

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TOWARDS A SHARP ANALYSIS OF LEARNING OF- FLINE f -DIVERGENCE-REGULARIZED CONTEXTUAL BANDITS

Anonymous authors

Paper under double-blind review

ABSTRACT

Many offline reinforcement learning algorithms are underpinned by f -divergence regularization, but their sample complexity *defined with respect to regularized objectives* still lacks tight analyses, especially in terms of concrete data coverage conditions. In this paper, we study the exact concentrability requirements to achieve the $\tilde{\Theta}(\epsilon^{-1})$ sample complexity for offline f -divergence-regularized contextual bandits. For reverse Kullback–Leibler (KL) divergence, arguably the most commonly used one, we achieve an $\tilde{O}(\epsilon^{-1})$ sample complexity under single-policy concentrability for the first time via a novel pessimism-based analysis, surpassing existing $\tilde{O}(\epsilon^{-1})$ bound under all-policy concentrability and $\tilde{O}(\epsilon^{-2})$ bound under single-policy concentrability. We also propose a near-matching lower bound, demonstrating that a multiplicative dependency on single-policy concentrability is necessary to maximally exploit the curvature property of reverse KL. Moreover, for f -divergences with strongly convex f , to which reverse KL *does not* belong, we show that the sharp sample complexity $\tilde{\Theta}(\epsilon^{-1})$ is achievable even without pessimistic estimation or single-policy concentrability. We further corroborate our theoretical insights with numerical experiments and extend our analysis to contextual dueling bandits. We believe these results take a significant step towards a comprehensive understanding of objectives with f -divergence regularization.

1 INTRODUCTION

Due to the data-hungry and instable nature of reinforcement learning (RL), divergences that are straightforward to estimate via Monte Carlo or amenable to constrained optimization stand out from numerous candidates (Rényi, 1961; Csiszár, 1967; Müller, 1997; Basseville, 2013) as regularizers; the former family is typically *f -divergence* (Rényi, 1961) because any of them is an expectation, for which empirical average is a good proxy (Levine, 2018; Levine et al., 2020); and the latter class subsumes those with nice positive curvatures (e.g., Bregman divergence (Bregman, 1967) induced by strongly convex functions). In particular, *Kullback–Leibler (KL) divergence* is the only one at the intersection of f -divergence and Bregman divergence (Jiao et al., 2014, Theorem 5), indicating its theoretical advantage among common choices from both computational and statistical aspects. Also, the *KL-regularized RL objective* is arguably the most popular one in practice:

$$J(\pi) = \mathbb{E}_\pi[r] - \eta^{-1} \text{KL}(\pi \parallel \pi^{\text{ref}}), \quad (1.1)$$

where r is the reward, π^{ref} is a reference policy, $\text{KL}(\pi \parallel \pi^{\text{ref}})$ is the reverse KL divergence, and $\eta > 0$ is the inverse temperature. When π^{ref} is uniform, (1.1) reduces to the entropy-regularized objective that encourages diverse actions and enhances robustness (Williams, 1992; Ziebart et al., 2008; Levine & Koltun, 2013; Levine et al., 2016; Haarnoja et al., 2018; Richemond et al., 2024; Liu et al., 2024). KL regularization has also been widely used in the RL fine-tuning of large language models (Ouyang et al., 2022; Rafailov et al., 2023), where π^{ref} is the base model. Given its widespread use, there has been a surge of interest in understanding the role of KL regularization in RL by both empirical studies (Ahmed et al., 2019; Liu et al., 2019) and theoretical analysis (Geist et al., 2019; Vieillard et al., 2020; Kozuno et al., 2022). There are also lines of research on KL regularization in online learning (Cai et al., 2020; He et al., 2022; Ji et al., 2023) and convex optimization (Neu et al.,

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1

108 the discrepancy between any two functions in the function class. To the best of our knowledge,
 109 this machinery has not been used in the standard analysis of existing offline RL algorithms and
 110 may be of independent interest.

111 • For f -divergence-regularized objectives with strongly convex f , we design a truly lightweight
 112 algorithm free of pessimism-based gadgets and still obtain the $\tilde{\Theta}(\epsilon^{-1})$ sample complexity certified
 113 by a matching lower bound without coverage conditions.

114 • We verify the statistical rates above in numerical experiments, and demonstrate the versatility of
 115 all algorithmic and constructive proof ideas above by extending them to f -divergence-regularized
 116 contextual dueling bandits (CDBs), achieving similar $\tilde{\Theta}(\epsilon^{-1})$ sample complexity bounds. More-
 117 over, all algorithms are applicable for reward function classes with small metric entropy.

118

119 **1.2 KEY RELATED WORK**

120 We review two key lines of theoretical progress that are relevant to our algorithm design and analysis.

121 **Pessimism in offline RL.** The principle of pessimism has been underpinning offline RL for both
 122 the tabular (Rashidinejad et al., 2021) and function approximation (Jin et al., 2021) settings under the
 123 name of lower confidence bound (LCB). For contextual bandits, it is behind the adaptively optimal
 124 sample complexity analysis (Li et al., 2022). Shi et al. (2022) proposed a LCB-based model-free
 125 algorithm for tabular RL with near-optimal guarantee. Jin et al. (2021); Xiong et al. (2022); Di et al.
 126 (2024) utilized LCB in conjunction with the classic least-square value iteration paradigm to derive
 127 $\tilde{O}(\epsilon^{-2})$ sample complexity results for model-free RL with function approximation. The line of work
 128 from Rashidinejad et al. (2021); Xie et al. (2021b) to Li et al. (2024) settled the sample complexity
 129 of tabular model-based RL via pessimistic estimators exploiting the variance information. It is
 130 also possible to leverage the idea of pessimism to design model-based algorithms under general
 131 function approximation that are at least statistically efficient (Xie et al., 2021a; Uehara & Sun, 2021;
 132 Wang et al., 2024). The principle of pessimism has also been applied in counterfactual empirical
 133 risk minimization (Swaminathan & Joachims, 2015; London & Sandler, 2019) and offline policy
 134 learning (Sakhi et al., 2023; 2024), which are orthogonal to our contributions.

135 However, in terms of risk decomposition, to the best of our knowledge, none of these pessimism-
 136 based analyses really goes beyond the performance difference lemma (Foster & Rakhlin, 2023,
 137 Lemma 13) or simulation lemma (Foster & Rakhlin, 2023, Lemma 23); both of which are not
 138 able to capture the strong concavity of KL-regularized objectives even in the bandit setting. The
 139 algorithmic idea of using pessimistic least-square estimators under general function approximation
 140 in Jin et al. (2021); Di et al. (2024) is similar to ours, but their sub-optimality gap is bounded by the
 141 sum of bonuses, which cannot directly lead to the desired sample complexity of our objective.

142 **Offline CDBs.** CDBs (Dudík et al., 2015) is the contextual extension of dueling bandits in the
 143 classic literature of online learning from pairwise comparisons (Yue et al., 2012; Zoghi et al., 2014).
 144 Since the empirical breakthrough of preference-based RL fine-tuning of LLMs (Ouyang et al., 2022),
 145 the theory of offline CDBs has received more attention under linear function approximation (Zhu
 146 et al., 2023; Xiong et al., 2024) and general function approximation (Zhan et al., 2022; Zhao et al.,
 147 2024; Song et al., 2024; Huang et al., 2025b). Preference models without stochastic transitivity
 148 (Munos et al., 2023; Ye et al., 2024; Wu et al., 2024; Zhang et al., 2024) are beyond the scope of
 149 this work, namely, our preference labels are assumed to follow the Bradley-Terry Model (Bradley &
 150 Terry, 1952).

151 **Notation.** The sets \mathcal{S} and \mathcal{A} are assumed to be countable throughout the paper. For nonnegative
 152 sequences $\{x_n\}$ and $\{y_n\}$, we write $x_n = O(y_n)$ if $\limsup_{n \rightarrow \infty} x_n/y_n < \infty$, $y_n = \Omega(x_n)$ if
 153 $x_n = O(y_n)$, and $y_n = \Theta(x_n)$ if $x_n = O(y_n)$ and $x_n = \Omega(y_n)$. We further employ $\tilde{O}(\cdot)$, $\tilde{\Omega}(\cdot)$,
 154 and $\tilde{\Theta}$ to hide polylog factors. For countable \mathcal{X} and \mathcal{Y} , we denote the family of probability kernels
 155 from \mathcal{X} to \mathcal{Y} by $\Delta(\mathcal{Y}|\mathcal{X})$. For $g : \mathcal{X} \rightarrow \mathbb{R}$, its infinity norm is denoted by $\|g\|_\infty := \sup_{x \in \mathcal{X}} |g(x)|$.
 156 For a pair of probability measures $P \ll Q$ on the same space and function $f : \mathbb{R}_+ \rightarrow \mathbb{R}$, their
 157 f -divergence is $D_f(P||Q) := \int f(dP/dQ) dQ$. Specifically, when $f(x) = x \log x$, f -divergence
 158 becomes KL divergence denoted as $\text{KL}(P||Q) := \int \log(dP/dQ) dP$, and when $f(x) = |x - 1|/2$,
 159 it becomes the total variation (TV) distance, which is denoted as $\text{TV}(P||Q) := 0.5 \int |dP - dQ|$.
 160 We use $\text{supp}(P)$ to denote the support set of P .

162 2 KL-REGULARIZED CONTEXTUAL BANDITS

164 In this section, we introduce a pessimism-based algorithm, PCB-KL, for offline KL-regularized
 165 contextual bandits. We then showcase our novel analysis techniques for PCB-KL, which couples
 166 the algorithmic pessimism with the curvature property of KL-regularized objectives.

167 2.1 PROBLEM SETUP

169 We consider contextual bandit, which is denoted by a tuple $(\mathcal{S}, \mathcal{A}, r, \pi^{\text{ref}})$. Specifically, \mathcal{S} is the
 170 context space, \mathcal{A} is the action space and $r : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ is the reward function. In the offline
 171 setting, the agent only has access to an i.i.d. dataset $\mathcal{D} = \{(s_i, a_i, r_i)\}_{i=1}^n$. Here s_i s are states
 172 sampled from $\rho \in \Delta(\mathcal{S})$, $a_i \in \mathcal{A}$ is the action taken from a *behavior policy*, and r_i is the observed
 173 reward given by $r_i = r(s_i, a_i) + \varepsilon_i$, where ε_i is 1-sub-Gaussian (Lattimore & Szepesvári, 2020,
 174 Definition 5.2). In this work, we consider the *KL-regularized objective*

$$175 \quad J_\eta(\pi) := \mathbb{E}_{(s, a) \sim \rho \times \pi} \left[r(s, a) - \eta^{-1} \log \frac{\pi(a|s)}{\pi^{\text{ref}}(a|s)} \right], \quad (2.1)$$

178 where π^{ref} is a known reference policy and the “inverse temperature” η controls the intensity of reg-
 179 ularization. For simplicity, we assume that π^{ref} is also the behavior policy that generates the dataset
 180 \mathcal{D} , which is similar to the type of “behavior regularization” studied in Zhan et al. (2022). The unique
 181 optimal policy $\pi_\eta^* := \text{argmax}_{\pi \in \Delta(\mathcal{A}|\mathcal{S})} J_\eta(\pi)$ is given by (See, e.g., Zhang 2023, Proposition 7.16)³

$$182 \quad \pi^*(\cdot|s) \propto \pi^{\text{ref}}(\cdot|s) \exp(\eta \cdot r(s, \cdot)), \forall s \in \mathcal{S}. \quad (2.2)$$

184 A policy π is said to be ϵ -optimal if $\text{SubOpt}_{\text{RKL}}(\pi) := J(\pi^*) - J(\pi) \leq \epsilon$ and the goal of the
 185 agent is to find one such policy using \mathcal{D} . Note that $\text{SubOpt}_{\text{RKL}}(\cdot)$ is defined through (2.1) and thus
 186 **depends on** η . To ensure that ϵ -optimality is achievable, we assume that r lies in a known function
 187 class $\mathcal{G} \subset (\mathcal{S} \times \mathcal{A} \rightarrow [0, 1])$, from which the agent obtains an estimator \hat{r} . More specifically, we
 188 work with general function approximation under realizability, which is as follows.

189 **Assumption 2.1.** For this known function class $\mathcal{G} \subset (\mathcal{S} \times \mathcal{A} \rightarrow [0, 1])$, $\exists g^* \in \mathcal{G}$ with $g^* = r$.

191 We also employ the standard notion of covering number (Wainwright, 2019, Definition 5.1) as the
 192 complexity measure of the reward function class \mathcal{G} .

193 **Definition 2.2** (ϵ -net and covering number). Given a function class $\mathcal{G} \subset (\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R})$, a finite
 194 set $\mathcal{G}(\epsilon) \subset \mathcal{G}$ is an ϵ -net of \mathcal{G} w.r.t. $\|\cdot\|_\infty$, if for any $g \in \mathcal{G}$, there exists $g' \in \mathcal{G}(\epsilon)$ such that
 195 $\|g - g'\|_\infty \leq \epsilon$. The ϵ -covering number is the smallest cardinality $\mathcal{N}_{\mathcal{G}}(\epsilon)$ of such $\mathcal{G}(\epsilon)$.

196 **Assumption 2.3.** For any $\epsilon_c > 0$, the ϵ_c -covering number $\mathcal{N}_{\mathcal{G}}(\epsilon_c)$ of \mathcal{G} is $\text{poly}(\epsilon_c^{-1})$.

198 Assumption 2.3 allowing $\log \mathcal{N}_{\mathcal{G}}(\epsilon)$ to be roughly negligible is arguably mild. For example, when
 199 \mathcal{G} is the class of linear functions of dimension d and radius R , the covering number is $\mathcal{N}_{\mathcal{G}}(\epsilon) =$
 200 $O((1 + R\epsilon^{-1})^d)$ (Jin et al., 2020, Lemma D.6), which satisfies Assumption 2.3.

201 **Concentrability.** The data quality of \mathcal{D} collected by π^{ref} is typically characterized by *concentrability* in offline RL (Farahmand et al., 2010; Chen & Jiang, 2019; Jiang & Xie, 2024), which
 202 quantifies the ability of the behavioral policy to generate diverse actions. We first define the density-
 203 ratio-based concentrability as follows.

206 **Definition 2.4** (*Density-ratio-based* concentrability). For policy class Π , reference policy π^{ref} , the density-ratio-based all-policy concentrability C^Π is $C^\Pi := \sup_{\pi \in \Pi, s \in \mathcal{S}, a \in \mathcal{A}} \pi(a|s)/\pi^{\text{ref}}(a|s)$, whose single-policy counterpart under the optimal policy
 207 π^* is $C^{\pi^*} := \sup_{s \in \mathcal{S}, a \in \mathcal{A}} \pi^*(a|s)/\pi^{\text{ref}}(a|s)$.

210 In the definition above, small all-policy concentrability intuitively corresponds to $\text{supp}(\pi^{\text{ref}})$ covering
 211 all possible inputs. On the other hand, small single-policy concentrability means that $\text{supp}(\pi^{\text{ref}})$
 212 only subsumes $\text{supp}(\pi^*)$. In this paper, in addition to density-ratio-based concentrability, we also
 213 adopt the following D^2 -based concentrabilites to better capturing the nature of function class \mathcal{G} . In
 214 detail, we start with the D^2 -divergence as follows.

215 ³We suppress J_η into J and π_η^* into π^* when they are clear in context in the following presentation.

216 **Definition 2.5.** Given a function class $\mathcal{G} \subset (\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R})$ and a fixed policy π , define the D^2 -
 217 divergence $D_{\mathcal{G}}^2((s, a); \pi)$ as
 218

$$219 \quad \sup_{g, h \in \mathcal{G}} \frac{(g(s, a) - h(s, a))^2}{220 \mathbb{E}_{(s', a') \sim \rho \times \pi} [(g(s', a') - h(s', a'))^2]}.$$

221 The ‘‘eluder dimension’’-type Definition 2.5 is directly inspired by Di et al. (2024); Zhao et al.
 222 (2024), the intuition behind which is that given $(s, a) \in \mathcal{S} \times \mathcal{A}$, a small D^2 -divergence indicates
 223 that for two functions g and h , if they are close under the behavior policy π , then they will also
 224 be close on such pair (s, a) . Therefore, the D^2 -divergence quantifies how well the estimation on
 225 dataset collected by the behavior policy π can be generalized to a specific state-action pair.
 226

227 **Remark 2.6.** For the tabular setting, a direct computation yields $D^2(s, a) = (\rho(s)\pi^{\text{ref}}(a|s))^{-1}$,
 228 which can be estimated by the visitation frequency empirically. Under linear function approxima-
 229 tion, it is well known that $D^2(s, a) = \|\phi(s, a)\|_{\Sigma^{-1}}^2$ under mild conditions of the parameter space,
 230 where $\Sigma = \mathbb{E}_{\rho \times \pi^{\text{ref}}} \phi(s, a)\phi(s, a)^\top$ is the covariance matrix, which can be estimated by empirical
 231 covariance matrices in practice, potentially with ridge regularization. For more general function
 232 classes like neural networks, the D^2 can also be efficiently approximated by heuristics as discussed
 233 in Xiong et al. (2024); Gupta et al. (2024); Xu et al. (2025).

234 We are now ready to define the two notions of concentrability conditions.

235 **Assumption 2.7** (All-policy concentrability). Given a reference policy π^{ref} , there exists $D < \infty$
 236 such that $D^2 = \sup_{(s, a) \in \mathcal{S} \times \mathcal{A}} D_{\mathcal{G}}^2((s, a); \pi^{\text{ref}})$.

237 Assumption 2.7 indicates that the errors on any state-action pairs can be bounded by the error on the
 238 samples from $\rho \times \pi$ up to a factor D , whose relaxed counterpart under the same π^{ref} is as follows.

239 **Assumption 2.8** (Single-policy concentrability). $D_{\pi^*}^2 := \mathbb{E}_{(s, a) \sim \rho \times \pi^*} D_{\mathcal{G}}^2((s, a); \pi^{\text{ref}}) < \infty$.

240 Assumption 2.8 indicates that the errors on the distributions of state-action pairs $\rho \times \pi^*$ can be
 241 bounded by the error on the samples from $\rho \times \pi^{\text{ref}}$ up to some constant. For both types, the single-
 242 policy concentrability assumption is strictly weaker than the all-policy concentrability assumption.
 243 However, in general, the two quantities characterizing single-policy concentrability C^{π^*} and $D_{\pi^*}^2$,
 244 cannot be bounded by each other up to constant factors. In particular, we have $D_{\pi^*}^2 \leq |\mathcal{S}||\mathcal{A}|C^{\pi^*}$,
 245 indicating that C^{π^*} subsumes $D_{\pi^*}^2$ when $|\mathcal{S}|$ and $|\mathcal{A}|$ can be seen as constants. [We refer the reader to Appendix B for a further discussion on the relation between \$C^{\pi^*}\$ and \$D_{\pi^*}^2\$.](#)

2.2 ALGORITHM

250 In this subsection, we present an offline bandit algorithm, KL-PCB, for KL-regularized contextual
 251 bandits in Algorithm 1. KL-PCB first leverages least-square estimator to find a function $\bar{g} \in \mathcal{G}$
 252 that minimizes its risk on the offline dataset. In Zhao et al. (2024), such \bar{g} is directly applied to
 253 construct the estimated policy. In contrast, we construct a pessimistic estimator of g^* following the
 254 well-known pessimism principle in offline RL (Jin et al., 2021). Specifically, we define the bonus
 255 term Γ_n through the confidence radius $\beta = \sqrt{128 \log(2\mathcal{N}_{\mathcal{G}}(\epsilon)/\delta)/3n + 18\epsilon}$ as

$$256 \quad \Gamma_n(s, a) = \beta D_{\mathcal{G}}((s, a), \pi^{\text{ref}}), \forall (s, a) \in \mathcal{S} \times \mathcal{A}. \quad (2.3)$$

257 We then obtain our pessimistic estimation \hat{g} by setting $\hat{g} = \bar{g} - \Gamma_n$, which is less than g^* with high
 258 probability. Formally, let the event $\mathcal{E}(\delta)$ given $\delta > 0$ defined as

$$259 \quad \mathcal{E}(\delta) := \left\{ \sup_{(s, a) \in \mathcal{S} \times \mathcal{A}} \left[|\bar{g} - g^*| - \Gamma_n \right] (s, a) \leq 0 \right\}, \quad (2.4)$$

260 on which the least square estimation \bar{g} obtained in Line 1 of Algorithm 1 does not deviate too much
 261 from the true function g^* and therefore \hat{g} is a pessimistic estimation of g^* . We have the following
 262 lemma indicating that this event holds with high probability.

263 **Lemma 2.9.** For all $\delta > 0$, $\mathcal{E}(\delta)$ holds with probability at least $1 - \delta$.

264 After obtaining the pessimistic estimation, KL-PCB output the policy $\hat{\pi}$, which maximizes the esti-
 265 mated objective

$$266 \quad \hat{J}(\pi) = \mathbb{E}_{(s, a) \sim \rho \times \pi} \left[\hat{g}(s, a) - \eta^{-1} \log \frac{\pi(a|s)}{\pi^{\text{ref}}(a|s)} \right],$$

270 Algorithm 1 Offline KL-Regularized Pessimistic Contextual Bandits (KL-PCB)

271 Require: regularization η , reference policy π^{ref} , offline dataset \mathcal{D} , function class \mathcal{G}
272 1: Least square estimation of reward function $\bar{g} \in \operatorname{argmin}_{g \in \mathcal{G}} \sum_{(s_i, a_i, r_i) \in \mathcal{D}} (g(s_i, a_i) - r_i)^2$
273 2: Let $\hat{g} \leftarrow \bar{g} - \Gamma_n$, where Γ_n is the bonus term in (2.3)

274 Ensure: $\hat{\pi}(a|s) \propto \pi^{\text{ref}}(a|s) \exp(\eta \cdot \hat{g}(s, a))$

278 the maximizer of which is the counterpart of (2.2), i.e.,

$$279 \hat{\pi}(a|s) \propto \pi^{\text{ref}}(a|s) \exp(\eta \cdot \hat{g}(s, a)).$$

281 2.3 THEORETICAL RESULTS
283 The sample complexity for KL-regularized contextual bandits is settled in this subsection. We first
284 give the upper bound of KL-PCB.

285 Theorem 2.10. Under Assumption 2.8, for sufficiently small $\epsilon \in (0, 1)$, if we set Γ_n as in (2.3),
286 then $n = \tilde{O}(\eta D_{\pi^*}^2 \epsilon^{-1} \log \mathcal{N}_{\mathcal{G}}(\epsilon))$ suffices to guarantee the output policy $\hat{\pi}$ of Algorithm 1 to be
287 ϵ -optimal with probability at least $1 - \delta$.

289 Previously, Zhao et al. (2024) achieved an $\tilde{O}(\epsilon^{-1})$ sample complexity under Assumption 2.7. As
290 a comparison, KL-PCB achieves the same $\tilde{O}(\epsilon^{-1})$ sample complexity but only requiring Assump-
291 tion 2.8, which is weaker than Assumption 2.7. We also provide the sample complexity lower bound
292 of KL-regularized contextual bandits in the following theorem, which, together with Theorem 2.10,
293 demonstrates that single-policy concentrability is both necessary and sufficient for near-optimal of-
294 fline learning evaluated by KL-regularized objectives.

295 Theorem 2.11. For $\forall S \geq 1$, $\eta > 4 \log 2$, $C^* \in (2, \exp(\eta/4)]$, and any algorithm
296 Alg , there is a KL-regularized contextual bandit with $C^{\pi^*} \leq C^*$ such that Alg requires
297 $\Omega(\min\{\eta\epsilon^{-1}, \epsilon^{-2}\}C^* \log \mathcal{N}_{\mathcal{G}}(\epsilon))$ samples to find an ϵ -optimal policy for sufficiently small ϵ .

299 Previously, Zhao et al. (2024) provided a sample complexity lower bound of $\Omega(\eta \log \mathcal{N}_{\mathcal{G}}(\epsilon)/\epsilon)$ under
300 KL regularization. Foster et al. (2025) also provided a lower bound of $\Omega(C^{\pi^*})$ for KL-regularized
301 objective to show the necessity of coverage. Compared to their results, our result shows that the
302 *multiplicative* dependency on C^{π^*} is necessary for the first time.

303 Remark 2.12. Theorem 2.11 shows that when ϵ is sufficiently small, any algorithm for offline
304 KL-regularized contextual bandits requires at least $\Omega(\eta C^{\pi^*})\epsilon^{-1} \log \mathcal{N}_{\mathcal{G}}(\epsilon)$ samples to output an
305 ϵ -optimal policy. The presence of $\exp(\text{poly}(\eta))$ in the range of C^* is inevitable, since we always
306 have $C^{\pi^*} \leq \exp(\eta)$ in reverse KL regularized bandits with bounded rewards.

307 Remark 2.13. As discussed before, we might have some easy instances with $D_{\pi^*}^2 \leq C^{\pi^*}$,
308 where KL-PCB outperforms the lower bound. This does not violates Theorem 2.11 since The-
309 orem 2.11 only guarantees that *there exist* some hard instances that all algorithms require at least
310 $\Omega(\min\{\eta\epsilon^{-1}, \epsilon^{-2}\}C^* \log \mathcal{N}_{\mathcal{G}}(\epsilon))$ samples.

312 2.4 PROOF OVERVIEW OF THEOREM 2.10
313 In this section, we summarize the novel techniques in the proof of Theorem 2.10, which is de-
314 ferred to Appendix D.4. At a high level, if we consider the regularized objective (1.1) multi-arm
315 bandits, then $P \mapsto \text{KL}(P\|Q)$ is 1-strongly convex w.r.t. $\text{TV}(\cdot\|\cdot)$ (Polyanskiy & Wu, 2025, Exer-
316 cise I.37), and thus $J(\pi)$ is strongly concave. Therefore, $J(\pi^*) - J(\hat{\pi})$ is possible to be of the order
317 $[\text{TV}(\pi^*\|\hat{\pi})]^2 \approx \tilde{O}(n^{-1})$, pretending that π^* is the unconstrained maximizer. In detail, we follow
318 the regret decomposition in Zhao et al. (2024), which is encompassed by the following lemma.

319 Lemma 2.14. Let $g : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ be any reward function, then there exist some $\gamma \in [0, 1]$ such
320 that the sub-optimality gap of $\pi_g(\cdot|s) \propto \pi^{\text{ref}}(\cdot|s) \exp(\eta g(s, \cdot))$ can be bounded as

$$322 J(\pi^*) - J(\pi_g) \leq \eta \mathbb{E}_{(s, a) \sim \rho \times \pi_\gamma} [(g^* - g)^2(s, a)],$$

323 where $g_\gamma := \gamma g + (1 - \gamma)g^*$ and $\pi_\gamma(\cdot|s) \propto \pi^{\text{ref}}(\cdot|s) \exp(\eta g_\gamma(s, \cdot))$.

In Zhao et al. (2024), because the g in Lemma 2.14 is substituted with only the least-square estimator \bar{g} with no extra structures, the reliance on the “mid-point” policy π_γ can only be controlled all-policy concentrability. However, our g is the pessimistic estimator \hat{g} of g^* in Algorithm 1, and thus the presence of π_γ can be eliminated for free: let $G(\gamma) := \mathbb{E}_{\rho \times \pi_\gamma} \left[(\hat{g} - g^*)^2(s, a) \right]$ and $\Delta(s, a) := (\hat{g} - g^*)(s, a) \leq 0$, then a direct computation (detailed in the proof of Lemma D.3) yields

$$G'(\gamma) = \eta \mathbb{E}_\rho \left[\mathbb{E}_{\pi_\gamma} [\Delta^3(s, a)] - \mathbb{E}_{\pi_\gamma} [\Delta^2(s, a)] \mathbb{E}_{\pi_\gamma} [\Delta(s, a)] \right] \leq 0. \quad (2.5)$$

This gives $J(\pi^*) - J(\hat{\pi}) \leq \eta \mathbb{E}_{\rho \times \pi^*} [(\hat{g} - g^*)^2(s, a)]$, which can be bounded with single-policy concentrability while still achieves the sharp dependency ϵ^{-1} on ϵ . Here, (2.5) holds due to a moment-based machinery in Lemma 2.15.

Lemma 2.15. If $\mathbb{P}(X \leq 0) = 1$ and $\mathbb{E}|X|^3 < \infty$, then $\mathbb{E}[X^3] - \mathbb{E}[X^2]\mathbb{E}[X] \leq 0$.

The intuition behind Lemma 2.15 is natural: X and X^2 cannot be positively correlated. Moreover, to the best of our knowledge, we are the first to unveil this moment-based structure in our non-standard pessimism-based analysis, from which the sharp upper bound follows. While pessimism is widely adopted to derive near-optimal statistical rates under single-policy concentrability in offline RL with reward maximization as the goal (See, e.g., Jin et al. (2021); Xiong et al. (2022)), the standard pessimism-based pipeline is not sharp enough for bounding the $\text{SubOpt}_{\text{RKL}}(\hat{\pi})$ defined through *regularized objectives*, the reason of which is detailed in the last paragraph of Appendix A.1.

3 f -DIVERGENCE-REGULARIZED CONTEXTUAL BANDITS

As discussed in Section 2, the fast rate implied by Theorems 2.10 and 2.11 is primarily achieved due to the strong convexity of $\pi \mapsto \text{KL}(\pi \parallel \pi^{\text{ref}})$. However, KL is just an instance of f -divergence with $f(x) = x \log x$, which is only locally strongly convex but not strongly convex. Motivated by this observation, we further examine f -divergence regularization with strongly convex f , which may introduce a more favorable curvature in the performance metric of offline learning in principle.

3.1 PROBLEM SETUP

We study a contextual bandit setting similar to that in Section 2.1. In this section, we consider the following f -divergence regularized objective

$$J_{\eta, D_f}(\pi) := \mathbb{E}_{(s, a) \sim \rho \times \pi} [r(s, a)] - \eta^{-1} \mathbb{E}_{s \sim \rho} [D_f(\pi(\cdot | s) \parallel \pi^{\text{ref}}(\cdot | s))], \quad (3.1)$$

where η is the regularization intensity and $D_f(p \parallel q) := \mathbb{E}_{a \sim q} [f(p(a)/q(a))]$ is the f -divergence. Let the optimal policy be $\pi_{\eta, D_f}^* := \text{argmax}_{\pi \in \Delta(\mathcal{A} | \mathcal{S})} J_{\eta, D_f}(\pi)$ and we re-define the learning objective as searching for a policy π with $\text{SubOpt}_{f \text{div}}(\pi) := J(\pi^*) - J(\pi) \leq \epsilon$.⁴ We consider those functions $f : (0, +\infty) \rightarrow \mathbb{R}$ with a nice positive curvature condition in Assumption 3.1.

Assumption 3.1. f is α -strongly convex, twice continuously differentiable, and $f(1) = 0$.

Many elementary functions like quadratic polynomials naturally satisfy Assumption 3.1. For instance, the 1-strongly convex $f(x) = (x - 1)^2/2$ induces $D_f(P \parallel Q) = \chi^2(P \parallel Q)$, which is the χ^2 -divergence recently considered in RL literature (see e.g., Zhan et al. (2022); Huang et al. (2025b); Amortila et al. (2024)). This regularization exhibits a promising theoretical potential for relaxing the data coverage requirement for efficient offline policy learning (Huang et al., 2025b) and to be effective in preventing reward hacking (Laidlaw et al., 2025) against unregularized objectives. These favorable benefits are primary due to the observation that strongly convex f ’s impose a stronger penalization on actions out of the coverage of π^{ref} .

3.2 ALGORITHM AND MAIN RESULTS

In this subsection, we present an offline learning algorithm for f -divergence regularized bandit, f -CB, in Algorithm 2. Algorithm 2 first leverages least-square estimator to find a function $\bar{g} \in \mathcal{G}$ that minimizes its risk on the offline dataset. The algorithm then uses the least squares estimation \bar{g} to construct the output policy $\hat{\pi}$. Compared to Algorithm 1, f -CB does not require any procedure to construct pessimistic reward estimation, whose sample complexity upper bound is given as follows.

⁴We again suppress $J_{\eta, D_f}(\cdot)$ into $J(\cdot)$ and π_{η, D_f}^* into π^* when there is no confusion.

Algorithm 2 Offline f -divergence Regularized Contextual Bandits (f -CB)

Require: regularization η , reference policy π^{ref} , function class \mathcal{G} , offline dataset \mathcal{D}
1: Least square estimation $\bar{g} \in \operatorname{argmin}_{g \in \mathcal{G}} \sum_{(s_i, a_i, r_i) \in \mathcal{D}} (g(s_i, a_i) - r_i)^2$ 2: Compute the optimal policy under the least-square reward estimator \bar{g} for $s \in \mathcal{S}$ as

$$\hat{\pi}(\cdot|s) \leftarrow \operatorname{argmax}_{\pi(\cdot|s) \in \Delta(\mathcal{A})} \langle \pi(\cdot|s), \bar{g}(s, \cdot) \rangle + \eta^{-1} D_f(\pi(\cdot|s) \| \pi^{\text{ref}}(\cdot|s))$$

Ensure: $\hat{\pi}$

Theorem 3.2. Under Assumption 3.1, for sufficiently small $\epsilon \in (0, 1)$, with probability at least $1 - \delta$, $n = \tilde{O}(\alpha^{-1} \eta \epsilon^{-1} \log \mathcal{N}_{\mathcal{G}}(\epsilon))$ is sufficient to guarantee the output policy $\hat{\pi}$ of f -CB to be ϵ -optimal.

Remark 3.3. Compared to the $D_{\pi^*}^2$ dependency in Theorem 2.10, Theorem 3.2 shows that the sample complexity of Algorithm 2 gets rid of the dependency on any data coverage conditions when f is strongly convex. Intuitively, this is because the f -divergence regularization in this case is much stronger, so that both π^* and $\hat{\pi}$ are close enough to π^{ref} .

The following hardness result justify the near-optimality of Theorem 3.2 for f -divergence-regularized contextual bandits.

Theorem 3.4. For any $\epsilon \in (0, 1)$, $\alpha > 0$, $\eta > 0$, $S > 32/3 \cdot \log 2$, sufficiently small ϵ , and algorithm Alg , there is an α -strongly-convex function f and an f -divergence-regularized contextual bandit instance such that Alg requires at least $\Omega(\alpha^{-1} \eta \epsilon^{-1} \log \mathcal{N}_{\mathcal{G}}(\epsilon))$ samples to return an ϵ -optimal policy.

401 3.3 PROOF OVERVIEW OF THEOREM 3.2

We provide an overview of key analysis techniques for proving Theorem 3.2. Unlike KL-regularization, the π^* under f -divergence might not have a closed form. This means that the proof of Lemma 2.14, which relies on the closed form of π^* , cannot be directly adopted. Therefore, we address this from a dual-Bregman perspective. For the simplicity of presentation, we consider multi-armed bandits here and omit the subscript for context s .

We consider the function $H(\pi) = \eta^{-1} D_f(\pi \| \pi^{\text{ref}})$, which is the regularizer in the objective. Then its convex conjugate is given by $H^*(r) = \sup_{\pi \in \Delta^d} \{ \langle \pi, r \rangle - H(\pi) \}$, which is exactly the expected reward obtained by the optimal policy given reward function r . One observation is that when f is strongly convex, the induced f -divergence, and therefore the function H are also strongly convex. Therefore, let $\pi_r = \operatorname{argmax}_{\pi} \{ \langle \pi, r \rangle - H_s(\pi) \}$ given some reward function r , the strong convexity of $H(\pi)$ gives that $\nabla H^*(r) = \pi_r$. This leads to the following regret decomposition, which is one of our key observations:

$$\begin{aligned} J(\pi^*) - J(\hat{\pi}) &= \mathbb{E}_{a \sim \pi^*} [g^*(a)] - \mathbb{E}_{a \sim \hat{\pi}} [g^*(a)] - \eta^{-1} [D_f(\pi^* \| \pi^{\text{ref}}) - D_f(\hat{\pi} \| \pi^{\text{ref}})] \\ &= H^*(g^*) - H^*(\bar{g}) - \langle \hat{\pi}, g^* - \bar{g} \rangle \\ &= H^*(g^*) - H^*(\bar{g}) - \langle \nabla H^*(\bar{g}), g^* - \bar{g} \rangle, \end{aligned}$$

which is the Bregman divergence of the dual function H^* and therefore can be bounded by $(g^* - \bar{g})^\top \nabla^2 H^*(\bar{g})(g^* - \bar{g})$ for some \bar{g} . By Proposition 3.2 in Penot (1994), when H is strongly convex, we can bound $\nabla^2 H^*(\bar{g})$ as follows

$$\nabla^2 H^*(\bar{g}) \preceq (\nabla^2 H(\pi_{\bar{g}}))^{-1} \preceq \alpha^{-1} \eta \operatorname{diag}(\pi^{\text{ref}}(a_1), \dots, \pi^{\text{ref}}(a_{|\mathcal{A}|})),$$

which enables us to bound $(g^* - \bar{g})^\top \nabla^2 H^*(\bar{g})(g^* - \bar{g})$ by $\alpha^{-1} \eta \mathbb{E}_{\pi^{\text{ref}}} [(g^* - \bar{g})^2]$. Since $\mathbb{E}_{\pi^{\text{ref}}} [(g^* - \bar{g})^2]$ is not related to π^* , the upper bound is independent of any notion of concentrability.

4 EXPERIMENTS

4.1 TABULAR SETTING

We empirically check in this section the correctness of our matching bounds for KL and f -divergence on the simplest testbed: *two-armed* bandits, i.e., $\mathcal{A} = \{0, 1\}$. We use one hard instance constructed in the proof of Theorem 2.11 (Appendix D.5) for the simulation under KL and

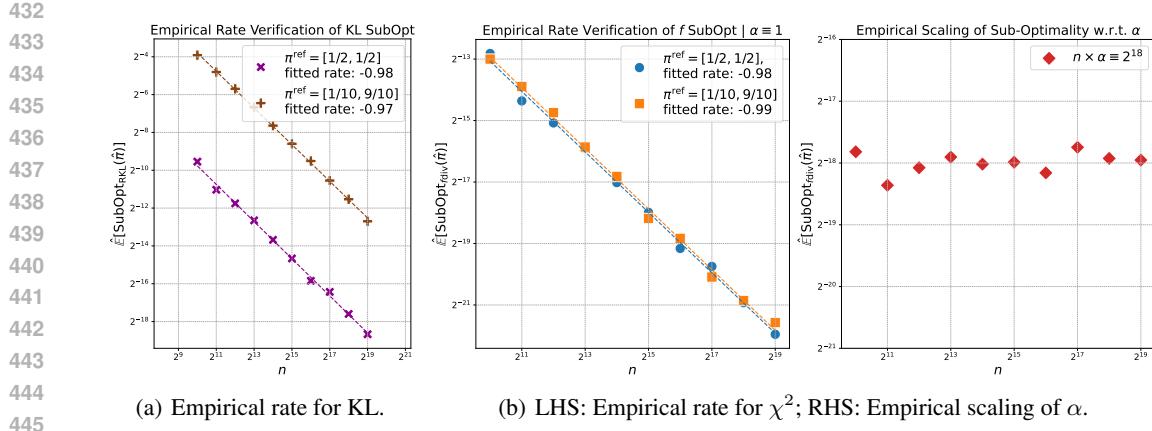


Figure 1: The empirical relation between $\log_2 n$ and $\log_2 \text{SubOpt}$. The *fitted rate* means the slope of $\log_2 n \sim \log_2 \text{SubOpt}$ estimated via linear regression. Here n is the sample size. Every point is the average over **100** independent trials.

one hard instance constructed in the proof of Theorem 3.4 (Appendix E.2) for the simulation under f -divergence with $f(x) = \alpha(x - 1)^2/2$.

Recall that the dependency on ϵ in all sample complexity bounds above is $\tilde{\Theta}(\epsilon^{-1})$, and thus both $\text{SubOpt}_{\text{RKL}}$ and $\text{SubOpt}_{f\text{div}}$ should be roughly proportional to n^{-1} as a function of the sample size n , which can be verified from the linear regression between $\log_2 n$ and $\log_2 \text{SubOpt}$; i.e., the estimated slope should be approximately -1 . Therefore, the two fitted rates in Figure 1(a) indicates that KL-PCB indeed achieves the near-optimal statistical rate n^{-1} under different π^{ref} 's and the counterparts in the LHS of Figure 1(b) indicates the near-optimality of f -CB empirically. The contrast between Figure 1(a) and the LHS of Figure 1(b) also corroborates that the sample complexity against the KL-regularized objective positively depend on the concentrability, while that against the χ^2 -divergence-regularized objective does not vary with the coverage condition of π^{ref} . Moreover, on top of the hard instance for f -divergence, we further set $\alpha = 2^{15}/n$ to numerically examine the scaling of $\text{SubOpt}_{f\text{div}}$ w.r.t. the strong convexity modulus α . As shown on the RHS of Figure 1(b), $\text{SubOpt}_{f\text{div}}$ remains stable as n goes up given $n\alpha \equiv 2^{15}$; therefore, Figure 1(b) also empirically verified that $\text{SubOpt}_{f\text{div}}$ is inversely proportional to α .

4.2 SIMULATION ON LINEAR BANDITS

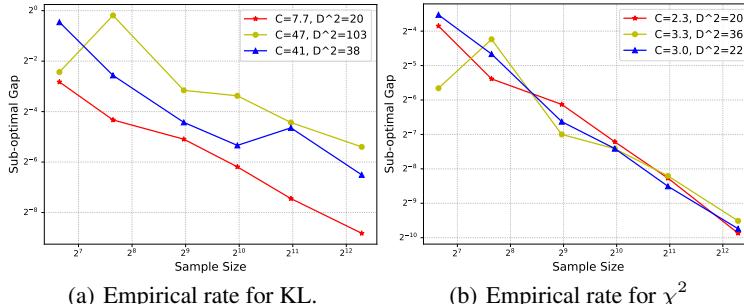


Figure 2: The empirical relation between $\log_2 n$ and $\log_2 \text{SubOpt}$ for linear bandits. In the legend, we denote C^{π^*} (resp. $D_{\pi^*}^2$) by C (resp. D^2).

We simulate a linear bandit as follows. The constructions of the feature map ϕ , ground-truth parameter θ^* and the induced reward are detailed in Appendix C.1. The behavior policy is constructed as $\pi^{\text{ref}} = \beta \text{Unif}(\mathcal{A}) + (1 - \beta) \text{Unif}(\mathcal{A}_k)$, where $\mathcal{A}_k \subset \mathcal{A}$ be the subset such that \mathcal{A}_k consists of the k arms with the lowest expected reward. We consider three different behavior policies,

$(\beta, k) \in \{(1, \cdot), (0.1, 4), (0.05, 20)\}$, which induces various C^{π^*} and $D_{\pi^*}^2$ and thus enables showing the influence of coverage under different regularization. The results are compiled in Figure 2. Specifically, for results under KL-regularization depicted in Figure 2(a), we see that as the coverage coefficients C^{π^*} and $D_{\pi^*}^2$ vary, there is a consistent sub-optimality gap margin between these instances. On the other hand, Figure 2(b) shows that the sub-optimality gaps under different instances (with distinct coverage coefficient) are very close for sufficiently large sample sizes. These results corroborate our theoretical finding that the sample complexity w.r.t. KL-regularized objectives is concentrability-dependent but that w.r.t f -divergence ones is not (for strongly convex f).

4.3 REAL-WORLD EXPERIMENTS

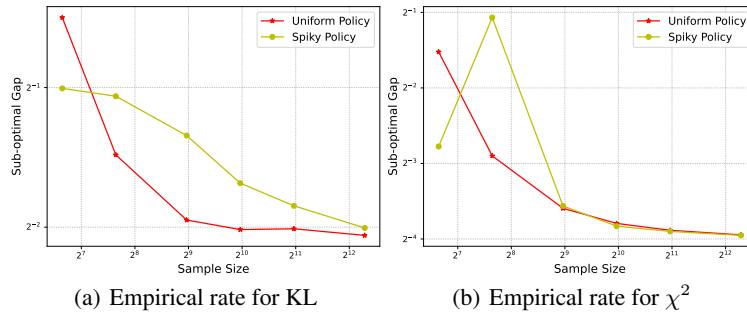


Figure 3: The empirical relation between $\log_2 n$ and $\log_2 \text{SubOpt}$ on MNIST dataset.

We further verify our theory on a vision dataset, MNIST (LeCun, 1998). The feature map $\phi(\cdot, \cdot)$ construction is detailed in Appendix C.2. We consider two reference policies, a uniform policy $\text{Unif}(\mathcal{A})$ and a spiky policy $0.5\text{Unif}(\mathcal{A}) + 0.5\text{Dirac}(\{0\})$ to obtain instances with different concentrability coefficients. Figure 3 exhibits the SubOpt curves, which show that under KL-regularization, when sample size is not large enough, there exists a considerable gap between instances with different behavior policy, but the gap is vanishing as the sample size increases. On the other hand, as for χ^2 -divergence regularization, such a gap vanishes quickly when the sample size becomes moderately large and the sub-optimal gap remains similar for larger sample sizes. These results are consistent with the simulation in Section 4 and our theoretical findings.

5 CONCLUSION AND FUTURE WORK

In this work, we take the first step towards fully understanding the statistical efficiency *with respect to f -divergence-regularized objectives* of offline policy learning by sharp analyses for two empirically relevant subclasses. (1) We are the first to show that single-policy concentrability is nearly the right coverage condition for reverse KL to achieve the fast $\tilde{\Theta}(\epsilon^{-1})$ sample complexity. The novel techniques in algorithm analysis leverages the curvature of KL-regularized objectives and integrates pessimism with a newly identified moment-based observation, enabling a neat refinement of a mean-value-type argument to the extreme; which are decoupled from tricky algorithmic tweaks, and thus might be of independent interest. (2) If strong convexity is further imposed on f , our fast $\tilde{\Theta}(\epsilon^{-1})$ sample complexity is provably free of any coverage dependency. Unlike those for KL, the upper bound arguments for strongly convex f do not rely on specific closed-form solutions of the regularized objective maximizer.

All techniques in this work can be generalized beyond vanilla absolute reward feedback, as certified by CDBs, which is detailed in Appendix F under a slightly different notion of D^2 tailored for pairwise comparison feedback. However, for reverse-KL regularization, the $D_{\pi^*}^2$ in the upper bound and the C^{π^*} in the lower bound still does not perfectly match. Also, for general f -divergence other than reverse-KL, our analyses require f to be twice-continuously differentiable and strongly convex. Fully closing the gap under reverse-KL regularization and extending the analysis to general f -divergences are interesting directions for future work.

540 THE USE OF LARGE LANGUAGE MODELS (LLMs)
541542 We use LLMs as a tool to refine our writing and correct grammatical errors.
543544 REFERENCES
545

546 Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
547 impact of entropy on policy optimization. In *International conference on machine learning*, pp.
548 151–160. PMLR, 2019.

549 Gholamali Aminian, Amir R Asadi, Idan Shenveld, and Youssef Mroueh. Theoretical analysis of
550 kl-regularized rlhf with multiple reference models. *arXiv preprint arXiv:2502.01203*, 2025.

551 Philip Amortila, Dylan J Foster, and Akshay Krishnamurthy. Scalable online exploration via cov-
552 erability. In *Proceedings of the 41st International Conference on Machine Learning*, pp. 1392–
553 1455, 2024.

554 Michéle Basseville. Divergence measures for statistical data processing—an annotated bibliography.
555 *Signal Processing*, 93(4):621–633, 2013.

556 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
557 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

558 Lev M Bregman. The relaxation method of finding the common point of convex sets and its applica-
559 tion to the solution of problems in convex programming. *USSR computational mathematics and*
560 *mathematical physics*, 7(3):200–217, 1967.

561 Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Provably efficient exploration in policy opti-
562 mization. In *International Conference on Machine Learning*, pp. 1283–1294. PMLR, 2020.

563 Fan Chen, Dylan J Foster, Yanjun Han, Jian Qian, Alexander Rakhlin, and Yunbei Xu. Assouad,
564 fano, and le cam with interaction: A unifying lower bound framework and characterization for
565 bandit learnability. *Advances in Neural Information Processing Systems*, 37:75585–75641, 2024.

566 Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning.
567 In *International Conference on Machine Learning*, pp. 1042–1051. PMLR, 2019.

568 Imre Csiszár. On information-type measure of difference of probability distributions and indirect
569 observations. *Studia Sci. Math. Hungar.*, 2:299–318, 1967.

570 Qiwei Di, Heyang Zhao, Jiafan He, and Quanquan Gu. Pessimistic nonlinear least-squares value
571 iteration for offline reinforcement learning. In *The Twelfth International Conference on Learning*
572 *Representations*, 2024.

573 Miroslav Dudík, Katja Hofmann, Robert E Schapire, Aleksandrs Slivkins, and Masrour Zoghi. Con-
574 textual dueling bandits. In *Conference on Learning Theory*, pp. 563–587. PMLR, 2015.

575 Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. Error propagation for approximate
576 policy and value iteration. *Advances in neural information processing systems*, 23, 2010.

577 Dylan J Foster and Alexander Rakhlin. Foundations of reinforcement learning and interactive deci-
578 sion making. *arXiv preprint arXiv:2312.16730*, 2023.

579 Dylan J Foster, Zakaria Mhammedi, and Dhruv Rohatgi. Is a good foundation necessary for efficient
580 reinforcement learning? the computational role of the base model in exploration. *arXiv preprint*
581 *arXiv:2503.07453*, 2025.

582 Germano Gabbianelli, Gergely Neu, and Matteo Papini. Importance-weighted offline learning done
583 right. In *International Conference on Algorithmic Learning Theory*, pp. 614–634. PMLR, 2024.

584 Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
585 processes. In *International Conference on Machine Learning*, pp. 2160–2169. PMLR, 2019.

586 Edgar N Gilbert. A comparison of signalling alphabets. *The Bell system technical journal*, 31(3):
587 504–522, 1952.

594 Dhawal Gupta, Christoph Dann, and Alekh Agarwal. P3o: Pessimistic preference-based policy
 595 optimization for robust alignment from preferences. In *Adaptive Foundation Models: Evolving*
 596 *AI for Personalized and Efficient Learning*, 2024.

597

598 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 599 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference*
 600 *on machine learning*, pp. 1861–1870. PMLR, 2018.

601 Jiafan He, Dongruo Zhou, and Quanquan Gu. Near-optimal policy optimization algorithms for
 602 learning adversarial linear mixture mdps. In *International Conference on Artificial Intelligence*
 603 *and Statistics*, pp. 4259–4280. PMLR, 2022.

604 Audrey Huang, Adam Block, Qinghua Liu, Nan Jiang, Akshay Krishnamurthy, and Dylan J Foster.
 605 Is best-of-n the best of them? coverage, scaling, and optimality in inference-time alignment. In
 606 *Forty-second International Conference on Machine Learning*, 2025a.

607

608 Audrey Huang, Wenhao Zhan, Tengyang Xie, Jason D Lee, Wen Sun, Akshay Krishnamurthy, and
 609 Dylan J Foster. Correcting the mythos of kl-regularization: Direct alignment without overoptimization
 610 via chi-squared preference optimization. In *The Thirteenth International Conference on*
 611 *Learning Representations*, 2025b.

612 Kaixuan Ji, Qingyue Zhao, Jiafan He, Weitong Zhang, and Quanquan Gu. Horizon-free reinforce-
 613 ment learning in adversarial linear mixture mdps. *arXiv preprint arXiv:2305.08359*, 2023.

614 Nan Jiang and Tengyang Xie. Offline reinforcement learning in large state spaces: Algorithms and
 615 guarantees. *Statistical Science*, 2024.

616

617 Jiantao Jiao, Thomas A Courtade, Albert No, Kartik Venkat, and Tsachy Weissman. Information
 618 measures: the curious case of the binary alphabet. *IEEE Transactions on Information Theory*, 60
 619 (12):7616–7626, 2014.

620

621 Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
 622 learning with linear function approximation. In *Conference on learning theory*, pp. 2137–2143.
 623 PMLR, 2020.

624

625 Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
 626 *International Conference on Machine Learning*, pp. 5084–5096. PMLR, 2021.

627

628 Tadashi Kozuno, Wenhao Yang, Nino Vieillard, Toshinori Kitamura, Yunhao Tang, Jincheng Mei,
 629 Pierre Ménard, Mohammad Gheshlaghi Azar, Michal Valko, Rémi Munos, et al. Kl-entropy-
 630 regularized rl with a generative model is minimax optimal. *arXiv preprint arXiv:2205.14211*,
 631 2022.

632

633 Cassidy Laidlaw, Shivam Singhal, and Anca Dragan. Correlated proxies: A new definition and
 634 improved mitigation for reward hacking. In *The Thirteenth International Conference on Learning*
 635 *Representations*, 2025.

636

637 Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020.

638

639 Lucien Le Cam. Convergence of estimates under dimensionality restrictions. *The Annals of Statistics*,
 640 pp. 38–53, 1973.

641

642 Yann LeCun. The mnist database of handwritten digits. <http://yann.lecun.com/exdb/mnist/>, 1998.

643

644 Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
 645 *arXiv preprint arXiv:1805.00909*, 2018.

646

647 Sergey Levine and Vladlen Koltun. Guided policy search. In *International conference on machine*
 648 *learning*, pp. 1–9. PMLR, 2013.

649

650 Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
 651 motor policies. *Journal of Machine Learning Research*, 17(39):1–40, 2016.

652

653 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
 654 rial, review, and perspectives on open problems. *arXiv preprint arXiv:2005.01643*, 2020.

648 Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of
 649 model-based offline reinforcement learning. *The Annals of Statistics*, 52(1):233–260, 2024.
 650

651 Gene Li, Cong Ma, and Nati Srebro. Pessimism for offline linear contextual bandits using ℓ_p confi-
 652 dence sets. *Advances in Neural Information Processing Systems*, 35:20974–20987, 2022.

653 Guanlin Liu, Kaixuan Ji, Renjie Zheng, Zheng Wu, Chen Dun, Quanquan Gu, and Lin Yan. En-
 654 hancing multi-step reasoning abilities of language models through direct q-function optimization.
 655 *arXiv preprint arXiv:2410.09302*, 2024.

656

657 Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. Regularization matters in policy opti-
 658 mization. *arXiv preprint arXiv:1910.09191*, 2019.

659 Ben London and Ted Sandler. Bayesian counterfactual risk minimization. In *International Confer-
 660 ence on Machine Learning*, pp. 4125–4133. PMLR, 2019.

661

662 Alfred Müller. Integral probability metrics and their generating classes of functions. *Advances in
 663 applied probability*, 29(2):429–443, 1997.

664 Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
 665 Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
 666 learning from human feedback. *arXiv preprint arXiv:2312.00886*, 2023.

667

668 Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
 669 decision processes. *arXiv preprint arXiv:1705.07798*, 2017.

670 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 671 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 672 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 673 27730–27744, 2022.

674

675 Jean-Paul Penot. Sub-hessians, super-hessians and conjugation. *Nonlinear Analysis: Theory, Meth-
 676 ods & Applications*, 23(6):689–702, 1994.

677

678 Yury Polyanskiy and Yihong Wu. *Information theory: From coding to learning*. Cambridge univer-
 679 sity press, 2025.

680

681 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 682 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 683 in Neural Information Processing Systems*, 36, 2023.

684

685 Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
 686 forcement learning and imitation learning: A tale of pessimism. *Advances in Neural Information
 687 Processing Systems*, 34:11702–11716, 2021.

688

689 Alfréd Rényi. On measures of entropy and information. In *Proceedings of the fourth Berkeley
 690 symposium on mathematical statistics and probability, volume 1: contributions to the theory of
 691 statistics*, volume 4, pp. 547–562. University of California Press, 1961.

692

693 Pierre Harvey Richemond, Yunhao Tang, Daniel Guo, Daniele Calandriello, Mohammad Gheshlaghi
 694 Azar, Rafael Rafailov, Bernardo Avila Pires, Eugene Tarassov, Lucas Spangher, Will Ellsworth,
 695 et al. Offline regularised reinforcement learning for large language models alignment. *arXiv
 696 preprint arXiv:2405.19107*, 2024.

697

698 Otmane Sakhi, Pierre Alquier, and Nicolas Chopin. Pac-bayesian offline contextual bandits with
 699 guarantees. In *International Conference on Machine Learning*, pp. 29777–29799. PMLR, 2023.

700

701 Otmane Sakhi, Imad Aouali, Pierre Alquier, and Nicolas Chopin. Logarithmic smoothing for pes-
 702 simistic off-policy evaluation, selection and learning. *Advances in Neural Information Processing
 703 Systems*, 37:80706–80755, 2024.

704

705 Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic q-learning for offline
 706 reinforcement learning: Towards optimal sample complexity. In *International conference on
 707 machine learning*, pp. 19967–20025. PMLR, 2022.

702 Yuda Song, Gokul Swamy, Aarti Singh, Drew Bagnell, and Wen Sun. The importance of online data:
 703 Understanding preference fine-tuning via coverage. In *The Thirty-eighth Annual Conference on*
 704 *Neural Information Processing Systems*, 2024.

705 Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
 706 ods for reinforcement learning with function approximation. *Advances in neural information*
 707 *processing systems*, 12, 1999.

708 Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from
 709 logged bandit feedback. In *International conference on machine learning*, pp. 814–823. PMLR,
 710 2015.

711 Masatoshi Uehara and Wen Sun. Pessimistic model-based offline reinforcement learning under
 712 partial coverage. *arXiv preprint arXiv:2107.06226*, 2021.

713 Rom Rubenovich Varshamov. Estimate of the number of signals in error correcting codes. *Doklady*
 714 *Akad. Nauk, SSSR*, 117:739–741, 1957.

715 Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
 716 Leverage the average: an analysis of kl regularization in reinforcement learning. *Advances in*
 717 *Neural Information Processing Systems*, 33:12163–12174, 2020.

718 Martin J Wainwright. *High-dimensional statistics: A non-asymptotic viewpoint*, volume 48. Cam-
 719 bridge university press, 2019.

720 Zhiyong Wang, Dongruo Zhou, John Lui, and Wen Sun. Model-based rl as a minimalist approach
 721 to horizon-free and second-order bounds. *arXiv preprint arXiv:2408.08994*, 2024.

722 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
 723 ment learning. *Machine learning*, 8:229–256, 1992.

724 Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
 725 preference optimization for language model alignment. *arXiv preprint arXiv:2405.00675*, 2024.

726 Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
 727 pessimism for offline reinforcement learning. *Advances in neural information processing systems*,
 728 34:6683–6694, 2021a.

729 Tengyang Xie, Nan Jiang, Huan Wang, Caiming Xiong, and Yu Bai. Policy finetuning: Bridg-
 730 ing sample-efficient offline and online reinforcement learning. *Advances in neural information*
 731 *processing systems*, 34:27395–27407, 2021b.

732 Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and
 733 Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q^* -approximation
 734 for sample-efficient rlhf. *arXiv preprint arXiv:2405.21046*, 2024.

735 Wei Xiong, Han Zhong, Chengshuai Shi, Cong Shen, Liwei Wang, and Tong Zhang. Nearly mini-
 736 max optimal offline reinforcement learning with linear function approximation: Single-agent mdp
 737 and markov game. *arXiv preprint arXiv:2205.15512*, 2022.

738 Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
 739 Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
 740 kl-constraint. In *Forty-first International Conference on Machine Learning*, 2024.

741 Yinglun Xu, Hangoo Kang, Tarun Suresh, Yuxuan Wan, and Gagandeep Singh. Learning a pes-
 742 simistic reward model in rlhf. *arXiv preprint arXiv:2505.20556*, 2025.

743 Chenlu Ye, Wei Xiong, Yuheng Zhang, Nan Jiang, and Tong Zhang. A theoretical analysis of
 744 nash learning from human feedback under general kl-regularized preference. *arXiv preprint*
 745 *arXiv:2402.07314*, 2024.

746 Bin Yu. Assouad, fano, and le cam. In *Festschrift for Lucien Le Cam: research papers in probability*
 747 *and statistics*, pp. 423–435. Springer, 1997.

756 Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
 757 problem. *Journal of Computer and System Sciences*, 78(5):1538–1556, 2012.
 758

759 Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason Lee. Offline reinforcement
 760 learning with realizability and single-policy concentrability. In *Conference on Learning Theory*,
 761 pp. 2730–2775. PMLR, 2022.

762 Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable offline
 763 preference-based reinforcement learning. *arXiv preprint arXiv:2305.14816*, 2023.

764 Tong Zhang. *Mathematical Analysis of Machine Learning Algorithms*. Cambridge University Press,
 765 2023. doi: 10.1017/9781009093057.

766 Yifan Zhang, Ge Zhang, Yue Wu, Kangping Xu, and Quanquan Gu. General preference modeling
 767 with preference representations for aligning language models. *arXiv preprint arXiv:2410.02197*,
 768 2024.

769 Heyang Zhao, Chenlu Ye, Quanquan Gu, and Tong Zhang. Sharp analysis for kl-regularized con-
 770 textual bandits and rlhf. *arXiv preprint arXiv:2411.04625*, 2024.

771 Heyang Zhao, Chenlu Ye, Wei Xiong, Quanquan Gu, and Tong Zhang. Logarithmic regret for online
 772 kl-regularized reinforcement learning. *arXiv preprint arXiv:2502.07460*, 2025.

773 Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with ucb-based exploration.
 774 In *International conference on machine learning*, pp. 11492–11502. PMLR, 2020.

775 Xingyu Zhou. On the fenchel duality between strong convexity and lipschitz continuous gradient.
 776 *arXiv preprint arXiv:1803.06573*, 2018.

777 Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-
 778 back from pairwise or k-wise comparisons. In *International Conference on Machine Learning*,
 779 pp. 43037–43067. PMLR, 2023.

780 Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
 781 reinforcement learning. In *Aaai*, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

782 Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten Rijke. Relative upper confidence
 783 bound for the k-armed dueling bandit problem. In *International conference on machine learning*,
 784 pp. 10–18. PMLR, 2014.

785 CONTENTS

792 1	Introduction	1
793	1.1 Contributions	2
794	1.2 Key Related Work	3
795		
796		
797 2	KL-regularized Contextual Bandits	4
798	2.1 Problem Setup	4
799	2.2 Algorithm	5
800		
801		
802	2.3 Theoretical Results	6
803	2.4 Proof Overview of Theorem 2.10	6
804		
805 3	f-divergence-regularized Contextual Bandits	7
806	3.1 Problem Setup	7
807	3.2 Algorithm and Main Results	7
808		
809	3.3 Proof Overview of Theorem 3.2	8

810	4 Experiments	8
811	4.1 Tabular Setting	8
812	4.2 Simulation on Linear Bandits	9
813	4.3 Real-World Experiments	10
814		
815		
816		
817	5 Conclusion and Future Work	10
818		
819		
820	A Additional Review of Existing Results	17
821	A.1 Previous Attempts on Understanding KL-regularized RL	17
822		
823		
824	B Additional Discussion of Relation between Coverage Measures	18
825		
826	C Experimental Details	19
827	C.1 Linear Bandits	19
828	C.2 Real-Wold Experiments	19
829		
830		
831		
832	D Missing Proofs from Section 2	19
833	D.1 Proof of Lemma 2.9	19
834	D.2 Proof of Lemma 2.14	20
835	D.3 Proof of Lemma 2.15	21
836	D.4 Proof of Theorem 2.10	21
837	D.5 Proof of Theorem 2.11	22
838		
839		
840		
841	E Missing Proof from Section 3	24
842	E.1 Proof of Theorem 3.2	24
843	E.2 Proof of Theorem 3.4	26
844		
845		
846		
847	F Generalization to contextual dueling bandits	27
848	F.1 Problem setup	28
849	F.2 Algorithms and Results	28
850	F.2.1 Algorithms for KL-regularized contextual dueling bandits	28
851	F.2.2 Algorithm and Results for f -divergence Regularized CDBs	29
852		
853		
854		
855	G Missing proof from Appendix F	30
856	G.1 Proof of Theorem F.4	30
857	G.2 Proof of Theorem F.6	32
858	G.3 Proof of Theorem F.8	33
859	G.4 Proof of Theorem F.9	34
860		
861		
862		
863	H Auxiliary Lemmas	35

864 A ADDITIONAL REVIEW OF EXISTING RESULTS

866 **Additional notations.** Besides the notation introduced in Section 1, we will use the following
 867 notations in Appendix. We denote $[N] := \{1, \dots, N\}$ for any positive integer N . Boldfaced lower
 868 case (resp. upper case) letters are reserved for vectors (resp. matrices). Given a positive definite
 869 $\Sigma \in \mathbb{R}^{d \times d}$ and $\mathbf{x} \in \mathbb{R}^d$, we denote the vector's Euclidean norm by $\|\mathbf{x}\|_2$ and define $\|\mathbf{x}\|_\Sigma =$
 870 $\sqrt{\mathbf{x}^\top \Sigma \mathbf{x}}$. We use $\text{Bern}(p)$ to denote Bernoulli distribution with expectation p and $\text{Unif}(\mathcal{X})$ for the
 871 uniform distribution on finite set \mathcal{X} . For $x \in \mathbb{R}^{|\mathcal{A}|}$, we denote $\|x\|_1 = \sum_{a \in \mathcal{A}} |x_a|$. We also denote
 872 $x_n = \Omega(y_n)$ by $x_n \gtrsim y_n$ in Appendix. We use d_H for Hamming distance.

873 A.1 PREVIOUS ATTEMPTS ON UNDERSTANDING KL-REGULARIZED RL

875 There has been a surge of interest in understanding the principle behind KL-regularized RL. Ahmed
 876 et al. (2019); Liu et al. (2019) studied by ablation the effect of entropy regularization on the stability
 877 of policy improvement in policy optimization, the regret of which has been rigorously settled under
 878 the classic online mirror descent framework (Cai et al., 2020; He et al., 2022; Ji et al., 2023). Neu
 879 et al. (2017) unified popular KL-regularized policy optimization algorithms under a convex opti-
 880 mization framework, but the interplay with the data was left untouched. A series of work (Geist
 881 et al., 2019; Vieillard et al., 2020; Kozuno et al., 2022) then analyzed the sample complexity of
 882 algorithms using KL/entropy-type proximal terms with respect to the previous iteration or/and en-
 883 tropy regularizer with improved dependence on the effective horizon in discounted Markov decision
 884 processes. However, the performance metric in these studies is still the unregularized reward max-
 885 imization objective, under which the sample complexity for finding an ϵ -optimal policy is at least
 886 equal to the statistical limit $\Omega(\epsilon^{-2})$.

887 **Convergence under regularized objectives.** Several recent studies (Xie et al., 2024; Xiong et al.,
 888 2024; Zhao et al., 2024; 2025; Foster et al., 2025) switched the focus to analyzing the sub-optimality
 889 guarantee with respect to the regularized objective (1.1). In particular, Xie et al. (2024) studied
 890 token-level Markov decision processes (MDPs) and proposed a KL-regularized RL algorithm
 891 named XPO, which achieves $\tilde{O}(\epsilon^{-2})$ sample complexity under their notion of all-policy concentrability.
 892 Xiong et al. (2024) proposed an Offline GSHF algorithm via the principle of *pessimism in the*
 893 *face of uncertainty*, and proved $\tilde{O}(\epsilon^{-2})$ sample complexity under single-policy concentrability (See
 894 Section 2.1 for detailed definitions of concentrability). On the other hand, the sharp analysis in Zhao
 895 et al. (2024) yields the optimal sample complexity $\tilde{O}(\epsilon^{-1})$, but requires all-policy concentrability
 896 (Zhao et al., 2024, Definition 2.6), i.e., the behavior policy π^{ref} is required to cover the entire function
 897 class for all possible policies. Zhao et al. (2025) considered the online episodic MDP setting,
 898 which inherently does not need any notion of data coverage and thus their results are not directly
 899 adaptable to our offline setting. Foster et al. (2025) considered an interesting hybrid setting in which
 900 the n state-action pairs are still from the offline dataset but $\Omega(n)$ online reward queries and policy
 901 switches are allowed; in contrast, in our setting, all reward signals are obtained in a purely offline
 902 manner.

903 **Previous analyses and results in detail.** Here, we briefly discuss the direct adaptation of previous
 904 sample complexity analysis and results (with respect to KL-regularized objectives) to our setting and
 905 demonstrate the reason why theirs cannot imply an $\tilde{O}(\epsilon^{-1})$ sample complexity without all-policy
 906 concentrability. In previous analysis of pessimism for unregularized objectives (Jin et al., 2021;
 907 Xiong et al., 2022), the sub-optimality gap is decomposed via the performance difference lemma as
 908 follows

$$\begin{aligned}
 910 J(\pi^*) - J(\hat{\pi}) &= \mathbb{E}_{a \sim \pi^*}[g^*(a)] - \mathbb{E}_{a \sim \hat{\pi}}[g^*(a)] - \eta^{-1} \text{KL}(\pi^* \parallel \pi^{\text{ref}}) + \eta^{-1} \text{KL}(\hat{\pi} \parallel \pi^{\text{ref}}) \\
 911 &\leq \mathbb{E}_{a \sim \pi^*}[g^*(a)] - \mathbb{E}_{a \sim \hat{\pi}}[\hat{g}(a)] - \eta^{-1} \text{KL}(\pi^* \parallel \pi^{\text{ref}}) + \eta^{-1} \text{KL}(\hat{\pi} \parallel \pi^{\text{ref}}) \\
 912 &\leq \mathbb{E}_{a \sim \pi^*}[g^*(a)] - \mathbb{E}_{a \sim \pi^*}[\hat{g}(a)] - \eta^{-1} \text{KL}(\pi^* \parallel \pi^{\text{ref}}) + \eta^{-1} \text{KL}(\pi^* \parallel \pi^{\text{ref}}) \\
 913 &= \mathbb{E}_{a \sim \pi^*}[g^*(a) - \hat{g}(a)],
 914
 \end{aligned}$$

915 where the first inequality holds due to pessimism and last inequality holds due to $\hat{\pi}$ is optimal for
 916 \hat{g} . Notably, the KL-regularization term is canceled out in the analysis, leading to a loose sample
 917 complexity $\tilde{O}(\epsilon^{-2})$ since the curvature of KL-divergence is not exploited. Specifically, under linear

918 function approximation, this performance gap, obtained by Xiong et al. (2024) becomes
919

$$920 \quad J(\pi^*) - J(\pi) \leq \|\mathbb{E}_{\rho \times \pi^*}[\phi(s, a)] - \nu\|_{\Sigma_{\text{off}}^{-1}} =: \text{RHS},$$

921 where ν is the reference vector, $\phi(s, a) \in \mathbb{R}^d$ is the feature map, and $\Sigma_{\text{off}} = \sum_{i=1}^n \phi(s_i, a_i) \phi(s_i, a_i)^\top$ is the sample covariance matrix. However, we can show that RHS can
922 be bounded from below by
923

$$924 \quad \|\mathbb{E}_{(s, a) \sim \rho \times \pi^*}[\phi(s, a)] - \nu\| \sqrt{\lambda_{\min}(\Sigma_{\text{off}}^{-1})} = \|\mathbb{E}_{(s, a) \sim \rho \times \pi^*}[\phi(s, a)] - \nu\| \lambda_{\max}(\Sigma_{\text{off}})^{-1/2} \\ 925 \quad \geq \|\mathbb{E}_{(s, a) \sim \rho \times \pi^*}[\phi(s, a)] - \nu\| \text{tr}(\Sigma_{\text{off}})^{-1/2} \\ 926 \quad = \|\mathbb{E}_{(s, a) \sim \rho \times \pi^*}[\phi(s, a)] - \nu\| \left(\sum_{i=1}^n \|\phi(s_i, a_i)\|_2^2 \right)^{-1/2} \\ 927 \quad = \Omega(n^{-1/2}),$$

928 where λ_{\min} and λ_{\max} is the minimum and maximum eigenvalue of a matrix, the first inequality
929 holds due to the fact that $\mathbf{x}^\top \Sigma \mathbf{x} \geq \|\mathbf{x}\|_2^2 \lambda_{\min}(\Sigma)$ and the second inequality holds due to $\lambda_{\max}(\Sigma) \leq$
930 $\text{tr}(\Sigma)$. Zhao et al. (2024) proposed a two-stage learning algorithm and obtained an $\tilde{O}(\epsilon^{-1})$ sample
931 complexity for online KL-regularized bandits. The algorithm can be adopted to offline learning by
932 removing the second stage⁵ and treat the samples from first stage as the offline dataset. An analogous
933 analysis gives a sample complexity of $\tilde{O}(D^2 \epsilon^{-1})$, where D^2 is the all-policy concentrability.
934

935 B ADDITIONAL DISCUSSION OF RELATION BETWEEN COVERAGE 936 MEASURES

937 In this section, we provide more illustrations on the relation between two coverage measures, $D_{\pi^*}^2$
938 and C^{π^*} . In particular, we provide two cases under linear function approximation, on one of which
939 $D_{\pi^*}^2 = \Theta(dC^{\pi^*})$ and on the other we have $D_{\pi^*}^2 \ll C^{\pi^*}$, where d is the dimension of the function
940 class. We summarized them as two propositions.
941

942 **Proposition B.1.** There exist a KL-regularized linear bandit instance, such that $D_{\pi^*}^2 = \Theta(dC^{\pi^*})$.
943

944 *Proof.* We construct the instance as follows. Let $d = 2A + 1$ be some odd number and consider an
945 $2A + 1$ -armed bandit, such that the feature vector of the i -th arm, $\phi(a_i) = \mathbf{e}_i \in \mathbb{R}^d$, which has 1 on
946 its i -th entry and 0 on all other entries. The reference policy $\pi^{\text{ref}}(a_i) = (2AC)^{-1}$ for $i \in [2A]$ and
947 $\pi^{\text{ref}}(a_{2A+1}) = (C - 1)/C$, where $2C - 1 = e^\eta$. The ground truth reward function $\theta^* = \sum_{i \leq A} \mathbf{e}_i$
948 and the function class is given by all $\|\theta\|_\infty \leq 1$. By construction, we know that $\pi^*(a_i) \geq \pi^{\text{ref}}(a_i)$
949 if and only if $i \in [A]$ and its closed form is given by
950

$$951 \quad \pi^*(a_i) = \frac{1}{A} \frac{e^\eta}{e^\eta + 2C - 1} = \frac{1}{2A},$$

952 which gives $C^{\pi^*} = C$. Now we compute the $D_{\pi^*}^2$ of this instance. For all $i \in [A]$, we know that
953

$$954 \quad D^2(a_i) = \sup_{\|\theta\|_\infty \leq 2} \frac{\langle \theta, \mathbf{e}_i \rangle^2}{\mathbb{E}_{\pi^{\text{ref}}} \langle \theta, \mathbf{e}_i \rangle^2} = 2CA = \Theta(Cd),$$

955 where the second equation holds with $\theta = \mathbf{e}_i$. Taking expectation over π^* , we have
956

$$957 \quad D_{\pi^*}^2 \geq \sum_{i \in [A]} D^2(a_i) = \Theta(C^{\pi^*} d),$$

958 which concludes the proof. □
959

960 The following proposition provides another instance on which $D_{\pi^*}^2 \ll C^{\pi^*}$.
961

962 **Proposition B.2.** For any $C \geq 2$, there exists a KL-regularized linear bandit instance, such that
963 $C^{\pi^*} = C/2$ and $D_{\pi^*}^2 = \Theta(1)$.
964

965 ⁵This can be done by setting the n in their paper to 0.
966

972 *Proof.* We consider the function class of $\theta \in \mathbb{R}^2$ and $\|\theta\| \leq \sqrt{2}$. The instance consists of three arms,
 973 where $\phi(a_1) = (1, 0)$, $\phi(a_2) = (0, 1)$, and $\phi(a_3) = (1, 1)$. The ground truth parameter $\theta^* = (1, 1)$.
 974 The reference policy is given by $\pi^{\text{ref}}(a_1) = \pi^{\text{ref}}(a_2) = 1/2 - 1/2C$ and $\pi^{\text{ref}}(a_3) = 1/C$, where
 975 $C - 1 = e^\eta$. A direct computation yields that

$$\pi^*(a_3) = \frac{e^\eta}{e^\eta + C - 1}, \quad \Rightarrow \quad C^{\pi^*} = C \frac{e^\eta}{e^\eta + C - 1} = \frac{C}{2}.$$

976 On the other hand, we know that for $i = 1, 2$, we have $D^2(a_i) \leq \pi^{\text{ref}}(a_i)^{-1} \leq 4$. As for a_3 ,
 977 since we have $\langle \theta, \phi(a_3) \rangle^2 = \langle \theta, \phi(a_1) + \phi(a_2) \rangle^2 \leq 2 \langle \theta, \phi(a_1) \rangle^2 + 2 \langle \theta, \phi(a_2) \rangle$, which gives
 978 that $D^2(a_3) \leq 2D^2(a_1) + 2D^2(a_2) \leq 16$. Therefore, taking expectation over π^* , we know that
 979 $D_{\pi^*}^2 \leq 12$ which is a constant. \square

983 C EXPERIMENTAL DETAILS

984 C.1 LINEAR BANDITS

985 The linear bandit instance used for Figure 2 has $d = 20$ and $|\mathcal{A}| = 100$. For each arm $a \in \mathcal{A}$,
 986 we randomly generate its feature vector $\phi(a) \in \mathbb{R}^d$ such that $\|\phi(a)\| = 1$. We then randomly
 987 sample the model parameter $\theta^* \in \mathbb{R}^d$ such that $\|\theta^*\| = 1$ and the expected reward is obtained via
 988 $r(a) = \langle \theta^*, \phi(a) \rangle$.

989 C.2 REAL-WOLD EXPERIMENTS

990 MNIST consists of 60000 figures, each of which is of 28×28 pixels and consists of a handwritten
 991 digit in $\{0, \dots, 9\}$. Here, we consider each image as a context and $\mathcal{A} = \{0, \dots, 9\}$ for each
 992 context. To obtain the feature $\phi(s, a)$, we first use the hidden representation of a classifier to embed
 993 each image as a vector in \mathbb{R}^{10} . We then follow the approach in Zhou et al. (2020) to obtain the
 994 feature of each context-action pair by having $\phi(s, a) = \mathbf{x} \otimes \mathbf{e}_{a+1} \in \mathbb{R}^{100}$, where \mathbf{x} is the output of
 995 image encoder and \otimes stands for tensor product.

996 D MISSING PROOFS FROM SECTION 2

1000 D.1 PROOF OF LEMMA 2.9

1001 We first provide the following lemmas of concentration.

1002 **Lemma D.1** (Zhao et al. 2024, Lemma C.1). For any policy π and state-action pairs $\{(s_i, a_i)\}_{i=1}^m$
 1003 generated i.i.d. from $\rho \times \pi$, and $\epsilon_c < 1$, with probability at least $1 - \delta$, for any g_1 and g_2 we have

$$1004 \mathbb{E}_{\rho \times \pi} [(g_1(s, a) - g_2(s, a))^2] \leq \frac{2}{n} \sum_{i=1}^n (g_1(s_i, a_i) - g_2(s_i, a_i))^2 + \frac{32}{3n} \log(2\mathcal{N}_{\mathcal{G}}(\epsilon_c)/\delta) + 10\epsilon_c,$$

1005 where $\mathcal{N}_{\mathcal{G}}(\epsilon_c)$ is the ϵ_c -covering number of \mathcal{G} .

1006 **Lemma D.2** (Zhao et al. 2024, Lemma C.2). For arbitrary policy π and dataset $\{(s_i, a_i, r_i)\}_{i=1}^m$
 1007 generated i.i.d., from the product of π , ρ and the Bradley-Terry Model; let \bar{g} be the least square
 1008 estimator of g^* , then for any $0 < \epsilon_c < 1$ and $\delta > 0$, with probability at least $1 - \delta$ we have

$$1009 \sum_{i=1}^n (\bar{g}(s_i, a_i) - g^*(s_i, a_i))^2 \leq 16 \log(a\mathcal{N}_{\mathcal{G}}(\epsilon_c)/\delta) + 4n\epsilon_c.$$

1010 Now we are ready to prove Lemma 2.9.

1011 *Proof of Lemma 2.9.* We have the following inequality

$$1012 \begin{aligned} 1013 (\bar{g}(s, a) - g^*(s, a))^2 &= \frac{(\bar{g}(s, a) - g^*(s, a))^2}{\mathbb{E}_{\pi^{\text{ref}}}[(\bar{g}(s, a) - g^*(s, a))^2]} \mathbb{E}_{\pi^{\text{ref}}}[(\bar{g}(s, a) - g^*(s, a))^2] \\ 1014 &\leq \sup_{g_1, g_2 \in \mathcal{G}} \frac{(g_1(s, a) - g_2(s, a))^2}{\mathbb{E}_{\pi^{\text{ref}}}[(g_1(s, a) - g_2(s, a))^2]} \mathbb{E}_{\pi^{\text{ref}}}[(\bar{g}(s, a) - g^*(s, a))^2] \\ 1015 &= D_{\mathcal{G}}^2((s, a), \pi^{\text{ref}}) \mathbb{E}_{\pi^{\text{ref}}}[(\bar{g}(s, a) - g^*(s, a))^2], \end{aligned} \tag{D.1}$$

where the inequality holds by taking supremum to $g_1, g_2 \in \mathcal{G}$. Now we have

$$\begin{aligned}
\mathbb{E}_{\pi^{\text{ref}}} \left[(\bar{g}(s, a) - g^*(s, a))^2 \right] &\leq \frac{2}{n} \sum_{i=1}^n (\bar{g}(s_i, a_i) - g^*(s_i, a_i))^2 + \frac{32}{3n} \log(2\mathcal{N}_{\mathcal{G}}(\epsilon_c)/\delta) + 10\epsilon_c \\
&\leq \frac{2}{n} [16 \log(\mathcal{N}_{\mathcal{G}}(\epsilon_c)/\delta) + 4n\epsilon_c] + \frac{32}{3n} \log(2\mathcal{N}_{\mathcal{G}}(\epsilon_c)/\delta) + 10\epsilon_c \\
&= \frac{128}{3n} \log(2\mathcal{N}_{\mathcal{G}}(\epsilon_c)/\delta) + 18\epsilon_c,
\end{aligned} \tag{D.2}$$

where the first inequality holds due to Lemma D.1 and second holds due to Lemma D.2. Plugging (D.2) into (D.1) and setting $\epsilon_c = O(n^{-1})$ complete the proof. \square

D.2 PROOF OF LEMMA 2.14

This proof is extracted from the proof of Zhao et al. (2024, Theorem 3.3) and we present it here for completeness. By definition of our objective in (2.1), we have

$$\begin{aligned}
& J(\pi^*) - J(\pi_g) \\
&= \mathbb{E}_{(s,a) \sim \rho \times \pi^*} \left[g^*(s,a) - \eta^{-1} \log \frac{\pi^*(a|s)}{\pi^{\text{ref}}(a|s)} \right] - \mathbb{E}_{(s,a) \sim \rho \times \pi_g} \left[g^*(s,a) - \frac{1}{\eta} \log \frac{\pi_g(a|s)}{\pi^{\text{ref}}(a|s)} \right] \\
&= \frac{1}{\eta} \mathbb{E}_{(s,a) \sim \rho \times \pi^*} \left[\log \frac{\pi^{\text{ref}}(a|s) \cdot \exp(\eta g^*(s,a))}{\pi^*(a|s)} \right] - \frac{1}{\eta} \mathbb{E}_{(s,a) \sim \rho \times \pi_g} \left[\log \frac{\pi^{\text{ref}}(a|s) \cdot \exp(\eta g^*(s,a))}{\pi_g(a|s)} \right] \\
&= \frac{1}{\eta} \mathbb{E}_{s \sim \rho} \left[\log Z_{g^*}(s) \right] - \frac{1}{\eta} \mathbb{E}_{s \sim \rho} \left[\log Z_g(s) \right] - \mathbb{E}_{s \sim \rho} \left[\sum_{a \in \mathcal{A}} \pi_g(a|s) \cdot (g^*(s,a) - f(s,a)) \right],
\end{aligned}$$

where for all $g \in \mathcal{G}$ we define $Z_g(\cdot)$ as follows,

$$Z_g(\cdot) := \sum_{a \in \mathcal{A}} \pi^{\text{ref}}(a|\cdot) \exp(\eta g(\cdot, a)).$$

We further denote $\Delta(s, a) = g(s, a) - g^*(s, a)$ and $H_s(g) = \log Z_g(s) - \eta \sum_{a \in \mathcal{A}} \pi_g(a|s) \cdot \Delta(s, a)$. It is worth noticing that $\eta^{-1} \mathbb{E}_{s \sim \rho} [H_s(g^*) - H_s(g)] = J(\pi^*) - J(\pi_g)$. Now we take derivative of H with respect to $\Delta(s, a)$,

$$\begin{aligned}
\frac{\partial H_s(g)}{\partial \Delta(s, a)} &= \frac{\partial}{\partial \Delta(s, a)} \left[\log Z_g(s) - \eta \sum_{a \in \mathcal{A}} \pi_g(a|s) \cdot \Delta(s, a) \right] \\
&= \frac{1}{Z_g(s)} \cdot \pi^{\text{ref}}(a|s) \exp(\eta \cdot g(s, a)) \cdot \eta - \eta \cdot \pi_g(a|s) \\
&\quad - \eta^2 \cdot \Delta(s, a) \cdot \frac{\pi^{\text{ref}}(a|s) \cdot \exp(\eta \cdot g(s, a))}{Z_g(s)} + \eta^2 \cdot \Delta(s, a) \cdot \frac{[\pi^{\text{ref}}(a|s) \cdot \exp(\eta \cdot g(s, a))]^2}{[Z_g(s)]^2} \\
&\quad + \eta \sum_{a' \in \mathcal{A} \setminus \{a\}} \frac{\pi^{\text{ref}}(a'|s) \cdot \exp(\eta \cdot g(s, a'))}{Z_g(s)} \cdot \eta \cdot \Delta(s, a') \cdot \frac{\pi^{\text{ref}}(a|s) \cdot \exp(\eta \cdot g(s, a))}{Z_g(s)} \\
&= -\eta^2 \pi_g(a|s) \Delta(s, a) + \eta^2 [\pi_g(a|s)]^2 \cdot \Delta(s, a) + \eta^2 \sum_{a' \in \mathcal{A} \setminus \{a\}} \pi_g(a'|s) \pi_g(a|s) \Delta(s, a').
\end{aligned}$$

Therefore, by mean value theorem, there exists $\gamma \in [0, 1]$ and $q_\gamma = \gamma q + (1 - \gamma)q^*$ such that

$$\begin{aligned}
H_s(g) - H_s(g^*) &= -\eta^2 \gamma \sum_{a \in \mathcal{A}} \pi_{g_\gamma}(a|s) \Delta(s, a)^2 + \gamma \eta^2 \sum_{a_1 \in \mathcal{A}} \sum_{a_2 \in \mathcal{A}} \pi_{g_\gamma}(a_1|x) \pi_{g_\gamma}(a_2|x) \Delta(s, a_1) \Delta(s, a_2) \\
&= -\eta^2 \gamma \mathbb{E}_{a \sim \pi_{g_\gamma}} \left[(g^*(s, a) - g(s, a))^2 \right] + \gamma \eta^2 \left(\mathbb{E}_{a \sim \pi_{g_\gamma}} \left[(g^*(s, a) - g(s, a)) \right] \right)^2 \\
&\geq -\eta^2 \mathbb{E}_{a \sim \pi_{g_\gamma}} \left[(g^*(s, a) - g(s, a))^2 \right],
\end{aligned}$$

1080 where the inequality holds by omitting the second term and $\gamma \leq 1$. Now taking expectation over ρ ,
 1081 we have

$$\begin{aligned} 1083 \quad J(\pi^*) - J(\pi_g) &= \eta^{-1} \mathbb{E}_{s \sim \rho} [H_s(g^*) - H_s(g)] \\ 1084 &\leq \eta \mathbb{E}_{(s,a) \sim \rho_{g_\gamma}} [(g^*(s,a) - g(s,a))^2], \end{aligned}$$

1086 which concludes the proof.

1087 D.3 PROOF OF LEMMA 2.15

1089 *Proof of Lemma 2.15.* We define $Y = -X$. Then it suffices to show that the covariance between Y
 1090 and Y^2 is

$$\begin{aligned} 1091 \quad \text{Cov}(Y, Y^2) &= \mathbb{E}[Y^3] - \mathbb{E}[Y^2]\mathbb{E}[Y] \\ 1092 &\geq (\mathbb{E}[Y^2])^{3/2} - \mathbb{E}[Y^2]\mathbb{E}[Y] \\ 1093 &= (\mathbb{E}[Y^2])(\sqrt{\mathbb{E}[Y^2]} - \mathbb{E}[Y]) \\ 1094 &\geq 0, \\ 1095 \\ 1096 \end{aligned}$$

1097 where both inequalities follow from Jensen's inequality. \square

1099 D.4 PROOF OF THEOREM 2.10

1101 To start with, we first define the following quantities. For all $\gamma \in [0, 1]$, we define $g_\gamma := \gamma \hat{g} + (1 -$
 1102 $\gamma)g^*$ and denote

$$\begin{aligned} 1103 \quad \pi_\gamma(\cdot|s) &\propto \pi^{\text{ref}}(\cdot|s) \exp(\eta g_\gamma(s, \cdot)), \forall s \in \mathcal{S}; \\ 1104 \quad G(\gamma) &:= \mathbb{E}_{\rho \times \pi_\gamma} [(\hat{g} - g^*)^2(s, a)]. \end{aligned}$$

1107 The key to our analysis is the monotonicity of the function $G(\gamma)$ in γ , which is formally stated in
 1108 the following lemma.

1109 **Lemma D.3.** On event \mathcal{E} , $0 \in \text{argmax}_{\gamma \in [0,1]} G(\gamma)$.

1112 *Proof.* For simplicity, we use $\Delta(s, a)$ to denote $(\hat{g} - g^*)(s, a)$ in this proof. Then we know that
 1113 $\Delta(s, a) \leq 0$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$ on event \mathcal{E} . The most direct way to prove is to take derivative
 1114 of G with respect to γ , which corresponds to the policy gradient (Sutton et al., 1999) of π_γ and thus
 1115 implying a favorable structure. A direct calculation yields that

$$\begin{aligned} 1116 \quad &= \mathbb{E}_{\rho \times \pi_\gamma} [\nabla_\gamma \log \pi_\gamma(a|s) \Delta(s, a)^2] \\ 1117 &= \eta \mathbb{E}_\rho \mathbb{E}_{a \sim \pi_\gamma} [\Delta^2(s, a) (\Delta(s, a) - \mathbb{E}_{a' \sim \pi_\gamma} [\Delta(s, a')])] \\ 1118 &= \eta \mathbb{E}_\rho [\mathbb{E}_{\pi_\gamma} [\Delta^3(s, a)] - \mathbb{E}_{\pi_\gamma} [\Delta^2(s, a)] \mathbb{E}_{\pi_\gamma} [\Delta(s, a)]] \\ 1119 &\leq 0, \\ 1120 \\ 1121 \end{aligned}$$

1122 where \mathbb{E}_ρ is the shorthand of $\mathbb{E}_{s \sim \rho}$, \mathbb{E}_{π_γ} is the shorthand of $\mathbb{E}_{a \sim \pi_\gamma}$, the first equation is derived from
 1123 standard policy gradient and the inequality holds conditioned on the event $\mathcal{E}(\delta)$ due to Lemma 2.15
 1124 and Lemma 2.15. \square

1126 Now we are ready to prove Theorem 2.10.

1128 *Proof of Theorem 2.10.* Following the proof of Zhao et al. (2024, Theorem 3.3), we know that there
 1129 exists $\bar{\gamma} \in [0, 1]$ such that

$$1131 \quad J(\pi^*) - J(\hat{\pi}) \leq \eta G(\bar{\gamma}) \leq \eta G(0), \quad (\text{D.3})$$

1132 where the first inequality holds due to Lemma 2.14 and the second inequality holds due to the event
 1133 \mathcal{E} and Lemma D.3. The term $G(0)$ can be further bounded with the D^2 -based concentrability as

1134 follows

$$\begin{aligned}
G(0) &= \eta \mathbb{E}_{(s,a) \sim \rho \times \pi^*} \left[(\hat{g} - g^*)^2(s, a) \right] \\
&\leq 4\eta \mathbb{E}_{(s,a) \sim \rho \times \pi^*} [\Gamma_n^2(s, a)] \\
&= 4\eta \beta^2 \mathbb{E}_{(s,a) \sim \rho \times \pi^*} [D_{\mathcal{F}}^2((s, a); \pi^{\text{ref}})] \\
&= \tilde{O}(\eta D_{\pi^*}^2 n^{-1} \log_{\mathcal{G}}(\epsilon_c)),
\end{aligned} \tag{D.4}$$

1142 where the second inequality holds conditioned on $\mathcal{E}(\delta)$ because of Lemma D.3, and the last inequality
 1143 follows from the definition of $\mathcal{E}(\delta)$ together with Line 2. By Lemma 2.9, we know that event \mathcal{E}
 1144 holds with probability at least $1 - \delta$, which finishes the proof. \square

D.5 PROOF OF THEOREM 2.11

Proof of Theorem 2.11. We consider the family of contextual bandits with $S := |\mathcal{S}|$, $A := |\mathcal{A}| < \infty$ and reward function in some function class \mathcal{G} composed of function $\mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ as follows.

$$\text{CB}_{\mathcal{G}} \coloneqq \{(\mathcal{S}, \mathcal{A}, \rho, r, \pi^{\text{ref}}, \eta) : r \in \mathcal{G}, \rho \in \Delta(\mathcal{S}), \pi^{\text{ref}} \in \Delta(\mathcal{A}|\mathcal{S})\}. \quad (\text{D.5})$$

Our goal is to prove the following statement. Fixing any $S \geq 1$, $\eta > 4 \log 2$ and $C^* \in (2, \exp(\eta/4)]$, then for any estimator $\mathcal{D} \mapsto \hat{\pi} \in \Delta(\mathcal{A}|\mathcal{S})$, for any $n \geq 16SC^*$, there exist some function class \mathcal{G} , such that $\exists \text{inst} = (\mathcal{S}, \mathcal{A}, \rho, r, \pi^{\text{ref}}, \eta) \in \text{CB}_{\mathcal{G}}$ with single-policy concentrability $C^{\pi^*} \leq C^*$, regularization coefficient η , $|\mathcal{S}| = S = \Theta(\log |\mathcal{G}|)$, and

$$\text{SubOpt}_{\text{BKL}}(\hat{\pi}; \text{inst}) \gtrsim \min\{\eta S C^* n^{-1}, (S C^*)^{1/2} n^{-1/2}\}. \quad (\text{D.6})$$

Since $\log |\mathcal{G}| \geq \log \mathcal{N}_{\mathcal{G}}(\epsilon)$ for any $\epsilon \in (0, 1)$, equation (D.6) yields the desired bound.

We set $S = [S]$, $\mathcal{A} = \{\pm 1\}$, $\rho = \text{Unif}(S)$, and the reference policy to be

$$\forall s \in \mathcal{S}, \pi^{\text{ref}}(-1|s) = C^{-1}, \pi^{\text{ref}}(+1|s) = 1 - C^{-1};$$

where $C \geq 1$ is a parameter to be specified later. We construct 2^S Bernoulli reward functions, in particular, $\forall \tau \in \{\pm 1\}^S$, the mean function r_τ of the reward (indexed by τ) is defined as

$$r_\tau(s, -1) = 0.5 + \tau_s \delta, r_\tau(s, +1) = 0.5 - \alpha$$

for any state $s \in \mathcal{S}$, where $\alpha \in (0, 1/2)$ and $\delta \in (0, 1/4]$ will be specified later. We omit the RKL subscript in the following argument when it is clear in context. By (2.2), the optimal policy π_τ^* under r_τ is

$$\forall s \in \mathcal{S}, \pi_\tau^*(-1|s) = \frac{\exp(\eta(\alpha + \tau_s \delta))}{\exp(\eta(\alpha + \tau_s \delta)) + C - 1}, \pi_\tau^*(+1|s) = \frac{C - 1}{\exp(\eta(\alpha + \tau_s \delta)) + C - 1}. \quad (\text{D.7})$$

Since $C^* \leq \exp(\eta/4)$, we assign $C = C^*$ and $\alpha = \eta^{-1} \log(C - 1) \Leftrightarrow C - 1 = \exp(\eta\alpha)$, which gives

$$\forall s \in \mathcal{S}, \frac{\pi_\tau^*(-1|s)}{\pi^{\text{ref}}(-1|s)} \leq C \frac{\exp(\eta(\alpha + \tau s \delta))}{C - 1 + \exp(\eta(\alpha + \tau s \delta))} = C \frac{\exp(\eta \tau s \delta)}{1 + \exp(\eta \tau s \delta)} \leq C = C^*;$$

$$\forall s \in \mathcal{S}, \frac{\pi_\tau^*(+1|s)}{\pi^{\text{ref}}(+1|s)} = \frac{C}{C-1} \cdot \frac{1}{\exp(\eta\pi_\tau\delta) + 1} \leq C = C^*;$$

where the last inequality is due to the assumption $C^* \geq 2$. Therefore, we obtain

$$\max_{\tau \in \{1, \dots, S\}} C^{\pi_\tau^*} \leq C^*. \quad (\text{D.8})$$

We will abuse the notation $\text{SubOpt}(\hat{\pi}; \tau) := \text{SubOpt}(\hat{\pi}; r_{-})$. Since $\rho \equiv \text{Unif}(S)$

$$\text{SubOpt}(\widehat{\pi}; \tau) = \frac{1}{S} \sum_s \text{SubOpt}_s(\widehat{\pi}; \tau), \quad (\text{D.9})$$

1188 where

$$\begin{aligned}
 \text{SubOpt}_s(\widehat{\pi}; \tau) &= \langle \pi_\tau^*(\cdot|s), r_\tau(s, \cdot) - \eta^{-1} \log \frac{\pi_\tau^*(\cdot|s)}{\pi^{\text{ref}}(\cdot|s)} \rangle - \langle \widehat{\pi}(\cdot|s), r_\tau(s, \cdot) - \eta^{-1} \log \frac{\widehat{\pi}(\cdot|s)}{\pi^{\text{ref}}(\cdot|s)} \rangle \\
 &= \frac{1}{\eta} \mathbb{E}_{a \sim \pi_\tau^*(\cdot|s)} \left[\log \frac{\pi^{\text{ref}}(a|s) \cdot \exp(\eta r_\tau(s, a))}{\pi_\tau^*(a|s)} \right] \\
 &\quad - \frac{1}{\eta} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} \left[\log \frac{\pi^{\text{ref}}(a|s) \cdot \exp(\eta r_\tau(s, a))}{\widehat{\pi}(a|s)} \right] \\
 &= \frac{1}{\eta} \mathbb{E}_{a \sim \pi_\tau^*(\cdot|s)} \left[\log \left(\sum_{b \in \mathcal{A}} \pi^{\text{ref}}(b|s) \cdot \exp(\eta r_\tau(s, b)) \right) \right] \\
 &\quad - \frac{1}{\eta} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} \left[\log \frac{\pi^{\text{ref}}(a|s) \cdot \exp(\eta r_\tau(s, a))}{\widehat{\pi}(a|s)} \right] \\
 &= \frac{1}{\eta} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} \left[\log \frac{\pi^{\text{ref}}(a|s) \cdot \exp(\eta r_\tau(s, a))}{\pi_\tau^*(a|s)} - \log \frac{\pi^{\text{ref}}(a|s) \cdot \exp(\eta r_\tau(s, a))}{\widehat{\pi}(a|s)} \right] \\
 &= \eta^{-1} \mathbf{KL}(\widehat{\pi} \parallel \pi_\tau^*). \tag{D.10}
 \end{aligned}$$

1206 We write $\tau \sim_s \tau'$ if $\tau, \tau' \in \{\pm 1\}^{\mathcal{S}}$ differ in only the s -th coordinate and $\tau \sim \tau'$ if $\exists s \in \mathcal{S}, \tau \sim_s \tau'$.
1207 By (D.10), $\forall s \in \mathcal{S}, \forall \tau, \tau' \in \{\pm 1\}^{\mathcal{S}}$ with $\tau \sim_s \tau'$,

$$\begin{aligned}
 \text{SubOpt}_s(\widehat{\pi}; \tau) + \text{SubOpt}_s(\widehat{\pi}; \tau') &= \eta^{-1} \mathbf{KL}(\widehat{\pi} \parallel \pi_\tau^*) + \eta^{-1} \mathbf{KL}(\widehat{\pi} \parallel \pi_{\tau'}^*) \\
 &= 2\eta^{-1} \sum_{a \in \mathcal{A}} \widehat{\pi}(a|s) \log \frac{\widehat{\pi}(a|s)}{\sqrt{\pi_\tau^*(a|s) \pi_{\tau'}^*(a|s)}} \\
 &= 2\eta^{-1} \mathbf{KL}(\widehat{\pi}(\cdot|s) \parallel \bar{\pi}_{\tau, \tau'}(\cdot|s)) - 2\eta^{-1} \mathbb{E}_{a \sim \widehat{\pi}(\cdot|s)} \log \left(\sum_{b \in \mathcal{A}} \sqrt{\pi_\tau^*(b|s) \pi_{\tau'}^*(b|s)} \right) \\
 &\geq -2\eta^{-1} \log \left(\sum_{b \in \mathcal{A}} \sqrt{\pi_\tau^*(b|s) \pi_{\tau'}^*(b|s)} \right) \\
 &= \frac{1}{\eta} \log \frac{(\exp(\eta\delta) + 1)(\exp(-\eta\delta) + 1)}{4}, \tag{D.11}
 \end{aligned}$$

1222 where $\bar{\pi}(\cdot|s) = \sqrt{\pi_\tau^*(\cdot|s) \pi_{\tau'}^*(\cdot|s)} / \sum_{b \in \mathcal{A}} \sqrt{\pi_\tau^*(b|s) \pi_{\tau'}^*(b|s)}$ for every $s \in \mathcal{S}$, the inequality is due
1223 to the non-negativity of KL divergence, and the last equality follows from (D.7) together with the
1224 design choice $C - 1 = \exp(\eta\alpha)$.

1226 **Case $\eta\delta \leq 2$.** Recall that $\forall x \in \mathbb{R}, (e^x + e^{-x})/2 - 1 = x^2 \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k+2)!} \geq x^2/2$, which implies
1227

$$\text{(D.11)} = \frac{1}{\eta} \log \left(1 + \frac{1}{2} \left(\frac{e^{\eta\delta} + e^{-\eta\delta}}{2} - 1 \right) \right) \geq \frac{1}{\eta} \log \left(1 + \frac{\eta^2\delta^2}{4} \right) \geq \frac{1}{\eta} \cdot \frac{\eta^2\delta^2/4}{2} = \eta\delta^2/8. \tag{D.12}$$

1232 Here, the last inequality is due to $\eta^2\delta^2/4 \leq 1$ and $\forall x \in [0, 1], \log(1+x) \geq x/2$.

1234 **Case $\eta\delta > 2$.** We have $-\eta^{-1}2\log 2 \geq -\delta\log 2$, which implies the following bound.

$$\text{(D.11)} \geq \frac{1}{\eta} \log \frac{\exp(\eta\delta) + 1}{4} \geq \frac{\eta\delta - 2\log 2}{\eta} = \delta - \eta^{-1}2\log 2 \geq (1 - \log 2)\delta \geq 3\delta/10. \tag{D.13}$$

1238 In summary, (D.12) and (D.13) imply that $\forall s \in \mathcal{S}, \forall \tau, \tau' \in \{\pm 1\}^{\mathcal{S}}$ with $\tau \sim_s \tau'$,

$$\text{SubOpt}_s(\widehat{\pi}; \tau) + \text{SubOpt}_s(\widehat{\pi}; \tau') \geq \frac{\eta\delta^2}{8} \wedge \frac{3\delta}{10}. \tag{D.14}$$

Let P_τ be the distribution of (s, a, y) where $s \sim \rho, a \sim \pi^{\text{ref}}(\cdot|s)$, and $y \sim \text{Bern}(r_\tau(s, a))$. Then $\forall x \in \mathcal{S} \forall \tau, \tau' \in \{\pm 1\}^{\mathcal{S}}$ with $\tau \sim_x \tau'$,

$$\begin{aligned} \text{KL}(P_\tau \| P_{\tau'}) &= \frac{1}{S} \sum_{s,a} \pi^{\text{ref}}(a|s) \text{KL}(\text{Bern}(r_\tau(s, a)) \| \text{Bern}(r_{\tau'}(s, a))) \\ &= \frac{1}{S} \cdot C^{-1} \text{KL}(\text{Bern}(r_\tau(x, -1)) \| \text{Bern}(r_{\tau'}(x, -1))) \\ &\leq \frac{4\delta^2}{SC(0.25 - \delta^2)} \leq \frac{16\delta^2}{3SC}, \end{aligned} \quad (\text{D.15})$$

where we use the requirement $\delta \leq 1/4$ and $\text{KL}(\text{Bern}(p) \| \text{Bern}(q)) \leq (p - q)^2 / (q(1 - q))$. Then let $P_{\mathcal{D}_\tau}$ be the distribution of \mathcal{D} given the mean reward function r_τ , we employ (D.15) to get

$$\text{KL}(P_{\mathcal{D}_\tau} \| P_{\mathcal{D}_{\tau'}}) = n \text{KL}(P_\tau \| P_{\tau'}) \leq \frac{16n\delta^2}{3SC}. \quad (\text{D.16})$$

Since $n \geq 16SC^* = 16SC$ by design, we can set $\delta = \sqrt{SC/n}$ (which ensures $\delta \leq 1/4$) to obtain

$$\begin{aligned} \sup_{\text{inst}} \text{SubOpt}(\hat{\pi}; \text{inst}) &\geq \sup_{\tau \in \{\pm 1\}^{\mathcal{S}}} \text{SubOpt}(\hat{\pi}; \tau) \\ &\geq \frac{1}{S} \cdot S \cdot \frac{1}{4} \cdot \left(\frac{\eta\delta^2}{8} \wedge \frac{3\delta}{10} \right) \min_{\tau \sim \tau'} \exp \left(-\text{KL}(P_{\mathcal{D}_\tau} \| P_{\mathcal{D}_{\tau'}}) \right) \\ &\geq \left(\frac{\eta SC^*}{32n} \wedge \frac{3\sqrt{SC^*}}{40\sqrt{n}} \right) \exp(-16/3) \gtrsim \frac{\eta SC^*}{n} \wedge \sqrt{\frac{SC^*}{n}}. \end{aligned}$$

where the S^{-1} in the second inequality comes from (D.9), the second inequality is by substituting (D.14) into Assouad's Lemma (Lemma H.3), and the last inequality is due to (D.16). \square

E MISSING PROOF FROM SECTION 3

E.1 PROOF OF THEOREM 3.2

Before coming to the proof, we first introduce some useful properties. The following properties characterize the convexity of f -divergence when f is (strongly) convex.

The strong-convexity of f implies that the corresponding f -divergence, $D_f(\cdot \| \pi^{\text{ref}})$ is also strongly convex with respect to all $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ supported by π^{ref} .

Proposition E.1. Given context s , $D_f(\pi(\cdot|s) \| \pi^{\text{ref}}(\cdot|s))$ is strict convex with respect to π if f is strictly convex.

Proposition E.2. Given context s , $\pi(\cdot|s) \mapsto D_f(\pi(\cdot|s) \| \pi^{\text{ref}}(\cdot|s))$ is 4α -strong convex with respect to the metric TV if f is α -strongly convex.

Proof of Proposition E.2. We first show the gradient of D_f with respect to π .

$$\frac{\partial D_f(\pi \| \pi^{\text{ref}})}{\pi(a)} = \frac{\partial}{\partial \pi(a)} \sum_{b \in \mathcal{A}} \pi^{\text{ref}}(b) f \left(\frac{\pi(b)}{\pi^{\text{ref}}(b)} \right) = f' \left(\frac{\pi(a)}{\pi^{\text{ref}}(a)} \right).$$

1296 Now consider $\pi_1, \pi_2 \in \Delta(\mathcal{A})$ supported by π^{ref} .
1297

$$\begin{aligned}
1298 \quad & D_f(\pi_1 || \pi^{\text{ref}}) - D_f(\pi_2 || \pi^{\text{ref}}) - \langle \pi_1 - \pi_2, \nabla D_f(\pi_2 || \pi^{\text{ref}}) \rangle \\
1299 \quad &= \sum_{a \in \mathcal{A}} \pi^{\text{ref}}(a) \left(f\left(\frac{\pi_1(a)}{\pi^{\text{ref}}(a)}\right) - f\left(\frac{\pi_2(a)}{\pi^{\text{ref}}(a)}\right) \right) - \sum_{a \in \mathcal{A}} (\pi_1(a) - \pi_2(a)) f'\left(\frac{\pi_2(a)}{\pi^{\text{ref}}(a)}\right) \\
1300 \quad &= \sum_{a \in \mathcal{A}} \pi^{\text{ref}}(a) \left(f\left(\frac{\pi_1(a)}{\pi^{\text{ref}}(a)}\right) - f\left(\frac{\pi_2(a)}{\pi^{\text{ref}}(a)}\right) - \left(\frac{\pi_1(a)}{\pi^{\text{ref}}(a)} - \frac{\pi_2(a)}{\pi^{\text{ref}}(a)}\right) f'\left(\frac{\pi_2(a)}{\pi^{\text{ref}}(a)}\right) \right) \\
1301 \quad &\geq \frac{\alpha}{2} \sum_{a \in \mathcal{A}} \pi^{\text{ref}}(a) \left(\frac{\pi_1(a)}{\pi^{\text{ref}}(a)} - \frac{\pi_2(a)}{\pi^{\text{ref}}(a)} \right)^2 \\
1302 \quad &= \frac{\alpha}{2} \sum_{a \in \mathcal{A}} \frac{1}{\pi^{\text{ref}}(a)} (\pi_1(a) - \pi_2(a))^2 \\
1303 \quad &\geq \frac{\alpha}{2} \left(\sum_{a \in \mathcal{A}} |\pi_1(a) - \pi_2(a)| \right)^2,
\end{aligned}$$

1313 where the first inequality holds due to f 's strong convexity and the second holds due to
1314 Cauchy–Schwarz. The proof finishes since $\|\pi_1 - \pi_2\|_1 = 2\text{TV}(\pi_1 || \pi_2)$. \square
1315

1316 We first introduce some notation and important properties concerning the convex conjugate
1317 of functions. Given some context s , we denote the regularization term as $H_s(\pi) =$
1318 $\eta^{-1} D_f(\pi(\cdot|s) || \pi^{\text{ref}}(\cdot|s))$. We use $H_s^*(r)$ to denote the convex conjugate of H_s , which is defined
1319 as

$$1320 \quad H_s^*(r) = \sup_{\pi \in \mathcal{S} \rightarrow \Delta^{|\mathcal{A}|}} \{ \langle \pi(\cdot|s), r(s, \cdot) \rangle - H_s(\pi) \}.$$

1323 We have the following properties for the convex conjugate. The first property gives the gradient of
1324 convex conjugate (see, e.g., Zhou 2018, Lemma 5).

1325 **Proposition E.3.** Given context s , and convex f , let $\pi_r \in \text{argmax}_{\pi} \{ \langle \pi(\cdot|s), r(s, \cdot) \rangle - H_s(\pi) \}$ for
1326 some r , then the gradient of H_s^* is given by $\nabla H_s^*(r) = \pi_r(\cdot|s)$.

1327 We also need some properties of $\nabla^2 H_s^*$, the Hessian matrix of the convex conjugate function. We
1328 first give the Hessian matrix of the original function H_s as follows.

$$1330 \quad \nabla^2 H_s(\pi) = \eta^{-1} \text{diag} \left(\frac{f''\left(\frac{\pi(a_1|s)}{\pi^{\text{ref}}(a_1|s)}\right)}{\pi^{\text{ref}}(a_1|s)}, \dots, \frac{f''\left(\frac{\pi(a_{|\mathcal{A}|}|s)}{\pi^{\text{ref}}(a_{|\mathcal{A}|}|s)}\right)}{\pi^{\text{ref}}(a_{|\mathcal{A}|}|s)} \right). \quad (\text{E.1})$$

1333 Furthermore, when f is α -strongly convex, we have

$$1335 \quad \nabla^2 H_s(\pi) \succeq \alpha \eta^{-1} \text{diag}(\pi^{\text{ref}}(a_1|s)^{-1}, \dots, \pi^{\text{ref}}(a_{|\mathcal{A}|}|s)^{-1}).$$

1337 The following lemma, which gives an estimate of $\nabla^2 H_s^*$, is the pivot of the proof.

1338 **Lemma E.4.** For any reward $r : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$, we have

$$1340 \quad \nabla^2 H_s^*(r) \preceq \alpha^{-1} \eta \text{diag}(\pi^{\text{ref}}(a_1|s), \dots, \pi^{\text{ref}}(a_{|\mathcal{A}|}|s)).$$

1342 *Proof of Lemma E.4.* Given reward function $r : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$, we consider

$$1344 \quad \pi_r \in \text{argmax}_{\pi \in \mathcal{S} \rightarrow \Delta^{|\mathcal{A}|}} \{ \langle \pi(\cdot|s), r(\cdot|s) \rangle - H_s(\pi) \}.$$

1346 From (E.1) we know that $\nabla^2 H_s(\pi_r)$ is invertible. Therefore, by Penot 1994, Proposition 3.2, we
1347 have $\nabla^2 H_s^*(r) \preceq (\nabla^2 H_s(\pi_r))^{-1}$. Since f is α -strongly convex, we have

$$1348 \quad \nabla^2 H_s^*(r) \preceq \alpha^{-1} \eta \text{diag}(\pi^{\text{ref}}(a_1|s), \dots, \pi^{\text{ref}}(a_{|\mathcal{A}|}|s)),$$

1349 which finishes the proof. \square

1350 Now we are ready to prove Theorem 3.2.
 1351

1352 *Proof of Theorem 3.2.* Consider our estimation \bar{g} which approximates the ground truth reward func-
 1353 tion g^* , we know that
 1354

$$1355 \hat{\pi} = \operatorname{argmax}_{\pi \in \mathcal{S} \rightarrow \Delta(\mathcal{A})} \left\{ \mathbb{E}_{(s,a) \sim \rho \times \pi} [\bar{g}(s,a)] - \eta^{-1} \mathbb{E}_{s \sim \rho} [D_f(\pi \parallel \pi^{\text{ref}})] \right\}. \\ 1356$$

1357 We have the following sub-optimality decomposition
 1358

$$1359 J(\pi^*) - J(\hat{\pi}) = \mathbb{E}_{s \sim \rho} \left[\mathbb{E}_{a \sim \pi^*} [g^*(s,a)] - \mathbb{E}_{a \sim \hat{\pi}} [g^*(s,a)] - \eta^{-1} [D_f(\pi^* \parallel \pi^{\text{ref}}) - D_f(\hat{\pi} \parallel \pi^{\text{ref}})] \right] \\ 1360 = \mathbb{E}_{s \sim \rho} [H_s^*(g^*) - H_s^*(\bar{g}) - \langle \hat{\pi}, g^* - \bar{g} \rangle] \\ 1361 = \mathbb{E}_{s \sim \rho} [H_s^*(g^*) - H_s^*(\bar{g}) - \langle \nabla H_s^*(\bar{g}), g^* - \bar{g} \rangle] \\ 1362 = \mathbb{E}_{s \sim \rho} [(g^* - \bar{g})^\top \nabla^2 H_s^*(\bar{g})(g^* - \bar{g})], \\ 1363$$

1364 where $\tilde{g} = \gamma g^* + (1 - \gamma)\bar{g}$ and $\gamma \in [0, 1]$ and the last equation holds due to Taylor's expansion.
 1365 Now, for any $\delta \in (0, 1)$ and $\epsilon_c > 0$, with probability at least $1 - \delta$
 1366

$$1367 J(\pi^*) - J(\hat{\pi}) = \mathbb{E}_{s \sim \rho} [(g^* - \bar{g})^\top \nabla^2 H_s^*(\bar{g})(g^* - \bar{g})] \\ 1368 \leq \alpha^{-1} \eta \mathbb{E}_{s \sim \rho} [(g^* - \bar{g})^\top \operatorname{diag}(\pi^{\text{ref}}(a_1|s), \dots, \pi^{\text{ref}}(a_{|\mathcal{A}|}|s))(g^* - \bar{g})] \\ 1369 = \alpha^{-1} \eta \mathbb{E}_{(s,a) \sim \rho \times \pi^{\text{ref}}} [(g^*(s,a) - \bar{g}(s,a))^2] \\ 1370 \leq \alpha^{-1} \eta \left(\frac{128}{3n} \log(2\mathcal{N}_{\mathcal{G}}(\epsilon_c)/\delta) + 18\epsilon_c \right), \\ 1371$$

1372 where the first inequality holds due to Lemma E.4 and last inequality holds due to equation (D.2).
 1373 Setting $\epsilon_c = O(n^{-1})$ completes the proof. \square
 1374

1377 E.2 PROOF OF THEOREM 3.4

1378 We first provide the following lemma that gives the close form of optimal policy under χ^2 -divergence
 1379 regularization.
 1380

1381 **Lemma E.5** (Huang et al. (2025a, Lemma G.2)). Let π^* be the optimal policy of χ^2 -divergence
 1382 regularized objective with reward function r , then π^* has the closed form
 1383

$$1384 \pi^*(\cdot) = \pi^{\text{ref}}(\cdot) \max \{0, \eta(r(\cdot) - \lambda)\}, \text{ where } \sum_{a \in \mathcal{A}} \pi_{f\text{div}}^*(a) = 1. \\ 1385$$

1386 By Proposition E.2, $\pi_{f\text{div}}^* = \operatorname{argmax}_{\pi \in \Delta(\mathcal{A})} J_{f\text{div}}(\pi)$ is unique. The sub-optimality gap for f -
 1387 divergence is consequently defined as
 1388

$$1389 \text{SubOpt}_{f\text{div}}(\cdot) := \text{SubOpt}_{f\text{div}}(\cdot; \mathcal{A}, r, \pi^{\text{ref}}) = J_{f\text{div}}(\pi_{f\text{div}}^*) - J_{f\text{div}}(\cdot). \quad (\text{E.2}) \\ 1390$$

1391 Now we are ready to prove Theorem 3.4.
 1392

1393 *Proof of Theorem 3.4.* We still consider the family of contextual bandits $\text{CB}_{\mathcal{G}}$ given by (D.5). We,
 1394 still, aim to prove the following statement. Fixing any $S \geq 32 \log 2$, $\eta > 4 \log 2$ and α , we set
 1395 $f(x) := \alpha(x - 1)^2/2$, then for any estimator $\mathcal{D} \mapsto \hat{\pi} \in \Delta(\mathcal{A}|\mathcal{S})$, for any n sufficiently large,
 1396 there exist some function class \mathcal{G} , such that $\exists \text{inst} = (\mathcal{S}, \mathcal{A}, \rho, r, \pi^{\text{ref}}, \eta) \in \text{CB}_{\mathcal{G}}$ with $|\mathcal{S}| = S =$
 1397 $\Theta(\log |\mathcal{G}|)$, and
 1398

$$\text{SubOpt}_{f\text{div}}(\hat{\pi}; \text{inst}) \gtrsim \alpha^{-1} \eta S n^{-1}. \quad (\text{E.3})$$

1399 Since $\log |\mathcal{G}| \geq \log \mathcal{N}_{\mathcal{G}}(\epsilon)$ for any $\epsilon \in (0, 1)$, equation (E.3) yields the desired bound.
 1400

1401 We again omit subscripts $f\text{div}$ when it is clear in context. We set $\mathcal{S} = [S]$, $\mathcal{A} = \{-1, +1\}$, and
 1402 $\rho = \text{Unif}(\mathcal{S})$. For all $s \in \mathcal{S}$, $\pi^{\text{ref}} = \text{Unif}(\mathcal{A})$. We further consider the following reward function
 1403 class. We leverage Lemma H.4 and obtain a set $\mathcal{V} \in \{-1, +1\}^S$ such that (1) $|\mathcal{V}| \geq \exp(S/8)$
 1404 and (2) for any $v, v' \in \mathcal{V}, v \neq v'$, one has $\|v - v'\|_1 \geq S/2$. We construct the following reward
 1405

function class where the reward follows Bernoulli distribution and the mean functions are given by the function class

$$\mathcal{G} = \{r_v(s, -1) = 1/2 + v_s \delta, r_{v'}(s, +1) = 1/2 + v'_s \delta, \forall s \in \mathcal{S} | v \in \mathcal{V}\},$$

where $\delta \in (0, \eta^{-1} \alpha]$ is to be specified later. Fix some context s and $v_1 \neq v_2$ different at entry s and corresponding reward r_1 and r_2 . Without loss of generality, we assume $r_1(s, \cdot) = (1/2 + \delta, 1/2 - \delta)$ and $r_2(s, \cdot) = (1/2 - \delta, 1/2 + \delta)$. Then direct calculation implies that

$$\begin{aligned}\pi_1^*(\cdot | s) &= \frac{1}{2} \max\{0, \eta \alpha^{-1}(r_1(s, \cdot) - \lambda)\} = 0.5 \eta \alpha^{-1}(r_1(s, \cdot) - \lambda), \\ \pi_2^*(\cdot | s) &= \frac{1}{2} \max\{0, \eta \alpha^{-1}(r_2(s, \cdot) - \lambda)\} = 0.5 \eta \alpha^{-1}(r_2(s, \cdot) - \lambda),\end{aligned}$$

where $\lambda = 0.5 - \eta^{-1} \alpha$. Note that $2\chi^2(\mu \| \nu) + 1 = \sum_{a \in \mathcal{A}} [\mu(a)]^2 / \nu(a)$ and $\chi^2 = D_f$, we obtain that $\forall \widehat{\pi}$,

$$\text{SubOpt}_s(\widehat{\pi}(\cdot | s); r_1) + \text{SubOpt}_s(\widehat{\pi}(\cdot | s); r_2) \quad (\text{E.4})$$

$$\begin{aligned}&= \langle r_1(s, \cdot), \pi_1^*(\cdot | s) \rangle + \langle r_2(s, \cdot), \pi_2^*(\cdot | s) \rangle - \overbrace{\langle r_1(s, \cdot) + r_2(s, \cdot), \widehat{\pi}(\cdot | s) \rangle}^{=1} + \overbrace{2\eta^{-1} \alpha \chi^2(\widehat{\pi}(\cdot | s) \| \pi^{\text{ref}}(\cdot | s))}^{\geq 0} \\ &\quad - \eta^{-1} \alpha \cdot \chi^2(\pi_1^*(\cdot | s) \| \pi^{\text{ref}}(\cdot | s)) - \eta^{-1} \alpha \cdot \chi^2(\pi_2^*(\cdot | s) \| \pi^{\text{ref}}(\cdot | s)) \\ &\geq 2\langle r_1(s, \cdot), \pi_1^*(\cdot | s) \rangle - 1 - 2\eta^{-1} \alpha \cdot \chi^2(\pi_1^*(\cdot | s) \| \pi^{\text{ref}}(\cdot | s)) \\ &= 1 + \frac{2\eta\delta^2}{\alpha} - 1 - \frac{\eta\delta^2}{\alpha} = \frac{\eta\delta^2}{\alpha}. \quad (\text{E.5})\end{aligned}$$

Now we take expectation over all possible contexts and recall that $\|v - v'\|_1 \geq S/2$ for $v \neq v'$, we know that for any $r_1 \neq r_2 \in \mathcal{G}$

$$\text{SubOpt}(\widehat{\pi}; r_1) + \text{SubOpt}(\widehat{\pi}; r_2) \geq \frac{\eta\delta^2}{2\alpha}$$

Given any mean reward function $r \in \mathcal{G}$, let P_r be the distribution of (s, a, \mathbf{r}) when $s \sim \rho$, $a \sim \pi^{\text{ref}}(\cdot | s)$, and $\mathbf{r} \sim \text{Bern}(r(s, a))$. Suppose $P_{\mathcal{D}_r}$ is the distribution of the dataset given mean reward function r , then $\text{KL}(P_{\mathcal{D}_{r_1}} \| P_{\mathcal{D}_{r_2}}) = n\text{KL}(P_{r_1} \| P_{r_2})$ for any pair of $r_1, r_2 \in \mathcal{G}$. Now we invoke Fano's inequality (Lemma H.2) to obtain

$$\begin{aligned}\inf_{\pi} \sup_{\text{inst} \in \text{CB}_{\mathcal{G}}} \text{SubOpt}(\widehat{\pi}; \text{inst}) &\geq \frac{\eta\delta^2}{4\alpha} \left(1 - \frac{\max_{r_1 \neq r_2 \in \mathcal{G}} \text{KL}(P_{\mathcal{D}_{r_1}} \| P_{\mathcal{D}_{r_2}}) + \log 2}{\log |\mathcal{G}|} \right) \\ &\geq \frac{\eta\delta^2}{4\alpha} \left(1 - \frac{64n\delta^2 + 8\log 2}{S} \right),\end{aligned}$$

where the second inequality holds due to $\text{KL}(\text{Bern}(p) \| \text{Bern}(q)) \leq (p - q)^2 / [q(1 - q)]$. Let $\delta = 16^{-1} \sqrt{S n^{-1}}$, then we obtain that for all π we have

$$\sup_{\text{inst} \in \text{CB}_{\mathcal{G}}} \text{SubOpt}(\widehat{\pi}; \text{inst}) \gtrsim \frac{\eta S}{\alpha n},$$

which finishes the proof in that $\log_2 |\mathcal{G}| = S$. \square

F GENERALIZATION TO CONTEXTUAL DUELING BANDITS

In this section, we extend our algorithm to the problems of regularized contextual dueling bandits, where the learner receives preference comparison instead of absolute signals. Our setup largely follows Zhu et al. (2023); Zhan et al. (2023) and the notion of sub-optimality follows Xiong et al. (2024); Zhao et al. (2024).

1458 **Algorithm 3** Offline KL-Regularized Pessimistic Contextual Dueling Bandit (KL-PCDB)
1459
1460 **Require:** regularization η , reference policy π^{ref} , function class \mathcal{G} , offline dataset $\mathcal{D} =$
1461 $\{(s_i, a_i^1, a_i^2, y_i)\}_{i=1}^n$
1462 1: Compute the maximum likelihood estimator of the reward function
1463 $\bar{g} = \underset{g \in \mathcal{G}}{\operatorname{argmin}} \sum_{i=1}^n \left[y_i \log \sigma \left([g(s_i, a_i^1) - g(s_i, a_i^2)] \right) + (1 - y_i) \log \sigma \left([g(s_i, a_i^2) - g(s_i, a_i^1)] \right) \right]$
1464
1465 2: Let $\hat{g}(s, a) = \bar{g}(s, a) - \Gamma_n(s, a)$, where $\Gamma_n(s, a)$ is the bonus term in (F.1)
1466
1467 **Ensure:** $\hat{\pi}(a|s) \propto \pi^{\text{ref}}(a|s) \exp(\eta \cdot \hat{g}(s, a))$

1469
1470 F.1 PROBLEM SETUP
1471

1472 We still consider contextual bandits $(\mathcal{S}, \mathcal{A}, r, \pi^{\text{ref}})$ where \mathcal{S} is the state space, \mathcal{A} is the action space
1473 and $r : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ is the reward function.⁶ But only relative preference feedback is available,
1474 viz., we have an i.i.d. offline dataset $\mathcal{D} = \{(s_i, a_i^1, a_i^2, y_i)\}_{i=1}^n$, where $s_i \in \mathcal{S}$ is generated from
1475 distribution ρ and $a_i^1, a_i^2 \sim \pi^{\text{ref}}$. The binary preference label $y_i = 1$ indicates a_i^1 is preferred over a_i^2
1476 (denoted by $a^1 \succ a^2$) and 0 for $a^2 \succ a^1$ given context s . In this work we consider the Bradley-Terry
1477 Model, where $\mathbb{P}[y = 1|s, a^1, a^2] = \sigma(r(s_i, a_i^1) - r(s_i, a_i^2))$, where $\sigma(x) = (1 + e^{-x})^{-1}$ is the
1478 link function. The objective here identical to (2.1) for KL-regularization and (3.1) for f -divergence
1479 regularization. Our goal is still to find an ϵ -optimal policy. To control the complexity of the function
1480 class \mathcal{G} , we assume that Assumption 2.1 still holds here.

1481 **Concentrability.** Analogous to Section 2, we need our estimation from offline dataset generalizable
1482 to the state-action pairs visited by our obtained policy. While density-ratio-based concentrability
1483 can be directly adapted to dueling bandit, we need a slightly different notion of D^2 -divergence.
1484 This is because in dueling bandit, we cannot observe the absolute reward and best estimation g
1485 we can achieve is that for any state s and actions a^1, a^2 , our estimated $g(s, a^1) - g(s, a^2) \approx$
1486 $r(s, a^1) - r(s, a^2)$. This implies that there exists some mapping $b : \mathcal{S} \rightarrow [-1, 1]$ such that
1487 $g(s, a) - b(s) \approx r(s, a)$ on the offline data, which leads to the following definition.

1488 **Definition F.1.** Given a class of functions $\mathcal{G} \subset (\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R})$ and some policy π , let $\mathcal{B} = (\mathcal{S} \rightarrow$
1489 $[-1, 1])$ be the function class, define the D^2 -divergence $D_{\mathcal{G}}^2((s, a); \pi)$ as

$$1491 \sup_{g, h \in \mathcal{G}} \inf_{b \in \mathcal{B}} \frac{(g(s, a) - h(s, a) - b(s))^2}{\mathbb{E}_{s \sim \rho} \operatorname{Var}_{a' \sim \pi(\cdot|s')} [g(s', a') - h(s', a')]}.$$

1494 A similar definition has been introduced in Zhao et al. (2024, Definition 2.6), which underpins the
1495 following two assumptions that characterize the coverage ability of π^{ref} similarly as in Section 2.

1496 Given a reference policy π^{ref} , we define two coverage notions for contextual dueling bandits.

1497 **Assumption F.2** (All-policy concentrability). $D^2 := \sup_{(s, a) \in \mathcal{S} \times \mathcal{A}} D_{\mathcal{G}}^2((s, a); \pi^{\text{ref}}) < \infty$.

1499 **Assumption F.3** (Single-policy concentrability). $D_{\pi^*}^2 := \mathbb{E}_{(s, a) \sim \rho \times \pi^*} [D_{\mathcal{G}}^2((s, a); \pi^{\text{ref}})] < \infty$.

1500 Similar single-policy concentrability assumptions have appeared in previous work in offline context-
1501 ual dueling bandits (Huang et al., 2025b; Song et al., 2024) and similar notions has also appeared
1502 in the analysis of model-based RL (Uehara & Sun, 2021; Wang et al., 2024). Still, while Assump-
1503 tion F.3 is strictly weaker than Assumption F.2, in general cases, the two quantities, C^{π^*} and $D_{\pi^*}^2$
1504 cannot be bounded by each other.

1505
1506 F.2 ALGORITHMS AND RESULTS
1507

1508 F.2.1 ALGORITHMS FOR KL-REGULARIZED CONTEXTUAL DUELING BANDITS

1509 We elucidate KL-PCDB for offline KL-regularized contextual dueling bandits, whose pseudocode is
1510 summarized in Algorithm 3. KL-PCDB first estimate the ground truth function g^* on offline dataset

1511 ⁶We overload some notations in Section 2 by their dueling counterparts for notational simplicity.

Algorithm 4 Offline f -Divergence Regularized Contextual Dueling Bandits (f -CDB)

Require: regularization η , reference policy π^{ref} , function class \mathcal{G} , offline dataset $\mathcal{D} = \{(s_i, a_i^1, a_i^2, y_i)\}_{i=1}^n$

1: Compute the maximum likelihood estimator of the reward function

$$\bar{g} = \operatorname{argmin}_{g \in \mathcal{G}} \sum_{i=1}^n \left[y_i \log \sigma\left(\left[g(s_i, a_i^1) - g(s_i, a_i^2)\right]\right) + (1 - y_i) \log \sigma\left(\left[g(s_i, a_i^2) - g(s_i, a_i^1)\right]\right) \right].$$

2: Compute the optimal policy with respect to reward \bar{g}

$$\hat{\pi}(\cdot|s) \leftarrow \operatorname{argmax}_{\pi(\cdot|s) \in \Delta(\mathcal{A})} \sum_{a \in \mathcal{A}} \pi(a|s) \bar{g}(s, a) + \eta^{-1} D_f(\pi(\cdot|s) \| \pi^{\text{ref}}(\cdot|s))$$

Ensure: $\hat{\pi}(a|s)$

with maximum likelihood estimator (MLE) to estimate a function $\bar{g} \in \mathcal{G}$. After that, analogous to Algorithm 1, we adopt the principle of pessimism in the face of uncertainty. Specifically, we define the penalty term

$$\Gamma_n(s, a) = \beta \sqrt{D_{\mathcal{G}}^2((s, a), \pi^{\text{ref}})}, \quad (\text{F.1})$$

where

$$\beta^2 = 128 \log(2\mathcal{N}_G(\epsilon_c)/\delta)/3n + 18\epsilon_c = \tilde{O}(n^{-1}) \quad (\text{F.2})$$

and then subtract it from the MLE \bar{g} to obtain a pessimistic estimator \hat{g} . KL-PCB then output the policy $\hat{\pi}$, maximizing the estimated objective

$$\widehat{J}(\pi) = \mathbb{E}_{(s,a) \sim \rho \times \pi} \left[\widehat{g}(s,a) - \eta^{-1} \log \frac{\pi(a|s)}{\pi^{\text{ref}}(a|s)} \right],$$

the maximizer of which is in closed form as the counterpart of (2.2).

$$\widehat{\pi}(a|s) \propto \pi^{\text{ref}}(a|s) \exp\left(\eta \cdot \widehat{q}(s, a)\right),$$

We provide the following theoretical guarantees for Algorithm 3.

Theorem F.4. Under Assumption F.3, if we set Γ_n according to (F.1), then for sufficiently small $\epsilon \in (0, 1)$, with probability at least $1 - \delta$, $n = \tilde{O}(\eta(D_{\pi^*}^2 \wedge C^{\pi^*})\epsilon^{-1})$ is sufficient to guarantee the output policy $\hat{\pi}$ of Algorithm 3 to be ϵ -optimal.

Remark F.5. Zhao et al. (2024) achieved an $\tilde{O}(\epsilon^{-1})$ sample complexity under Assumption F.2. Comparing to Zhao et al. (2024), KL-PCDB achieves the same $\tilde{O}(\epsilon^{-1})$ sample complexity but only requiring Assumption F.3, which is weaker than Assumption F.2.

The following theorem provides the sample complexity lower bound for KL-regularized dueling contextual bandits.

Theorem F.6. For any sufficiently small $\epsilon \in (0, 1)$, $\eta > 0$, $1 \leq C^* \leq \exp(\eta/2)/2$, and any algorithm Alg , there is a KL-regularized contextual dueling bandit instance with single-policy concentrability $C^{\pi^*} \leq C^*$ such that Alg requires at least $\Omega\left(\min\{\eta C^* \log \mathcal{N}_{\mathcal{G}}(\epsilon_c)/\epsilon, \log \mathcal{N}_{\mathcal{G}}(\epsilon_c)(C^*)^2/\epsilon^2\}\right)$ samples to return an ϵ -optimal policy.

Remark F.7. Theorem F.6 shows that when ϵ is sufficiently small, any algorithm for offline KL-regularized contextual dueling bandits requires at least $\Omega(\eta C^{\pi^*} \log \mathcal{N}_{\mathcal{G}}(\epsilon) \epsilon^{-1})$ samples to output an ϵ -optimal policy, which matches the sample complexity upper bound in Theorem F.4, indicating that KL-PCB is nearly optimal.

F.2.2 ALGORITHM AND RESULTS FOR f -DIVERGENCE REGULARIZED CDBS

We present an offline learning algorithm for f -divergence regularized contextual dueling bandit, f -CDB, in Algorithm 4. f -CDB first leverages maximum likelihood estimator to find a function

1566 $\bar{g} \in \mathcal{G}$ that minimizes its risk on the offline dataset. Then the algorithm constructs the output policy
 1567 $\hat{\pi}$ that maximizes the f -divergence regularized objective induced by \bar{g} . Similar to Algorithm 2,
 1568 we do not require any pessimism in f -CDB. The following theorem provides an upper bound of
 1569 Algorithm 4.

1570 **Theorem F.8.** For any sufficiently small $\epsilon \in (0, 1)$, and $\eta, \alpha > 0$, with probability at least $1 - \delta$,
 1571 $n = \tilde{O}(\alpha^{-1} \eta \log \mathcal{N}(\epsilon) \epsilon^{-1})$ is sufficient to guarantee that the output policy $\hat{\pi}$ of Algorithm 4 is
 1572 ϵ -optimal.

1573
 1574 The following theorem provides a lower bound for offline f -divergence regularized contextual du-
 1575 eling bandit with strongly convex f .

1576 **Theorem F.9.** For any $\epsilon \in (0, 1)$, $\alpha, \eta > 0$, and offline RL algorithm Alg , there is an α -strongly
 1577 convex f and f -divergence regularized contextual dueling bandit instance such that Alg requires at
 1578 least $\Omega(\alpha^{-1} \eta \log \mathcal{N}(\epsilon) \epsilon^{-1})$ samples to return an ϵ -optimal policy.

1579 **Remark F.10.** Theorem F.9 indicates that, when ϵ is sufficiently small, to produce an ϵ -optimal
 1580 policy, any algorithm for offline f -regularized contextual bandits with strongly convex f requires
 1581 at least $\tilde{\Omega}(\alpha^{-1} \eta \epsilon^{-1})$ samples. This lower bound matches the sample-complexity upper bound in
 1582 Theorem F.8, indicating that Algorithm 4 is nearly optimal.

1583

G MISSING PROOF FROM APPENDIX F

1584

G.1 PROOF OF THEOREM F.4

1585

1586 The proof follows the proof in Section 2. At the beginning, we first define the event $\mathcal{E}(\delta)$ given
 1587 $\delta > 0$ as

1588

$$\mathcal{E}(\delta) := \left\{ \exists b : \mathcal{S} \rightarrow [-1, 1], \forall (s, a) \in \mathcal{S} \times \mathcal{A}, |\bar{g}(s, a) - b(s) - g^*(s, a)| \leq \Gamma_n(s, a) \right\}. \quad (\text{G.1})$$

1589

1590 Here, Γ_n is defined in (F.1). We abuse the notation and define $b(\cdot)$ as

1591

1592

$$b = \operatorname{argmin}_{\mathcal{B}} \sup_{(s, a) \in \mathcal{S} \times \mathcal{A}} \Phi_b(s, a) - \Gamma_n(s, a), \quad (\text{G.2})$$

1593

1594 where $\Phi_b(s, a) = |\bar{g}(s, a) - b(s) - g^*(s, a)|$ and when \mathcal{E} holds, for all $(s, a) \in \mathcal{S} \times \mathcal{A}$, we have
 1595 $\Phi_b(s, a) \leq \Gamma_n(s, a)$. This indicates that the least square estimation \bar{g} obtained in Line 1 of Algo-
 1596 rithm 3, after adjusted by some bias function b , is close to the true function g^* . The following lemma
 1597 shows that this event holds with high probability.

1598

1599 **Lemma G.1.** For any $\delta > 0$, $\mathbb{P}(\mathcal{E}(\delta)) \geq 1 - \delta$.

1600

1601

1602 *Proof.* From Lemma H.1, we have that with probability at least $1 - \delta$, it holds that

1603

1604

$$\mathbb{E}_{s' \sim \rho} \operatorname{Var}_{a' \sim \pi^{\text{ref}}(\cdot | s')} [\bar{g}(s', a') - g^*(s', a')] \leq O\left(\frac{1}{n} \log(\mathcal{N}_G(\epsilon_c)/\delta) + \epsilon_c\right). \quad (\text{G.3})$$

1605

1606 It further holds true that for some $b : \mathcal{S} \rightarrow \mathbb{R}$

1607

1608

1609

$$D_G^2((s, a), \pi^{\text{ref}}) \cdot \mathbb{E}_{s \sim \rho} \operatorname{Var}_{a \sim \pi^{\text{ref}}(\cdot | s)} [\bar{g}(s, a) - g^*(s, a)] \geq (\bar{g}(s, a) - b(s) - g^*(s, a))^2. \quad (\text{G.4})$$

Substituting (G.3) into (G.4), we have

1610

1611

$$\inf_b (\bar{g}(s, a) - b(s) - g^*(s, a))^2 \quad (\text{G.5})$$

1612

1613

1614

$$= \inf_b \frac{(\bar{g}(s, a) - b(s) - g^*(s, a))^2}{\mathbb{E}_{s' \sim \rho} \operatorname{Var}_{a' \sim \pi^{\text{ref}}(\cdot | s')} [\bar{g}(s', a') - g^*(s', a')]} \mathbb{E}_{s' \sim \rho} \operatorname{Var}_{a' \sim \pi^{\text{ref}}(\cdot | s')} [\bar{g}(s', a') - g^*(s', a')] \quad (\text{G.6})$$

1615

1616

1617

$$\leq D_G^2((s, a), \pi^{\text{ref}}) \mathbb{E}_{\pi^{\text{ref}}} [(\bar{g}(s, a) - b(s) - g^*(s, a))^2] \quad (\text{G.6})$$

1618

1619

$$\leq D_G^2((s, a), \pi^{\text{ref}}) O\left(\frac{1}{n} \log(\mathcal{N}_G(\epsilon_c)/\delta) + \epsilon_c\right), \quad (\text{G.7})$$

where the first inequality holds due to the definition of $D_G^2((s, a), \pi^{\text{ref}})$ and the last inequality holds
 due to Lemma H.1. \square

1620 We overload the following quantities. For any $\gamma \in [0, 1]$ and $(s, a) \in \mathcal{S} \times \mathcal{A}$, we define
 1621

$$1622 g_\gamma(s, a) := \gamma(\hat{g}(s, a) - b(s)) + (1 - \gamma)g^*(s, a).$$

1623 Furthermore, we introduce the following quantities
 1624

$$1625 \pi_\gamma(\cdot | \cdot) = \pi_{g_\gamma}(\cdot | \cdot) \propto \pi^{\text{ref}}(\cdot | \cdot) \exp(\eta g_\gamma(\cdot, \cdot)),$$

$$1626 G(\gamma) := \mathbb{E}_{\rho \times \pi_\gamma} [(\hat{g}(s, a) - b(s) - g^*(s, a))^2],$$

1628 where $b(\cdot)$ is defined in (G.2). We still have the monotonicity of the function $G(\gamma)$, which is char-
 1629 acterized by the following lemma.

1630 **Lemma G.2.** On event $\mathcal{E}(\delta)$, $0 \in \text{argmax}_{\gamma \in [0, 1]} G(\gamma)$.
 1631

1632 *Proof.* For simplicity, we use $\Delta(s, a)$ to denote $\hat{g}(s, a) - b(s) - g^*(s, a)$ in *this* proof. Then on
 1633 event $\mathcal{E}(\delta)$, we know that $\Delta(s, a) \leq 0$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$. Taking derivatives of G w.r.t., γ
 1634 directly, we conclude that for all $\gamma \in [0, 1]$,
 1635

$$1636 G'(\gamma) = \eta \mathbb{E}_\rho \mathbb{E}_{a \sim \pi_\gamma} [\Delta^2(s, a) (\Delta(s, a) - \mathbb{E}_{a' \sim \pi_\gamma} [\Delta(s, a')])]$$

$$1637 = \eta \mathbb{E}_\rho [\mathbb{E}_{\pi_\gamma} [\Delta^3(s, a)] - \mathbb{E}_{\pi_\gamma} [\Delta^2(s, a)] \mathbb{E}_{\pi_\gamma} [\Delta(s, a)]]$$

$$1639 \leq 0,$$

1640 where \mathbb{E}_ρ is the shorthand of $\mathbb{E}_{s \sim \rho}$, \mathbb{E}_{π_γ} is the shorthand of $\mathbb{E}_{a \sim \pi_\gamma}$ and the inequality holds condi-
 1641 tioned on the event $\mathcal{E}(\delta)$ due to Lemma 2.15. \square
 1642

1643 Finally, we have the proposition that adding some bias term $b : \mathcal{S} \rightarrow \mathbb{R}$ does not affect the resulting
 1644 policy.

1645 **Proposition G.3.** Let $b : \mathcal{S} \rightarrow \mathbb{R}$ be some bias function, then for all $g \in \mathcal{G}$ we have $J(\pi_g) =$
 1646 $J(\pi_{g-b})$, where $(g-b)(s, a) = g(s, a) - b(s)$.
 1647

1648 *Proof.* For any fixed state $s \in \mathcal{S}$, we have for any $a \in \mathcal{A}$ that,

$$1649 \pi_g(a|s) = \frac{\pi^{\text{ref}}(a|s) \exp(\eta g(s, a))}{\sum_{a' \in \mathcal{A}} \pi^{\text{ref}}(a'|s) \exp(\eta g(s, a'))}$$

$$1650 = \frac{\pi^{\text{ref}}(a|s) \exp(\eta g(s, a)) \exp(-\eta b(s))}{\sum_{a' \in \mathcal{A}} \pi^{\text{ref}}(a'|s) \exp(\eta g(s, a')) \exp(-\eta b(s))}$$

$$1651 = \frac{\pi^{\text{ref}}(a|s) \exp(\eta[g(s, a) - b(s)])}{\sum_{a' \in \mathcal{A}} \pi^{\text{ref}}(a'|s) \exp(\eta[g(s, a') - b(s)])}$$

$$1652 = \pi_{g-b}(a|s),$$

1653 which indicates that $\pi_g = \pi_{g-b}$. This immediately leads to $J(\pi_g) = J(\pi_{g-b})$. \square
 1654

1655 Now we are ready to prove Theorem F.4.

1656 *Proof of Theorem F.4.* We proceed the proof under the event $\mathcal{E}(\delta)$. By Proposition G.3, we know
 1657 that

$$1658 J(\pi^*) - J(\hat{\pi}) = J(\pi^*) - J(\pi_{\hat{g}})$$

$$1659 = J(\pi^*) - J(\pi_{\hat{g}-b}).$$

1660 Consequently, there exist some $\gamma \in [0, 1]$ and $b : \mathcal{S} \rightarrow [-1, 1]$ such that
 1661

$$1662 J(\pi^*) - J(\hat{\pi}) = J(\pi^*) - J(\pi_{\hat{g}-b})$$

$$1663 \leq \eta \mathbb{E}_{\rho \times \pi_\gamma} [(\hat{g}(s, a) - b(s) - g^*(s, a))^2]$$

$$1664 = \eta G(\gamma),$$

where the inequality holds due to Lemma 2.14. Under event $\mathcal{E}(\delta)$, we know that $\widehat{g}(s, a) - b(s) \leq g^*(s, a)$. Together with Lemma G.2, we obtain $G(\gamma) \leq G(0)$. Therefore, we know that

$$J(\pi^*) - J(\widehat{\pi}) \leq G(0) \quad (\text{G.9})$$

$$\begin{aligned} &= \eta \mathbb{E}_{\rho \times \pi^*} \left[(\widehat{g}(s, a) - b(s) - g^*(s, a))^2 \right] \\ &\leq 4\eta \left(\mathbb{E}_{\rho \times \pi^*} [\Gamma_n^2(s, a)] \wedge C^{\pi^*} \mathbb{E}_{\rho \times \pi^*} [(\widehat{g}(s, a) - b(s) - g^*(s, a))^2] \right) \\ &= 4\eta \left(\beta^2 \mathbb{E}_{\rho \times \pi^*} [D_{\mathcal{G}}^2((s, a); \pi^{\text{ref}})] \wedge C^{\pi^*} \mathbb{E}_{\rho \times \pi^*} [(\widehat{g}(s, a) - b(s) - g^*(s, a))^2] \right) \\ &= \widetilde{O}(\eta D_{\pi^*}^2 \log \mathcal{G}(\epsilon_c) n^{-1}), \end{aligned} \quad (\text{G.10})$$

where the inequality holds due to the definition of $\mathcal{E}(\delta)$. Plugging (G.10) into (G.8), we know that $J(\pi^*) - J(\widehat{\pi})$ has upper bound $\widetilde{O}(D_{\pi^*}^2 n^{-1})$. By Lemma G.1, event \mathcal{E} with probability at least $1 - \delta$, which concludes the proof. \square

G.2 PROOF OF THEOREM F.6

Proof of Theorem F.6. The proof is similar to the proof of Theorem 2.11. Consider the following family of contextual dueling bandit instances with $S := |\mathcal{S}|, A := |\mathcal{A}| < \infty$ and reward in some function class \mathcal{G} .

$$\text{CDB} := \{(\mathcal{S}, \mathcal{A}, \rho, r, \pi^{\text{ref}}, \eta) : r \in \mathcal{G}, \rho \in \Delta(\mathcal{S}), \pi^{\text{ref}} \in \Delta(\mathcal{A}|\mathcal{S})\}. \quad (\text{G.11})$$

Fixing any $S \geq 1, \eta > 4 \log 2$ and $C^* \in (2, \exp(\eta/4)]$, we aim to prove that, for any estimator $\mathcal{D} \mapsto \widehat{\pi} \in \Delta(\mathcal{A}|\mathcal{S})$, for any $n \geq 16SC^*$, there exist some function class \mathcal{G} , such that $\exists \text{inst} = (\mathcal{S}, \mathcal{A}, \rho, r, \pi^{\text{ref}}, \eta) \in \text{CDB}$ with single-policy concentrability $C^{\pi^*} \leq C^*$, regularization coefficient $\eta, |\mathcal{S}| = S = \Theta(\log |\mathcal{G}|)$, and

$$\inf_{\text{inst} \in \text{CDB}} \text{SubOpt}_{\text{RKL}}(\widehat{\pi}; \text{inst}) \gtrsim \min\{\eta SC^* n^{-1}, (SC^*)^{1/2} n^{-1/2}\}. \quad (\text{G.12})$$

Since $\log |\mathcal{G}| \geq \log \mathcal{N}_{\mathcal{G}}(\epsilon)$ for any $\epsilon \in (0, 1)$, the above bound yields the desired result.

We construct the same reward function class as in the proof of Theorem 2.11. In particular, we set $\mathcal{S} = [S], \mathcal{A} = \{\pm 1\}, \rho = \text{Unif}(\mathcal{S})$, and the reference policy to be

$$\forall s \in \mathcal{S}, \pi^{\text{ref}}(-1|s) = C^{-1}, \pi^{\text{ref}}(+1|s) = 1 - C^{-1};$$

where $C = C^*$. Then the total sub-optimality of any $\pi \in \Delta(\mathcal{A}|\mathcal{S})$ given any reward function $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is

$$\text{SubOpt}_{f_{\text{div}}}(\pi; r) = \frac{1}{S} \sum_{s=1}^S \text{SubOpt}_{f_{\text{div}}}(\pi(\cdot|s); r(s, \cdot)). \quad (\text{G.13})$$

We further let $\alpha = \eta^{-1} \log(C - 1) \Leftrightarrow C - 1 = \exp(\eta\alpha)$. We construct 2^S Bernoulli reward functions, in particular, $\forall \tau \in \{\pm 1\}^S$, the mean function r_{τ} of the reward (indexed by τ) is defined as

$$r_{\tau}(s, -1) = 0.5 + \tau_s \delta, r_{\tau}(s, +1) = 0.5 - \alpha.$$

Then, following the derivation of (D.12) and (D.13), we know that $\forall s \in \mathcal{S}, \forall \tau, \tau' \in \{\pm 1\}^S$ with $\tau \sim_s \tau'$,

$$\text{SubOpt}_s(\widehat{\pi}; \tau) + \text{SubOpt}_s(\widehat{\pi}; \tau') \geq \frac{\eta \delta^2}{8} \wedge \frac{3\delta}{10}. \quad (\text{G.14})$$

Let P_r be the distribution of (s, a^1, a^2, y) for $s \sim \rho, a^1, a^2 \stackrel{\text{i.i.d.}}{\sim} \pi^{\text{ref}}(\cdot|s)$ and $y \sim \text{Bern}(\sigma(r(s, a^1) - r(s, a^2)))$. Now we set $\delta = \sqrt{S/n}$ and conclude that for $\tau \sim \tau'$ with $\tau_s = -\tau'_s$,

$$\begin{aligned} &\text{KL}(P_{r_{\tau}} \| P_{r_{\tau'}}) \\ &= \frac{(C - 1)}{SC^2} \sum_{s', a^1, a^2} \text{KL}(\text{Bern}(\sigma(r_{\tau}(s', a^1) - r(s', a^2))) \| \text{Bern}(\sigma(r_{\tau'}(s', a^1) - r(s', a^2)))) \\ &= \frac{2(C - 1)}{SC^2} \left(\text{KL}(\text{Bern}(\sigma(\alpha + \delta)) \| \text{Bern}(\sigma(\alpha - \delta))) \vee \text{KL}(\text{Bern}(\sigma(\alpha - \delta)) \| \text{Bern}(\sigma(\alpha + \delta))) \right). \end{aligned}$$

1728 Since $\alpha, \delta \in (0, 1/2)$, by the fact $\text{KL}(P\|Q) \leq 2Q_{\min}^{-1} \text{TV}(P\|Q)^2$ (see e.g., Polyanskiy & Wu
 1729 (2025, Section 7.6)), we know that
 1730

$$\begin{aligned}
 1731 \text{KL}(P_{r_\tau} \| P_{r_{\tau'}}) &\leq \frac{2(C-1)}{SC^2} \frac{4}{1 + \exp(\alpha + \delta)} \left(\frac{1}{1 + \exp(\alpha - \delta)} - \frac{1}{1 + \exp(\alpha + \delta)} \right)^2 \\
 1732 &\leq \frac{4}{3SC} \frac{\exp(2\alpha)(\exp(\delta) - \exp(-\delta))^2}{(1 + \exp(\alpha - \delta))^4} \\
 1733 &\leq \frac{4e}{3SC} (\exp(\delta) - \exp(-\delta))^2 \\
 1734 &\leq 36S^{-1}C^{-1}\delta^2,
 \end{aligned} \tag{G.15}$$

1739 where the second and third inequality hold due to $\alpha, \delta \leq 1/2$, and last inequality follows from
 1740 $\exp(x) - \exp(-x) \leq 3x$ for $x \in [0, 1/2]$. Now we set $\delta = \sqrt{SC/n} \leq 1/4$. We substitute (G.14)
 1741 into Assouad's Lemma (Lemma H.3) and obtain that
 1742

$$\begin{aligned}
 1743 \inf_{\text{inst} \in \text{CDB}} \text{SubOpt}_{\text{RKL}}(\hat{\pi}; \text{inst}) &\geq \frac{1}{4}S \cdot \frac{1}{S} \cdot \left(\frac{\eta\delta^2}{8} \wedge \frac{3\delta}{10} \right) \cdot \min_{\tau \sim \tau'} \exp \left(-\text{KL}(P_{\mathcal{D}_\tau} \| P_{\mathcal{D}_{\tau'}}) \right) \\
 1744 &= \frac{1}{4} \left(\frac{\eta\delta^2}{8} \wedge \frac{3\delta}{10} \right) \exp \left(-n\text{KL}(P_{r_\tau} \| P_{r_{\mathcal{D}_{\tau'}}}) \right) \\
 1745 &\geq \frac{\exp(-36)}{32} \min\{\eta CSn^{-1}, S^2C^2n^{-2}\},
 \end{aligned}$$

1750 where the $1/S$ comes from the denominator of (G.13) and the second inequality follows from (G.15). \square
 1751

1753 G.3 PROOF OF THEOREM F.8

1755 *Proof of Theorem F.8.* The proof is similar to the proof of Theorem 3.2. Recall that $b(\cdot)$ defined
 1756 in (G.2), we know that
 1757

$$\begin{aligned}
 1758 \hat{\pi} &= \operatorname{argmax}_{\pi \in \Delta^d} \left\{ \mathbb{E}_{(s,a) \sim \rho \times \pi} [\bar{g}(s, a)] - \eta^{-1} \mathbb{E}_{s \sim \rho} [D_f(\pi \| \pi^{\text{ref}})] \right\} \\
 1759 &= \operatorname{argmax}_{\pi \in \Delta^d} \left\{ \mathbb{E}_{(s,a) \sim \rho \times \pi} [\bar{g}(s, a) - b(s)] - \eta^{-1} \mathbb{E}_{s \sim \rho} [D_f(\pi \| \pi^{\text{ref}})] \right\}.
 \end{aligned}$$

1763 We have the following sub-optimality decomposition

$$\begin{aligned}
 1764 J(\pi^*) - J(\hat{\pi}) &= \mathbb{E}_{s \sim \rho} \left[\mathbb{E}_{a \sim \pi^*} [g^*(s, a)] - \mathbb{E}_{a \sim \hat{\pi}} [g^*(s, a)] - \eta^{-1} [D_f(\pi^* \| \pi^{\text{ref}}) - D_f(\hat{\pi} \| \pi^{\text{ref}})] \right] \\
 1765 &= \mathbb{E}_{s \sim \rho} [H_s^*(g^*) - H_s^*(\bar{g} - b) - \langle \hat{\pi}, g^* - \bar{g} + b \rangle] \\
 1766 &= \mathbb{E}_{s \sim \rho} [H_s^*(g^*) - H_s^*(\bar{g} - b) - \langle \nabla H_s^*(\bar{g} - b), g^* - \bar{g} + b \rangle] \\
 1767 &= \mathbb{E}_{s \sim \rho} [(g^* - \bar{g} + b)^\top \nabla^2 H_s^*(\bar{g})(g^* - \bar{g} + b)],
 \end{aligned}$$

1771 where $\tilde{g} = \gamma g^* + (1 - \gamma)\bar{g}$ and $\gamma \in [0, 1]$, $(\bar{g} - b)(s, a) = \bar{g}(s, a) - b(s)$ and the last equation holds
 1772 due to Taylor's expansion. Now, for any $\delta \in (0, 1)$ and $\epsilon_c > 0$, with probability at least $1 - \delta$

$$\begin{aligned}
 1773 J(\pi^*) - J(\hat{\pi}) &= \mathbb{E}_{s \sim \rho} [(g^* - \bar{g} + b)^\top \nabla^2 H_s^*(\tilde{g})(g^* - \bar{g} + b)] \\
 1774 &\leq \alpha^{-1} \eta \mathbb{E}_{s \sim \rho} [(g^* - \bar{g} + b)^\top \operatorname{diag}(\pi^{\text{ref}}(a_1|s), \dots, \pi^{\text{ref}}(a_d|s))(g^* - \bar{g} + b)] \\
 1775 &= \alpha^{-1} \eta \mathbb{E}_{(s,a) \sim \rho \times \pi^{\text{ref}}} [(g^*(s, a) - \bar{g}(s, a) + b(s))^2] \\
 1776 &\leq \alpha^{-1} \eta \left(\frac{128}{3n} \log(2\mathcal{N}_G(\epsilon_c)/\delta) + 18\epsilon_c \right),
 \end{aligned}$$

1778 where the first inequality holds due to Lemma E.4 and last inequality holds due to equation (G.3).
 1779 Setting $\epsilon_c = O(n^{-1})$ completes the proof. \square

1782 G.4 PROOF OF THEOREM F.9
1783

1784 *Proof of Theorem F.9.* We still consider the contextual dueling bandit instance class defined
1785 in (G.11). We show that given any positive α, η , for any $n \geq S \cdot \max\{16, \eta^2 \alpha^{-2}\}$, there exists
1786 $f : \mathbb{R} \rightarrow \mathbb{R}$ such that f is α -strongly convex, $\log |\mathcal{G}| = \Theta(S)$ and

$$1787 \inf_{\hat{\pi} \in \hat{\Pi}(\mathcal{D})} \sup_{\text{inst} \in \text{CDB}} \text{SubOpt}_{f\text{div}}(\hat{\pi}; \text{inst}) \gtrsim \frac{\eta S}{\alpha n}, \quad (\text{G.16})$$

1790 where $\mathcal{D} = \{(s_i, a_i^1, a_i^2, y_i)\}_{i=1}^n$ is the offline preference dataset, all (possibly randomized) maps
1791 from which to $\Delta(\mathcal{A}|\mathcal{S})$ is denoted by $\hat{\Pi}(\mathcal{D})$. Since $S = \Theta(\log |\mathcal{G}|) \gtrsim \log \mathcal{N}_{\mathcal{G}}(\epsilon_c)$ for all $\epsilon_c \in (0, 1)$,
1792 we can conclude the theorem.
1793

1794 Let $\mathcal{S} = [S]$, $\mathcal{A} = \{\pm 1\}$, $\rho = \text{Unif}(\mathcal{S})$ and $\pi^{\text{ref}}(\cdot|s) = \text{Unif}(\mathcal{A})$ for any $s \in \mathcal{S}$. Then the total
1795 sub-optimality of any $\pi \in \Delta(\mathcal{A}|\mathcal{S})$ given any reward function $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is

$$1797 \text{SubOpt}_{f\text{div}}(\pi; r) = \frac{1}{S} \sum_{s=1}^S \text{SubOpt}_{f\text{div}}(\pi(\cdot|s); r(s, \cdot)). \quad (\text{G.17})$$

1800 We still consider the reward function class \mathcal{G} indexed by $\{\pm 1\}^S$. For all $\tau \in \{\pm 1\}^S$ the reward
1801 instance “shaped” by τ is
1802

$$1803 r_{\tau}(s, a) = \frac{1}{2} + a\tau_s \cdot \sqrt{\frac{S}{n}}, \quad (\text{G.18})$$

1804 where $a\tau_s = \pm 1$ because $a \in \mathcal{A} = \{\pm 1\}$. We thereby refer $\tau \sim \tau'$ to any pair in $\{\pm 1\}^S$ that differs
1805 only in one coordinate. $\forall \tau, \tau' \in \{\pm 1\}^S$, if $\tau \sim \tau'$, then suppose $\tau_s = -\tau'_s$, we have
1806

$$1807 \text{SubOpt}_{f\text{div}}(\pi(\cdot|s); r_{\tau}(s, \cdot)) + \text{SubOpt}_{f\text{div}}(\pi(\cdot|s); r_{\tau'}(s, \cdot)) \geq \frac{\eta S}{\alpha n}, \quad (\text{G.19})$$

1808 where the inequality follows from exactly the same calculation in equation (E.5) by setting $f(x) =$
1809 $\alpha(x - 1)^2/2$.⁷ Let P_r be the distribution of (s, a^1, a^2, y) for $s \sim \rho$, $a^1, a^2 \stackrel{\text{i.i.d.}}{\sim} \pi^{\text{ref}}(\cdot|s)$ and
1810 $y \sim \text{Bern}(\sigma(r(s, a^1) - r(s, a^2)))$. Then we denote $\delta = \sqrt{S/n}$ and conclude that for $\tau \sim \tau'$ with
1811 $\tau_s = -\tau'_s$,
1812

$$1813 \text{KL}(P_{r_{\tau}} \| P_{r_{\tau'}}) = \frac{1}{SA^2} \sum_{s', a^1, a^2} \text{KL}(\text{Bern}(\sigma(r_{\tau}(s', a^1) - r(s', a^2))) \| \text{Bern}(\sigma(r_{\tau'}(s', a^1) - r(s', a^2))))$$

$$1814 = \frac{1}{4S} \left(\text{KL}(\text{Bern}(\sigma(2\delta)) \| \text{Bern}(\sigma(-2\delta))) + \text{KL}(\text{Bern}(\sigma(-2\delta)) \| \text{Bern}(\sigma(2\delta))) \right)$$

$$1815 \leq \frac{1}{4S} \left((\exp(-2\delta) - 1)^2 + (\exp(2\delta) - 1)^2 \right)$$

$$1816 \leq \frac{1}{2S} (\exp(2\delta) - 1)^2 \leq \frac{36\delta^2}{2S} = \frac{18}{n}, \quad (\text{G.20})$$

1817 where the last inequality follows from $\exp(x) - 1 \leq 3x$ for $x \in [0, 0.5]$ and $\delta = \sqrt{S/n} \leq 0.25$ by
1818 assumption. Therefore, we substitute (G.19) into Assouad’s Lemma (Lemma H.3) to obtain
1819

$$1820 \text{LHS of (G.16)} \geq \frac{1}{S} \cdot S \cdot \frac{\eta S}{\alpha n} \cdot \frac{1}{4} \cdot \min_{\tau \sim \tau'} \exp \left(-\text{KL}(P_{r_{\tau}} \| P_{r_{\tau'}}) \right)$$

$$1821 = 0.25 \cdot \frac{\eta S}{\alpha n} \cdot \exp \left(-n \text{KL}(P_{r_{\tau}} \| P_{r_{\tau'}}) \right) \geq \frac{\eta S}{\alpha n} \cdot \frac{1}{3} \cdot \exp(-18) \gtrsim \frac{\eta S}{\alpha n}, \quad (\text{G.21})$$

1822 where the $1/S$ comes from the denominator of (G.17) and the second inequality follows from (G.20).
1823 \square

1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25

1836

H AUXILIARY LEMMAS

1837

1838 **Lemma H.1** (Zhao et al. 2024, Lemma D.4). Consider a offline dataset $\{(s_i, a_i^1, a_i^2, y_i)\}_{i=1}^n$ generated
1839 from the product of the context distribution $\rho \in \Delta(\mathcal{S})$, policy $\pi \in \Delta(\mathcal{A}|\mathcal{S})$, and the Bradley-
1840 Terry Model defined in Appendix F.1. Suppose \bar{g} is the result of MLE estimation of Algorithm 3,
1841 and we further define $b(s) = \mathbb{E}_{a \sim \pi(\cdot|s)} [\bar{g}(s, a) - g^*(s, a)]$, then with probability at least $1 - 2\delta$, we
1842 have

1843
$$\mathbb{E}_{s, a \sim \rho \times \pi} [(\bar{g}(s, a) - g^*(s, a) - b(s))^2] \leq O\left(\frac{1}{n} \log(\mathcal{N}_G(\epsilon_c)/\delta) + \epsilon_c\right).$$
1844

1845 Lemmas H.2 and H.3 are two standard reductions (Le Cam, 1973; Yu, 1997; Polyanskiy & Wu,
1846 2025). See, e.g., Chen et al. (2024, Section 3) for a general proof.

1847 **Lemma H.2** (Fano’s inequality). Fix any $\mathcal{R} := \{r_1, \dots, r_S\}$ and policy class Π , let $L : \Pi \times \mathcal{R} \rightarrow \mathbb{R}_+$ be some loss function. Suppose there exist some constant $c > 0$ such that the following condition holds:

1848
$$\min_{i \neq j} \min_{\pi \in \Pi} L(\pi, r_i) + L(\pi, r_j) \geq c.$$
1849

1850 Then we have

1851
$$\inf_{\pi \in \Pi} \sup_{r \in \mathcal{R}} L(\pi, r) \geq \frac{c}{2} \left(1 - \frac{\max_{i \neq j} \text{KL}(P_{r_i} \| P_{r_j}) + \log 2}{\log S}\right),$$
1852

1853 where P_r is the distribution of dataset given model $r \in \mathcal{R}$.

1854 **Lemma H.3** (Assouad’s Lemma). Let \mathcal{R} be the set of instances, Π be the set of estimators, $\Theta := \{\pm 1\}^S$ for some $S > 0$, and $\{L_j\}_{j=1}^S$ be S functions from $\Pi \times \mathcal{R}$ to \mathbb{R}_+ . Suppose $\{r_\theta\}_{\theta \in \Theta} \subset \mathcal{R}$ and the loss function is

1855
$$L(\pi, r) := \sum_{j=1}^S L_j(\pi, r), \forall (\pi, r) \in \Pi \times \mathcal{R}.$$
1856

1857 We denote $\theta \sim_j \theta'$ if they differ only in the j -th coordinate. Further assume that

1858
$$\theta \sim_j \theta' \Rightarrow \inf_{\pi \in \Pi} L_j(\pi, r_\theta) + L_j(\pi, r_{\theta'}) \geq c \tag{H.1}$$
1859

1860 for some $c > 0$, then

1861
$$\inf_{\pi \in \Pi} \sup_{r \in \mathcal{R}} L(\pi, r) \geq S \cdot \frac{c}{4} \min_{\exists j: \theta \sim_j \theta'} \exp\left(-\text{KL}(P_{r_\theta} \| P_{r_{\theta'}})\right),$$
1862

1863 where P_r denotes the distribution of the dataset given $r \in \mathcal{R}$.

1864 The following Lemma H.4 is due to Gilbert (1952); Varshamov (1957), which is a classical result in
1865 coding theory.

1866 **Lemma H.4.** Suppose Σ is a set of characters with $|\Sigma| = q$ where $q \geq 2$ is a prime power and $N > 0$ is some natural number. Then there exists a subset \mathcal{V} of Σ^N such that (1) for any $v, v' \in \mathcal{V}, v \neq v_j$, one has $d_H(v, v') \geq N/2$ and (2) $\log_q |\mathcal{V}| \geq H_q(1/2) = \Theta(1)$, where d_H is the Hamming distance and the entropy function H is given by

1867
$$H_q(x) = x \frac{\log(q-1)}{\log q} - x \frac{\log x}{\log q} - (1-x) \frac{\log(1-x)}{\log q}.$$
1868

1869 For example, when $q = 2$, this means that there exists a subset \mathcal{V} of $\{-1, 1\}^S$ such that (1) $|\mathcal{V}| \geq \exp(S/8)$ and (2) for any $v, v' \in \mathcal{V}, v \neq v_j$, one has $\|v - v'\|_1 \geq S/2$.

1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889