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ABSTRACT

Many offline reinforcement learning algorithms are underpinned by f-divergence
regularization, but their sample complexity defined with respect to regularized
objectives still lacks tight analyses, especially in terms of concrete data cover-
age conditions. In this paper, we study the exact concentrability requirements to

achieve the ©(e~!) sample complexity for offline f-divergence-regularized con-
textual bandits. For reverse Kullback-Leibler (KL) divergence, arguably the most

commonly used one, we achieve an O(e~!) sample complexity under single-
policy concentrability for the first time via a novel pessimism-based analysis,
surpassing existing O(e~') bound under all-policy concentrability and O(e~2)
bound under single-policy concentrability. We also propose a near-matching lower
bound, demonstrating that a multiplicative dependency on single-policy concen-
trability is necessary to maximally exploit the curvature property of reverse KL.
Moreover, for f-divergences with strongly convex f, to which reverse KL does

not belong, we show that the sharp sample complexity ©(e~!) is achievable even
without pessimistic estimation or single-policy concentrability. We further cor-
roborate our theoretical insights with numerical experiments and extend our anal-
ysis to contextual dueling bandits. We believe these results take a significant step
towards a comprehensive understanding of objectives with f-divergence regular-
ization.

1 INTRODUCTION

Due to the data-hungry and instable nature of reinforcement learning (RL), divergences that are
straightforward to estimate via Monte Carlo or amenable to constrained optimization stand out from
numerous candidates (Rényil (1961} |Csiszar, |1967; Miiller, |[1997; Bassevillel |2013) as regularizers;
the former family is typically f-divergence (Rényi, [1961) because any of them is an expectation,
for which empirical average is a good proxy (Levine, 2018; |Levine et al.,[2020); and the latter class
subsumes those with nice positive curvatures (e.g., Bregman divergence (Bregman, [1967) induced
by strongly convex functions). In particular, Kullback-Leibler (KL) divergence is the only one at
the intersection of f-divergence and Bregman divergence (Jiao et al., 2014, Theorem 5), indicating
its theoretical advantage among common choices from both computational and statistical aspects.
Also, the KL-regularized RL objective is arguably the most popular one in practice:

J(7) = Ex[r] — n 7 'KL(7||7™), (1.1)

where r is the reward, 7" is a reference policy, KL(7||7"*f) is the reverse KL divergence, and 1 > 0
is the inverse temperature. When 7'*f is uniform, reduces to the entropy-regularized objec-
tive that encourages diverse actions and enhances robustness (Williams), |1992; [Ziebart et al.| 2008;
Levine & Koltun, 2013} |Levine et al.,[2016; | Haarnoja et al., | 2018} |Richemond et al., 2024;|Liu et al.}
2024). KL regularization has also been widely used in the RL fine-tuning of large language models
(Ouyang et al., 2022; Rafailov et al., [2023)), where 7'ef is the base model. Given its widespread
use, there has been a surge of interest in understanding the role of KL regularization in RL by both
empirical studies (Ahmed et al., 2019} |Liu et al., 2019) and theoretical analysis (Geist et al., 2019
Vieillard et al.| |2020; | Kozuno et al.,[2022). There are also lines of research on KL regularization in
online learning (Cai et al.,[2020; |He et al.,|2022; J1 et al.,2023) and convex optimization (Neu et al.,
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Table 1: Comparison of sample complexity bounds for finding e-optimal policy for offline contextual
bandits with KL- and (strongly convex) f-divergence regularization. Constants and polylog factors
are omitted here except the metric entropy log /. “Reverse-KL” stands for KL-regularized contex-
tual bandits and “ f-divergence w/ s.c., f” for the counterpart with an a-strongly convex f. The two
existing upper bounds are adapted from the implicit form in |Xiong et al.| (2024, Theorem 3.1) and
Zhao et al.| (2024} Theorem 3.3 and Theorem 4.4), of which the detailed adaptions are deferred to
Appendix@ The relationship between D2. and C™ is detailed in Section

Regularizer Xiong et al.[(2024) |Zhao et al.|(2024) This work
—92 2 _—1 2 _—1
Reverse K[, Upper de nD —61 log N nD3. 6—1 log N/
Lower - ne~tlog N/ nC™ e Llog N
[-divergence  Upper - - a~tnetlog N
w/s.c. f Lower - - a"lnetlog N/

2017). However, most of these works still study the unregularized reward maximization objective,
against which the sample complexity is at least 9(6*2)

Several recent papers (Xiong et al., |2024; [Xie et al, 2024} |Zhao et al.| [2024; [Foster et al.| [2025;
Aminian et al.| [2025) switched the focus to analyzing the sub-optimality defined via the regularized
objective (T.1), under which an Q(¢~1) sample complexity is possible (Zhao et al., [2024, Theo-
rem 3.6). However, even restricted to the pure i.i.d. setting, existing analyses in this vein either
result in still 0(672) bounds (Xiong et al.} 2024; Xie et al.,|2024) or has stringent (local) all-policy
concentrability dependencies in their upper bounds (Zhao et al.,2024;|Aminian et al., 2025) | Thus,
there are by far no tight bounds in terms of both the dependency of e ~! and data coverage conditions
for KL-regularized offline decision making. In addition, all analyses above set KL as the right target
by default; but reverse KL is the f-divergence with f(z) = x log x, which is merely convex. There-
fore, it is also unknown whether f-divergence regularizers with even nicer (e.g., strongly convex) f,
whose performance against the reward maximization objective are provably promising (Zhan et al.,
2022;|Gabbianelli et al.,|2024; [Huang et al.,|2025b)), can enjoy a better coverage dependency in their
sample complexity when the corresponding regularized objectives serve as the performance metric.
Because data coverage (i.e., concentrability) conditions captures the crucial distributional shift issue
in offline RL (Levine et al.,|2020), the aforementioned perspectives motivate a pivotal open problem:

What is the weakest coverage condition required for offline learning to be near-optimal with
respect to f-divergence-regularized objectives?

We attack this problem by showing near-optimal sample complexity with matching concentrability
dependencies for two representative subclasses of f-divergence. First, for contextual bandits with
KL regularization, we achieve a near-optimal sample complexity guarantee with linear dependence
on single-policy coverage ratio. Our novel lower bound further indicates that this multiplicative
dependency on single-policy concentrability is necessary. Surprisingly, for f-divergence with a-
strongly-convex f, we prove nearly matching sample complexity bounds of ©(a~1ne~1), eliminat-
ing the dependence on coverage for the first time. For the ease of comparison, we adapt existing
counterparts under our notation to the offline setting and summarize them in Table[T]

1.1 CONTRIBUTIONS

* For KL regularization, we propose a pessimism-based algorithm achieving the tight sample com-
plexity under single-policy concentrability. We also obtain a lower bound that linearly scale with
the density-ratio-based single-policy concentrability. Both results strictly improves upon previous
works (Zhao et al., [2024; [Foster et al.l 2025)) in the offline setting, showing that single-policy

concentrability is both sufficient and necessary to achieve the é(e_l) sample complexity.

* Technically speaking, our analysis exploits the strong convexity of KL and pessimism of the re-
ward estimator, to refine a mean-value-type risk upper bound (Lemma 2.14) to its, which in turn
leads to a novel moment-based analysis, effectively bypassing the need for uniform control over

'See Append for detailed reasons.

?See Section for details on coverage conditions.
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the discrepancy between any two functions in the function class. To the best of our knowledge,
this machinery has not been used in the standard analysis of existing offline RL algorithms and
may be of independent interest.

» For f-divergence-regularized objectives with strongly convex f, we design a truly lightweight

algorithm free of pessimism-based gadgets and still obtain the © (¢ 1) sample complexity certified
by a matching lower bound without coverage conditions.

* We verify the statistical rates above in numerical experiments, and demonstrate the versatility of
all algorithmic and constructive proof ideas above by extending them to f-divergence-regularized
contextual dueling bandits (CDBs), achieving similar ©(e~!) sample complexity bounds. More-
over, all algorithms are applicable for reward function classes with small metric entropy.

1.2 KEY RELATED WORK

We review two key lines of theoretical progress that are relevant to our algorithm design and analysis.

Pessimism in offline RL. The principle of pessimism has been underpinning offline RL for both
the tabular (Rashidinejad et al.,[202 1)) and function approximation (Jin et al., 202 1)) settings under the
name of lower confidence bound (LCB). For contextual bandits, it is behind the adaptively optimal
sample complexity analysis (Li et al.| [2022). |Shi et al.| (2022)) proposed a LCB-based model-free
algorithm for tabular RL with near-optimal guarantee. Jin et al.|(2021)); Xiong et al.|(2022)); Di et al.
(2024) utilized LCB in conjunction with the classic least-square value iteration paradigm to derive
O(e~2) sample complexity results for model-free RL with function approximation. The line of work
from |[Rashidinejad et al.| (2021); [Xie et al.| (2021b) to[L1 et al.| (2024)) settled the sample complexity
of tabular model-based RL via pessimistic estimators exploiting the variance information. It is
also possible to leverage the idea of pessimism to design model-based algorithms under general
function approximation that are at least statistically efficient (Xie et al.,|2021a;|Uehara & Sun, 2021}
Wang et al, 2024). The principle of pessimism has also been applied in counterfactual empirical
risk minimization (Swaminathan & Joachims| 2015} |[London & Sandler| 2019) and offline policy
learning (Sakhi et al., 2023 2024), which are orthogonal to our contributions.

However, in terms of risk decomposition, to the best of our knowledge, none of these pessimism-
based analyses really goes beyond the performance difference lemma (Foster & Rakhlin) [2023|
Lemma 13) or simulation lemma (Foster & Rakhlin, 2023, Lemma 23); both of which are not
able to capture the strong concavity of KL-regularized objectives even in the bandit setting. The
algorithmic idea of using pessimistic least-square estimators under general function approximation
in|Jin et al.| (2021); D1 et al.| (2024)) is similar to ours, but their sub-optimality gap is bounded by the
sum of bonuses, which cannot directly lead to the desired sample complexity of our objective.

Offline CDBs. CDBs (Dudik et all 2015)) is the contextual extension of dueling bandits in the
classic literature of online learning from pairwise comparisons (Yue et al., 2012} Zoghi et al.|[2014).
Since the empirical breakthrough of preference-based RL fine-tuning of LLMs (Ouyang et al.,|2022)),
the theory of offline CDBs has received more attention under linear function approximation (Zhu
et al.l 2023} |Xiong et al.,|2024) and general function approximation (Zhan et al.| 2022} |Zhao et al.,
2024} [Song et al., 2024; |Huang et al., |2025b). Preference models without stochastic transitivity
(Munos et al., 2023} |Ye et al.l [2024; [Wu et al, 2024} Zhang et al., |2024) are beyond the scope of
this work, namely, our preference labels are assumed to follow the Bradley-Terry Model (Bradley &
Terry, |1952).

Notation. The sets S and A are assumed to be countable throughout the paper. For nonnegative
sequences {z,} and {y,}, we write x,, = O(y,) if limsup,, , o Tn/yn < 00, Y = Uz, if
Tn = O(yn), and y, = O(zy,) if x, = O(yy) and =, = Q(y,,). We further employ O(-), Q(+),
and O to hide polylog factors. For countable X and ), we denote the family of probability kernels
from X to ) by A(Y|X). For g : X — R, its infinity norm is denoted by ||g|| = sup,cx |g(2)|.
For a pair of probability measures P < () on the same space and function f : R, — R, their
f-divergence is D¢ (P||Q) = [ f(dP/dQ)dQ. Specifically, when f(z) = zlogz, f-divergence
becomes KL divergence denoted as KL (P[|Q) := [log(dP/dQ)dP, and when f(z) = |z —1]|/2,
it becomes the total variation (TV) distance, which is denoted as TV (P||Q) := 0.5 [ |dP — dQ).
We use supp(P) to denote the support set of P.
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2 KL-REGULARIZED CONTEXTUAL BANDITS

In this section, we introduce a pessimism-based algorithm, PCB-KL, for offline KL-regularized
contextual bandits. We then showcase our novel analysis techniques for PCB-KL, which couples
the algorithmic pessimism with the curvature property of KL-regularized objectives.

2.1 PROBLEM SETUP

We consider contextual bandit, which is denoted by a tuple (S, A,r, 7). Specifically, S is the
context space, A is the action space and r : S x A — [0, 1] is the reward function. In the offline
setting, the agent only has access to an i.i.d. dataset D = {(s;,a;,7;)}I~,. Here s,s are states
sampled from p € A(S), a; € A is the action taken from a behavior policy, and r; is the observed
reward given by r; = r(s;,a;) + &;, where ¢; is 1-sub-Gaussian (Lattimore & Szepesvari, 2020,
Definition 5.2). In this work, we consider the KL-regularized objective

m(als)

7 (als) ) ey

(1) = E(s,a)ympxr |7(5,0) — n~!log

where 7" is a known reference policy and the “inverse temperature” 1) controls the intensity of reg-
ularization. For simplicity, we assume that 7™ is also the behavior policy that generates the dataset
D, which is similar to the type of “behavior regularization” studied in|Zhan et al.|(2022)). The unique
optimal policy 7)) = argmax, ¢ a(4|s) /o (7) is given by (See, e.g.,Zhang|2023, Proposition 7.16ﬂ

7 (|s) oc (-] s) exp (n-r(s,-),Vs €S. (2.2)

A policy 7 is said to be e-optimal if SubOptgky, (7) = J(7*) — J(7) < € and the goal of the
agent is to find one such policy using D. Note that SubOpty;,(+) is defined through and thus
depends on 7). To ensure that e-optimality is achievable, we assume that r lies in a known function
class G C (S x A — [0,1]), from which the agent obtains an estimator 7. More specifically, we
work with general function approximation under realizability, which is as follows.

Assumption 2.1. For this known function class G C (S x A — [0,1]), 3¢g* € G with g* =r.

We also employ the standard notion of covering number (Wainwright, 2019, Definition 5.1) as the
complexity measure of the reward function class G.

Definition 2.2 (e-net and covering number). Given a function class G C (S x A — R), a finite
set G(e) C G is an e-net of G w.rt. || - ||co, if for any g € G, there exists ¢’ € G(e) such that
llg — ¢'lloo < €. The e-covering number is the smallest cardinality Ng () of such G(e).

Assumption 2.3. For any €. > 0, the e.-covering number N (e.) of G is poly(e_ ).

Assumption 2.3| allowing log N (¢€) to be roughly negligible is arguably mild. For example, when
G is the class of linear functions of dimension d and radius R, the covering number is Ng(e) =
o((1+ Re‘l)d) (Jin et al., [2020, Lemma D.6), which satisfies Assumption

Concentrability. The data quality of D collected by 7'f is typically characterized by concen-
trability in offline RL (Farahmand et al. 2010; |Chen & Jiang, [2019; Jiang & Xiel 2024), which
quantifies the ability of the behavioral policy to generate diverse actions. We first define the density-
ratio-based concentrability as follows.

Definition 2.4  (Density-ratio-based  concentrability). For policy class II, refer-
ence policy 7', the density-ratio-based all-policy concentrability C™ is CT =
SUD e ses.aea T(als)/7 (als), whose single-policy counterpart under the optimal policy

T is C7 = sup,es aca 7 (als) /7 (als).

In the definition above, small all-policy concentrability intuitively corresponds to supp(7f) cover-
ing all possible inputs. On the other hand, small single-policy concentrability means that supp (')
only subsumes supp(7*). In this paper, in addition to density-ratio-based concentrability, we also
adopt the following D?-based concentrabilites to better capturing the nature of function class G. In
detail, we start with the D2—divergence as follows.

3We suppress Jy into J and 7y, into 7* when they are clear in context in the following presentation.
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Definition 2.5. Given a function class G C (S x A — R) and a fixed policy 7, define the D?-
divergence DZ((s,a); ) as

sup (g(s,a) - h(s,a))2
g,heg E(s’,a’)~pxw[(9(8/7 a,) - h(slv al))Q] .

The “eluder dimension”-type Definition is directly inspired by |Di et al.| (2024)); |[Zhao et al.
(2024), the intuition behind which is that given (s,a) € S x A, a small D?-divergence indicates
that for two functions g and h, if they are close under the behavior policy 7, then they will also
be close on such pair (s,a). Therefore, the D?-divergence quantifies how well the estimation on
dataset collected by the behavior policy 7 can be generalized to a specific state-action pair.

Remark 2.6. For the tabular setting, a direct computation yields D?(s,a) = (p(s)7"(als)) ™1,
which can be estimated by the visitation frequency empirically. Under linear function approxima-
tion, it is well known that D?(s,a) = ||¢(s, a)||%_, under mild conditions of the parameter space,
where 3 = E,, (s, a) (s, a) T is the covariance matrix, which can be estimated by empirical
covariance matrices in practice, potentially with ridge regularization. For more general function
classes like neural networks, the D? can also be efficiently approximated by heuristics as discussed
in|Xiong et al.|(2024); |Gupta et al.| (2024); Xu et al.| (2025)).

We are now ready to define the two notions of concentrability conditions.

Assumption 2.7 (All-policy concentrability). Given a reference policy 7", there exists D < oo
such that D? = sup(, ,ycsx.4 Dg((s,a); 7).

Assumption [2.7]indicates that the errors on any state-action pairs can be bounded by the error on the
samples from p x 7 up to a factor D, whose relaxed counterpart under the same 7' is as follows.

ref )

Assumption 2.8 (Single-policy concentrability). D2. := E(s,a)~pxne Dé ((s,a);m™") < 0.

Assumption indicates that the errors on the distributions of state-action pairs p X 7* can be
bounded by the error on the samples from p x 7" up to some constant. For both types, the single-
policy concentrability assumption is strictly weaker than the all-policy concentrability assumption.
However, in general, the two quantities characterizing single-policy concentrability C™ and D2.
cannot be bounded by each other up to constant factors. In particular, we have D2. < |S||A|C™,
indicating that C™ subsumes D2. when |S| and |.A| can be seen as constants. We refer the reader
to Appendix [B|for a further discussion on the relation between C™ and D2..

2.2 ALGORITHM

In this subsection, we present an offline bandit algorithm, KL-PCB, for KL-regularized contextual
bandits in Algorithm KL-PCB first leverages least-square estimator to find a function g € G
that minimizes its risk on the offline dataset. In[Zhao et al|(2024)), such g is directly applied to
construct the estimated policy. In contrast, we construct a pessimistic estimator of g* following the
well-known pessimism principle in offline RL (Jin et al.| 2021). Specifically, we define the bonus

term I, through the confidence radius 8 = \/128 log (2Ng(€)/6)/3n + 18¢ as

T,.(s,a) = BDg((s,a), "), ¥(s,a) € S x A. (2.3)
We then obtain our pessimistic estimation g by setting g = g — I',,, which is less than g* with high
probability. Formally, let the event £(d) given § > 0 defined as

E(6) = {Sup(s,a)ESX.A [|§ -9 - Fn} (s,a) < O}, 2.4

on which the least square estimation g obtained in Line[T]of Algorithm [I]does not deviate too much
from the true function ¢* and therefore g is a pessimistic estimation of g*. We have the following
lemma indicating that this event holds with high probability.

Lemma 2.9. For all 6 > 0, £(6) holds with probability at least 1 — 4.

After obtaining the pessimistic estimation, KL.-PCB output the policy 7, which maximizes the esti-
mated objective

m(als)
7.‘-ref(a/‘s)

<)

(7T) = E(s,a)NpXﬂ' /g\(sv a) - 77_1 10g

)
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Algorithm 1 Offline KL-Regularized Pessimistic Contextual Bandits (KL-PCB)

Require: regularization 7, reference policy f, offline dataset D, function class G
— L . 2
1: Least square estimation of reward function g € argmin g N (s1,a1,74)ED (g(sq;, a;) — ri)

2: Letg < g —I',,, where I',, is the bonus term in (2.3))
Ensure: 7(als) o< 7 (als) exp (- §(s, a))

the maximizer of which is the counterpart of (2.2), i.e.,

7i(als) o< 7 (als) exp (- G(s, a)).

2.3 THEORETICAL RESULTS

The sample complexity for KL-regularized contextual bandits is settled in this subsection. We first
give the upper bound of KL-PCB.
Theorem 2.10. Under Assumption for sufficiently small ¢ € (0,1), if we set ', as in (2.3)),

then n = 6(77D72r*e_1 log Ng(e)) suffices to guarantee the output policy 7 of Algorithm |1|to be
e-optimal with probability at least 1 — 6.

Previously, Zhao et al.| (2024)) achieved an 9] (e~1) sample complexity under Assumption As

a comparison, KL.-PCB achieves the same O(e~!) sample complexity but only requiring Assump-
tion[2.8] which is weaker than Assumption[2.7] We also provide the sample complexity lower bound
of KL-regularized contextual bandits in the following theorem, which, together with Theorem|[2.10}
demonstrates that single-policy concentrability is both necessary and sufficient for near-optimal of-
fline learning evaluated by KL-regularized objectives.

Theorem 2.11. For VS > 1, n > 4log2, C* € (2,exp(n/4)], and any algorithm
Alg, there is a KL-regularized contextual bandit with C™ < C* such that Alg requires
Q(min{ne~t,e"2}C* log Ng(€)) samples to find an e-optimal policy for sufficiently small e.

Previously,|[Zhao et al.|(2024) provided a sample complexity lower bound of Q(n log Ng(€)/€) under

KL regularization. [Foster et al.[(2025) also provided a lower bound of Q(C™") for KL-regularized
objective to show the necessity of coverage. Compared to their results, our result shows that the

multiplicative dependency on C™ is necessary for the first time.

Remark 2.12. Theorem [2.11] shows that when e is sufficiently small, any algorithm for offline
KL-regularized contextual bandits requires at least Q(nC™ )e~!log Ng(e)) samples to output an
e-optimal policy. The presence of exp(poly(#)) in the range of C* is inevitable, since we always
have C™" < exp(n) in reverse KL regularized bandits with bounded rewards.

Remark 2.13. As discussed before, we might have some easy instances with D?T* < cm,
where KL-PCB outperforms the lower bound. This does not volates Theorem [2.11] since Theo-

rem [2.11] only guarantees that there exist some hard instances that all algorithms require at least
Q(min{ne~1, e72}C* log N (€)) samples.

2.4 PROOF OVERVIEW OF THEOREMm

In this section, we summarize the novel techniques in the proof of Theorem which is de-
ferred to Appendix At a high level, if we consider the regularized objective (I.I)) multi-arm
bandits, then P — KL (P||Q) is 1-strongly convex w.r.t. TV (-||-) (Polyanskiy & Wu, 2025, Exer-
cise 1.37), and thus J(7) is strongly concave. Therefore, J(7*) — J(7) is possible to be of the order

[TV (7*||7)]? ~ O(n™1'), pretending that * is the unconstrained maximizer. In detail, we follow
the regret decomposition in|Zhao et al.[(2024)), which is encompassed by the following lemma.

Lemma 2.14. Let g : S x A — R be any reward function, then there exist some vy € [0, 1] such
that the sub-optimality gap of 7,(:|s) o< 7 (:|s) exp (ng(s, -)) can be bounded as

J(W*) - J(ﬂ—g) < 771}3(5,11)~p><7'r,Y [(g* - 9)2(87 CL)],

where g, :=vg + (1 —7)g* and 7, (-|s) oc 7 (+|s) exp (ng,(s,-)).
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In[Zhao et al.|(2024), because the g in Lemma[2.14]is substituted with only the least-square estimator
g with no extra structures, the reliance on the “mid-point” policy 7~ can only be controlled all-policy
concentrability. However, our g is the pessimistic estimator g of g* in Algorithm [} and thus the

presence of 7, can be eliminated for free: let G(y) = E,xxr, {(ﬁ — g*)z(s, a)| and A(s,a) =
J

(9 —97)(s,a) <0, then a direct computation (detailed in the proof of Lemma|D.3) yields

@'(7) = 1E, []EM [23(s,a)] — Ex [A2(5,0)]Ex. [A(s, a)]] <o0. 2.5)

This gives J(7*) — J(7) < nEoxn= (G — g%)%(s,a)], which can be bounded with single-policy
concentrability while still achieves the sharp dependency e~! on e. Here, (2.3) holds due to a
moment-based machinery in Lemma 2.1

Lemma 2.15. If P(X < 0) = 1 and E|X|? < o0, then E[X3] — E[X2E[X] < 0.

The intuition behind Lemmais natural: X and X2 cannot be positively correlated. Moreover, to
the best of our knowledge, we are the first to unveil this moment-based structure in our non-standard
pessimism-based analysis, from which the sharp upper bound follows. While pessimism is widely
adopted to derive near-optimal statistical rates under single-policy concentrability in offline RL with
reward maximization as the goal (See, e.g., Jin et al| (2021); |Xiong et al.| (2022))), the standard
pessimism-based pipeline is not sharp enough for bounding the SubOptgky,(7) defined through
regularized objectives, the reason of which is detailed in the last paragraph of Appendix [A.T]

3 f-DIVERGENCE-REGULARIZED CONTEXTUAL BANDITS

As discussed in Section[2] the fast rate implied by Theorems[2.10]and 2.1T]is primarily achieved due
to the strong convexity of 7 +— KL (| 7"). However, KL is just an instance of f-divergence with
f(x) = zlogx, which is only locally strongly convex but not strongly convex. Motivated by this
observation, we further examine f-divergence regularization with strongly convex f, which may
introduce a more favorable curvature in the performance metric of offline learning in principle.

3.1 PROBLEM SETUP

We study a contextual bandit setting similar to that in Section [2.1] In this section, we consider the
following f-divergence regularized objective

In.0; (1) = B aympxn (5, @)] = 07 "B [Dy (w(:[5) |7 ([5)) ], 3.1

where 7 is the regularization intensity and D (p||q) = Eqnyq [ f(p(a)/ q(a))] is the f-divergence.
Let the optimal policy be 7r;’;7 D, = ArgMaAX e a(4)S) Jy,p, () and we re-define the learning objec-
tive as searching for a policy 7 with SubOpt s4;, () = J(7*) — J(7) < eﬂ We consider those
functions f : (0,400) — R with a nice positive curvature condition in Assumption
Assumption 3.1. f is a-strongly convex, twice continuously differentiable, and f(1) = 0.

Many elementary functions like quadratic polynomials naturally satisfy Assumption [3.1] For in-
stance, the 1-strongly convex f(z) = (z — 1)?/2 induces D;(P||Q) = x*(P||Q), which is the x*-
divergence recently considered in RL literature (see e.g., |Zhan et al.[(2022); |Huang et al.| (2025b);
Amortila et al| (2024))). This regularization exhibits a promising theoretical potential for relaxing
the data coverage requirement for efficient offline policy learning (Huang et al.,|2025b) and to be ef-
fective in preventing reward hacking (Laidlaw et al.| 2025) against unregularized objectives. These
favorable benefits are primary due to the observation that strongly convex f’s impose a stronger
penalization on actions out of the coverage of 7.

3.2 ALGORITHM AND MAIN RESULTS

In this subsection, we present an offline learning algorithm for f-divergence regularized bandit,
f-CB, in Algorithm [2| Algorithm [2|first leverages least-square estimator to find a function g € G
that minimizes its risk on the offline dataset. The algorithm then uses the least squares estimation g
to construct the output policy 7. Compared to Algorithm f-CB does not require any procedure to
construct pessimistic reward estimation, whose sample complexity upper bound is given as follows.

4 . . * . * . .
We again suppress Jy,p (-) into J(-) and 7, - into 7" when there is no confusion.
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Algorithm 2 Offline f-divergence Regularized Contextual Bandits (f-CB)

Require: regularization 7, reference policy 7'f, function class G, offline dataset D
1: Least square estimation g € argmin g Z(Si’a”i)ep (g(si, a;) — 7“1‘)2
2: Compute the optimal policy under the least-square reward estimator g for s € S as
(|s) « argmax (n(-|s),g(s,-)) +n""Dy(w(-|s)[7"(-|s))
7(-|s)EA(A)

Ensure: 7

Theorem 3.2. Under Assumption for sufficiently small ¢ € (0, 1), with probability at least
1—46,n = O(atne tlog Ng(e)) is sufficient to guarantee the output policy 7 of f-CB to be
e-optimal.

Remark 3.3. Compared to the D2, dependency in Theorem [2.10} Theorem [3.2) shows that the
sample complexity of Algorithm 2] gets rid of the dependency on any data coverage conditions when
f is strongly convex. Intuitively, this is because the f-divergence regularization in this case is much
stronger, so that both 7* and 7 are close enough to 7"f.

The following hardness result justify the near-optimality of Theorem for f-divergence-
regularized contextual bandits.

Theorem 3.4. Foranye € (0,1),a > 0,7 > 0,5 > 32/3-log 2, sufficiently small ¢, and algorithm
Alg, there is an a-strongly-convex function f and an f-divergence-regularized contextual bandit
instance such that Alg requires at least €2 (oflne’ Log Ng (e)) samples to return an e-optimal policy.

3.3 PROOF OVERVIEW OF THEOREM

We provide an overview of key analysis techniques for proving Theorem Unlike KL-
regularization, the 7* under f-divergence might not have a closed form. This means that the proof
of Lemma which relies on the closed form of 7*, cannot be directly adopted. Therefore,
we address this from a dual-Bregman perspective. For the simplicity of presentation, we consider
multi-armed bandits here and omit the subscript for context s.

We consider the function H(7r) = =D (7| 7"f), which is the regularizer in the objective. Then
its convex conjugate is given by H*(r) = sup,caa{(m, ) — H(m)}, which is exactly the expected
reward obtained by the optimal policy given reward function r. One observation is that when f is
strongly convex, the induced f-divergence, and therefore the function H are also strongly convex.
Therefore, let 7, = argmax,_{(m,r) — Hs(m)} given some reward function r, the strong convexity
of H(m) gives that VH*(r) = m,. This leads to the following regret decomposition, which is one
of our key observations:
T@*) = JR) = Eamr-lg*(@)] ~ Eqnalg® (@] = 07 [Dy(* 1) = Dy (@1}
=H"(¢") - H"(9) - (7,9" — 9)
=H"(g") — H"(9) —(VH"(9),9" — 9),
which is the Bregman divergence of the dual function H* and therefore can be bounded by (¢* —

9)"V2H*(g)(g* — g) for some g. By Proposition 3.2 in Penot| (1994), when H is strongly convex,
we can bound V2 H*(g) as follows

VH*(§) 2 (V2 H(m)) " = o 'ndiag (v (@), -, 7 (ay4))),

which enables us to bound (g*—g) " V2H*(9)(g*—g) by o~ 'nE i [(g* —§)?]. Since E vt [(g* —7)?]
is not related to 7*, the upper bound is independent of any notion of concentrability.

4 EXPERIMENTS

4.1 TABULAR SETTING

We empirically check in this section the correctness of our matching bounds for KL and f-
divergence on the simplest testbed: two-armed bandits, i.e., A = {0,1}. We use one hard in-
stance constructed in the proof of Theorem (Appendix for the simulation under KL and
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Figure 1: The empirical relation between log, n and log, SubOpt. The fitted rate means the slope
of log, n ~ log, SubOpt estimated via linear regression. Here n is the sample size. Every point is
the average over 100 independent trials.

one hard instance constructed in the proof of Theorem 3.4] (Appendix [E.2)) for the simulation under
f-divergence with f(z) = a(x — 1)2/2.

Recall that the dependency on ¢ in all sample complexity bounds above is ©(¢~!), and thus both
SubOptr, and SubOpt ¢4;, should be roughly proportional to n~" as a function of the sample
size m, which can be verified from the linear regression between log, n and log, SubOpt; i.e.,
the estimated slope should be approximately —1. Therefore, the two fitted rates in Figure @
indicates that KL-PCB indeed achieves the near-optimal statistical rate n~! under different 7™ ’s
and the counterparts in the LHS of Figure [I(b)| indicates the near-optimality of f-CB empirically.
The contrast between Figure [I(a) and the LHS of Figure [I(b)| also corroborates that the sample
complexity against the KL-regularized objective positively depend on the concentrability, while that
against the y2-divergence-regularized objective does not vary with the coverage condition of 7"¢f.
Moreover, on top of the hard instance for f-divergence, we further set & = 2'%/n to numerically
examine the scaling of SubOpt ;4;, w.r.t. the strong convexity modulus . As shown on the RHS of

Figure [1(b)l SubOpt ;4;, remains stable as n goes up given nov = 2'°; therefore, Figure also
empirically verified that SubOpt ;4;, is inversely proportional to c.

4.2 SIMULATION ON LINEAR BANDITS

—+— C=2.3,D7"2=20
C=3.3,D"2=36
—+— C=3.0, D"2=22

—— C=7.7,0~2=20
C=47,D"2=103 C

—— (C=41,D"2=38

Sub-optimal Gap
Sub-optimal Gap

2 2 2 2l 2 BN > 2 Pl 20 2 3
Sample Size Sample Size

(a) Empirical rate for KL. (b) Empirical rate for X2

Figure 2: The empirical relation between log, n and log, SubOpt for linear bandits. In the legend,
we denote C™ (resp. D2.) by C (resp. D" 2).

We simulate a linear bandit as follows. The constructions of the feature map ¢, ground-truth pa-
rameter 6* and the induced reward are detailed in Appendix[C.1} The behavior policy is constructed
as ¢ = BUNif(A) + (1 — B)Unif(A;), where A, C A be the subset such that A; consists
of the k arms with the lowest expected reward. We consider three different behavior policies,
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(B,k) € {(1,-),(0.1,4),(0.05,20)}, which induces various C™ and D2. and thus enables show-
ing the influence of coverage under different regularization. The results are compiled in Figure [2]
Specifically, for results under KL-regularization depicted in Figure 2(a)l we see that as the coverage
coefficients C™" and D2, vary, there is a consistent sub-optimality gap margin between these in-
stances. On the other hand, Figure 2(b)shows that the sub-optimality gaps under different instances
(with distinct coverage coefficient) are very close for sufficiently large sample sizes. These results
corroborate our theoretical finding that the sample complexity w.r.t. KL-regularized objectives is
concentrability-dependent but that w.r.t f-divergence ones is not (for strongly convex f).

4.3 REAL-WORLD EXPERIMENTS

—— Uniform Policy —— Uniform Policy
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N 2 \
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(a) Empirical rate for KL, (b) Empirical rate for X2

Figure 3: The empirical relation between log, n and log, SubOpt on MNIST dataset.

We further verify our theory on a vision dataset, MNIST (LeCun,|1998)). The feature map ¢(-, -) con-
struction is detailed in Appendix We consider two reference polices, a uniform policy Unif(.A)
and a spiky policy 0.5Unif (A) + 0.5Dirac({0}) to obtain instances with different concentrability
coefficients. Figure@exhibits the SubOpt curves, which show that under KL-regularization, when
sample size is not large enough, there exists a considerable gap between instances with different
behavior policy, but the gap is vanishing as the sample size increases. On the other hand, as for x2-
divergence regularization, such a gap vanishes quickly when the sample size becomes moderately
large and the sub-optimal gap remains similar for larger sample sizes. These results are consistent
with the simulation in Section ] and our theoretical findings.

5 CONCLUSION AND FUTURE WORK

In this work, we take the first step towards fully understanding the statistical efficiency with respect
to f-divergence-regularized objectives of offline policy learning by sharp analyses for two empir-
ically relevant subclasses. (1) We are the first to show that single-policy concentrability is nearly
the right coverage condition for reverse KL to achieve the fast ©(¢~!) sample complexity. The
novel techniques in algorithm analysis leverages the curvature of KL-regularized objectives and in-
tegrates pessimism with a newly identified moment-based observation, enabling a neat refinement
of a mean-value-type argument to the extreme; which are decoupled from tricky algorithmic tweaks,
and thus might be of independent interest. (2) If strong convexity is further imposed on f, our fast
O©(e~1) sample complexity is provably free of any coverage dependency. Unlike those for KL, the
upper bound arguments for strongly convex f do not rely on specific closed-form solutions of the
regularized objective maximizer.

All techniques in this work can be generalized beyond vanilla absolute reward feedback, as certified
by CDBs, which is detailed in Appendix [F| under a slightly different notion of D? tailored for
pairwise comparison feedback. However, for reverse-KL regularization, the D2. in the upper bound
and the C™ in the lower bound still does not perfectly match. Also, for general f-divergence
other than reverse-KL, our analyses require f to be twice-continuously differentiable and strongly
convex. Fully closing the gap under reverse-KL regularization and extending the analysis to general
f-divergences are interesting directions for future work.

10
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We use LLMs as a tool to refine our writing and correct grammatical errors.
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A ADDITIONAL REVIEW OF EXISTING RESULTS

Additional notations. Besides the notation introduced in Section [I} we will use the following
notations in Appendix. We denote [N] := {1,--- , N} for any positive integer N. Boldfaced lower
case (resp. upper case) letters are reserved for vectors (resp. matrices). Given a positive definite
> ¢ R¥™? and x € RY we denote the vector’s Euclidean norm by ||x||» and define ||x||x =

VxTXx. We use Bern(p) to denote Bernoulli distribution with expectation p and Unif (X) for the
uniform distribution on finite set X'. For z € RMI, we denote [|z[|; = 3, 4 [a|- We also denote
Xy, = Q(yn) by T, 2 yn in Appendix. We use dy for Hamming distance.

A.1 PREVIOUS ATTEMPTS ON UNDERSTANDING KL-REGULARIZED RL

There has been a surge of interest in understanding the principle behind KL-regularized RL. Ahmed
et al.[(2019); |Liu et al.[(2019) studied by ablation the effect of entropy regularization on the stability
of policy improvement in policy optimization, the regret of which has been rigorously settled under
the classic online mirror descent framework (Cai et al., [2020; [He et al., [2022; |J1 et al., 2023). [Neu
et al.| (2017) unified popular KL-regularized policy optimization algorithms under a convex opti-
mization framework, but the interplay with the data was left untouched. A series of work (Geist
et al.l 2019; |Vieillard et al., [2020; Kozuno et al., [2022) then analyzed the sample complexity of
algorithms using KL/entropy-type proximal terms with respect to the previous iteration or/and en-
tropy regularizer with improved dependence on the effective horizon in discounted Markov decision
processes. However, the performance metric in these studies is still the unregularized reward max-
imization objective, under which the sample complexity for finding an e-optimal policy is at least
equal to the statistical limit Q(e~2).

Convergence under regularized objectives. Several recent studies (Xie et al.,2024; Xiong et al.,
2024;Zhao et al.,|2024; 2025; [Foster et al.,2025)) switched the focus to analyzing the sub-optimality
guarantee with respect to the regularized objective (L.I). In particular, Xie et al. (2024) stud-
ied token-level Markov decision processes (MDPs) and proposed a KL-regularized RL algorithm
named XPO, which achieves O(e~2) sample complexity under their notion of all-policy concentra-
bility. | Xiong et al.|(2024) proposed an Offline GSHF algorithm via the principle of pessimism in the
face of uncertainty, and proved O(e~2) sample complexity under single-policy concentrability (See
Section[2.T|for detailed definitions of concentrability). On the other hand, the sharp analysis in[Zhao
et al.| (2024) yields the optimal sample complexity O(e~1), but requires all-policy concentrability
(Zhao et al.,[2024, Definition 2.6), i.e., the behavior policy ref g required to cover the entire func-
tion class for all possible policies. [Zhao et al.| (2025) considered the online episodic MDP setting,
which inherently does not need any notion of data coverage and thus their results are not directly
adaptable to our offline setting. [Foster et al.|(2025)) considered an interesting hybrid setting in which
the n state-action pairs are still from the offline dataset but 2(n) online reward queries and policy
switches are allowed; in contrast, in our setting, all reward signals are obtained in a purely offline
manner.

Previous analyses and results in detail. Here, we briefly discuss the direct adaptation of previous
sample complexity analysis and results (with respect to KL-regularized objectives) to our setting and
demonstrate the reason why theirs cannot imply an O(e~!) sample complexity without all-policy
concentrability. In previous analysis of pessimism for unregularized objectives (Jin et al.| 2021}
Xiong et al., |2022), the sub-optimality gap is decomposed via the performance difference lemma as
follows

J(7*) = J(7) = Eann-[9"(a)] = Eanzlg™(a)] =0 'KL(* |70 + 5~ KL(7[ 7™
< Eanr-[9%(0)] = Eanz[g(a)] — 17 KL(x*[|7") + 5~ KL(7||7"")
< Eanr-[9°(0)] = Eann-[g(a)] — 77 KL(x"[|7™") + 7 'KL(7* | 7™)
= Eanr-[g"(a) — g(a)],

where the first inequality holds due to pessimism and last inequality holds due to 7 is optimal for
g. Notably, the KL-regularization term is canceled out in the analysis, leading to a loose sample

complexity 6(6_2) since the curvature of KL-divergence is not exploited. Specifically, under linear
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function approximation, this performance gap, obtained by Xiong et al.| (2024) becomes
J(1) = J(71) < [[Epxn- (s, 0)] — v 5_1 = RHS,

where v is the reference vector, ¢(s,a) € R? is the feature map, and Yoy =
S @(siya;)@(si,a;) " is the sample covariance matrix. However, we can show that RHS can
be bounded from below by

B st [665,@)) = 2]y i (Zia) = [Esarpicn 1905, @) = ] Aax (Zor) /2
= ||E(s,a)~pwr*[¢(5aa)] - V||tr(20ff)71/2

n —-1/2
~ e 805, = v (2 (s 0
=1

=Q(n 3,

where Apin and Apax is the minimum and maximum eigenvalue of a matrix, the first inequality
holds due to the fact that x " £x > ||x||3\min (X) and the second inequality holds due to Ayax (2) <

tr(X%). (2024) proposed a two-stage learning algorithm and obtained an O(e~*) sample

complexity for online KL-regularized bandits. The algorithm can be adopted to offline learning by
removing the second stageﬂ and treat the samples from first stage as the offline dataset. An analogous

analysis gives a sample complexity of 5(D26*1), where D? is the all-policy concentrability.

B ADDITIONAL DISCUSSION OF RELATION BETWEEN COVERAGE
MEASURES

In this section, we provide more illustrations on the relation between two coverage measures, Dfr*
and C™ . In particular, we provide two cases under linear function approximation, on one of which
D2. = ©(dC™") and on the other we have D2. < C™ , where d is the dimension of the function
class. We summarized them as two propositions.

Proposition B.1. There exist a KL-regularized linear bandit instance, such that D2. = ©(dC™").

Proof. We construct the instance as follows. Let d = 24 + 1 be some odd number and consider an
2A + 1-armed bandit, such that the feature vector of the i-th arm, ¢(a;) = e; € R<, which has 1 on
its i-th entry and 0 on all other entries. The reference policy 7'*f(a;) = (2AC) " for i € [2A] and
7 (ag4+1) = (C — 1)/C, where 2C — 1 = €". The ground truth reward function 8* = >"._ , e;

and the function class is given by all |0/, < 1. By construction, we know that 7*(a;) > 7*f(a;)
if and only if ¢ € [A] and its closed form is given by
eyl 1
T T Ay 20 -1 24
which gives C™ = C. Now we compute the D2. of this instance. For all i € [A], we know that

0,e;)’
D2a)) = sup —0C_ _o0a—e(ca),
10]l0 <2 Eﬂ“ef <05 ej>
where the second equation holds with 8 = e;. Taking expectation over 7*, we have
D2 > Y D*(a;) = ©(C™ d),
1€[A]

which concludes the proof. O

The following proposition provides another instance on which D2. < C™" .
Proposition B.2. For any C' > 2, there exists a KL-regularized linear bandit instance, such that
C™ =(C/2and D2. = O(1).

3This can be done by setting the n in their paper to 0.
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Proof. We consider the function class of 6 € R? and 16]| < /2. The instance consists of three arms,
where ¢(aq) = (1,0), ¢(as ) andgi) = (1, 1). The ground truth parameter 8* = (1,1).
The reference policy is g1ven by 7r'e (a1) = ﬂ'ref(ag) =1/2—1/2C and 7" (a;) = 1/C, where
C — 1 = e". A direct computation yields that

el . el C
(ag)= — " = T =0 -
™ (a3) e+ C—1’ en+C—1 2
On the other hand, we know that for i = 1,2, we have D?(a;) < 7 (a;)~" < 4. As for as,

since we have (8, ¢(a3))® = (0, ¢(a1) + ¢(az))® < 2(0,d(ar))* + 2(0, d(az)), which gives
that D?(a3) < 2D?(ay) + 2D?(az) < 16. Therefore, taking expectation over 7*, we know that
D?2. < 12 which is a constant. O

C EXPERIMENTAL DETAILS

C.1 LINEAR BANDITS

The linear bandit instance used for Figure 2] has d = 20 and |.A| = 100. For each arm a € A,
we randomly generate its feature vector ¢p(a) € R? such that [|¢(a)|| = 1. We then randomly
sample the model parameter 8* € R? such that [|*| = 1 and the expected reward is obtained via

r(a) = (6%, ¢(a)).
C.2 REAL-WOLD EXPERIMENTS

MNIST consists of 60000 figures, each of which is of 28 x 28 pixels and consists of a handwritten
digit in {0,---,9}. Here, we consider each image as a context and A = {0,---,9} for each
context. To obtain the feature ¢(s, a), we first use the hidden representation of a classifier to embed
each image as a vector in R'%. We then follow the approach in Zhou et al.| (2020) to obtain the
feature of each context-action pair by having ¢(s,a) = x ® e,41 € R, where x is the output of
image encoder and ® stands for tensor product.

D MISSING PROOFS FROM SECTION

D.l1 PROOF OF LEMMA

We first provide the following lemmas of concentration.

Lemma D.1 (Zhao et al.[2024, Lemma C.1). For any policy 7 and state-action pairs {(s;, a;)}",
generated i.i.d. from p x 7, and €, < 1, with probability at least 1 — &, for any g; and g» we have

2, 2 2 32
Epxr[(91(s,a) — g2(s,a))7] < - > (91(si,0i) = ga(sirai))” + n log(2Ng(ec)/0) + 10e.,
i=1
where Ng(e.) is the e.-covering number of G.

Lemma D.2 (Zhao et al,|2024] Lemma C.2). For arbitrary policy = and dataset {(s;, a;,7;)}",
generated i.i.d., from the product of 7, p and the Bradley-Terry Model; let g be the least square
estimator of g*, then for any 0 < e, < 1 and 6 > 0, with probability at least 1 — ¢ we have

Z (siya;) — (Si,ai))2 < 16log(aNg(e.)/d) + 4ne..

=1

Now we are ready to prove Lemma[2.9]

Proof of Lemma[2.9] We have the following inequality

d(s.a) — g*(s.a))’ = (g(s,a)—g*(s,a))z E o [(3(s.a) — g*(s.a))>

(9(s.a) — g7(5,0)) (o0 o) [(3(s,a) — g"(s.0))"]
sup (gl(s7a) - 92(8,(1))2

91,9269 Bt [(g1(s5,a) — 92(8,04))2}

= Dg((s, a), ) E s [(g(&a) — g% (s, a))2]7 (D.1)

E et [(Q(S, a) - g*(‘S? a))2]
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where the inequality holds by taking supremum to g1, g2 € G. Now we have
_ " 2 2 32
Bt [(g(s,a) — g*(s,a))7] < = Z (siya:) — g*(si,a:))” + I log(2Ng(e.)/d) + 10e,

< - [1610g(./\fg(ec)/5) + dne ] + % log(2Ng(e.)/d) + 10e,.

128
=3, log(2Ng(e.)/0) + 18e,, (D.2)
where the first inequality holds due to Lemma and second holds due to Lemma Plug-
ging (D.2) into (D-I) and setting €. = O(n™') complete the proof. O

D.2 PROOF OF LEMMA2.14

This proof is extracted from the proof of |Zhao et al.| (2024, Theorem 3.3) and we present it here for
completeness. By definition of our objective in (2.1), we have

J(m") = J(my)

* _ m*(als 7. (a
= E(s,a)y~pxn [9 (s,a) —n~"log 71.f((a||s)):| = Es,0)~pxr, {9 (s,a) — Wer a|| ]
1 " (als) - exp(ng*(s,a))} 1 { 'Ef -exp(ng*( ))]
:7ESG,N o 10 _7E8a~ ™ 10
p e [g “(als) Tl wg<a|>
1 1 X
= EESNP[log Zg+(s)] — #Eswp[log Zg(s)] —Esp Z my(als) - (9%(s,a) — f(s,a))|,
acA
where for all g € G we define Z(-) as follows,
Zg(-) =Y _ " (al-) exp (ng(- a)).
acA
We further denote A(s, a) = g(s,a) —g*(s,a) and Hy(g) = log Zy(s) =0 ,c 4 Tg(als) - A(s, a).
It worth noticing that n~'E.,[Hs(g*) — Hs(g)] = J(7*) — J(7,). Now we take derivative of H
with respect to A(s, a),
OHs(g) _ 0
aA(57a/) - 8A(S7a) IOng(s) n;ﬂg<a|s) A(s,a)
L e . .
=76 " (als)exp(n - g(s,a)) -0 —n - my(als)
ref ref 2
2 Asa). (als) -exp(n-g(s.a) o o 5a). (7" (als) - exp(n - g(s, a))]
A Z,(5) (R A0k
7' (a’|x) - exp(n - g(s,d 7' (als) - exp(n - g(s,a
a’€A\{a} g g
= —1’my(als)A(s,a) + 1’ [mg(al ) - Als,a) +0° Y my(a'e)my(als)As,a').
a’€A\{a}

Therefore, by mean value theorem, there exists v € [0, 1] and g, = vg + (1 — 7)g* such that

Hy(g) = Ho(g") = "7 Y _ g, (als)A(s,0)” + 17 D> Y mg (a1]a)my, (azlz)A(s, a1) A(s, az)
acA a1€AazeA

= 1, [(0"(5,0) — (5. 0)%] + 17 (B, [(9"(5.0)  g(5.))])”

~1?Eann,, [(9"(s,a) — g(s,a))"],
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where the inequality holds by omitting the second term and v < 1. Now taking expectation over p,
we have

J(m*) = J(mg) = 0~ 'Esnp[Hs(g%) — Hs(9)]
< 0B (s aympy, [(97(5,0) = g(s,0))"],
which concludes the proof.
D.3  PROOF OF LEMMA 2.13|

Proof of Lemma[2.1I5] We define Y = —X. Then it suffices to show that the covariance between Y’
and Y2 is

> (E[v%)*” —E[Y2JE[Y]
= (E[Y?]) (VEY?] - E[Y))
>0,
where both inequalities follow from Jensen’s inequality. O

D.4 PROOF OF THEOREMW

To start with, we first define the following quantities. For all v € [0, 1], we define g, == vg + (1 —
~)g* and denote

Ty (+]s) ﬂref(~|5) exp (ng,y(s, ~)),VS €Ss;
G(Y) =Epxn, [(ﬁ* g*)z(S,a)]

The key to our analysis is the monotonicity of the function G(v) in , which is formally stated in
the following lemma.

Lemma D.3. Onevent &, 0 € argmax. (o 1] G(7).

Proof. For simplicity, we use A(s,a) to denote (g — g*)(s,a) in this proof. Then we know that
A(s,a) < 0forall (s,a) € S x A onevent £. The most direct way to prove is to take derivative
of G with respect to «y, which corresponds to the policy gradient (Sutton et al.,|1999) of 7., and thus
implying a favorable structure. A direct calculation yields that

=E,xr, [V logm,(als)A(s,a)?]

=nE Equr, [A%(s,a)(A(s,a) — Egar, [A(s,d')])]
=nE, [JEM [Ag(& a)] —Er, [Az(s, a)]EM [A(& a)]}
<0,

where [E,, is the shorthand of E,.,,, Er., is the shorthand of EQNM , the first equation is derived from
standard policy gradient and the inequality holds conditioned on the event £(J) due to Lemma
and Lemma O

Now we are ready to prove Theorem [2.10]

Proof of Theorem2.10} Following the proof of[Zhao et al|(2024] Theorem 3.3), we know that there
exists 4 € [0, 1] such that

J(n*) = J(7) <nG(7) < nG(0), (D.3)
where the first inequality holds due to Lemma[2.14] and the second inequality holds due to the event
& and Lemma The term G(0) can be further bounded with the D?-based concentrability as
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follows
~ 2
G(O) = nE(s,a)rvaTr* [(g -9 ) (37 a)}
< 477]E(s,a,)~p><7r* [FEL (57 a)]
= AnB°E (s a)mpxr [DF((5,a); )]
= 5(77D,2r*n_1 logg (e.)), (D.4)

where the second inequality holds conditioned on £(§) because of Lemma|D.3] and the last inequal-
ity follows from the definition of £(J) together with Line By Lemma 2.9 we know that event £
holds with probability at least 1 — §, which finishes the proof. O

D.5 PROOF OF THEOREMm

Proof of Theorem2.11] We consider the family of contextual bandits with S := |S|, A := | A] < co
and reward function in some function class G composed of function S x A — [0, 1] as follows.

CBg = {(S, A, p,r, 7™, n) :r € G, p € A(S), 7" € A(A|S)}. (D.5)

Our goal is to prove the following statement. Fixing any S > 1,7 > 4log 2 and C* € (2,exp(n/4)],
then for any estimator D — 7 € A(A|S), for any n > 165SC*, there exist some function class
G, such that 3 inst = (S, A, p,r, 7", n7) € CBg with single-policy concentrability C™ < C*,
regularization coefficient n, |S| = S = O(log |G|), and

SubOptgyy, (7; inst) > min{nSC*n=1, (SC*)Y/2n=1/2}, (D.6)
Since log |G| > log Mg (e) for any € € (0, 1), equation yields the desired bound.
We set S = [S], A = {£1}, p = Unif(S), and the reference policy to be

Vs e S, (—1]s) = C7 L, n™f(+1]s) =1 - O

where C' > 1 is a parameter to be specified later. We construct 2° Bernoulli reward functions, in
particular, V7 € {:I:l}s , the mean function r, of the reward (indexed by 7) is defined as

rr(s,—1) =054 750,7-(s,+1) = 0.5 — «

for any state s € S, where a € (0,1/2) and ¢ € (0,1/4] will be specified later. We omit the RKL
subscript in the following argument when it is clear in context. By (2.2), the optimal policy 7} under
r, is
ex a+ 750 -1
p (1 ) (1) = .
exp (n(a+756)) +C — 1 exp (n(a+750)) +C — 1
(D.7)

Vs e S,mi(-1s) =

Since C* < exp(n/4), we assign C = C* and a = " log(C' — 1) & C — 1 = exp(na), which
gives

vses M) o explilatnd) o exp(rmd) o o
mref(—1]s) C — 1+ exp(n(a+ 749)) 1 + exp(n7s)
wE(+1]s) C 1
Vs € S,— = . <C=0%
s € ‘rref(+1]s)  C—1 exp(nrsd) +1 ~ ’
where the last inequality is due to the assumption C* > 2. Therefore, we obtain
max C™ < C*. (D.8)

Te{£1}5

We will abuse the notation SubOpt(7; 7) := SubOpt(7; r;). Since p = Unif(S),

5
1
SubOpt(7;7) = g Z SubOpt,(7; 7), (D.9)

s=1

22



Under review as a conference paper at ICLR 2026

where
SubOpt, (75 7) = (72 (1), 71 (5,-) — 17 log ~2lL) (2 Js), 1 (s,) — 1~ log —1°L)
T T 7l (:]s) T e (]s)
1 ' (als) - exp (nr-(s,a)
= —Banrs(s) | log ; ( )}
n L i (als)
1 7' (als) - exp (n7-(s, a)
EaNﬁus){lOg — ( )}
n 7(als)
1 [ ref
= —Eonri(ls) 10%(ZTF (b]s) - exp (nm(s,b)))
K - be A
1 7T.ref(

als) - exp (nr-(s, a))}

- 7Ea~% -|s lo =
n oA { & #(als)

1 ' (als) - exp (17-(s,a)) ' (als) - exp (17-(s, a))
= —Euoz(|s) | log ” —log =
U mx(als) 7(als)
=n KL (7||7F). (D.10)

We write 7 ~, 7/ if 7,7/ € {£1}¥ differ in only the s-th coordinate and 7 ~ 7/ if 3s € S, 7 ~, 7.
By (D.10), Vs € S, V7,7’ € {£1}5 with 7 ~ 7/,

SubOpt,(7; 7) + SubOpt,(7; ')

— KL (F7) + 0 KL (Rl )

=277 3" #(als) log ”(‘”81
acA !

= 207 KL (R(|3)]1 7 (1)) — 207 Earoyloss (3 (/e bls)ms, (b15))

be A
> oy g (37 0 01

be A

_ 1), (exp(nd) +1)(exp(—nd) +1)
- og 4 9
"

where 7(-[s) = /72 (-[8)7E (+18)/ Dpea V/TE(bls)TE (b]s) for every s € S, the inequality is due
to the non-negativity of KL divergence, and the last equality follows from (D.7) together with the
design choice C' — 1 = exp(na).

w2 (als)m (als)

(D.11)

2k

Casend < 2. RecallthatVz € R, (e” +e77)/2 -1 =227, Ghray 2 x2 /2, which implies

1 1/em e 1 0?52 1 7?%6%/4 )
= — - — > - _— > 0L = .
@10 nlog(1+2( 5 1))n10g(1+ 4)*77 5 n6=/8
(D.12)

Here, the last inequality is due to 726%/4 < 1 and Vz € [0, 1],log(1 + z) > z/2.

Case 70 > 2. We have —1~'2log 2 > —§log 2, which implies the following bound.

1 §)+1 _ 1o —2log2
DD > g eXp(”4) R/ ; 082 5 12log2 > (1 —log2)d > 35/10. (D.13)
In summary, (D.12) and (D.13)) imply that Vs € S, V7,7 € {£1}° with 7 ~, 7/,
52 36
SubOpt, (7;7) + SubOpt, (7;7') > % AT (D.14)
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Let P, be the distribution of (s, a,y) where s ~ p,a ~ 7(-|s), and y ~ Bern(r,(s,a)). Then
Vo € SVr, 7 € {£1}° with T ~, 7/,

KL (P,||P,/) = %waef(ap)m (Bern(r» (s, a)) | Bern(ry (s, a)))
L C~'KL (Bern(r,(z, —1))||Bern(r,(z, —1)))

S
462 1662

< < D.1
= 8C(0.25 — 02) = 35C" 0.19)

where we use the requirement § < 1/4 and KL (Bern(p)||Bern(q)) < (»p — ¢)?/(q(1 — ¢)). Then
let Pp_ be the distribution of D given the mean reward function r,, we employ to get

1662
3SC

KL (Pp, ||Pp_,) = nKL (P||Py) < (D.16)

Since n > 165C* = 16SC by design, we can set § = /SC/n (which ensures 6 < 1/4) to obtain

sup SubOpt(7;inst) >  sup SubOpt(7;7)

inst Te{il}s
1 1 /né% 36\ .
> 555 (% A ig) minese (= KL(P 1Pp.)) )
nSC*  3y/5C* L nSC* SC*
= ( 32n " 40y/n )exp(—16/3) ~oon " n

where the S~! in the second inequality comes from , the second inequality is by substituting
into Assouad’s Lemma (Lemma [H.3)), and the last inequality is due to (D.I6). O

E MISSING PROOF FROM SECTION

E.1 PROOF OF THEOREM

Before coming to the proof, we first introduce some useful properties. The following properties
characterize the convexity of f-divergence when f is (strongly) convex.

The strong-convexity of f implies that the corresponding f-divergence, D (-||7") is also strongly
convex with respect to all 7 : S — A(.A) supported by 7.

Proposition E.1. Given context s, Dy(m(+|s)||7"(-|s)) is strict convex with respect to 7 if f is
strictly convex.

Proposition E.2. Given context s, 7(:|s) = D (7 (+|s)||7"(-|s)) is 4a-strong convex with respect
to the metric TV if f is a-strongly convex.

Proof of Proposition[E2] We first show the gradient of D with respect to .

2w 2 ()~ ()

be A
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Now consider 71, 2 € A(A) supported by 7.
Dy(ml[) = Dy (mal ) — (1 — 2, T D (ma 7¥)
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where the first inequality holds due to f’s strong convexity and the second holds due to
Cauchy—Schwarz. The proof finishes since |71 — mal|1 = 2TV (71 ||m2). O

We first introduce some notation and important properties concerning the convex conju-
gate of functions. Given some context s, we denote the regularization term as Hg(w) =
LDy (7(-|s) |7 (-|s)). We use H(r) to denote the convex conjugate of Hy, which is defined
as

Hi(r)= sup {{(n(s),7(s,")) — Hs(m)}.
TES—AlAl

We have the following properties for the convex conjugate. The first property gives the gradient of
convex conjugate (see, e.g., Zhou/2018, Lemma 5).

Proposition E.3. Given context s, and convex f, let 7, € argmax_ {(n(-|s),r(s,-)) — Hg(m)} for
some r, then the gradient of H is given by VH(r) = m,(:|s).

We also need some properties of V2 H?*, the Hessian matrix of the convex conjugate function. We
first give the Hessian matrix of the original function H; as follows.

m(als m(ajalls)
s (el 7 ( Saiallsl
VZHs(ﬂ')nldiag< () Gl . E.1)

wefals) T m M (a]s)

Furthermore, when f is a-strongly convex, we have

Vsz(Tf') t anildiag (Fref(a1|s)7la e aﬂ-ref(aLA\ ‘3)71) .

The following lemma, which gives an estimate of V2H, is the pivot of the proof.
Lemma E.4. For any reward r : S x A — [0, 1], we have

V2H:(r) =< a_lndiag(ﬂ'ref(aﬂs), e 77r”°‘f(a|y4‘|s)).

Proof of Lemma[E-4] Given reward function  : S x A — [0, 1], we consider

m € argmax {(n(|s),r(:|s)) — Hs(m)}.
TeS—AIAI

From (E.1) we know that V2 H,(m,.) is invertible. Therefore, by [Penot/|1994, Proposition 3.2, we
have VZH?*(r) = (V2H,(m,))~ . Since f is a-strongly convex, we have

V2H; (r) < a~'ndiag (7" (a1]s), - -, 7" (a4 5)),
which finishes the proof. O
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Now we are ready to prove Theorem[3.2]

Proof of Theorem[3.2] Consider our estimation g which approximates the ground truth reward func-
tion g*, we know that

7= argmax {E(oampxrli(s, )] = 17 Bony [Dy (rllr)] }.
TeES—A(A)

We have the following sub-optimality decomposition
J(7*) = J(7) = E?Np[ ann[97(5,0)] = Eqnzlg™(s,@)] — 0~ ' [Dy(a*|n™) — Df(%llﬂ'ef)]}
Es p[ 99) H:() < 79*7g>]
=Eonp [H{(9") — HI(9) = (VH(9).9" - 9)]
=Esvl(g” —9) V2HI(9) (9" — 9)],

*

where § = vg* + (1 — )7 and v € [0, 1] and the last equation holds due to Taylor’s expansion.
Now, for any § € (0,1) and €. > 0, with probability at least 1 — §

J(1*) = J(®) = Eanpl(g" — 9) ' VZHI(9) (9" — 9)]

B,y (g7 — 9) diag (7 (a]s), -+, 7 (aya]9) (9" — 9)]
=& "B (g 0)prrer [(97(5,0) — 3(s,a))?]

< a‘1n<132: log(2Ng(ec)/0) + 1866>,

IN
o

where the first 1nequahty holds due to Lemma [E.4] and last inequality holds due to equation @I)
Setting €. = O(n~!) completes the proof.

E.2 PROOF OF THEOREM

We first provide the following lemma that gives the close form of optimal policy under x2-divergence
regularization.

Lemma E.5 (Huang et al. (2025a, Lemma G.2)). Let 7* be the optimal policy of y2-divergence
regularized objective with reward function r, then 7* has the closed form

() = () max {0,n(r(-) = \)}, where Y g, (a) = L.
acA

By Proposition Tiaiy = AGMAax; caa)J rdiv(m) is unique. The sub-optimality gap for f-
divergence is consequently defined as

SubODpt tq;y (+) = SubOpPt 445, (3 A, 7, ) = Jraiv(Traiy) — Jrdiv(+)- (E.2)
Now we are ready to prove Theorem [3.4]

Proof of Theorem[3.4] We still consider the family of contextual bandits CBg given by (D.5). We,
still, aim to prove the following statement. Fixing any S > 32log2, n > 4log2 and «, we set
f(x) = a(x — 1)2/2, then for any estimator D + 7 € A(A|S), for any n sufficiently large,
there exist some function class G, such that 3 inst = (S, A, p,r, 7, n) € CBg with |S| = S =
O(log |G]), and

SubOpt ;4 (T; inst) 2 a~'nSnL. (E.3)
Since log |G| > log Ng(¢) for any € € (0, 1), equation (E3) yields the desired bound.

We again omit subscripts fdiv when it is clear in context. We set S = [S], A = {—1,+1}, and
p = Unif(S). Forall s € S, " = Unif(.A). We further consider the following reward function
class. We leverage Lemma [H.4) and obtain a set V € {—1,+1} such that (1) |V| > exp(S/8)
and (2) for any v,v" € V,v # v, one has |[v — v'||; > S/2. We construct the following reward
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function class where the reward follows Bernoulli distribution and the mean functions are given by
the function class

G={ry(s,—1) =1/2 4 vsd,ry(s,+1) = 1/2 + v}, Vs € S|v € V},

where 6 € (0, a] is to be specified later. Fix some context s and vy # vy different at entry s and
corresponding reward 7 and r5. Without loss of generality, we assume 1 (s, -) = (1/2+4,1/2—9)
and ro(s,-) = (1/2 — §,1/2 + 0). Then direct calculation implies that

1 (+|s) = %maX{O,nOz—l(rl(s, ) =N} = 0500 (r1(s,-) — ),

5 (+|s) = %max{o,na_l(rg(s, ) =N} = 0500 (ra(s, ) — ),

where A\ = 0.5 — o Note that 2x?(u|lv) +1 = 3", 4[#(a)]?/v(a) and x* = Dy, we obtain
that V 7,

SubOpt, (7(+]s); 1) + SubOpt(7(:|s);72) (E.4)
=1 >0
= (r1(s,), 71 (18)) + (ra(s, ), w5 (1)) — (ri(s, ) 4 ra(s, ), 7(-|s)) + 20 ax® (7 (-|s) |7 (] )
— XA Gl (fs)) = ac X (s (ls) |7 (] )
> 2(ri(s, ), w1 (+1s)) — 1 =20 "o X3 (5 () [ 7" (] 5))

_q_mt _ndt (E.S)

Now we take expectation over all possible contexts and recall that ||v — v'||; > S/2 for v # v, we
know that for any r; £ o € G

~ ~ 62
SubOpt(7; 1) + SubOpt(7;r2) > g—
a
Given any mean reward function r € G, let P, be the distribution of (s,a,r) when s ~ p, a ~
7' (-|s), and r ~ Bern(r(s,a)). Suppose Pp, is the distribution of the dataset given mean reward
function r, then KL (Pp, || Pp, ) = nKL(P,,||P,,) for any pair of 71,7, € G. Now we invoke
Fano’s inequality (Lemma[H.2) to obtain

52 max,, £r,eg KL (Pp,. ||Pp,. ) + log2
inf sup SubOpt(7;inst) > 77<1_ #72€9 ( 2, | Dz) g )

T insteCBg da log |g|
2 2
>ﬂ 1764n5 + 8log2 ’
~ 4da S

where the second inequality holds due to KL(Bern(p)||Bern(q)) < (p — q)?/[q(1 — q)]. Let § =
16714/ Sn—1, then we obtain that for all = we have

. S
sup  SubOpt(7;inst) = n—,
insteCBg an

which finishes the proof in that log, |G| = S. O

F GENERALIZATION TO CONTEXTUAL DUELING BANDITS

In this section, we extend our algorithm to the problems of regularized contextual dueling bandits,
where the learner receives preference comparison instead of absolute signals. Our setup largely
follows |Zhu et al.| (2023); Zhan et al.| (2023)) and the notion of sub-optimality follows Xiong et al.
(2024); Zhao et al.|(2024).
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Algorithm 3 Offline KL-Regularized Pessimistic Contextual Dueling Bandit (KL-PCDB)
f

Require: regularization 7, reference policy #'', function class G, offline dataset D =
o1 2 N\n
{(Szaaiaaivyl) =1 . . . .
1: Compute the maximum likelihood estimator of the reward function

- [vitogr([g(si.ab) = gsi,a?)] ) + (1 = yi) log o ([g(ss a?) = g(si.al)] )]

9€9 =

2: Letg(s,a) = g(s,a) — I'n(s,a), where T, (s, a) is the bonus term in
Ensure: 7(als) o« 7 (als) exp (n - §(s, a))

F.1 PROBLEM SETUP

We still consider contextual bandits (S, A, r, w'ef) where S is the state space, A is the action space
andr : § x A — [0, 1] is the reward functionF_’-] But only relative preference feedback is available,
viz., we have an i.i.d. offline dataset D = {(s;,a},a?, y;)}" ,, where s; € S is generated from
distribution p and a}, a? ~ 7. The binary preference label y; = 1 indicates a} is preferred over a?
(denoted by a' = a?) and 0 for a® = a' given context s. In this work we consider the Bradley-Terry
Model, where Py = 1]s,a',a?] = o(r(s;,a)) — r(si,a?)), where o(z) = (1 + e ®)~! is the
link function. The objective here identical to for KL-regularization and for f-divergence
regularization. Our goal is still to find an e-optimal policy. To control the complexity of the function
class G, we assume that Assumption 2.1]still holds here.

Concentrability. Analogous to Section [2} we need our estimation from offline dataset generaliz-
able to the state-action pairs visited by our obtained policy. While density-ratio-based concentrabil-
ity can be directly adapted to dueling bandit, we need a slightly different notion of D?-divergence.
This is because in dueling bandit, we cannot observe the absolute reward and best estimation g
we can achieve is that for any state s and actions a',a?, our estimated g(s,a') — g(s,a?) =~
r(s,a') — r(s,a?). This implies that there exists some mapping b : S — [—1,1] such that
g(s,a) — b(s) =~ r(s,a) on the offline data, which leads to the following definition.

Definition F.1. Given a class of functions G C (S x A — R) and some policy 7, let B = (S —
[—1,1]) be the function class, define the D?-divergence DZ((s,a); ) as

2
sup inf (9(57 a) - h(57 a) - b(S))
g,hgg beBB Eswp Vara/~7r(-\s/) [g(Sla al) - h(S', a/)} '

A similar definition has been introduced in Zhao et al.| (2024, Definition 2.6), which underpins the
following two assumptions that characterize the coverage ability of 7"f similarly as in Section

Given a reference policy 7"f, we define two coverage notions for contextual dueling bandits.
Assumption F.2 (All-policy concentrability). D? := sup  ,)esx.a Dg((s,a); 7)) < oo.
Assumption F.3 (Single-policy concentrability). D2. := E(s o)pxr+ [DE((s,a); 7)) < oo.
Similar single-policy concentrability assumptions have appeared in previous work in offline contex-
tual dueling bandits (Huang et al., [2025b} |Song et al.l [2024) and similar notions has also appeared
in the analysis of model-based RL (Uehara & Sun} [2021; Wang et al.l [2024). Still, while Assump-

tion is strictly weaker than Assumption in general cases, the two quantities, C™ and D2,
cannot be bounded by each other.

F.2 ALGORITHMS AND RESULTS
F.2.1 ALGORITHMS FOR KL-REGULARIZED CONTEXTUAL DUELING BANDITS

We elucidate KL-PCDB for offline KL-regularized contextual dueling bandits, whose pseudocode is
summarized in Algorithm[3] KL-PCDB first estimate the ground truth function g* on offline dataset

SWe overload some notations in Sectionby their dueling counterparts for notational simplicity.
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Algorithm 4 Offline f-Divergence Regularized Contextual Dueling Bandits (f-CDB)

f

Require: regularization 7, reference policy #'™', function class G, offline dataset D =

1 .2 n
{(Siaaiaaiayi)}i.zl . . . .
1: Compute the maximum likelihood estimator of the reward function

g= arggerréini [yi loga([g(si,a%) - g(si,a?)]) + (1 - yi)loga([g(si,af) - g(si,a})])}.

2. Compute the optimal policy with respect to reward g

7(-|s) < argmax Y w(als)g(s,a) + 1~ Dy (n(]s)]|7"(]s))
n(19)EA(A) o4

Ensure: 7(als)

with maximum likelihood estimator (MLE) to estimate a function g € G. After that, analogous to
Algorithm [T we adopt the principle of pessimism in the face of uncertainty. Specifically, we define
the penalty term

Ly (s,a) = B/ D3((s,a), ), (F.1)
where

3% = 1281log(2Ng(€.)/8)/3n + 18¢. = O(n™ 1Y) (F2)

and then subtract it from the MLE § to obtain a pessimistic estimator g. KL-PCB then output the
policy 7, maximizing the estimated objective

~

~ _ m\a|s
‘](Tr) :E(S,G)NPXTF {Q(S,G)—n 110 ( ‘ ) :|a

grref (a ‘ 8)
the maximizer of which is in closed form as the counterpart of (2.2).
7(als) o< 7 (als) exp (n-9(s,a)).

We provide the following theoretical guarantees for Algorithm 3]

Theorem F.4. Under Assumption if we set I',, according to (EI), then for sufficiently small
€ € (0,1), with probability at least 1 — 6, n = O(n(D2. A C™ )e~?) is sufficient to guarantee the
output policy 7 of Algorithm[3]to be e-optimal.

Remark F.5. [Zhao et al. (2024) achieved an 6(6’1) sample complexity under Assumption

Comparing to|Zhao et al. (2024), KL-PCDB achieves the same O (e~ ') sample complexity but only
requiring Assumption|[F.3] which is weaker than Assumption[F.2]

The following theorem provides the sample complexity lower bound for KL-regularized dueling
contextual bandits.

Theorem F.6. For any sufficiently small € € (0,1),7 > 0,1 < C* < exp(n/2)/2, and any algo-
rithm Alg, there is a KL-regularized contextual dueling bandit instance with single-policy concentra-
bility C™ < C* such that Alg requires at least Q( min{nC* log Ng(e.)/€,log Ng (ec)(C’*)Q/eZ})
samples to return an e-optimal policy.

Remark F.7. Theorem [F.6] shows that when e is sufficiently small, any algorithm for offline KL-
regularized contextual dueling bandits requires at least Q(nC™ log Ng(€)e~!) samples to output an

e-optimal policy, which matches the sample complexity upper bound in Theorem[F.4] indicating that
KL-PCB is nearly optimal.

F.2.2 ALGORITHM AND RESULTS FOR f-DIVERGENCE REGULARIZED CDBS

We present an offline learning algorithm for f-divergence regularized contextual dueling bandit,
f-CDB, in Algorithm {f] f-CDB first leverages maximum likelihood estimator to find a function
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g € G that minimizes its risk on the offline dataset. Then the algorithm constructs the output policy
7 that maximizes the f-divergence regularized objective induced by g. Similar to Algorithm
we do not require any pessimism in f-CDB. The following theorem provides an upper bound of
Algorithm 4]

Theorem F.8. For any sufficiently small ¢ € (0, 1), and 1, « > 0, with probability at least 1 — 4,

n = O(a~tnlogN(e)e™!) is sufficient to guarantee that the output policy 7 of Algorithm E is
e-optimal.

The following theorem provides a lower bound for offline f-divergence regularized contextual du-
eling bandit with strongly convex f.

Theorem F.9. For any ¢ € (0,1), a,n > 0, and offline RL algorithm Alg, there is an «-strongly
convex f and f-divergence regularized contextual dueling bandit instance such that Alg requires at
least €2 (04*177 log N (e)e’l) samples to return an e-optimal policy.

Remark F.10. Theorem indicates that, when ¢ is sufficiently small, to produce an e-optimal
policy, any algorithm for offline f-regularized contextual bandits with strongly convex f requires

at least Q(a~'ne~!) samples. This lower bound matches the sample-complexity upper bound in
Theorem indicating that Algorithm[4]is nearly optimal.

G MISSING PROOF FROM APPENDIX

G.1 PROOFE OF THEOREM

The proof follows the proof in Section [2| At the beginning, we first define the event £(§) given
0 >0as

£(5) = {3 b:S = [—1,1],¥(s,a) € S x A, |g(s,a) — b(s) — g"(s,a)| < n,,(s,a)}. (G.1)
Here, I, is defined in (EI). We abuse the notation and define b(-) as

b=argmin sup Py(s,a) —T,(s,a), (G.2)
B (s,a)eSx.A

where ®,(s,a) = |g(s,a) — b(s) — g*(s,a)| and when & holds, for all (s,a) € S x A, we have
®y(s,a) < T',(s,a) This indicates that the least square estimation g obtained in Line [1| of Algo-
rithm[3] after adjusted by some bias function b, is close to the true function g*. The following lemma
shows that this event holds with high probability.

Lemma G.1. Forany § > 0, P(£()) > 1 —4.

Proof. From Lemma [H.1] we have that with probability at least 1 — 4, it holds that

1
Es’wp Vara/,\,ﬂ.ref(,‘s/) [§(5/7a/) - g*(s/’ a/)] < O<n log(./\/g(ec)/§) + ec) . (G3)

It further holds true that for some b: S — R
r — * _ * 2
D%((s,a), 7)) - Esn)p Var, e (.|s) [3(s,a) — g*(s,a)] > (g(s,a) — b(s) — g*(s,a))”. (G.4)
Substituting (G.3) into (G.4), we have
e . 2
néf (g(s,a) — b(s) — g*(s,a)) (G.5)

(g(s.a) — b(s) — g*(s,a))”

= inf By, Vary, o [3(s',a') — g*(s',d’
Hl} By np Vary e (.[s1) [G(s',a') — g*(s',a')] p YOl 1) (95", a') = g"(s,0")]
< Dé((s7 a), Wref)Eﬂ-ref [(g(s, a) —b(s) — g*(s,a))Q} (G.6)
1
< DA (5.0 710 1 log(No(e0)/0) + . ). @)

where the first inequality holds due to the definition of Dé((s7 a), ™f) and the last inequality holds
due to Lemma[H.1] 0O
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We overload the following quantities. For any v € [0, 1] and (s,a) € S x A, we define

9v(s,a) = (g(s,a) = b(s)) + (1 =7)g" (s, a).

Furthermore, we introduce the following quantities
oy (|-) = mg, (1) o< (|- exp (ngy (-, ),
N X 2
G(’Y) = ]EPXW«, [(g(s, a’) - b(S) -9 (Sa a)) ]7

where b(+) is defined in (G.2)). We still have the monotonicity of the function G(y), which is char-
acterized by the following lemma.

Lemma G.2. Onevent £(d), 0 € argmax., [y 1) G(7).

Proof. For simplicity, we use A(s, a) to denote g(s,a) — b(s) — g*(s,a) in this proof. Then on
event £(J), we know that A(s,a) < 0 for all (s,a) € S x A. Taking derivatives of G w.r.t., y
directly, we conclude that for all v € [0, 1],

G'(7) = NEyEann, [A%(s,0) (A(s,0) = Earr, [A(s,0)])]
=nE, [EM [A3(s,a)] — Er, [A%(s,a)|Ex, [A(s, a)]]
< Oa

where E, is the shorthand of E,.,, E,_ is the shorthand of E,~. and the inequality holds condi-
tioned on the event £(§) due to Lemma O

Finally, we have the proposition that adding some bias term b : S — R does not affect the resulting
policy.

Proposition G.3. Let b : S — R be some bias function, then for all ¢ € G we have J(m,) =
J(mg—p), where (g — b)(s,a) = g(s,a) — b(s).

Proof. For any fixed state s € S, we have for any a € A that,

"M (als )exp( 9(s, a))

T A W) exp (ng(s, )
' (als )eXp( 9(s,a)) exp (-nb(s))
 Cweam(@ls)exp (ng(s,a’)) exp (-nb(s))
' (als )eXp( l9(s, @) — b(s)])
 Eweam™(@ls)exp (nlg(s, @) — b(s)])
= mg-s(als),
which indicates that 7, = 7,_;. This immediately leads to J(7y) = J(mg_p). O

Now we are ready to prove Theorem [F.4]
Proof of Theorem[F:4] We proceed the proof under the event £(J). By Proposition we know
that

J(m*) = J(7) = J(n*) — J(mg)
= J(m*) = J(mg5-p)-

Consequently, there exist some y € [0,1] and b : S — [—1, 1] such that
J(m*) = J(7) = J(n*) = J(m5_p)

< N, [(G(s,0) — b(s) — g"(s,0))°]
= nG('Y)a (G.8)
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where the inequality holds due to Lemma Under event £(0), we know that g(s,a) — b(s) <
g* (s, a). Together with Lemma|G.2] we obtain G(7) < G(0). Therefore, we know that

J(x*) = J(7) < G(0) (G9)
= MEpre | (§(s,0) = b(s) = g7 (5, )]
< 4 (Bpr [[2(5.0)] A C7 By (35 0) — b(s) — 9" (5,)"])
= 41 (BEpne [D3((5,0): )] A C7 B [(@5,0) = bls) — 97 (5, )] )
= O(nD2-logG(e.)n™ "), (G.10)

where the inequality holds due to the definition of £(§). Plugging (G.10) into (G.8), we know that

J(7*) — J(7) has upper bound O(D2.n~1). By Lemmam event £ with probability at least 1 — 4,
which concludes the proof. O

G.2 PROOF OF THEOREM

Proof of Theorem[F:6] The proof is similar to the proof of Theorem 2.11] Consider the following
family of contextual dueling bandit instances with S := |S|, A = |A| < oo and reward in some
function class G.

CDB = {(S, A, p,r, 7™ n) :r € G, pec A(S), 7 € A(A|S)}. (G.11)

Fixing any S > 1, n > 4log2 and C* € (2,exp(n/4)], we aim to prove that, for any estimator
D — 7 € A(A|S), for any n > 165C*, there exist some function class G, such that 3 inst =

(S, A, p,r, 7", 1) € CDB with single-policy concentrability C™ < C*, regularization coefficient
n,|S| =S = O(log|G|), and

' tiéléDB SubOptgyy (7;inst) > min{nSC*n~t, (SC*)Y/2n=1/2}, (G.12)

Since log |G| > log Ng(¢) for any € € (0,1), the above bound yields the desired result.

We construct the same reward function class as in the proof of Theorem 2.11] In particular, we set
S =[5], A = {£1}, p = Unif(S), and the reference policy to be

Vs e S, (—1]s) = C7 1, n™f(+1]s) =1 - O

where C' = C*. Then the total sub-optimality of any 7 € A(A|S) given any reward function
r:SxA—Ris

SubOpt 445, (73 7) ZSubOptfdw( (-s);7(s,-)). (G.13)

We further let « = n~1log(C — 1) & C — 1 = exp(na). We construct 2° Bernoulli reward
functions, in particular, V7 € {4-1}~, the mean function r, of the reward (indexed by 7) is defined
as

rr(s,—1) = 0.5+ 750,7-(s,+1) = 0.5 — a.
Then, following the derivation of (D.12) and (D.13), we know that Vs € S, V7,7’ € {+1}° with
/
T g T,

SubOpt, (7; 7) + SubOpt, (7; 7') > — A —. (G.14)

Let P, be the distribution of (s, a', a?,y) for s ~ p, a*, a® iid. 7 (.|s) and y ~ Bern(o(r(s, a) —
r(s,a%))). Now we set § = /S/n and conclude that for 7 ~ 7/ with 7, = —77,
K'—(PTTHPT )

= SC2 Z KL (Bern(o(r-(s",a Y —r(s',a?)))||Bern(a(r (s, a') — r(s’,aQ))))

s’,al,a?

- % (KL (Bern(o(a + 8))||Bern(c(a — 8))) V KL (Bern(a(ax — 4))|Bern(c(a + 6))) )
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Since a,§ € (0,1/2), by the fact KL(P||Q) < 2Q.. TV (P||Q)? (see e.g., Polyanskiy & Wu
(2025, Section 7.6)), we know that

2(C —1) 4 1 1 2
(LB 1P) < SC?  1+exp(a+9d) (1 +expla—6) 1+exp(a+t 5))
4 exp(2a)(exp(d) — exp(—d))?
35C (14 exp(a—0))*
€ 2
< _ _
< 3¢ (exp(0) — exp(=9))
<365 tC16?, (G.15)

where the second and third inequality hold due to «,é < 1/2, and last inequality follows from

exp(x) — exp(—x) < 3z for z € [0,1/2]. Now we set § = /SC/n < 1/4. We substitute (G.14)
into Assouad’s Lemma (Lemma[H.3)) and obtain that

. . 1., 1 (9o 36
msitipp SUPOPtRKL (i dnst) 2 757+ o - (8 . 10) min exp (~ KL (Pp. [ Pp,,) )
1/né% 36
=1 (8 A 10) exp ( —nKL (PTTHPTDT/) )
36
> %2) min{nCSn~1, §2C2n =2},

where the 1/S comes from the denominator of (G.13) and the second inequality follows from (G.13).
O

G.3 PROOF OF THEOREM

Proof of Theorem[F:8] The proof is similar to the proof of Theorem Recall that b(-) defined
in (G.2), we know that

T = argrzi“x {E(s,a)wpxw[g(sa a)] - n_lESNp [Df (7T| |7Tref)] }
me

= argmax {E(s,a)NpXﬂ'[g(Sa a) - b(S)} - nilESNP [Df(,]r‘ |7Tref)] }
TEAD

We have the following sub-optimality decomposition

J(W*)*J(%):Esw[ a~rs[97(8, )] — Eanz[g"(s,a)] — 71[Df(7f*|\7fref)*Df(ﬂlﬂref)]]
:ESNP[HZ‘ )—Hi(g—b)—(T,g" —g+b)]
=Eoup[H;(9") — H; (5 —b) —(VH (g = b),5" =5+ )]

= Eool(g” —g+b) ' VPH; (9)(9" — 5 +b)],

where § = vg* 4+ (1 —~)gand v € [0,1], (g — b)(s,a) = g(s,a) — b(s) and the last equation holds
due to Taylor’s expansion. Now, for any § € (0, 1) and €. > 0, with probability at least 1 — §

J(1*) = J(T) = Bonypl(g” — 5+ ) "VZH; (§)(g" — G+ )]
< a 'nEsn, [(g* —g+ b)Tdiag(wre‘c(al|s)7 o 1 (ag]s N(g*— g+ b)}
= a_lnE(s,a)prwref [(g*(87 CL) - g(87 CL) + b(S))Q]

< a_1n<132§ log(2Ng(ec)/0) + 1856>,

where the first 1nequa11ty holds due to Lemma [E-4] and last inequality holds due to equation (G.3).
Setting €, = O(n~!) completes the proof. O
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G.4 PROOF OF THEOREM

Proof of Theorem|[F9] We still consider the contextual dueling bandit instance class defined
in (G.II). We show that given any positive a, 7, for any n > S - max{16,n?a 2}, there exists
f R — Rsuch that f is a-strongly convex, log |G| = O(5) and

~. S
inf  sup SubOpt 4, (7;inst) 2 n—, (G.16)
7ell(D) insteCDB an

where D = {(s;,al,a?,y;)}™, is the offline preference dataset, all (possibly randomized) maps

from which to A(A|S) is denoted by II(D). Since S = O(log |G|) = log Ng(e.) for all e. € (0,1),
we can conclude the theorem.

Let S = [9], A = {£1}, p = Unif(S) and 7" (-|s) = Unif(A) for any s € S. Then the total
sub-optimality of any 7 € A(A|S) given any reward functionr : S x 4 — R is

5
SubOpt ;45 (75 7) = % Z SubOpt ;45 (7(:|5); 7(s,-))- (G.17)
s=1

We still consider the reward function class G indexed by {4:1}°. For all 7 € {1} the reward

instance “shaped” by 7 is
1 /S
TT(S?G/): §+G/TS' E; (G.18)

where a7, = +1 because a € A = {4-1}. We thereby refer 7 ~ 7/ to any pair in {1} that differs

only in one coordinate. V7, 7' € {£1}%,if 7 ~ 7/, then suppose 7, = —7/, we have
S
SUBOPt gy ((-15): 7 (5.)) + SubOpt g () 7o) = L5, (1o

where the inequality follows from exactly the same calculation in equation (E-3)) by setting f(z) =
az — 1)2/2 Let P, be the distribution of (s,a',a?, y) for s ~ p, al,a? b 7" (-|s) and
y ~ Bern(a(r(s,a') — r(s,a?))). Then we denote § = /S/n and conclude that for 7 ~ 7/ with
Ts = —Th,

1
KL(P, |P..,) = SA2 Z KL (Bern(o(r-(s',a") — r(s’,a®))||Bern(o(r (s, a') — r(s', a%)))

s’,al,a2

L (KL (Bern(c(26))||Bern(o(—20))) + KL (Bern(cr(—2§))||Bern(a(2§))))

15
1

< 5 ((exp(=20) = 1)2 + (exp(20) — 1)?)
1 o _ 3662 18

< ﬁ(exp(Qé) -1)° < BT (G.20)

where the last inequality follows from exp(z) — 1 < 3z for z € [0,0.5] and § = /S/n < 0.25 by
assumption. Therefore, we substitute (G.19) into Assouad’s Lemma (Lemma[H.3) to obtain

LHSof@Z%w&%-i-min’exp(—KL (Po.lIPp..) )

S S 1 S
=0.25- 12 . exp ( — nKL (PTT||PTDH> ) > 12 S exp(—18) 2 Z—n (G21)

an an

where the 1/.S comes from the denominator of (G.17) and the second inequality follows from (G.20).
O

"Recall that in this case Dy = x*, where 2x*(p||lv) +1 =Y, 4[1(a)]? /v(a).
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H AUXILIARY LEMMAS

Lemma H.1 (Zhao et al.[2024, Lemma D.4). Consider a offline dataset {(s;, a},a?,y;)}", gener-
ated from the product of the context distribution p € A(S), policy 7 € A(A|S), and the Bradley-
Terry Model defined in Appendix Suppose g is the result of MLE estimation of Algorithm
and we further define b(s) = Eqr(.|s) [g(s, a) — g*(s, a)} , then with probability at least 1 — 20, we
have

B (85:0) ~ °(5.0) = 89)°] < O 2 1ou(N(e0)/0) + . ).

Lemmas and are two standard reductions (Le Cam) [1973} [Yu, [1997} [Polyanskiy & Wul,
2023)). See, e.g.,|Chen et al.| (2024} Section 3) for a general proof.

Lemma H.2 (Fano’s inequality). Fix any R := {rq,--- ,rg} and policy class II, let L : IT x R —
R be some loss function. Suppose there exist some constant ¢ > 0 such that the following condition
holds:

i in L ; L ) > c.
111172?31611%1 (m,r;) + L(m,r;) > ¢

Then we have

. c max;-; KL(P,, || P-,) + log 2
f L >—(1— :
Inf sup Lim,r) = 5 ( log 5 !

where P, is the distribution of dataset given model r € R.

Lemma H.3 (Assouad’s Lemma). Let R be the set of instances, II be the set of estimators, © =
{+£1}® for some S > 0, and {Lj}f:1 be S functions from IT x R to R,. Suppose {rg}spco C R
and the loss function is

s
L(m,r) = ZL]'(T(,T),V(TI', r) eIl x R.

j=1
We denote 6 ~; ¢’ if they differ only in the j-th coordinate. Further assume that
6~ 0 = ianLj(ﬂ',Tg) + Lj(m,rg) > ¢ (H.1)
(S
for some ¢ > 0, then
. & .
inf sup L) = 5+ 3 min exp (=KL (P 1Py) ).

where P, denotes the distribution of the dataset given r € R.

The following Lemma@]is due to|Gilbert (1952)); |Varshamov| (1957), which is a classical result in
coding theory.

Lemma H.4. Suppose ¥ is a set of characters with |%| = ¢ where ¢ > 2 is a prime powerand N > 0
is some natural number. Then there exists a subset V of £ such that (1) for any v,v’ € V,v # vj,
one has dg (v,v') > N/2 and (2) log, [V| > H,(1/2) = ©(1), where dp is the Hamming distance
and the entropy function H is given by

log(q — 1 ] log(1 —
JRCEU )7m0gfc7(17w) og(l—z)
log q log q log g

Hy(z) =

For example, when g = 2, this means that there exists a subset V of {—1,1}* such that (1) [V| >
exp(S/8) and (2) for any v,v" € V,v # v; , one has ||v — v'||; > S/2.
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