiency, with potential applications
in code generation and multiple-choice QA.

2 METHODOLOGY

Our methodology builds upon the foundational frameworks of the ART model (Shridhar et al.,
2023b) and the QuestCoT approach (Jain et al., 2024), aiming to optimize the balance between
accuracy and computational efficiency in solving MWPs using LLMs.

In our framework, we propose to use two models as follows:

• Generator Model (G): An LLM trained/prompted on the CoT training examples and gen-
erates reasoning steps for MWPs. During inference, it is prompted to produce only the first
step initially.

• Verifier Model (V ): A separate LLM (potentially of different sizes) trained on the Socratic
version of dataset that involves subquestions for each reasoning step following Shridhar
et al., it generates the first subquestion and subanswer during inference to verify the cor-
rectness of the generator’s first step.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a workshop paper at ICLR 2025

Figure 1: Flowchart outlining the process for solving math word problems. The generator and
verifier collaboratively handle the first step generation (steps 1-5), followed by a match check (step
6). Depending on the match outcome, the process either completes with Case 1 or proceeds to
generate the remaining solution (steps 7-8).

Below we have discussed the steps given in Figure 1:

• First Step Generation: The generator G receives an MWP Q and outputs the first reason-
ing step SG.

• Verification: The verifier V processes Q and produces the verification step SV .

• Comparison: We compare SG and SV :

– If SG = SV , the first step is deemed correct, and G proceeds to generate the remaining
steps.

– If SG ̸= SV , we choose between terminating the process or correcting SG with SV

and continuing.

A detailed step by step analysis of our methodology is presented in Algorithm 1.

Algorithm 1 Overall proposed methodology

Require: Math Word Problem Q
Ensure: Final Answer or Decision to Skip

1: Generate first step SG ← G(Q)
2: Generate verification step SV ← V (Q)
3: if SG = SV then
4: Proceed to generate remaining steps {S(2)

G , S
(3)
G , . . . } ← G(Q,SG)

5: Obtain final answer A← G
6: else
7: Option 1: Terminate and skip to next problem
8: Option 2: Replace SG with SV and continue
9: Proceed to generate remaining steps {S(2)

G , S
(3)
G , . . . } ← G(Q,SV )

10: Obtain final answer A← G
11: end if

3 EXPERIMENTAL SETUP

We conducted experiments using Gemma (Team et al., 2024) (2B, 7B) and Qwen2.5 (Team, 2024)
(0.5B, 1.5B, 3B, 7B) models, using each as both generator and verifier. To enable parameter-efficient

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a workshop paper at ICLR 2025

(a) Generator 0.5B (b) Generator 1.5B (c) Generator 3B (d) Generator 7B

Figure 2: Trade-off between processing time (in seconds) and accuracy (in percentage) for different
generator-verifier setups in the Incorrect FS case for Qwen. Each subplot corresponds to a generator
of a specific size (0.5B, 1.5B, 3B, 7B). The black dot represents the baseline scenario where the
generator produces COT for all samples. Colored dots represent configurations where the verifier
assists the generator, with verifier sizes ranging from 0.5B to 7B.

fine-tuning, we applied LoRA (Hu et al., 2021), allowing updates without modifying all model
parameters.

The models were fine-tuned on GSM8K (Cobbe et al., 2021), with generators trained on the CoT set
and verifiers on the Socratic set, focusing on generating the first subquestion-subanswer. We used
Unsloth1 to download models and VLLM (Kwon et al., 2023) for fast inference. Experiments were
conducted on Nvidia RTX 3090/4090 GPUs (24GB VRAM).

All model pairings were explored within the same family, ensuring consistency, with one model
acting as verifier and another as generator.

3.1 EVALUATION METRICS

We define:

• Accuracy (A): The proportion of MWPs correctly solved, calculated as

A =
Number of Correct Answers

Total Number of MWPs
. (1)

• Time Cost (Ttotal): The computational time for generating solutions, calculated as
Ttotal = Nverifier × tverifier +Ngenerator × tgenerator, (2)

where Nverifier is the number of tokens generated by the verifier, tverifier is the time per token
for the verifier model, Ngenerator is the number of tokens generated by the generator, and
tgenerator is the time per token for the generator model.

4 RESULTS

As outlined in Algorithm 1, incorrect first steps are handled by either terminating the chain
(Incorrect FS) or replacing the first step with the verifier’s (Replaced FS). In both cases, the first
term in Equation 2 remains unchanged, while only the second term varies.

Figures 2, 3, and 4 summarize results for each model family. The X-axis represents total time cost
from the formula, while the Y-axis shows final answer accuracy. The black dot marks the baseline
accuracy and cost of the generator processing all test samples. Colored dots indicate performance
with different-sized verifiers assisting in the first step.

4.0.1 INCORRECT FS (TERMINATION)

In this case, if the first step is incorrect, we terminate and skip to the next question. This approach
aims to save computational time by not processing MWPs that are likely to result in incorrect an-
swers. We see in Table 1 that identifying the errors earlier can lead to time gains but the accuracy is
lower than the baseline.

1https://github.com/unslothai/unsloth

3

https://github.com/unslothai/unsloth


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a workshop paper at ICLR 2025

Table 1: Performance comparison of different generator-verifier setups in terms of processing time
(in seconds) and accuracy (in percentage) for the Qwen family. All Samples indicates the baseline
where the generator produces COT for all samples without using a verifier. Rows correspond to
different verifier sizes (0.5B, 1.5B, 3B, 7B). The following sub-tables represent the Incorrect FS
case.

Model Time (secs), Acc
All Samples (525, 32.22)

0.5B (479, 18.27)
1.5B (607, 22.06)
3B (757, 22.89)
7B (1119, 23.04)

(a) Generator 0.5B

Model Time (secs), Acc
All Samples (853, 54.96)

0.5B (687, 27.36)
1.5B (891, 36.92)
3B (1014, 37.68)
7B (1392, 37.68)

(b) Generator 1.5B

Model Time (secs), Acc
All Samples (1444, 64.06)

0.5B (1098, 31.61)
1.5B (1360, 41.93)
3B (1620, 47.38)
7B (1963, 44.80)

(c) Generator 3B

Model Time (secs), Acc
All Samples (2833, 72.55)

0.5B (2449, 31.46)
1.5B (2845, 40.56)
3B (3130, 43.13)
7B (3605, 48.21)

(d) Generator 7B

4.0.2 REPLACED FS (CORRECTION)

In this scenario, if the first step is incorrect, we replace it with the verifier’s first step and continue
generating the remaining CoT. This approach aims to improve accuracy at the expense of increased
computational time. This is evident from Table 2 that using a larger verifier replaced answers can
improve accuracy but increases overall compute time.

4.1 KEY FINDINGS

The key observations from our study are summarized as follows 2:

• Time Savings with Smaller Verifiers: A smaller verifier than the generator reduces com-
putational time with minimal accuracy loss. For a 1.5B generator, a 0.5B verifier cuts down
time from 853s to 687s (Table 1b).

• Marginal Accuracy Gains with Replacement: Correcting incorrect first steps signifi-
cantly increases time cost but yields only minor accuracy improvements (e.g., 32.22 →
36.08 with a 7B verifier; Table 2a).

• Higher Accuracy with Larger Verifiers: Replacing incorrect first steps with a larger ver-
ifier significantly improves accuracy for rejected samples. For a 0.5B generator, baseline
accuracy (0.22) improves notably with larger verifiers (Table 4).

5 CONCLUSION

We propose a novel approach to optimizing accuracy and computational efficiency in CoT reasoning
for MWPs by verifying the first reasoning step. Our results on GSM8K demonstrate that different
model sizes and configurations can significantly reduce computation time with minimal accuracy
loss or enhance accuracy with acceptable cost increases. Future work could explore adaptive strate-
gies for dynamic termination and correction, reinforcement learning for optimization, and applica-
tions in domains like code generation and scientific problem-solving. Additionally, automating the
decision of when to replace the answer or continue reasoning could refine the accuracy-cost tradeoff.

2Gemma and other experiments given in the Appendix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a workshop paper at ICLR 2025

REFERENCES

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W. Cohen. Program of thoughts prompting:
Disentangling computation from reasoning for numerical reasoning tasks, 2023. URL https:
//arxiv.org/abs/2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. Chain-of-verification reduces hallucination in large language models, 2023. URL
https://arxiv.org/abs/2309.11495.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet, 2024a.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A survey on hallucination in
large language models: Principles, taxonomy, challenges, and open questions. ACM Transactions
on Information Systems, November 2024b. ISSN 1558-2868. doi: 10.1145/3703155. URL
http://dx.doi.org/10.1145/3703155.

Kushal Jain, Niket Tandon, and Kumar Shridhar. Well begun is half done: Importance of starting
right in multi-step math reasoning, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Junyi Li, Jie Chen, Ruiyang Ren, Xiaoxue Cheng, Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. The
dawn after the dark: An empirical study on factuality hallucination in large language models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10879–10899,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/
2024.acl-long.586. URL https://aclanthology.org/2024.acl-long.586.

Qing Lyu, Kumar Shridhar, Chaitanya Malaviya, Li Zhang, Yanai Elazar, Niket Tandon, Marianna
Apidianaki, Mrinmaya Sachan, and Chris Callison-Burch. Calibrating large language models
with sample consistency, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback, 2023.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Hannaneh Hajishirzi. Multi-hop reading com-
prehension through question decomposition and rescoring. In Anna Korhonen, David Traum, and
Lluı́s Màrquez (eds.), Proceedings of the 57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 6097–6109, Florence, Italy, July 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/P19-1613. URL https://aclanthology.org/P19-1613.

Masato Mita, Shun Kiyono, Masahiro Kaneko, Jun Suzuki, and Kentaro Inui. A self-refinement
strategy for noise reduction in grammatical error correction. In Trevor Cohn, Yulan He, and Yang
Liu (eds.), Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 267–
280, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
findings-emnlp.26. URL https://aclanthology.org/2020.findings-emnlp.26.

5

https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2309.11495
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
http://dx.doi.org/10.1145/3703155
https://aclanthology.org/2024.acl-long.586
https://aclanthology.org/P19-1613
https://aclanthology.org/2020.findings-emnlp.26


270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a workshop paper at ICLR 2025

Sajad Mousavi, Ricardo Luna Gutiérrez, Desik Rengarajan, Vineet Gundecha, Ashwin Ramesh
Babu, Avisek Naug, Antonio Guillen, and Soumyendu Sarkar. N-critics: Self-refinement of large
language models with ensemble of critics, 2023. URL https://arxiv.org/abs/2310.
18679.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. Refiner: Reasoning feedback on intermediate representations, 2024. URL
https://arxiv.org/abs/2304.01904.

Ethan Perez, Patrick Lewis, Wen tau Yih, Kyunghyun Cho, and Douwe Kiela. Unsupervised ques-
tion decomposition for question answering, 2020. URL https://arxiv.org/abs/2002.
09758.

Ansh Radhakrishnan, Karina Nguyen, Anna Chen, Carol Chen, Carson Denison, Danny Hernandez,
Esin Durmus, Evan Hubinger, Jackson Kernion, Kamilė Lukošiūtė, Newton Cheng, Nicholas
Joseph, Nicholas Schiefer, Oliver Rausch, Sam McCandlish, Sheer El Showk, Tamera Lan-
ham, Tim Maxwell, Venkatesa Chandrasekaran, Zac Hatfield-Dodds, Jared Kaplan, Jan Brauner,
Samuel R. Bowman, and Ethan Perez. Question decomposition improves the faithfulness of
model-generated reasoning, 2023. URL https://arxiv.org/abs/2307.11768.

Kumar Shridhar, Jakub Macina, Mennatallah El-Assady, Tanmay Sinha, Manu Kapur, and Mrin-
maya Sachan. Automatic generation of socratic subquestions for teaching math word problems.
In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, pp. 4136–4149, Abu Dhabi, United Arab
Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
emnlp-main.277. URL https://aclanthology.org/2022.emnlp-main.277.

Kumar Shridhar, Harsh Jhamtani, Hao Fang, Benjamin Van Durme, Jason Eisner, and Patrick Xia.
Screws: A modular framework for reasoning with revisions, 2023a.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu Wang, Ping Yu, Ram Pasunuru, Mrinmaya
Sachan, Jason Weston, and Asli Celikyilmaz. The art of llm refinement: Ask, refine, and trust,
2023b.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, An-
tonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko
Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree
Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah
Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on
gemini research and technology, 2024. URL https://arxiv.org/abs/2403.08295.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

6

https://arxiv.org/abs/2310.18679
https://arxiv.org/abs/2310.18679
https://arxiv.org/abs/2304.01904
https://arxiv.org/abs/2002.09758
https://arxiv.org/abs/2002.09758
https://arxiv.org/abs/2307.11768
https://aclanthology.org/2022.emnlp-main.277
https://arxiv.org/abs/2403.08295
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a workshop paper at ICLR 2025

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
hH36JeQZDaO.

Yuan Xia, Jingbo Zhou, Zhenhui Shi, Jun Chen, and Haifeng Huang. Improving retrieval augmented
language model with self-reasoning, 2024. URL https://arxiv.org/abs/2407.19813.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
large language models, 2024. URL https://arxiv.org/abs/2401.11817.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel Deutch, and Jonathan Berant. Answering
questions by meta-reasoning over multiple chains of thought, 2024. URL https://arxiv.
org/abs/2304.13007.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=5NTt8GFjUHkr.

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V. Le, Ed H. Chi, Denny
Zhou, Swaroop Mishra, and Huaixiu Steven Zheng. Self-discover: Large language models self-
compose reasoning structures, 2024. URL https://arxiv.org/abs/2402.03620.

A APPENDIX

A.1 RELATED WORK

Recently, there has been a surge of work in the field of self-refinement (Mousavi et al., 2023; Mita
et al., 2020) and reasoning (Xia et al., 2024; Zhou et al., 2024) capabilities in Large Language
Models (LLMs). There are three primary approaches to reasoning: Chain-of-Thought (CoT) (Wei
et al., 2022; Lyu et al., 2024; Zhang et al., 2023); subquestion decomposition (Min et al., 2019;
Radhakrishnan et al., 2023; Perez et al., 2020; Shridhar et al., 2022); and Program of Thought (Chen
et al., 2023). The Program of Thought approach involves solving questions using coding, which is
outside the scope of our project.

Building on these reasoning techniques, researchers have begun developing various self-refinement
strategies. Most LLM refinement techniques leverage one of these methods (Madaan et al., 2023;
Welleck et al., 2023; Paul et al., 2024; Huang et al., 2024a; Yoran et al., 2024) or combine multiple
steps into a unified framework (Shridhar et al., 2023a). Meanwhile, Dhuliawala et al. introduces
the idea of using subquestions to verify facts and mitigate hallucination. Similarly, Shridhar et al.
assigns the task of verifying the Chain-of-Thought generated by the main LLM to a smaller language
model, which carries out verification using subquestions.

A key influence for our project was (Jain et al., 2024), which demonstrated that improving the first
step in a reasoning chain significantly boosts final answer accuracy. This work shows that focusing
on the initial step can lead to substantial performance improvements, aligning with our approach of
verifying the first step to optimize both accuracy and computational efficiency.

Our study identifies a unique intersection between self-refinement algorithms and the strategic use
of subanswers. By integrating the principles of QuestCoT (Jain et al., 2024) into the ART frame-
work (Shridhar et al., 2023b), we aim to enhance the efficiency of LLM reasoning by verifying only
the first step, thereby reducing unnecessary computations. This convergence forms the core of our
investigation, allowing us to explore how these elements can be effectively combined to improve the
performance of self-reasoning LLMs.

7

https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO
https://arxiv.org/abs/2407.19813
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2304.13007
https://arxiv.org/abs/2304.13007
https://openreview.net/forum?id=5NTt8GFjUHkr
https://arxiv.org/abs/2402.03620


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a workshop paper at ICLR 2025

(a) Generator 0.5B (b) Generator 1.5B (c) Generator 3B (d) Generator 7B

Figure 3: Trade-off between processing time (in seconds) and accuracy (in percentage) for different
generator-verifier setups in the Replaced FS case (below) for Qwen.

(a) Generator 2B (b) Generator 7B (c) Generator 2B (d) Generator 7B

Figure 4: The first two plots correspond to the Incorrect FS case, while the last two (c, d) represent
the Replaced FS case for the Gemma family. In (a) and (b), the 2B verifier reduces time cost with
only a slight decrease in accuracy compared to the baseline. Notably, in (b), the 7B verifier also
achieves marginally lower time cost with minimal accuracy loss. In (c), the 7B verifier provides
higher accuracy than the baseline but at the expense of a significant increase in time cost.

Table 2: This set of tables corresponds to the Replaced FS case for Qwen.

Model Time (secs), Acc
All Samples (525, 32.22)

0.5B (693, 29.64)
1.5B (788, 33.58)
3B (937, 35.17)
7B (1310, 36.08)

(a) Generator 0.5B

Model Time (secs), Acc
All Samples (853, 54.96)

0.5B (1102, 43.51)
1.5B (1172, 51.55)
3B (1314, 53.98)
7B (1685, 56.10)

(b) Generator 1.5B

Model Time (secs), Acc
All Samples (1444, 64.06)

0.5B (1818, 50.34)
1.5B (1878, 59.36)
3B (2030, 60.65)
7B (2416, 64.44)

(c) Generator 3B

Model Time (secs), Acc
All Samples (2833, 72.55)

0.5B (3867, 53.44)
1.5B (3882, 62.39)
3B (4071, 62.47)
7B (4355, 66.33)

(d) Generator 7B

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a workshop paper at ICLR 2025

Table 3: Sub-tables (a) and (b) represent the Incorrect FS case, while (c) and (d) correspond to
the Replaced FS case. A consistent trend is observed: smaller verifiers reduce time cost, whereas
larger verifiers improve accuracy. In (b), the baseline time cost is 3784 seconds, while the 2B and
7B verifiers achieve 2518 seconds and 3358 seconds, respectively. In (c), the 7B verifier improves
accuracy to 28.05%, compared to the baseline accuracy of 26.99%.

Model Time (secs), Acc
All Samples (1286, 26.99)

2B (1088, 18.27)
7B (1644, 22.06)

(a) Generator 2B

Model Time (secs), Acc
All Samples (3784, 54.96)

2B (2518, 28.88)
7B (3358, 36.46)

(b) Generator 7B

Model Time (secs), Acc
All Samples (1286, 26.99)

2B (1547, 24.18)
7B (2145, 28.05)

(c) Generator 2B

Model Time (secs), Acc
All Samples (3784, 54.96)

2B (3808, 38.66)
7B (4408, 48.36)

(d) Generator 7B

Table 4: This table presents the performance of the Qwen family on rejected samples, where the
generator’s first step was incorrect, and those samples were replaced with the verifier’s first step.
The bold values for the 0.5B and 1.5B generators demonstrate that larger verifiers significantly
improve accuracy. Conversely, the bold values for the 7B generator indicate a decline in accuracy
when paired with smaller verifiers, showing that smaller verifiers are less accurate and negatively
impact the performance of larger generators.

0.5B Verifier 1.5B Verifier 3B Verifier 7B Verifier
0.5B Generator Baseline 0.223 (163/729) 0.179 (113/633) 0.167 (102/610) 0.170 (108/634)

Replaced 0.200 (146/729) 0.232 (147/633) 0.256 (156/610) 0.267 (169/634)
1.5B Generator Baseline 0.464 (363/782) 0.386 (203/526) 0.393 (217/552) 0.397 (220/554)

Replaced 0.271 (212/782) 0.335 (176/526) 0.373 (206/552) 0.430 (238/554)
3B Generator Baseline 0.574 (430/749) 0.520 (293/564) 0.494 (219/443) 0.519 (255/491)

Replaced 0.321 (240/749) 0.404 (228/564) 0.400 (177/443) 0.519 (255/491)
7B Generator Baseline 0.667 (496/744) 0.619 (361/583) 0.623 (317/509) 0.578 (247/427)

Replaced 0.387 (288/744) 0.497 (290/583) 0.507 (258/509) 0.569 (243/427)

Table 5: Here we have the results of the Gemma family for the rejected samples. The impact of
using a larger verifier appears minimal for this family. However, further experiments with additional
model sizes may be needed to confirm this behavior.

2B Verifier 7B Verifier
2B Generator Baseline 0.18 (128/703) 0.179 (133/743)

Replaced 0.122 (86/703) 0.179 (133/743)
7B Generator Baseline 0.47 (332/705) 0.428 (247/577)

Replaced 0.177 (127/705) 0.282 (163/577)

9


	Introduction
	Methodology
	Experimental Setup
	Evaluation Metrics

	Results
	Incorrect FS (Termination)
	Replaced FS (Correction)

	Key Findings

	Conclusion
	Appendix
	Related Work


