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ABSTRACT

Addressing hallucinations in LLMs for Math World Problems (MWPs) is key to
reliability and efficiency. We optimize the trade-off between accuracy and compu-
tation in CoT reasoning by verifying only the first step before proceeding. A ver-
ifier assesses correctness, halting generation if incorrect. This approach reduces
token generation time by 30% with under 5% accuracy loss, while corrections im-
prove accuracy by up to 10%. By skipping flawed reasoning early, our method
balances accuracy and efficiency, cutting unnecessary computation.

1 INTRODUCTION

Large Language Models (LLMs) exhibit strong reasoning but are prone to hallucinations (Xu et al.,
2024; Li et al., 2024; Huang et al., 2024b), especially in Math Word Problems (MWPs), where early
errors can propagate. Detecting and correcting mistakes early is key to improving reliability and
efficiency. Our approach optimizes this balance by introducing a verification mechanism that halts
incorrect reasoning early, reducing computational overhead while preserving accuracy.

LLM reasoning methods include CoT (Wei et al., 2022; Lyu et al., 2024; Zhang et al., 2023), sub-
question decomposition (Min et al., 2019; Radhakrishnan et al., 2023; Perez et al., 2020; Shridhar
et al., 2022), and Program of Thought (PoT) (Chen et al., 2023). Subquestioning improves reliability,
while verification methods like Chain-of-Verification and self-refinement refine outputs iteratively.
Relevant works include QuestCoT (Jain et al., 2024), which prioritizes a strong first step but lacks
verification, and ART (Shridhar et al., 2023b), which verifies reasoning but increases token costs.
Our method integrates QuestCoT’s emphasis on the first step with ART’s verification, making it
more efficient.

We prompt an LLM to generate only the first reasoning step, which a separate verifier evaluates.
If incorrect, generation halts, preventing wasted computation. Refining incorrect first steps further
enhances accuracy while reducing token usage. Evaluated on GSM8K (Cobbe et al., 2021), our
method achieves an optimal trade-off between accuracy and efficiency, with potential applications
in code generation and multiple-choice QA.

2 METHODOLOGY

Our methodology builds upon the foundational frameworks of the ART model (Shridhar et al.,
2023b) and the QuestCoT approach (Jain et al., 2024), aiming to optimize the balance between
accuracy and computational efficiency in solving MWPs using LLMs.

In our framework, we propose to use two models as follows:

• Generator Model (G): An LLM trained/prompted on the CoT training examples and gen-
erates reasoning steps for MWPs. During inference, it is prompted to produce only the first
step initially.

• Verifier Model (V ): A separate LLM (potentially of different sizes) trained on the Socratic
version of dataset that involves subquestions for each reasoning step following Shridhar
et al., it generates the first subquestion and subanswer during inference to verify the cor-
rectness of the generator’s first step.
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Figure 1: Flowchart outlining the process for solving math word problems. The generator and
verifier collaboratively handle the first step generation (steps 1-5), followed by a match check (step
6). Depending on the match outcome, the process either completes with Case 1 or proceeds to
generate the remaining solution (steps 7-8).

Below we have discussed the steps given in Figure 1:

• First Step Generation: The generator G receives an MWP Q and outputs the first reason-
ing step SG.

• Verification: The verifier V processes Q and produces the verification step SV .

• Comparison: We compare SG and SV :

– If SG = SV , the first step is deemed correct, and G proceeds to generate the remaining
steps.

– If SG ̸= SV , we choose between terminating the process or correcting SG with SV

and continuing.

A detailed step by step analysis of our methodology is presented in Algorithm 1.

Algorithm 1 Overall proposed methodology

Require: Math Word Problem Q
Ensure: Final Answer or Decision to Skip

1: Generate first step SG ← G(Q)
2: Generate verification step SV ← V (Q)
3: if SG = SV then
4: Proceed to generate remaining steps {S(2)

G , S
(3)
G , . . . } ← G(Q,SG)

5: Obtain final answer A← G
6: else
7: Option 1: Terminate and skip to next problem
8: Option 2: Replace SG with SV and continue
9: Proceed to generate remaining steps {S(2)

G , S
(3)
G , . . . } ← G(Q,SV )

10: Obtain final answer A← G
11: end if

3 EXPERIMENTAL SETUP

We conducted experiments using Gemma (Team et al., 2024) (2B, 7B) and Qwen2.5 (Team, 2024)
(0.5B, 1.5B, 3B, 7B) models, using each as both generator and verifier. To enable parameter-efficient
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(a) Generator 0.5B (b) Generator 1.5B (c) Generator 3B (d) Generator 7B

Figure 2: Trade-off between processing time (in seconds) and accuracy (in percentage) for different
generator-verifier setups in the Incorrect FS case for Qwen. Each subplot corresponds to a generator
of a specific size (0.5B, 1.5B, 3B, 7B). The black dot represents the baseline scenario where the
generator produces COT for all samples. Colored dots represent configurations where the verifier
assists the generator, with verifier sizes ranging from 0.5B to 7B.

fine-tuning, we applied LoRA (Hu et al., 2021), allowing updates without modifying all model
parameters.

The models were fine-tuned on GSM8K (Cobbe et al., 2021), with generators trained on the CoT set
and verifiers on the Socratic set, focusing on generating the first subquestion-subanswer. We used
Unsloth1 to download models and VLLM (Kwon et al., 2023) for fast inference. Experiments were
conducted on Nvidia RTX 3090/4090 GPUs (24GB VRAM).

All model pairings were explored within the same family, ensuring consistency, with one model
acting as verifier and another as generator.

3.1 EVALUATION METRICS

We define:

• Accuracy (A): The proportion of MWPs correctly solved, calculated as

A =
Number of Correct Answers

Total Number of MWPs
. (1)

• Time Cost (Ttotal): The computational time for generating solutions, calculated as
Ttotal = Nverifier × tverifier +Ngenerator × tgenerator, (2)

where Nverifier is the number of tokens generated by the verifier, tverifier is the time per token
for the verifier model, Ngenerator is the number of tokens generated by the generator, and
tgenerator is the time per token for the generator model.

4 RESULTS

As outlined in Algorithm 1, incorrect first steps are handled by either terminating the chain
(Incorrect FS) or replacing the first step with the verifier’s (Replaced FS). In both cases, the first
term in Equation 2 remains unchanged, while only the second term varies.

Figures 2, 3, and 4 summarize results for each model family. The X-axis represents total time cost
from the formula, while the Y-axis shows final answer accuracy. The black dot marks the baseline
accuracy and cost of the generator processing all test samples. Colored dots indicate performance
with different-sized verifiers assisting in the first step.

4.0.1 INCORRECT FS (TERMINATION)

In this case, if the first step is incorrect, we terminate and skip to the next question. This approach
aims to save computational time by not processing MWPs that are likely to result in incorrect an-
swers. We see in Table 1 that identifying the errors earlier can lead to time gains but the accuracy is
lower than the baseline.

1https://github.com/unslothai/unsloth
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Table 1: Performance comparison of different generator-verifier setups in terms of processing time
(in seconds) and accuracy (in percentage) for the Qwen family. All Samples indicates the baseline
where the generator produces COT for all samples without using a verifier. Rows correspond to
different verifier sizes (0.5B, 1.5B, 3B, 7B). The following sub-tables represent the Incorrect FS
case.

Model Time (secs), Acc
All Samples (525, 32.22)

0.5B (479, 18.27)
1.5B (607, 22.06)
3B (757, 22.89)
7B (1119, 23.04)

(a) Generator 0.5B

Model Time (secs), Acc
All Samples (853, 54.96)

0.5B (687, 27.36)
1.5B (891, 36.92)
3B (1014, 37.68)
7B (1392, 37.68)

(b) Generator 1.5B

Model Time (secs), Acc
All Samples (1444, 64.06)

0.5B (1098, 31.61)
1.5B (1360, 41.93)
3B (1620, 47.38)
7B (1963, 44.80)

(c) Generator 3B

Model Time (secs), Acc
All Samples (2833, 72.55)

0.5B (2449, 31.46)
1.5B (2845, 40.56)
3B (3130, 43.13)
7B (3605, 48.21)

(d) Generator 7B

4.0.2 REPLACED FS (CORRECTION)

In this scenario, if the first step is incorrect, we replace it with the verifier’s first step and continue
generating the remaining CoT. This approach aims to improve accuracy at the expense of increased
computational time. This is evident from Table 2 that using a larger verifier replaced answers can
improve accuracy but increases overall compute time.

4.1 KEY FINDINGS

The key observations from our study are summarized as follows 2:

• Time Savings with Smaller Verifiers: A smaller verifier than the generator reduces com-
putational time with minimal accuracy loss. For a 1.5B generator, a 0.5B verifier cuts down
time from 853s to 687s (Table 1b).

• Marginal Accuracy Gains with Replacement: Correcting incorrect first steps signifi-
cantly increases time cost but yields only minor accuracy improvements (e.g., 32.22 →
36.08 with a 7B verifier; Table 2a).

• Higher Accuracy with Larger Verifiers: Replacing incorrect first steps with a larger ver-
ifier significantly improves accuracy for rejected samples. For a 0.5B generator, baseline
accuracy (0.22) improves notably with larger verifiers (Table 4).

5 CONCLUSION

We propose a novel approach to optimizing accuracy and computational efficiency in CoT reasoning
for MWPs by verifying the first reasoning step. Our results on GSM8K demonstrate that different
model sizes and configurations can significantly reduce computation time with minimal accuracy
loss or enhance accuracy with acceptable cost increases. Future work could explore adaptive strate-
gies for dynamic termination and correction, reinforcement learning for optimization, and applica-
tions in domains like code generation and scientific problem-solving. Additionally, automating the
decision of when to replace the answer or continue reasoning could refine the accuracy-cost tradeoff.

2Gemma and other experiments given in the Appendix.
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A APPENDIX

A.1 RELATED WORK

Recently, there has been a surge of work in the field of self-refinement (Mousavi et al., 2023; Mita
et al., 2020) and reasoning (Xia et al., 2024; Zhou et al., 2024) capabilities in Large Language
Models (LLMs). There are three primary approaches to reasoning: Chain-of-Thought (CoT) (Wei
et al., 2022; Lyu et al., 2024; Zhang et al., 2023); subquestion decomposition (Min et al., 2019;
Radhakrishnan et al., 2023; Perez et al., 2020; Shridhar et al., 2022); and Program of Thought (Chen
et al., 2023). The Program of Thought approach involves solving questions using coding, which is
outside the scope of our project.

Building on these reasoning techniques, researchers have begun developing various self-refinement
strategies. Most LLM refinement techniques leverage one of these methods (Madaan et al., 2023;
Welleck et al., 2023; Paul et al., 2024; Huang et al., 2024a; Yoran et al., 2024) or combine multiple
steps into a unified framework (Shridhar et al., 2023a). Meanwhile, Dhuliawala et al. introduces
the idea of using subquestions to verify facts and mitigate hallucination. Similarly, Shridhar et al.
assigns the task of verifying the Chain-of-Thought generated by the main LLM to a smaller language
model, which carries out verification using subquestions.

A key influence for our project was (Jain et al., 2024), which demonstrated that improving the first
step in a reasoning chain significantly boosts final answer accuracy. This work shows that focusing
on the initial step can lead to substantial performance improvements, aligning with our approach of
verifying the first step to optimize both accuracy and computational efficiency.

Our study identifies a unique intersection between self-refinement algorithms and the strategic use
of subanswers. By integrating the principles of QuestCoT (Jain et al., 2024) into the ART frame-
work (Shridhar et al., 2023b), we aim to enhance the efficiency of LLM reasoning by verifying only
the first step, thereby reducing unnecessary computations. This convergence forms the core of our
investigation, allowing us to explore how these elements can be effectively combined to improve the
performance of self-reasoning LLMs.
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(a) Generator 0.5B (b) Generator 1.5B (c) Generator 3B (d) Generator 7B

Figure 3: Trade-off between processing time (in seconds) and accuracy (in percentage) for different
generator-verifier setups in the Replaced FS case (below) for Qwen.

(a) Generator 2B (b) Generator 7B (c) Generator 2B (d) Generator 7B

Figure 4: The first two plots correspond to the Incorrect FS case, while the last two (c, d) represent
the Replaced FS case for the Gemma family. In (a) and (b), the 2B verifier reduces time cost with
only a slight decrease in accuracy compared to the baseline. Notably, in (b), the 7B verifier also
achieves marginally lower time cost with minimal accuracy loss. In (c), the 7B verifier provides
higher accuracy than the baseline but at the expense of a significant increase in time cost.

Table 2: This set of tables corresponds to the Replaced FS case for Qwen.

Model Time (secs), Acc
All Samples (525, 32.22)

0.5B (693, 29.64)
1.5B (788, 33.58)
3B (937, 35.17)
7B (1310, 36.08)

(a) Generator 0.5B

Model Time (secs), Acc
All Samples (853, 54.96)

0.5B (1102, 43.51)
1.5B (1172, 51.55)
3B (1314, 53.98)
7B (1685, 56.10)

(b) Generator 1.5B

Model Time (secs), Acc
All Samples (1444, 64.06)

0.5B (1818, 50.34)
1.5B (1878, 59.36)
3B (2030, 60.65)
7B (2416, 64.44)

(c) Generator 3B

Model Time (secs), Acc
All Samples (2833, 72.55)

0.5B (3867, 53.44)
1.5B (3882, 62.39)
3B (4071, 62.47)
7B (4355, 66.33)

(d) Generator 7B

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a workshop paper at ICLR 2025

Table 3: Sub-tables (a) and (b) represent the Incorrect FS case, while (c) and (d) correspond to
the Replaced FS case. A consistent trend is observed: smaller verifiers reduce time cost, whereas
larger verifiers improve accuracy. In (b), the baseline time cost is 3784 seconds, while the 2B and
7B verifiers achieve 2518 seconds and 3358 seconds, respectively. In (c), the 7B verifier improves
accuracy to 28.05%, compared to the baseline accuracy of 26.99%.

Model Time (secs), Acc
All Samples (1286, 26.99)

2B (1088, 18.27)
7B (1644, 22.06)

(a) Generator 2B

Model Time (secs), Acc
All Samples (3784, 54.96)

2B (2518, 28.88)
7B (3358, 36.46)

(b) Generator 7B

Model Time (secs), Acc
All Samples (1286, 26.99)

2B (1547, 24.18)
7B (2145, 28.05)

(c) Generator 2B

Model Time (secs), Acc
All Samples (3784, 54.96)

2B (3808, 38.66)
7B (4408, 48.36)

(d) Generator 7B

Table 4: This table presents the performance of the Qwen family on rejected samples, where the
generator’s first step was incorrect, and those samples were replaced with the verifier’s first step.
The bold values for the 0.5B and 1.5B generators demonstrate that larger verifiers significantly
improve accuracy. Conversely, the bold values for the 7B generator indicate a decline in accuracy
when paired with smaller verifiers, showing that smaller verifiers are less accurate and negatively
impact the performance of larger generators.

0.5B Verifier 1.5B Verifier 3B Verifier 7B Verifier
0.5B Generator Baseline 0.223 (163/729) 0.179 (113/633) 0.167 (102/610) 0.170 (108/634)

Replaced 0.200 (146/729) 0.232 (147/633) 0.256 (156/610) 0.267 (169/634)
1.5B Generator Baseline 0.464 (363/782) 0.386 (203/526) 0.393 (217/552) 0.397 (220/554)

Replaced 0.271 (212/782) 0.335 (176/526) 0.373 (206/552) 0.430 (238/554)
3B Generator Baseline 0.574 (430/749) 0.520 (293/564) 0.494 (219/443) 0.519 (255/491)

Replaced 0.321 (240/749) 0.404 (228/564) 0.400 (177/443) 0.519 (255/491)
7B Generator Baseline 0.667 (496/744) 0.619 (361/583) 0.623 (317/509) 0.578 (247/427)

Replaced 0.387 (288/744) 0.497 (290/583) 0.507 (258/509) 0.569 (243/427)

Table 5: Here we have the results of the Gemma family for the rejected samples. The impact of
using a larger verifier appears minimal for this family. However, further experiments with additional
model sizes may be needed to confirm this behavior.

2B Verifier 7B Verifier
2B Generator Baseline 0.18 (128/703) 0.179 (133/743)

Replaced 0.122 (86/703) 0.179 (133/743)
7B Generator Baseline 0.47 (332/705) 0.428 (247/577)

Replaced 0.177 (127/705) 0.282 (163/577)
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