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Abstract

Network-based machine learning constructs are becoming more prevalent in sensing and
decision-making systems. As these systems are implemented in safety-critical environments
such as pedestrian detection and power management, it is crucial to evaluate confidence
in their decisions. At the heart of this problem is a need to understand and characterize
how errors at the input of networks become progressively expanded or contracted as signals
move through layers, especially in light of the non-trivial nonlinearities manifest throughout
modern machine learning architectures. When sampling methods become expensive due to
network size or complexity, approximation is needed and popular methods include Jacobian
(first order Taylor) linearization and stochastic linearization. However, despite computational
tractability, the accuracy of these methods can break down in situations with moderate to
high input uncertainty. Here, we present a generalized method of propagating variational
multivariate Gaussian distributions through neural networks. We propose a modified Taylor
expansion function for nonlinear transformation of Gaussian distributions, with an additional
approximation in which the polynomial terms act on independent Gaussian random variables
(which are identically distributed). With these approximated higher order terms (HOTs),
we obtain significantly more accurate estimation of layer-wise distributions. Despite the
introduction of the HOTs, this method can propagate a full covariance matrix with a
complexity of O(n2) (and O(n) if only propagating marginal variance), comparable to
Jacobian linearization. Thus, our method finds a balance between efficiency and accuracy.
We derived the closed form solutions for this approximate Stochastic Taylor expansion for
seven commonly used nonlinearities and verified the effectiveness of our method in deep
residual neural networks, Bayesian neural networks, and variational autoencoders. This
general method can be integrated into use-cases such as Kalman filtering, adversarial training,
and variational learning.

1 Introduction

A fundamental problem in uncertainty estimation and verification is to characterize how a given input
distribution becomes transformed by the operant function (succinctly, Y = f(X)). When f takes the form
of a modern machine learning (ML) architecture, this problem quickly becomes analytically intractable,
necessitating either sampling methods or approximation. The predominant approximation technique remains
Jacobian linearization (JL), i.e., deterministic first order Taylor expansion around the mean of input
distribution. To give a few examples in ML contexts, Gandhi et al. (2018); Dera et al. (2021); Petersen et al.
(2024) used Jacobian linearization for uncertainty propagation through networks, and Beiu et al. (1994);
Abdelaziz et al. (2015) used a piece-wise linear approximation of sigmoid functions prior to JL. Perhaps
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unsurprisingly, these methods work best in low-uncertainty regimes, because taking derivate at input mean
ignores the uncertainty of the derivative itself.

In another line of research, Bayesian neural networks try to do uncertainty awareness training by fitting
Gaussians to their weights, so they will naturally output distributions rather than a deterministic results,
avoiding overconfidence. In exact Bayesian inference, one needs to solve the posterior distribution of the
network parameters θ given data D, i.e. p(θ|D) = p(D|θ)p(θ)∫

p(D|θ′)p(θ′)dθ′ . The marginal distribution is an integral of

the likelihood p(D|θ′) over all possible combinations of network parameters. Since the likelihood is intractable
due to the nonlinearity, this integral has to be approximated.

Early approaches attempted to precompute posterior mean and variance lookup tables to avoid Monte
Carlo sampling at runtime (Hinton and van Camp, 1993), but this necessitated discretizing continuous
variables, introducing imprecision. Monte Carlo-based methods remained popular for some time—Graves
(2011) proposed Monte Carlo Variational Inference (MCVI) to approximate the evidence lower bound, though
gradient estimation via sampling remained a limitation.

Between fully sampling and fully deterministic methods lies a class of numerical integration techniques
that seek greater efficiency than naive Monte Carlo. Gauss-Hermite quadrature is a classical example:
instead of drawing random samples, it deterministically chooses quadrature points and weights based on
Hermite polynomials to efficiently approximate integrals of Gaussian-weighted functions. This approach
underpins algorithms such as the cubature Kalman filter (Arasaratnam and Haykin, 2009; Särkkä, 2013),
widely used for nonlinear state estimation in signal processing and control. In Section A.13, we analyze the
relationship between our method and Gauss-Hermite quadrature, and demonstrate experimentally that our
approach—which is fully deterministic and does not rely on quadrature sampling—achieves faster convergence.

At the fully deterministic end of the spectrum are moment-matching approaches, which propagate distributions
by analytically computing the first and second moments of the output. The exact moments of Gaussian
distributions transformed by ReLU were first derived in Frey and Hinton (1999) and later reused in several
works, such as Gast and Roth (2018). Spiegelhalter and Lauritzen (1990) and MacKay (1992b) provided
approximations for sigmoid and tanh functions using different reformulations, while Wang et al. (2016)
presented another similar approach. Shekhovtsov and Flach (2019) developed an analytical method for
propagating uncertainty through argmax and softmax, assuming logistic and Gumbel priors.

To integrate these ideas into BNN training, Jylänki et al. (2014) introduced expectation propagation. A
more scalable alternative, probabilistic backpropagation (PBP), was later proposed by Hernández-Lobato and
Adams (2015), which propagates moments forward through the network to estimate the marginal likelihood,
then backpropagates gradients with respect to approximated posterior parameters. However, PBP only
propagates the diagonal of covariance. To address this limitation, Wu et al. (2019) introduced a formulation
that enables full covariance propagation through ReLU and Heaviside activations.

Contributions To summarize, current uncertainty propagation of variational Gaussian distributions
through nonlinear layers relies on one of the following (1) Monte Carlo sampling (2) local linearization of the
nonlinearities or (3) direct derivation (or approximation) of the first two moments of output distributions
under the assumption of zero correlation. The first is plausible thanks to powerful tensor calculation with
GPUs, but is prone to undersampling, especially in high dimensional settings. The second allows propagating
full covariance matrices, but introduces errors from ignoring higher order moments’ contribution to the
covariance calculation. The last one introduces errors from ignoring the correlations’ contributions to the
variance calculation.

To address these shortcomings, we here postulate a generalized framework of using a stochastic polynomial
expansion as a surrogate nonlinearity, and derive the closed-form solutions of the mean, covariance, and cross-
covariance of propagated multi-variate distributions, for seven nonlinearities that are ubiquitous in modern
ML network constructs. This is achieved with a computational complexity of O(n2), comparable to that of
first-order Taylor expansion. Our methodology is inspired by stochastic linearization (SL), which uses expected
value of the first derivative as gain and mean of output as bias, or Ŷ = E[∇xf(X)] ◦ (X − E[X]) + E[f(X)].
Stochastic linearization minimizes mean square of the residual (Booton, 1953; Kazakov, 1954), and has been
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used in the context of feedback control systems (see, e.g., (Zhang et al., 2025; Ching et al., 2010; Elishakoff
and Crandall, 2017)).

2 Theory

To ensure consistency and clarity, we explicitly define the notation and convention used throughout this
paper. All vectors are vertical. All instances of the ◦ operation denote element-wise (Hadamard) operations,
including both element-wise multiplication and exponentiation. For example, given a vector X, we define
X◦2 = X ◦X, whereas X2 = XX⊤, which represents the outer product. This convention extends to differntial
operators as well. Specifically, the element-wise second derivative of a function f is given by:

∇◦2f =
(

∂2f

∂x2
1

, · · · ,
∂2f

∂x2
n

)⊤

= diag
(
∇2f

)
Let X := (X1, X2, · · · , Xn)⊤ be a Gaussian random vector following N (µ̃, Σ̃), and Ξ := X− E[X]. Let f̄(·)
be a smooth, univariate function. We define the vector function f(X) = (f̄(X1), f̄(X2), · · · , f̄(Xn))⊤. Here,
we have in mind that f(·) describes the activation function at the output of a feedforward layer. Now, let us
define a set of i.i.d. surrogate random vectors Ξ(s), which are mutually independent as random vectors, but
the components within each vector may be correlated.

Ξ(s) ∼ i.i.d. N (0, Σ̃) , s = 1, 2, ..., S

We now propose the central construct in this paper, the pseudo-Taylor polynomial expansion (PTPE)
of f(X) as:

g(X) = E [f(X)] +
S∑

s=1

E [∇◦s
x f(X)]
s! ◦

(
Ξ◦s

(s) − E
[
Ξ◦s

(s)

])
(1)

We postulate and later show that this expansion provides a tractable and accurate approximation of f(X)
for the purposes of propagating uncertainty through feedforward network architectures.

In the above, we use the form of a Taylor polynomial expansion to describe the behavior (in expectation)
of the function f(X) subject to the stochastic input X. The choice of the i.i.d. surrogate polynomials,
{1, Ξ(1), Ξ◦2

(2), Ξ◦3
(3), · · · }, is made to simplify the ensuing derivations. Note that if taking only the first two

terms, this expansion is equivalent to stochastic linearization, because Ξ(1)−E[Ξ(1)] is equivalent to X−E[X].
It is straightforward to observe that g(X) has the same first moment as f(X) because all terms after the first
one are designed to have zero mean. In the following, we will provide empirical evidence that the second
moment is well-captured for many common activation functions.

First, we derive the solution for covariance and cross-covariance using the proposed stochastic polynomial
expansion.

Lemma 1. Define

A0 = E [f(X)] A1 = E [∇xf(X)]
1! A2 =

E
[
∇◦2

x f(X)
]

2! · · ·

Then, the covariance matrix of g(X) is

Σg(X) =
S∑

s=1
As ◦ cov(X◦s) ◦A⊤

s (2)

for an S-th order expansion. For S = 3,

Σg(X) =A1 ◦ Σ̃ ◦A⊤
1 +

A2 ◦
(
2Σ̃◦2) ◦A⊤

2 +
A3 ◦

[
6Σ̃◦3 + 9 diag(Σ̃) ◦ Σ̃ ◦ diag(Σ̃)⊤] ◦A⊤

3
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Proof. The expected values can be solved using central moments of Gaussian distributions and Isserlis’
theorem. All power operations are element-wise. Note that since As are n dimensional vector, and all
the power and product operations are element-wise, the complexity of calculating covariance is O(n2). For
detailed derivation, see Appendix A.1.2.

It is useful to note that an addition (residual or recurrent) layer sums the activation of two (or more) layers, e.g.
X and g(Y). In thise case, the covariance of X + g(Y) is the sum of their covariances and cross-covariances,
i.e.

ΣX+g(Y) = ΣX + Σg(Y) + ΣXg(Y) + Σg(Y)X

It is thus helpful to postulate an additional lemma for the purpose of calculating covariance after addition.

Lemma 2. Let Y := (Y1, Y2, · · · , Yn)⊤ be another Gaussian random vector that is cross-correlated to X
with ΣYX. Then, the cross-covariance matrix between Y and Z := g(X) is

ΣYZ =
S∑

t=1,t is odd
A⊤

t ◦ cov(Y, X◦t)

ΣZY =
S∑

s=1,s is odd
As ◦ cov(X◦t, Y)

(3)

for an S-th order expansion. For S = 3,

ΣYZ = A⊤
1 ◦ΣYX + 3A⊤

3 ◦ΣYX ◦ diag(ΣX)⊤

ΣZY = A1 ◦ΣXY + 3A3 ◦ΣXY ◦ diag(ΣX)

Proof. The expected value can be calculated using Isserlis’ theorem. Note that this term is nonzero only if t
and s are odd. For details of derivation, see Appendix A.1.3.

With these results, to find the covariance of the output of a nonlinear layer, assuming the input follows a
multi-variate normal distribution, one needs to derive the coefficients of the PTPE, i.e., A0, A1, A2, etc., for
the nonlinearity of interest. Note that these coefficients only depend on mean µ̃ and variance σ̃2 = diag(Σ̃),
not correlations, rendering the computational complexity O(n). We briefly discuss some of the techniques we
adopted to solve for these polynomial coefficients and list the final results in Table Table 1 and Table 4. For
detailed derivation for all nonlinearities, see Appendix A.2 - A.7.

Tanh, Sigmoid, and Softplus. Because the integral
∫
∇tanh(x)p(x)dx is not tractable analytically, so

we make a further approximation by substituting tanh with the error function which is very similar but more
tractable. Specifically, we propose

tanh(x) ≈ 1
p

p∑
j=1

erf [γjx]

where {γ1, · · · , γp} is a set of scaling factors obtained by numerical optimization (see Eq.7 in Appendix), and
the relationship between approximation accuracy and the number of scaling factors is discussed in A.12. The
error function is defined as

erf(x) = 2√
π

∫ x

0
exp(−t2)dt

Then, the integral
∫
∇tanh(x)p(x)dx can be approximated as 1

p

∑p
j=1

∫
∇erf(γjx)p(x)dx, which is tractable

analytically. The higher order derivatives of the error function are simply derivatives of Gaussian functions
φ(x), which are related to Hermite polynomials Hs(x) through

ds

dxs

[
1
σ

φ
(x

σ

)]
=
(
−1√
2σ2

)s

Hs

(
x√
2σ2

)
1
σ

φ
(x

σ

)
(4)
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where

H0(x) = 1 H1(x) = 2x H2(x) = 4x2 − 2 · · ·

We show the pseudo-Taylor coefficients are convolutions of Gaussian derivatives and Gaussian pdf, which are
analytically tractable (see Appendix A.2). We used a similar treatment for sigmoid function (see Appendix
A.3). Using error functions as an approximation was first suggested by Spiegelhalter and Lauritzen (1990),
but we use a linear combination, which is easily parallelizable and enhanced approximation accuracy. The
derivation for softplus can reuse the results of sigmoid, because the derivative of softplus is just sigmoid
with a scaling factor β (A.4).

ReLU and LeakyReLU. It is obvious that we cannot apply our method directly on ReLU, because
it is not continuously differentiable. Hence, we modified the results for softplus at the limit of β → ∞,
considering the relationship (A.5)

lim
β→∞

1
β

log
(
1 + eβx

)
= max{0, x}

Similarly, leaky ReLU and any piece-wise linear activation function can be described as a combination of
ReLU functions with different scaling, shifting, and/or mirroring.

GELU and SiLU. The derivatives of GELU can be expressed using derivatives of Gaussian cdf Φ(x)

∂s

∂xs
GELU(x) = s

∂s−1

∂xs−1 Φ(x) + x
∂s

∂xs
Φ(x)

The expected value of the GELU derivative involves integrating the product of Hermite polynomials and
Gaussian functions, which is analytically tractable (A.6). Using normal cdf to approximate a sigmoid
function, the derivations for a SiLU function becomes similar to that of the GELU (A.7).

Before presenting the final expression, we introduce a few element-wise operators to simplify the formulation.
Let σ̃2 = diag(Σ̃) denote the input variance and σ́2

j represent a constant dependent on the nonlinearity (see
Table 1 column 3). Defining σ̂2

j = σ̃2 + σ́2
j , we then have

L(µ̃ ; σ̂j) := 1
σ̂j

φ

(
x

σ̂j

)∣∣∣∣
x=µ̃

Likelihood of observing x = µ̃ if X ∼ N (0, σ̂2
j )

F(µ̃ ; σ̂j) := Φ
(

x

σ̂j

)∣∣∣∣
x=µ̃

Cumulative likelihood of observing x ≤ µ̃

I(µ̃ ; σ̂j) :=
∫ µ̃

−∞
Φ
(

x

σ̂j

)
dx = µ̃ F(µ̃ ; σ̂j) + σ̂2

j L(µ̃ ; σ̂j) Expected value of excess (µ̃−X)

(only when µ̃ > x, and X ∼ N (0, σ̂2
j ))

We also define an element-wise derivative operator Ds such that

DsL(µ̃ ; σ̂j) := ∇◦s
x L(x ; σ̂j)|x=µ̃ =

 −1√
2σ̂2

j

s

Hs

 µ̃√
2σ̂2

j

L(µ̃ ; σ̂j) †

Notice that

D I(µ̃ ; σ̂j) = F(µ̃ ; σ̂j)
D2 I(µ̃ ; σ̂j) = DF(µ̃ ; σ̂j) = L(µ̃ ; σ̂j)

Then, it becomes evident that all of these pseudo-Taylor coefficients As can be written as derivatives of I, F ,
and L (Table. 1). This is a result of the Gaussian assumption and the reformulation of tanh and sigmoid.

†All operations in the right hand side of the equation are element-wise.
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Table 1: General solutions for the pseudo-Taylor coefficients. For notational simplicity, all the product,
division, and exponentiation operations are element-wise. For expanded solutions of the first four coefficients,
see Table 4 in the Appendix.

Nonlinearity General Solution σ̂2
j = σ̃2 + σ́2

j Definition of γj

Tanh As = 1
s!

1
p

p∑
j=1

Ds [2F(µ̃ ; σ̂j)− 1] σ́2
j = 1

2γ2
j

tanh(x) ≈ 1
p

p∑
j=1

erf(γjx)

Sigmoid As = 1
s!

1
p

p∑
j=1

DsF(µ̃ ; σ̂j) σ́2
j = 1

2γ2
j

sigmoid(x) ≈ 1
p

p∑
j=1

Φ
(√

2γ2
j x
)

Softplus As = 1
s!

1
p

p∑
j=1

DsI(µ̃ ; σ̂j) σ́2
j = 1

2γ2
j β2

d
dx

softplus(x; β) ≈ 1
p

p∑
j=1

Φ
(√

2γ2
j β2 x

)
ReLU As = 1

s! DsI(µ̃ ; σ̃) σ́2 = 0

LeakyReLU(θ) As = 1
s! Ds [θx + I(µ̃ ; σ̃)] σ́2 = 0

GELU As = 1
s! Ds [I(µ̃ ; σ̂)−L(µ̃ ; σ̂)] σ́2 = 1

SiLU As = 1
s!

1
p

p∑
j=1

Ds
[
I(µ̃ ; σ̂j)− σ́2

j L(µ̃ ; σ̂j)
]

σ́2
j = 1

2γ2
j

same as Sigmoid

3 Results

3.1 PTPE significantly improves estimation accuracy when exposed to higher input variance

As an initial empirical test and demonstration of concept, we applied PTPE to a single, univariate nonlinearity
subject to a parameterized normally distributed input. We varied the input mean and variance and examined
how the output mean and variance compared to those predicted by PTPE. For this comparison, the true
output statistics were obtained through 107 Monte Carlo sampling across all input parameters. As expected,
PTPE far outstrips Jacobian linearization, and this effect is prominent especially when input variance is high.
With up-to third order PTPE, the estimated variance by our method is already very close to the ground
truth (Fig. 1 col 4).

3.2 PTPE accurately quantifies uncertainty in canonical network architectures

To benchmark PTPE for uncertainty estimation in neural networks, we trained 9 residual neural networks
(He et al. (2016)) with three depths (13, 33, and 65 layers) and 3 three typical nonlinearities (Tanh, ReLU,
GELU) on CIFAR10 (Krizhevsky (2009)). We corrupted each input image with additive Gaussian noise
to simulate noise in low light conditions (first type of corruption in Hendrycks and Dietterich (2019)), then
compared the PTPE-predicted and reference (via 107 Monte Carlo sampling) logits distributions. Four levels
of corruption, with noise variance values of [1, 10, 100, 1000], were applied to RBG values ([0, 255]) of the
input image. If z-scored, the corresponding noise variance scales are [1e-5, 1e-4. 1e-3, 1e-2]. The visualization
of the corrupted images are shown in (Fig. 2). The layerwise application of PTPE is outlined in Algorithm 1
with accompanying pseudo code.

We measure the estimation accuracy of moments in three ways: the Euclidean distance from the reference
mean to the predicted mean, ||µest − µref||2, the Frobenius norm of the covariance residuals ||Σest −Σref||fro,
and the 2-Wasserstein distance (or Kantorovich-Rubinstein metric) between the reference and estimated
distributions, assuming both distributions were Gaussian. This 2-Wasserstein distance is defined as

W2 =

√
||µest − µref||22 + trace

(
Σest + Σref − 2

(
Σ1/2

est ΣrefΣ1/2
est

)1/2
)
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Figure 1: Solid lines: mean (column 1) and variance gain (output variance divided by input variance)
(column 2-5) obtained by sampling 1e7 datapoints from Gaussian distributions with centers ranging from -3 to
3. Dashed lines: approximated mean and variance gain predicted with 1st, 2nd, and 3rd order pseudo Taylor
polynomial expansion (column 2 - 4). Colors correspond to different input variances (blue: 0.1, yellow: 1, red:
10, green: 100). Dotted lines: approximated mean and variance gain using Jacobian linearization (first
order deterministic Taylor expansion around input mean, e.g. Petersen et al. (2024)). For other nonlinearities,
see Fig. 8.

Figure 2: Schematic of experiment setup. We inject i.i.d. Gaussian noise to input image to simulate sensor
noises, then compare the estimated output distribution to the ground truth obtained by large-scale simulation
(sampling 107 noisy images).
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Figure 3: Estimation accuracies of expectation propagation methods evaluated on residual networks of three
different depth, and four different input variance. The smaller the better. We chose Petersen et al. (2024)
as an example of JL and Wang et al. (2016) as an alternative Tanh approximation. For non-linearities
ReLU and GELU, see Fig. 9 and 10 in the Appendix. Differences between methods are systematic rather
than random; we assessed variability by repeating experiments 10 times and computing error bars, but the
resulting variances were too small to be visible at this scale. For transparency and reproducibility, all data
and code used to generate these results are publicly available in our GitHub repository (Sec. 6).

We summarize the results in Fig. 3, 9, and 10. Overall, the experimental results align with expectations: (1)
Jacobian linearization degrades dramatically in moderate to high variance regime. (2) Direct derivation is
not suitable for this task due to the assumption of independence, since the overlapping convolution kernels
and residual layers introduce substantial correlation. (3) Introducing up-to the third order PTPE typically
outperformes stochastic and Jacobian linearization by a large margin. We also compared using 4 scaling
factors versus using 8, and the results showed no significant difference (Fig. 12), justifying our choice of four
scaling factors rather than a larger number in this case.

While higher-order approximations generally yield better performance, they can occasionally underperform in
practice (e.g., for the L2 norm in ResNet13-tanh with input variance = 1), due to two factors:
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• Numerical Instability at Low Variance: When input variance is small (for example, due to
batch normalization), higher-order terms become increasingly sensitive to numerical instability. This
instability can introduce errors that outweigh the potential benefits of higher-order corrections.

• Imprecise Reference Distributions: Our evaluation relies on reference distributions estimated
using 107 samples. While increasing the sample size from 106 to 107 led to lower Wasserstein-2,
L2, and Frobenius distance metrics, it was not feasible to further increase the sample size to 108

due to prohibitive runtime and memory requirements. We expect that such an increase would
further reduce these metrics, but this could not be tested directly. Notably, estimating the statistics
(e.g., mean and covariance) of a high-dimensional distribution (e.g., 10D or more) ideally requires
an exponentially larger number of samples (on the order of 1070 for 10 dimensions), which is
computationally infeasible. Thus, some of the observed underperformance of higher-order terms may
be attributable to imperfections in the estimated reference.

While the second issue is inherent to the problem setup and cannot be fully eliminated, the first issue is, in
principle, addressable. In practice, we recommend adaptively choosing the order of approximation based on
input variance; for example, using second-order PTPE when variance is low to avoid instability, and higher
orders when the input variance is larger.

3.3 PTPE addresses the limitations of DVI by incorporating non-piecewise-linear activations.

One major contribution of this work is to address the lack of accurate deterministic moment estimation
for general nonlinearities in the field of variational inference. The method of deterministic variational
inference (DVI) proposed by Wu et al. (2019) shares the same goal, which is to find a deterministic method
to approximate moments in neural networks, thus eliminating gradient variance. However, closed form
solutions of posterior mean and covariance were solved only for piecewise linear activations such as ReLU
and Heaviside. We know Var(f(X)) = E[f(X)2]− E[f(X)]2, and the first term, E[f(X)2] =

∫
f(x)2pX(x)dx,

becomes arduous to solve for more complex nonlinearities f(·). Our approach circumvents this issue by taking
derivatives inside the integrals, which provides tractability for general nonlinearities.

Table 2: Averaged test performance in RMSE. The smaller the better. The best value is highlighted in bold.

Dataset Concrete
Strength

Energy
Efficiency Kin8nm Naval

Propulsion
Power
Plant

Protein
Structure

Wine
Quality
(Red)

Yacht
Hydro-

dynamics
Data points
Dimensions

1030
8

768
8

8192
8

11934
16

9568
4

45730
9

1599
11

308
6

MCVI 7.128 ± 0.123 2.646 ± 0.081 0.099 ± 0.001 0.005 ± 0.001 4.327 ± 0.035 4.842 ± 0.031 0.646 ± 0.008 6.887 ± 0.675
PBP 5.667 ± 0.093 1.804 ± 0.048 0.098 ± 0.001 0.006 ± 0.000 4.124 ± 0.035 4.732 ± 0.013 0.635 ± 0.008 1.015 ± 0.054

Dropout 5.23 ± 0.12 1.66 ± 0.04 0.10 ± 0.00 0.01 ± 0.00 4.02 ± 0.04 4.36 ± 0.01 0.62 ± 0.01 1.11 ± 0.09
Ensemble 6.03 ± 0.58 2.09 ± 0.29 0.09 ± 0.00 0.00 ± 0.00 4.11 ± 0.17 4.71 ± 0.06 0.64 ± 0.04 1.58 ± 0.48

PTPE ReLU 5.196 ± 0.206 0.615 ± 0.024 0.072 ± 0.001 0.003 ± 0.000 3.925 ± 0.025 4.445 ± 0.042 0.633 ± 0.010 0.640 ± 0.057
PTPE GELU 5.068 ± 0.153 0.570 ± 0.021 0.071 ± 0.000 0.004 ± 0.000 3.915 ± 0.024 4.415 ± 0.043 0.634 ± 0.010 0.623 ± 0.049
PTPE Tanh 5.574 ± 0.148 0.580 ± 0.022 0.076 ± 0.001 0.005 ± 0.000 4.073 ± 0.028 4.364 ± 0.036 0.628 ± 0.010 1.678 ± 0.193

Table 3: Averaged test performance in average log-likelihood. The larger the better. The best value is
highlighted in bold, and the second best is underlined.

Dataset Concrete
Strength

Energy
Efficiency Kin8nm Naval

Propulsion
Power
Plant

Protein
Structure

Wine
Quality
(Red)

Yacht
Hydro-

dynamics
MCVI -3.391 ± 0.017 -2.391 ± 0.029 0.897 ± 0.010 3.734 ± 0.116 -2.890 ± 0.010 -2.992 ± 0.006 -0.980 ± 0.013 -3.439 ± 0.163
PBP -3.161 ± 0.019 -2.042 ± 0.019 0.896 ± 0.006 3.731 ± 0.006 -2.837 ± 0.009 -2.973 ± 0.003 -0.968 ± 0.014 -1.634 ± 0.016

Dropout -3.04 ± 0.02 -1.99 ± 0.02 0.95 ± 0.01 3.80 ± 0.01 -2.80 ± 0.01 -2.89 ± 0.01 -0.93 ± 0.01 -1.55 ± 0.03
Ensemble -3.06 ± 0.18 -1.38 ± 0.22 1.20 ± 0.02 5.63 ± 0.05 -2.79 ± 0.04 -2.83 ± 0.02 -0.94 ± 0.12 -1.18 ± 0.21

DVI -3.06 ± 0.01 -1.01 ± 0.06 1.13 ± 0.00 6.29 ± 0.04 -2.80 ± 0.00 -2.85 ± 0.01 -0.90 ± 0.01 -0.47 ± 0.03
PTPE ReLU -3.010 ± 0.037 -1.045 ± 0.044 1.251 ± 0.009 5.751 ± 0.086 -2.789 ± 0.007 -2.821 ± 0.024 -0.966 ± 0.029 -0.910 ± 0.044
PTPE GELU -3.092 ± 0.056 -0.789 ± 0.039 1.278 ± 0.007 5.858 ± 0.135 -2.780 ± 0.006 -2.801 ± 0.019 -0.982 ± 0.029 -0.236 ± 0.052
PTPE Tanh -3.159 ± 0.039 -0.827 ± 0.043 1.234 ± 0.008 6.050 ± 0.028 -2.825 ± 0.006 -2.802 ± 0.013 -0.939 ± 0.016 -0.699 ± 0.067

LL Tanh -3.07 ± 0.07 -0.65 ± 0.05 1.29 ± 0.01 6.29 ± 0.19 -2.79 ± 0.01 -2.79 ± 0.00 -0.98 ± 0.01 -0.92 ± 0.03
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We provide additional context and quantification by replacing the forward-passing functions of Gaussian
moments in DVI with PTPE and conducting regression experiments on eight UCI datasets. Following the
methodology suggested by Hernández-Lobato and Adams (2015), we search over MLPs with up to four layers
containing 50 hidden units (100 for the larger Protein Structure dataset) and report the best test performance.
We randomly set aside 10% of the data as test samples, and the error bars reflect the results from 20 random
splits.

We evaluate RMSE and log-likelihood on the held-out data and summarize the results in Tables 2 and 3. For
comparison, we include reported statistics (where available) from Monte Carlo Variational Inference (MCVI)
(Graves, 2011), Probabilistic Backpropagation (PBP) (Hernández-Lobato and Adams, 2015), Dropout (Gal
and Ghahramani, 2016), Ensemble (Lakshminarayanan et al., 2017), DVI (Wu et al., 2019), and Linearized
Laplace (MacKay, 1992a; Foong et al., 2019). The results indicate that PTPE-DVI achieves competent
accuracy, demonstrating the effectiveness of PTPE.

We extend the evaluation to out-of-distribution (OOD) detection in MNIST. Here, we test how models trained
with PTPE respond to rotated and OOD images, using FashionMNIST (Xiao et al., 2017) as OOD data.
The format of our analysis is similar to that of Ovadia et al. (2019).

The results (Fig. 4) show two main findings. First, the DVI+PTPE model achieves the highest accuracy on
shifted images and is the least overconfident among all models tested, though this comes at the cost of a
small drop in performance on undistorted images. One possible explanation is that the DVI+PTPE model
may have learned a more robust representation of handwritten digits, which helps it generalize better to
rotated images; however, we leave a more detailed investigation of this effect to future work. Second, all
models perform similarly in terms of OOD detection capability.
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Figure 4: (a) and (b) show accuracy measured by Brier score and log likelihood as the test images are
increasingly rotated. We explore the predictive distributions in 90 degree rotation of each method by looking
at the confidence of the predictions in (c) and (d). We also explore the entropy and confidence of each method
on entirely OOD data in (e) and (f).
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3.4 PTPE enabled Variational Autoencoder demonstrates improved performance with O(n) complexity.

Since PTPE is fundamentally designed to accurately propagate Gaussian moments through nonlinearities, it
can be incorporated into various applications, one of which is the decoder of a Variational Autoencoder (VAE)
(Kingma and Welling, 2014). In the decoding stage, a VAE propagates the Gaussian means and variances
encoded by the encoder through layers of nonlinearity in the decoder. The original model, which we refer
to as the "vanilla VAE," accomplishes this by propagating Monte Carlo samples. Instead, we replace the
decoder with PTPE while keeping the trainable parameters unchanged and train the model to reconstruct
MNIST handwritten digits (LeCun et al., 1998). As shown in Fig. 5, the PTPE-enabled VAE achieves a
higher Evidence Lower Bound (ELBO) and improved reconstruction accuracy compared to the vanilla VAE.

A key bottleneck in applying many well-established Bayesian methods to VAEs is scalability. Many Bayesian
approaches require sampling, which suffers from curse of dimensionality. PTPE offers an alternative solution:
the PTPE-VAE shown in Fig. 5 propagates only the diagonal of the covariance, resulting in a computational
complexity of O(n). Moreover, the training procedure remains identical to that of the vanilla VAE.
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Figure 5: (Left four) Training and testing objective, measured as ELBO, for both vanilla and PTPE
implemented VAE. (Right) Reconstruction loss (MSE) of the two types of models.

4 Discussion

One immediate potential limitation of PTPE is its reliance on the assumption that inputs are Gaussian. It
has been well-established that at the limit of infinite width, a deep neural network with Gaussian input is
equivalently a Gaussian process (Neal (1994); Williams (1996); de G. Matthews et al. (2018); Lee et al. (2018);
Gao et al. (2023)), and a similar phenomenon is also reported in Bayesian neural networks with Gaussian
weights (Goulet et al. (2021); Nguyen and Goulet (2022)). Based on this observation, we assume a "wide
enough" neural network will have approximate Gaussianity in each layer, so that the error of using variational
Gaussian distributions to approximate layer-wise distributions becomes negligible. We verify this assumption
through simulation (see e.g., Fig. 6).

In this paper, we focus on the propagation of Gaussian distributions. This choice is due to their prevalence in
machine learning and their convenient property of being Lévy alpha-stable, meaning a linear combination of
Gaussian random variables remains Gaussian. This makes Gaussian distributions pertinent to our objectives.
Consequently, our method could potentially be extended to other types within the Lévy alpha-stable family.
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Figure 6: Empirical distributions of the first three
logits of a resnet, obtained by Monte Carlo sampling 105

images with additive Gaussian noises. For distributions
of all 10 logits, see Fig. 7 in Appendix.

For instance, Petersen et al. (2024) demonstrated
the propagation of Cauchy distributions through
neural networks. A more comprehensive survey is
provided in Wang et al. (2016), where the authors ex-
amined the propagation of exponential family distri-
butions (including Beta, Rayleigh, Gamma, Poisson,
and Gaussian), though this requires more intricate
derivations.

A strength of PTPE is its generality. As mentioned
in the introduction, several immediate motivating
use-cases are in the training of robust networks in-
cluding probabilistic network models. Furthermore,
our proposed method may also find application in
safety-critical engineering systems that require es-
timates on uncertainty. Recently, researchers com-
bined an LSTM and Kalman filtering to monitor the
states of plasma inside a nuclear fusion device Pavone
et al. (2023). The Kalman filter, by construction,
requires statistics on the output of the LSTM in or-
der to generate control signals. Such statistics were
generated by using a probabalistic architcture within
the LSTM, i.e., where parameters are specified by
a learned distribution. PTPE provides a potential
alternative path for such problems (we discuss in
A.13), but enabling uncertainty propagation through
deterministic learned architectures.

5 Conclusion

In this article, we developed a stochastic polynomial expansion approach, PTPE, to perform uncertainty
propagation in neural networks. Our method offers significant advantages in accurately propagating the
full covariance matrix of an input distribution compared to state-of-the-art methods, without substantially
sacrificing computational efficiency. We derived analytical solutions for the first two moments of the output
distributions for seven commonly used nonlinearities, demonstrating remarkable accuracy in predicting
univariate mean and variance, particularly under high uncertainty. Additionally, we assessed its multivariate
accuracy in deep residual neural networks trained on image categorization tasks. By incorporating up
to third-order polynomial expansion, our method generally outperformed others, except in scenarios with
minimal uncertainty in which the performance of competing methods is comparable. Overall, our proposed
method provides a tractable framework for solving uncertainty propagation problems. It can potentially be
effectively applied in various domains, including adversarial training, Bayesian inference, generative models,
and safety-critical applications, offering a versatile tool for enhancing the reliability and robustness of neural
networks.

6 Code Availability

All code for reproducing the experiments and figures is publicly available at https://github.com/songhanz/
Stochastic_Polynomial_Expansion.
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A Appendix

A.1 Derivation of mean, covariance, and cross-covariance propagated through a univariate nonlinear
function

Revisit the definitions of notations.

U multivariate Gaussian input ∼ Nn(µ, Σ)
W weight matrix (constant)

b bias vector (constant)
X = W ⊤U + b ∼ Nn(µ̃, Σ̃)
µ̃ = W ⊤µ + b

Σ̃ = W ⊤ΣW

Ξ = X− µ̃ ∼ Nn(0, Σ̃)
σ̃2 = diag

(
Σ̃
)

{γ1 , ... , γp} positive scaling factor set obtained through numerical optimizations

All ◦ oprations are element-wise, including the Hadamard product and Hadamard exponentiation. However,
for notationaly simplicity, all product, division, and power operations are element-wise starting from A.2.

In the context of machine learning, all non-linearities are applied element-wise – they are univarite. Thus,
the off-diagonal entries of their Hessian matrices (second order partial derivatives) are zero, and it has similar
effect on higher order partial derivatives. This makes PTPE on multivariate input easier to write down.

Given a smooth nonlinear function f̄(·) of univariate random variables, define vector operation f(X) :=
(f̄(X1), f̄(X2), · · · , f̄(Xn))⊤. We define an approximation g(·), which stochastically expands f(·) under the
Taylor scheme, such that f(·) and g(·) have approximately the same first and second moment. This expansion
uses i.i.d. surrogate polynomials, {1, Ξ(1), Ξ◦2

(2), Ξ◦3
(3), · · · }, and such choice reduces computational complexity

of covariance. Notably, the i.i.d. assumption is not a concession, but rather yields more accurate estimates
than the non-i.i.d. alternative within our framework.

g (X) = E [f (X)] + E [∇xf (X)]
1! ◦

(
Ξ(1) − E

[
Ξ(1)

])
+

E
[
∇◦2

x f (X)
]

2! ◦
(

Ξ◦2
(2) − E

[
Ξ◦2

(2)

])
+ · · ·

and denote

A0 = E [f (X)]

A1 = E [∇xf (X)]
1!

A2 =
E
[
∇◦2

x f (X)
]

2!

A3 =
E
[
∇◦3

x f (X)
]

3!
· · ·

such that

g (X) = E [f (X)] +
∞∑

s=1
As ◦

(
Ξ◦s

(s) − E
[
Ξ◦s

(s)

])
︸ ︷︷ ︸

zero mean
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A.1.1 Mean

A0 is simply the mean of the output. In the later sections we show this value can either be analytically solved
or approximated using similarly behaving nonlinear functions.

A.1.2 Covariance

For clarity of reading, we omit the subscript of ξ, but will revisit the independence of polynomial basis. The
covariance function of f(X) with S-th order expansion is

cov (g(X)) = E

( S∑
s=1

As ◦
(

Ξ◦s
(s) − E[Ξ◦s

(s)]
))( S∑

t=1
At ◦

(
Ξ◦t

(t) − E[Ξ◦t
(t)]
))⊤

=
S∑

s=1

S∑
t=1

(
AsA⊤

t

)
◦ E
[(

Ξ◦s
(s) − E[Ξ◦s

(s)]
)(

Ξ◦t
(t) − E[Ξ◦t

(t)]
)⊤
]

=
S∑

s=1

S∑
t=1

(
AsA⊤

t

)
◦
(
E
[
Ξ◦s

(s)(Ξ◦t
(t))⊤

]
− E[Ξ◦s

(s)]E[Ξ◦t
(t)]⊤

)

which is an n× n matrix, and the {i, j}-th entry is

S∑
s=1

S∑
t=1

As,iAt,j

(
E
[
Ξs

(s),iΞt
(t),j

]
− E

[
Ξs

(s),i

]
E
[
Ξt

(t),j

])
Since Ξ(1), Ξ◦2

(2), Ξ◦3
(3), · · · are independent, the off-diagonal entries (s ̸= t) are zero, then the {i, j}-th entry

becomes

S∑
s=1

As,iAs,j

(
E
[
Ξs

(s),iΞs
(s),j

]
− E

[
Ξs

(s),i

]
E
[
Ξs

(s),j

])
Rewrite in matrix form

cov (g(X)) =
S∑

s=1
As ◦

(
E
[
Ξ◦s

(s) Ξ◦s⊤

(s)

]
− E

[
Ξ◦s

(s)

]
E
[
Ξ◦s

(s)

]⊤
)
◦A⊤

s

=
S∑

s=1
As ◦ cov(X◦s) ◦A⊤

s

(5)

where As and Ξ(s) are both n dimensional vertical vectors. Using central moments of normal distributions,

E
[
Ξs

(s),i

]
=
{

0 if s is odd
σ̃s

i (s− 1)!! if s is even

With application of Isserlis’ theorem (Isserlis, 1918),

E
[
Ξs

(s),iΞs
(s),j

]
=
∑

p∈P 2
B

∏
{c,d}∈p

ρ̃cdσ̃cσ̃d

where c, d ∈ {i, j}, and ρ̃cd is correlation. The sum is over all the pairings of the set B = {i, i, · · · , i︸ ︷︷ ︸
s

, j, j, · · · , j︸ ︷︷ ︸
s

},

i.e. all distinct (suppose each i or j is different from other i’s or j’s) ways of partitioning B into pairs {c, d},
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and the product is over the pairs contained in p (Janson, 1997; Michalowicz et al., 2011), so there exists
(2s− 1)!! pairs in the partition, or (2s− 1)!! terms in the sum. For example, the first four terms of Eqn. 5 are

A1 ◦ Σ̃ ◦A⊤
1

A2 ◦
(
2Σ̃◦2) ◦A⊤

2

A3 ◦
[
6Σ̃◦3 + 9 diag(Σ̃) ◦ Σ̃ ◦ diag(Σ̃)⊤] ◦A⊤

3

A4 ◦
[
24Σ̃◦4 + 72 diag(Σ̃) ◦ Σ̃◦2 ◦ diag(Σ̃)⊤] ◦A⊤

4

As and diag(Σ̃) are both n dimensional vertical vector. With this result, to find the covariance of the output
of a nonlinear layer, assuming the input follows a multi-variate normal distribution, one just needs to derive
the factors of Taylor polynomial, A0, A1, A2, etc., for the nonlinearity.

A.1.3 Cross-covariance

Let Y := (Y1, Y2, · · · , Yn)⊤ be a Gaussian random vector that is cross-correlated to X, and Ω = Y− E[Y].
If X undergoes a non-linear transformation via function f(·),

Z = f(X)

The cross-covariance between Y and Z can be written as

ΣYZ = E

Ω
(

S∑
t=1

At ◦
(

Ξ◦t
(t) − E

[
Ξ◦t

(t)

]))⊤
which is an n× n matrix, and the {i, j}-th entry is

S∑
t=1

At,j

(
E
[
ΩiΞt

(t),j

]
− E [Ωi]E

[
Ξt

(t),j

])
E [Ωi] is zero by definition. The terms with product of odd number of Gaussian random variables are zero by
Isserlis’ theorem. It can be simplified as

ΣYZ(i, j) =
S∑

t=1,t is odd
At,jE

[
ΩiΞt

(t),j

]

ΣZY(i, j) =
S∑

s=1,s is odd
As,iE

[
Ξs

(s),iΩj

]

Rewrite in matrix form

ΣYZ =
S∑

t=1,t is odd
A⊤

t ◦ E
[
Ω Ξ◦t⊤

(t)

]
=

S∑
t=1,t is odd

A⊤
t ◦ cov(Y, X◦t)

ΣZY =
S∑

s=1,s is odd
As ◦ E

[
Ξ◦s

(s) Ω⊤
]

=
S∑

s=1,s is odd
As ◦ cov(X◦t, Y)

(6)

and the expected value can be calculated using Isserlis’ theorem mentioned above. Note that this term is
nonzero only if t and s are odd, so the first two terms are

ΣYZ ≈ A⊤
1 ◦ΣYX + 3A⊤

3 ◦ΣYX ◦ diag(ΣX)⊤

ΣZY ≈ A1 ◦ΣXY + 3A3 ◦ΣXY ◦ diag(ΣX)

An addition (e.g. residual) layer outputs the summation of activation of two (or more) layers, Y and Z. Thus
the covariance of Y + Z is the sum of their covariance and cross-covariance.

Σ(Y + Z) = ΣY + ΣYZ + ΣZY + ΣZ
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A.2 Tanh layers †

We use a linear combination of independent error functions with different scaling factors to approximate
tanh function. In our experiments, we choose a set of four scaling parameters, {0.5583, 0.8596, 0.8596,
1.2612}, using fmincon in MATLAB. In practice, one can add more terms for even higher accuracy without
losing efficiency (depending on the computing resources), because the extra terms can be easily paralleled.
We define a variance term considering the relation between error function and Gaussian cdf, such that

tanh(X) ≈ 1
p

p∑
j=1

erf (γjX)

σ́2
j = 1

2γ2
j

(7)

Thus, the factors of the pseudo Taylor polynomials are

A0 = E

1
p

p∑
j=1

erf

 X√
2σ́2

j


A1 = E

∇x

1
p

p∑
j=1

erf

 X√
2σ́2

j


A2 = 1

2!E

∇◦2
x

1
p

p∑
j=1

erf

 X√
2σ́2

j


· · ·

Since all the operations in A0, A1, A2, · · · are element-wise, we only show the derivation for univariate case
for notational simplicity in the following sections

A.2.1 Find A0

E

erf

 X√
2σ́2

j

 =
∫ ∞

−∞
erf

 x√
2σ́2

j

 1
σ̃

φ

(
x− µ̃

σ̃

)
dx

This is a known integral Ng and Geller (1969)

= erf

 µ̃√
2σ̃2 + 2σ́2

j


We define

σ̂2
j = σ̃2 + σ́2

j (8)

Thus,

A0 = 1
p

p∑
j=1

erf

 µ̃√
2σ̂2

j

 (9)

† For notational simplicity, all the product, division, and power operations that appear in and after this section are all
element-wise.
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The usage of error function instead of Gaussian cdf may give A0 a very distinctive form from those of the other
factors. The reasons behind are purely out of considerations of numerical computing: calculating Gaussian
cdf is computationally demanding, while the approximation algorithm of the error function is available Cody
(1969).

A.2.2 Find A1

Notice that

∂

∂xerf

 X√
2σ́2

j

 = ∂

∂x

(∫ x/
√

2σ́2
j

0

2√
π

exp(−t2)dt

)

by Leibniz integral rule

= 2√
π

1√
2σ́2

j

exp
(
− x2

2σ́2
j

)

= 2
σ́j

φ

(
x

σ́j

)
where φ is the standard normal pdf. With the identity that the convolution of two Gaussians is still a
Gaussian. (Bromiley (2003))

E

 ∂

∂xerf

 X√
2σ́2

j

 =
∫ ∞

−∞

2
σ́j

φ

(
x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

= 2√
σ̃2 + σ́2

j

φ

 µ̃√
σ̃2 + σ́2

j


Therefore,

A1 = 1
p

p∑
j=1

2
σ̂j

φ

(
µ̃

σ̂j

)
(10)

and each term of the summation is a Gaussian function written in its standardized form.

A.2.3 Find A2 and beyond

In previous section, we show that the first derivative of the error function is a Gaussian, thus the expected
value of which is the convolution of two Gaussians. Similarly, we can obtain A2, A3, etc. by convolving the
second, third, and higher order Gaussian derivatives with another Gaussian.

Gaussian derivatives can be represented by Hermite polynomial Hs(x).

ds

dxs

[
1
σ

φ
(x

σ

)]
=
(
−1√
2σ2

)s

Hs

(
x√
2σ2

)
1
σ

φ
(x

σ

)

For examples,
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H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 − 2
H3(x) = 8x3 − 12x

· · ·

There are implemented functions for this from various scientific computing tools, such as hermiteH() from
MATLAB and scipy.special.hermite() from SciPy.

Hence,

E

 ∂s

∂xs
erf

 X√
2σ́2

j


=
∫ ∞

−∞

 ∂s

∂xs
erf

 x√
2σ́2

j

 p(x)dx

=2
∫ ∞

−∞

∂s−1

∂xs−1

[
1
σ́j

φ

(
x

σ́j

)]
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

=2

 −1√
2σ́2

j

s−1 ∫ ∞

−∞
Hs−1

 x√
2σ́2

j

 1
σ́j

φ

(
x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

=2

 −1√
2σ́2

j

s−1
1
σ̂j

φ

(
µ̃

σ̂j

)∫ ∞

−∞
Hs−1

 x√
2σ́2

j

 1
σ̄j

φ

(
x− µ̄

σ̄j

)
dx

where µ̄ = µ̃
σ́2

j

σ̂2
j

σ̄2
j = σ̃2 σ́2

j

σ̂2
j

. The convolution of a Hermite polynomial and a Gaussian pdf is a known

integral Gradshteyn and Ryzhik (2015)

=2

 −1√
2σ́2

j

s−1
1
σ̂j

φ

(
µ̃

σ̂j

)(
1− 2σ̄2 1

2σ́2
j

) s−1
2

Hs−1

 µ̄/
√

2σ́2
j(

1− 2σ̄2 1
2σ́2

j

) 1
2


=2

 −1√
2σ̂2

j

s−1

Hs−1

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)

Therefore, we can write the formula of As for s ≥ 1

As(s ≥ 1) = 1
s! p

p∑
j=1

2

 −1√
2σ̂2

j

s−1

Hs−1

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)
(11)
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To give a few examples,

A2 = 1
2! p

p∑
j=1
−2 µ̃

σ̂2
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A3 = 1
3! p

p∑
j=1

2
µ̃2 − σ̂2

j

σ̂4
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A4 = 1
4! p

p∑
j=1

2
(
−µ̃3 + 3µ̃σ̂2

j

σ̂6
j

)
1
σ̂j

φ

(
µ̃

σ̂j

)
· · ·

(12)

Note that we will reuse this relation in the following section

∫ ∞

−∞

 −1√
2σ́2

j

s

Hs

 x√
2σ́2

j

 1
σ́j

φ

(
x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx =

 −1√
2σ̂2

j

s

Hs

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)
(13)

A.3 Sigmoid layers

We can apply the same framework on sigmoid layers, with modifications

sigmoid(x) = 1
1 + exp(−x) ≈

1
2 + 1

2p

p∑
j=1

erf (γjx)

Using fmincon in MATLAB, we find a set of γ = (0.2791, 0.4298, 0.4298, 0.6306)⊤. Then the first four factors
of the Taylor polynomials are listed below. A0 is represented in complementary error function erfc to avoid
subtractive cancellation that leads to inaccuracy in the tails. Note that except for A0, all As of sigmoid
layers are just 1/2 of those of tanh layers.

A0 = 1
p

p∑
j=1

1
2erfc

− µ̃√
2σ̂2

j


A1 = 1

p

p∑
j=1

1
σ̂j

φ

(
µ̃

σ̂j

)

A2 = 1
2! p

p∑
j=1
− µ̃

σ̂2
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A3 = 1
3! p

p∑
j=1

µ̃2 − σ̂2
j

σ̂4
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A4 = 1
4! p

p∑
j=1

(
−µ̃3 + 3µ̃σ̂2

j

σ̂6
j

)
1
σ̂j

φ

(
µ̃

σ̂j

)
· · ·

(14)

A.4 Softplus layers

The derivation of pseudo-Taylor polynomials for a softplus layer is related to that for a sigmoid layer, since
the derivative of the softplus function is the sigmoid function with scaling factor β, and the latter can
be approximated with a linear combination of Gaussian cdf (or error functions like we did in the previous
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section). We have

softplus(x) = 1
β

log
(
1 + eβx

)
Then we use the approximation of sum of independent standard Gaussian cdf Φ

∂

∂x
softplus(x) = 1

1 + e−βx
≈ 1

p

p∑
j=1

Φ
(

x

σ́j

)
(15)

where we re-define
σ́2

j = 1
2γ2

j β2 (16)

Note that σ́2
j changes definition and should not be confused with that in the tanh and sigmoid sections.

A.4.1 Find A0

First we apply substitution of variables X = µ̃ + Ξ, then

softplus(x) = softplus(µ̃, ξ) = 1
β

log
(

1 + eβ(µ̃+ξ)
)

Notice that ∂

∂x
= ∂

∂ξ
since µ̃ is constant, then

A0 =
∫ ∞

−∞
softplus(µ̃, ξ) p(ξ) dξ

=
∫ ∞

−∞
p(ξ)dξ

∫ µ̃

−∞

∂

∂ζ
softplus(ζ, ξ) dζ

by Fubini’s theorem (Fubini, 1907)

=
∫ µ̃

−∞
dζ

∫ ∞

−∞

∂

∂ζ
softplus(ζ, ξ) p(ξ)dξ

≈ 1
p

p∑
j=1

∫ µ̃

−∞
dζ

∫ ∞

−∞
Φ
(

ζ + ξ

σ́j

)
1
σ̃

φ

(
ξ

σ̃

)
dξ

using the known Gaussian integral identity
∫∞

−∞ Φ(ax + b)φ(x)dx = Φ
(

b√
1+a2

)
= 1

p

p∑
j=1

∫ µ̃

−∞
Φ
(

ζ

σ̂j

)
dζ

= 1
p

p∑
j=1

[
µ̃ Φ

(
µ̃

σ̂j

)
+ σ̂jφ

(
µ̃

σ̂j

)]

= 1
p

p∑
j=1

 µ̃

2 erfc

− µ̃√
2σ̂2

j

+ σ̂jφ

(
µ̃

σ̂j

)

Or, with simplification

A0 = A1µ̃ + 1
p

p∑
j=1

σ̂jφ

(
µ̃

σ̂j

)
(17)
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A.4.2 Find A1

Since the first derivative of the softplus function is just a sigmoid function with scaling factor β, we can
immediately write A1 using previous results

A1 = 1
p

p∑
j=1

1
2erfc

− µ̃√
2σ̂2

j

 (18)

A.4.3 Find A2 and beyond

In previous section, we find that∇ softplus(x) is approximately a Gaussian cdf. Subsequently, ∇2 softplus(x)
is approximately a Gaussian. Since Gaussian function is infinitely differentiable, all As(s > 2) can be found
using Gaussian derivatives, which can be represented by Hermite polynomial Hs(x) introduced above.

As = 1
s!E

[
∂s

∂xs
softplus(x)

]
≈ 1

s! p

p∑
j=1

∫ ∞

−∞

∂s−2

∂xs−2

[
1
σ́j

φ

(
x

σ́j

)]
p(x) dx

= 1
s! p

p∑
j=1

 −1√
2σ́2

j

s−2 ∫ ∞

−∞
Hs−2

 x√
2σ́2

j

 1
σ́j

φ

(
x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

we solved this integral in tanh section

= 1
s! p

p∑
j=1

 −1√
2σ̂2

j

s−2

Hs−2

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)

To summarize, As(s ≥ 2) can be expressed as

As(s ≥ 2) = 1
s! p

p∑
j=1

 −1√
2σ̂2

j

s−2

Hs−2

 µ̃√
2σ̂2

j

 1
σ̂j

φ

(
µ̃

σ̂j

)
(19)

For examples,

A2 = 1
2! p

p∑
j=1

1
σ̂j

φ

(
µ̃

σ̂j

)

A3 = 1
3! p

p∑
j=1
− µ̃

σ̂2
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A4 = 1
4! p

p∑
j=1

µ̃2 − σ̂2
j

σ̂4
j

1
σ̂j

φ

(
µ̃

σ̂j

)
· · ·

(20)

A.5 ReLU, Leaky ReLU, and Piece-wise Linear layers

Since ReLU function is only first-order differentiable (x > 0), we cannot do PTPE directly. However, given
its relation to softplus function,

lim
β→∞

1
β

log
(
1 + eβx

)
= max{0, x}
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we can reuse the results for softplus layers by applying the limit

lim
β→∞

σ́2
j = 0 and lim

β→∞
σ̂2

j = σ̃2

Therefore,

A0 = A1µ̃ + σ̃φ

(
µ̃

σ̃

)
A1 = 1

2erfc
(
− µ̃√

2σ̃2

)
A2 = 1

2!
1
σ̃

φ

(
µ̃

σ̃

)
A3 = 1

3! −
µ̃

σ̃2
1
σ̃

φ

(
µ̃

σ̃

)
A4 = 1

4!
µ̃2 − σ̃2

σ̃4
1
σ̃

φ

(
µ̃

σ̃

)
· · ·

(21)

and for s ≥ 2 we have the general form of

As(s ≥ 2) = 1
s!

 −1√
2σ̃2

j

s−2

Hs−2

 µ̃√
2σ̃2

j

 1
σ̃j

φ

(
µ̃

σ̃j

)
(22)

On the other hand, leaky ReLU can be considered as superposition of two ReLU functions - consider a leaky
ReLU with negative slope of θ

LeakyReLU(x; θ) = ReLU(x)− θ ReLU(−x) (23)

which can also be written as

lim
β→∞

softplus(x)− θ softplus(−x)

Therefore,

A0 = lim
β→∞

1
p

p∑
j=1

[
µ̃Φ

(
µ̃

σ̂j

)
+ σ̂jφ

(
µ̃

σ̂j

)]
− θ

[
−µ̃Φ

(
− µ̃

σ̂j

)
+ σ̂jφ

(
µ̃

σ̂j

)]

= θµ̃ + (1− θ)
[
µ̃Φ

(
µ̃

σ̃

)
+ σ̃φ

(
µ̃

σ̃

)]

To find the expected value of the derivative of LeakyReLU, first we find the derivative

∂

∂x
LeakyReLU(x ; θ) = lim

β→∞

∂

∂x
softplus(x)− θ

∂

∂x
softplus(−(x))

= lim
β→∞

1
1 + e−β(x) + θ

1 + eβ(x)

≈ 1
p

p∑
j=1

Φ
(

x

σ́j

)
+ θΦ

(
−x

σ́j

)

= lim
β→∞

θ + 1− θ

p

p∑
j=1

Φ
(

x

σ́j

)
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Then we can write A1 for LeakyReLU as

A1 = lim
β→∞

∫ ∞

−∞

θ + 1− θ

p

p∑
j=1

Φ
(

x

σ́j

) 1
σ̃

φ

(
x− µ̃

σ̃

)
dx

= θ + lim
β→∞

1− θ

p

p∑
j=1

∫ ∞

−∞
Φ
(

x

σ́j

)
1
σ̃

φ

(
x− µ̃

σ̃

)
dx

= θ + lim
β→∞

1− θ

p

p∑
j=1

Φ
(

µ̃

σ̂j

)

= θ + (1− θ)Φ
(

µ̃

σ̃

)
Rewrite in complementary error function

A1 = θ + 1− θ

2 erfc
(
− µ̃√

2σ̃2

)
(24)

Note that we can also rewrite A0 using the result of A1 to improve computational efficiency.

A0 = A1µ̃ + (1− θ)σ̃φ

(
µ̃

σ̃

)
(25)

Note that starting from the second order, the derivative of LeakyReLU is just that of ReLU scaled by
1− θ. Therefore,

A2 = 1− θ

2
1
σ̃

φ

(
µ̃

σ̃

)
A3 = −1− θ

3!
µ̃

σ̃3 φ

(
µ̃

σ̃

)
A4 = 1− θ

4!
µ̃2 − σ̃2

σ̃5 φ

(
µ̃

σ̃

)
· · ·

(26)

and for s ≥ 2, we have the general form of

As(s ≥ 2) = 1− θ

s!

(
−1√
2σ̃2

)s−2
Hs−2

(
µ̃√
2σ̃2

)
1
σ̃

φ

(
µ̃

σ̃

)
(27)

Similarly, any piece-wise linear activation function can be described as a combination of ReLU functions with
different scaling, shifting, and/or mirroring. Thus, their pseudo Taylor coefficients can be found using the
same methodology.

A.6 GELU layers

GELU (Gaussian Error Linear Unit) is defined as the product of input and a standard Gaussian cdf

GELU(x) = x Φ(x)

and we can write the derivatives (with order s ≥ 1) of GELU as

∂s

∂xs
GELU(x) = s

∂s−1

∂xs−1 Φ(x) + x
∂s

∂xs
Φ(x)
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A.6.1 Find A0

A0 = E [GELU(x)]

=
∫ ∞

−∞
xΦ(x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

=
∫ ∞

−∞
(µ̃ + ξ)

∫ µ̃

−∞
φ (ζ + ξ) dζ

1
σ̃

φ

(
ξ

σ̃

)
dξ

= µ̃

∫ µ̃

−∞

∫ ∞

−∞
φ (ζ + ξ) 1

σ̃
φ

(
ξ

σ̃

)
dξ dζ +

∫ µ̃

−∞

∫ ∞

−∞
ξ φ (ζ + ξ) 1

σ̃
φ

(
ξ

σ̃

)
dξ dζ

= µ̃

∫ µ̃

−∞

1√
1 + σ̃2

φ

(
ζ√

1 + σ̃2

)
dζ +

∫ µ̃

−∞

1√
1 + σ̃2

φ

(
ζ√

1 + σ̃2

)
−ζσ̃2

1 + σ̃2 dζ

= µ̃Φ
(

µ̃√
1 + σ̃2

)
+ σ̃2
√

1 + σ̃2
φ

(
µ̃√

1 + σ̃2

)
We re-define σ̂2

σ̂2 = 1 + σ̃2 (28)

and re-write the result with complementary error function

A0 = µ̃

2 erfc
(
− µ̃√

2σ̂2

)
+ σ̃2

σ̂
φ

(
µ̃

σ̂

)
(29)

A.6.2 Find A1

A1 = E
[

∂

∂x
GELU(x)

]
=
∫ ∞

−∞
Φ(x) 1

σ̃
φ(x− µ̃

σ̃
)dx +

∫ ∞

−∞
xφ(x) 1

σ̃
φ(x− µ̃

σ̃
)dx

using results of previous section

= Φ
(

µ̃

σ̂

)
+ µ̃

σ̂2
1
σ̂

φ

(
µ̃

σ̂

)
Therefore,

A1 = 1
2erfc

(
− µ̃√

2σ̂2

)
+ µ̃

σ̂2
1
σ̂

φ

(
µ̃

σ̂

)
(30)

A.6.3 Find A2 and beyond

Higher order coefficients (As(s ≥ 2)) all consist of two parts: (i) a term of expected value of a Gaussian
derivative, (ii) a term of expected value of the product of x and a Gaussian derivative. We have already
found a general form of the first term in the tanh section

E
[
s

∂s−2

∂xs−2 φ(x)
]

= s

(
−1√
2σ̂2

)s−2
Hs−2

(
µ̃√
2σ̂2

)
1
σ̂

φ

(
µ̃

σ̂

)

To solve the second part, we need to use the Hermite polynomial recurrence relation:

x Hs−1(x) = 1
2Hs(x) + s Hs−2(x)
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E
[
x

∂s−1

∂xs−1 φ(x)
]

=
(
−1√

2

)s−1 ∫ ∞

−∞
x Hs−1

(
x√
2

)
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

=
(
−1√

2

)s−1√
2
∫ ∞

−∞

x√
2

Hs−1

(
x√
2

)
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

=
(
−1√

2

)s−1√
2
∫ ∞

−∞

[
1
2Hs

(
x√
2

)
+ (s− 1)Hs−2

(
x√
2

)]
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

= −
(
−1√

2

)s ∫ ∞

−∞
Hs

(
x√
2

)
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx · · ·

− (s− 1)
(
−1√

2

)s−2 ∫ ∞

−∞
Hs−2

(
x√
2

)
φ (x) 1

σ̃
φ

(
x− µ̃

σ̃

)
dx

by equation 13

= 1
σ̂

φ

(
µ̃

σ̂

)[
−
(
−1√
2σ̂2

)s

Hs

(
µ̃√
2σ̂2

)
− (s− 1)

(
−1√
2σ̂2

)s−2
Hs−2

(
µ̃√
2σ̂2

)]

Sum the two integral together, we get the general form of As(s ≥ 2)

As(s ≥ 2) = 1
s!

[(
−1√
2σ̂2

)s−2
Hs−2

(
µ̃√
2σ̂2

)
−
(
−1√
2σ̂2

)s

Hs

(
µ̃√
2σ̂2

)]
1
σ̂

φ

(
µ̃

σ̂

)
(31)

For examples,

A2 = 1
2!

[
1 + 1

σ̂2 −
µ̃2

σ̂4

]
1
σ̂

φ

(
µ̃

σ̂

)
A3 = − 1

3!

[
µ̃

σ̂2 + 3µ̃

σ̂4 −
µ̃3

σ̂6

]
1
σ̂

φ

(
µ̃

σ̂

)
A4 = 1

4!

[
− 1

σ̂2 + µ̃2 − 3
σ̂4 + 6µ̃2

σ̂6 −
µ̃4

σ̂8

]
1
σ̂

φ

(
µ̃

σ̂

)
· · ·

(32)

A.7 SiLU layers

SiLU (Sigmoid Linear Unit), equivalent to Swish when β = 1, is defined as the product of input and a
sigmoid function

SiLU(x) = x Sigmoid(x)

In the previous section, we approximate Sigmoid function with error functions so that we can reuse
derivations from the Tanh section. Here we approximate Sigmoid function with Gaussian cdf’s in order to
reuse derivations from the GELU section. With γ as a numerically optimized scalar vector, let

σ́2
j = 1

2γ2
j

, j ∈ {1, · · · , p}
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Then, we approximate SiLU as

SiLU(x) ≈ x

p

p∑
j=1

Φ
(

x

σ́j

)

and we can write the derivatives (with order s ≥ 1) of SiLU as

∂s

∂us
SiLU(x) = s

p

p∑
j=1

∂s−1

∂us−1 Φ
(

x

σ́j

)
+ x

p

p∑
j=1

∂s

∂us
Φ
(

x

σ́j

)

The rest of the derivation is very similar to that of GELU, so we only list the final results. With

σ̂2
j = σ̃2 + σ́2

j

A0 = 1
p

p∑
j=1

µ̃

2 erfc

− µ̃√
2σ̂2

j

+ σ̃2

σ̂j
φ

(
µ̃

σ̂j

)

A1 = 1
p

p∑
j=1

1
2erfc

− µ̃√
2σ̂2

j

+ µ̃
σ́2

j

σ̂2
j

1
σ̂j

φ

(
µ̃

σ̂j

)

A2 = 1
2! p

p∑
j=1

[
1 +

σ́2
j

σ̂2
j

−
µ̃2σ́2

j

σ̂4
j

]
1
σ̂j

φ

(
µ̃

σ̂j

)

A3 = − 1
3! p

p∑
j=1

[
µ̃

σ̂2
j

+
3µ̃σ́2

j

σ̂4
j

−
µ̃3σ́2

j

σ̂6
j

]
1
σ̂j

φ

(
µ̃

σ̂j

)

A4 = 1
4! p

p∑
j=1

[
− 1

σ̂2
j

+
µ̃2 − 3σ́2

j

σ̂4
j

+
6µ̃2σ́2

j

σ̂6
j

−
µ̃4σ́2

j

σ̂8
j

]
1
σ̂j

φ

(
µ̃

σ̂j

)
· · ·

(33)

and the general form of As(s ≥ 2) is

As(s ≥ 2) = 1
s! p

p∑
j=1

[(
−1√
2σ̂2

)s−2
Hs−2

(
µ̃√
2σ̂2

)
−
(
−1√
2σ̂2

)s

Hs

(
µ̃√
2σ̂2

)]
1
σ̂

φ

(
µ̃

σ̂

)
(34)

29



Published
in

Transactions
on

M
achine

Learning
R

esearch
(06/2025)

Table 4: First four coefficients of the polynomials for seven commonly used nonlinearities. For notational simplicity, all the product, division, and
power operations are element-wise. The method for determining γj is outlined in Table 1.

A0 A1 A2 A3 σ̂2
j = σ̃2 + σ́2

j

Tanh 1
p

p∑
j=1

(2F − 1) 1
p

p∑
j=1

2L 1
2 p

p∑
j=1
−2L µ̃

σ̂2
j

1
3! p

p∑
j=1

2L
µ̃2 − σ̂2

j

σ̂4
j

σ́2
j = 1

2γ2
j

Sigmoid 1
p

p∑
j=1

F 1
p

p∑
j=1

L 1
2 p

p∑
j=1
−L µ̃

σ̂2
j

1
3! p

p∑
j=1

L
µ̃2 − σ̂2

j

σ̂4
j

σ́2
j = 1

2γ2
j
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p

p∑
j=1

Fµ̃ + Lσ̂2
j

1
p

p∑
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F 1
2 p

p∑
j=1

L 1
3! p

p∑
j=1
−L µ̃

σ̂2
j

σ́2
j = 1

2γ2
j β2

ReLU Fµ̃ + Lσ̃2 F 1
2L 1

3!

(
−L µ̃

σ̃2

)
σ́2 = 0

LeakyReLU (θ) θµ̃ + (1− θ)
(
Fµ̃ + Lσ̃2) θ + (1− θ)F 1− θ

2 L 1− θ

3!

(
−L µ̃

σ̃2

)
σ́2 = 0

GELU Fµ̃ + Lσ̃2 F + L µ̃

σ̂2
1
2L
(

1 + 1
σ̂2 −

µ̃2

σ̂4

)
1
3!L

(
− µ̃

σ̂2 −
3µ̃

σ̂4 + µ̃3

σ̂6

)
σ́2 = 1

SiLU 1
p

p∑
j=1
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p

p∑
j=1
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µ̃σ́2
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σ̂2
j

1
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L
(
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j
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1
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j

σ̂4
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j

σ̂6
j

)
σ́2

j = 1
2γ2

j

where L = 1
σ̂j

φ

(
µ̃

σ̂j

)
and F = Φ

(
µ̃

σ̂j

)
= 1

2erfc

− µ̃√
2σ̂2

j
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A.8 Emperical distributions of ResNets show Gaussianity

Figure 7: Empirical distributions of all units before the final softmax layer of the resnet13(ReLU).

A.9 Approximation accuracy on other non-linearity
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Figure 8: The meaning of different colors and line styles is the same as Fig. 1. The higher the input variance,
the more significant is the benefit of using higher order Stochastic Taylor expansion.
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A.10 Pseudo Code

Algorithm 1 Propagating a multi-variate Gaussian distribution through a pretrained ResNet
µ← Input mean
Σ← Input covariance
µres ← Storage for mean of the output of residual layer
Σres ← Storage for covariance of the output of residual layer
Σcross ← Storage for cross-covariance between the two input of the residual layer
for layer in neural network do

if layer is linear then
if layer is addition (residual) then

µ← µ + µres

Σ← Σ + Σres + Σcross + Σ⊤
cross

empty µres, Σres, Σcross

else
find effective weight W and bias b
µ←W ⊤µ + b
Σ←W ⊤ΣW
Σcross ←W ⊤Σcross

if residual connection starts from here then
µres ← µ
Σres, Σcross ← Σ

end if
end if

else
µ, Σ, Σcross ← PTPE(nonlinearity, µ, Σ, Σcross)
if residual connection starts from here then

µres ← µ
Σres, Σcross ← Σ

end if
end if

end for
µoutput ← µ
Σoutput ← Σ
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A.11 Additional results on comparing PTPE and other expectation propagation methods.
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Figure 9: Similar to Figure 3, except that the models employ ReLU as the nonlinearity. The method proposed
by Frey and Hinton (1999) performed poorly as it disregards correlation, a critical factor in networks with
overlapping convolutional kernels and residual connections.
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Figure 10: Similar to Figure 3, except that the models employ GELU as the nonlinearity.
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A.12 Additional results on the selection of the number of scaling factors in the reformulation of the
tanh function
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Figure 11: (Top) The error in approximating the tanh function using a linear combination of error functions
with different scaling factors was analyzed. We selected four terms, as this configuration yields a maximum
approximation error on the scale of 10−4. Importantly, increasing the number of terms enhances accuracy while
only increasing computational complexity linearly, making this approach both flexible and computationally
efficient. (Bottom) The optimization loss for determining the scaling factors was computed using fmincon in
MATLAB. This loss is defined as the root mean square error (RMSE) of the approximation.
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Figure 12: Improvements in the three metrics—Wasserstein-2 distance, Euclidean distance, and Frobenius
norm—when using eight scaling factors (γj) to approximate the tanh function, compared to using four, are
reported. Positive values indicate improvement, while negative values denote deterioration. Notably, there
is no clear dichotomy in predictive accuracy, suggesting that the approximation error of our method is not
a dominant factor. Alternatively, Monte Carlo sampling with 106 data points is insufficient to accurately
estimate the true covariance of a 10-dimensional multivariate distribution. As a result, the reference moments
may deviate from the true values. We argue This finding supports the justification for using four scaling
factors rather than a larger number.
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A.13 Comparison with Gauss-Hermite Quadrature

Gauss-Hermite quadrature (GHQ) is a numerical integration method used to approximate integrals of the
form: ∫ ∞

−∞
f(x)e−x2

dx ≈
n∑

i=1
wif(xi)

where wi are scalar weights, and n is the number of quadrature points xi (also referred to as sigma points).
In this context, f(·) can represent a nonlinearity or its square, corresponding to the mean and covariance
integrals. While infinitely many linear combinations of f(x) can approximate this integral, GHQ selects
quadrature points and weights based on Hermite polynomials. These polynomials are orthogonal, making
GHQ computationally efficient. This method also serves as the foundation of the cubature Kalman filter
(CKF).

We compare the predictive accuracy of PTPE and GHQ across the first four orders (Fig. 13 to 16), using
absolute error as the evaluation metric against a reference mean and variance obtained from 107 Monte Carlo
samples. Since Monte Carlo estimates with 107 samples typically fluctuate on the order of 10−4, absolute
errors of magnitude ≤ 10−4 are considered negligible.

PTPE outperforms GHQ in the first three orders. At the fourth order, PTPE provides evidently more
accurate estimates than GHQ when the input variance is 1 or higher. Notably, 4th-order PTPE surpasses
4th-order GHQ on ReLU and LeakyReLU even at a variance of 0.1.

To determine how many GHQ orders are needed to surpass 4th-order PTPE, we compare 10th-, 20th-, 30th-,
and 40th-order GHQ to 4th-order PTPE (Figures 17 to 20). There is no clear threshold at which GHQ
consistently outperforms 4th-order PTPE, as performance depends on the type of nonlinearity. Among the
seven types, PTPE is particularly effective for ReLU and LeakyReLU. However, we observe a general trend:
higher-order GHQ is required to match PTPE, particularly at higher input variances.

In summary, although GHQ efficiently selects sampling points, it requires an increasing number of points for
accurate estimation at higher input variances. More critically, the number of GHQ sampling points grows
rapidly with dimensionality, making high-dimensional integration computationally expensive. In contrast,
PTPE’s complexity is at most O(n2), making it more scalable. However, GHQ is expected to outperform
PTPE in narrow but deep neural networks. Unlike PTPE, GHQ does not require layer-wise propagation of
moments. Furthermore, in narrow networks, the Gaussianity assumption of hidden layers often breaks down,
making it difficult for PTPE to provide accurate estimates.
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Figure 13: Comparing the absolute approximation error of PTPE and GHQ across the first four orders. The odd number of columns show the error of
mean, and even number of columns show the error of variance, the smaller the better. In this panel, all input variance is 0.1.
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Figure 14: Comparing the absolute approximation error of PTPE and GHQ across the first four orders. The odd number of columns show the error of
mean, and even number of columns show the error of variance, the smaller the better. In this panel, all input variance is 1.
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Figure 15: Comparing the absolute approximation error of PTPE and GHQ across the first four orders. The odd number of columns show the error of
mean, and even number of columns show the error of variance, the smaller the better. In this panel, all input variance is 10.
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Figure 16: Comparing the absolute approximation error of PTPE and GHQ across the first four orders. The odd number of columns show the error of
mean, and even number of columns show the error of variance, the smaller the better. In this panel, all input variance is 100.
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Figure 17: Comparing the absolute approximation error of 4th-order PTPE and 10th-, 20th-, 30th-, and 40th-order GHQ. The odd number of columns
show the error of mean, and even number of columns show the error of variance, the smaller the better. In this panel, all input variance is 0.1.
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Figure 18: Comparing the absolute approximation error of 4th-order PTPE and 10th-, 20th-, 30th-, and 40th-order GHQ. The odd number of columns
show the error of mean, and even number of columns show the error of variance, the smaller the better. In this panel, all input variance is 1.
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Figure 19: Comparing the absolute approximation error of 4th-order PTPE and 10th-, 20th-, 30th-, and 40th-order GHQ. The odd number of columns
show the error of mean, and even number of columns show the error of variance, the smaller the better. In this panel, all input variance is 10.
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Figure 20: Comparing the absolute approximation error of 4th-order PTPE and 10th-, 20th-, 30th-, and 40th-order GHQ. The odd number of columns
show the error of mean, and even number of columns show the error of variance, the smaller the better. In this panel, all input variance is 100.
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