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Abstract

We present an application of the blackbox matrix-matrix multiplication (BBMM)
algorithm to scale up the Gaussian Process (GP) training of molecular energies
in the molecular-orbital based machine learning (MOB-ML) framework. An al-
ternative implementation of BBMM (AltBBMM) is also proposed to train more
efficiently (over four-fold speedup) with the same accuracy and transferability as
the original BBMM implementation. The training of MOB-ML was limited to
220 molecules, and BBMM and AltBBMM scale the training of MOB-ML up by
over 30 times to 6500 molecules (more than a million pair energies). The accuracy
and transferability of both algorithms are examined on the benchmark datasets of
organic molecules with 7 and 13 heavy atoms. These lower-scaling implemen-
tations of the GP preserve the state-of-the-art learning efficiency in the low-data
regime while extending it to the large-data regime with better accuracy than other
available machine learning works on molecular energies.

1 Introduction

Machine-learning (ML) for quantum chemistry has emerged as a versatile method in chemical
sciences in recent years, facilitating innovation in a variety of domains such as molecular model-
ing [4, 17, 20], drug discovery [6, 14, 18], and material design [9, 12, 15, 19] by delivering accurate
predictions at a low computational cost. One successful example of such methods is the recently de-
veloped molecular-orbital-based machine learning (MOB-ML) [3, 13, 24], which can predict molec-
ular energies with a high degree of accuracy while requiring relatively low amounts of training data.
Nevertheless, extending MOB-ML to the large data regime has remained challenging due to the
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steep O(N3) complexity scaling associated with the use of Gaussian Process (GP) regression. A
strategy to reduce the complexity of GP is to introduce a low-rank kernel approximation, which
has been exploited in the Sparse Gaussian Process Regression [21] and Stochastic Variational Gaus-
sian Processes [11] methods. However, such treatments of GP sometimes result in significant loss
of accuracy. In contrast, Gardner et al. [7, 23] recently proposed the blackbox matrix-matrix mul-
tiplication (BBMM) method, which provides exact GP inference while reducing the training time
complexity to O(N2) and allowing for multi-GPU usage.

In this work, we employ BBMM and a novel alternative implementation for BBMM (AltBBMM)
to speedup and scale the GP training in MOB-ML for molecular energies. We show that AltBBMM
delivers more efficient training on over 1 million pair energies without sacrificing transferability
across chemical systems of different molecular sizes. The accuracy and efficiency of BBMM and
AltBBMM in modeling physical problems are demonstrated by comparisons with literature results
on the same datasets.

2 Background

2.1 Molecular orbital based machine learning (MOB-ML)

The total energy of a given chemical system can be written as the sum of the Hartree-Fock and
correlation energies. The correlation energy, Ecorr, can be further decomposed into pair energies,
ϵij , associated with occupied molecular orbitals (MO) i and j, such that Ecorr =

∑
ij ϵij . MOB-ML

learns pair energies by ϵij ≈ ϵML(f ij), where the features f ij describe the interactions between
the molecular orbitals.[13] Due to the different scales of the values, the diagonal pair energies ϵd =
{ϵij

∣∣i = j} and the offdiagonal pair energies ϵo = {ϵij
∣∣i ̸= j} are trained separately, effectively

producing two different models.

2.2 Gaussian Processes (GP)

Gaussian Processes (GP) are non-parametric kernel-based machine learning methods that predict the
probabilistic distribution of unobserved data. Given the observed data (X, y), X ∈ RN×d, y ∈ RN

with a Gaussian noise σ2 ∈ R and a prior covariance function or kernel K : Rd × Rd → R, the
prediction f(X ′) test points X ′ ∈ RM×d is a joint Gaussian distribution such that

E[f(X ′)] = K(X ′, X)K̂−1y, Var[f(X ′)] = K(X ′, X)K̂−1K(X,X ′), (1)

where K̂ = K(X,X) + σ2I . The hyperparameters, which include the Gaussian noise and kernel
parameters, are learned in GP training by maximizing the log marginal likelihood

L = −1

2
yT K̂−1y − 1

2
log|K̂| − N

2
log 2π. (2)

The typical way to calculate the above quantities is the Cholesky decomposition, which has a time
complexity of O(N3) and a memory complexity of O(N2). Such complexities limit the training
size of GP-based models, such as MOB-ML, to around 50000 data points.

3 Method

3.1 Conjugate gradient (CG)

The conjugate gradient (CG) [22] algorithm offers another way to obtain the predictive mean in Eq.1
by iteratively solving ω = K̂−1y, or equivalently K̂ω = y with an O(N2) cost in each iteration.
CG requires only the matrix-vector multiplications (MVMs) with the kernel matrix K̂, which is
amenable to multi-GPU acceleration. In the iteration k, the solution is found in the order-k Krylov
space

K = span
{
K̂iy

∣∣∣i = 0, 1, ...k − 1
}
. (3)

The solution ωk of CG at iteration k converges to the exact solution ω∗ exponentially measured by
the relative residual ||K̂ωk−y||

||y|| . However, the total number of iterations kc to converge is usually
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very large for a kernel K̂ with high singularity. A common way to reduce kc is to construct a
preconditioner P and then solve the equivalent equation P−1K̂ω = P−1y such that P−1K̂ is less
singular than K̂. [5].

Block conjugate gradient (BCG) [16], as a variant of CG, can also be used to further reduce kc. It
extends CG to solve s linear equations K̂ωi = yi, i = 0, 1...s − 1 simultaneously. The number of
linear equations s is also known as block size. In the iteration k of BCG, the solution is found in

Kblock = span
{
K̂jyi

∣∣∣i = 0, 1, ...s− 1, j = 0, 1, ...k − 1
}
. (4)

By setting y0 = y, and yi ∼ N(0, I) for i > 0, BCG can converge to the same exact solution
ω∗
0 = ω∗ with fewer iterations since Kk ⊂ Kblock

k .

3.2 Blackbox matrix-matrix multiplication (BBMM) and Alternative BBMM (AltBBMM)

BBMM [7, 23] calculates the GP inference by utilizing CG combined with the pivoted Cholesky de-
composition preconditioner [1, 10]. Furthermore, a modified batched version of conjugate gradients
(mBCG1) [7] is also proposed to estimate the marginal likelihood and its derivatives, which are re-
quired in the GP hyperparameter optimization. These enhancements reduce the training complexity
to O(N2) in time, and O(N) in memory and therefore enable the training of a million data points.

In this work, we propose an alternative realization of BBMM (AltBBMM) to achieve similar accu-
racy as BBMM with a lower cost in molecular energy prediction applications, where a low Gaus-
sian noise (10−5∼10−8) is required to reach the desired accuracy. However, since the low Gaussian
noise significantly increases the singularity of K̂, CG would converge slowly or even fail to converge
when the rounding errors exceed the Gaussian noise.[8] In order to speedup the CG convergence, we
employ the BCG algorithm described in the previous section. The additional computational cost of
BCG in each iteration is negligible compared with the kernel matrix calculations. To further improve
the robustness of the convergence, we use the double-precision floating numbers in the implementa-
tion and employ the symmetric preconditioning P−1/2K̂P−1/2. The Nystreoem preconditioner [5]
is used as an example, but we note that better preconditioners could exist. Finally, the hyperparam-
eters are optimized on a random subset of the entire training set in AltBBMM since the optimized
hyperparameters remain similar across various training sizes for MOB-ML.

4 Computational details

We train all the models on random subsets of the QM7b-T dataset [3, 13, 24], which contains 7211
organic molecules with up to 7 heavy atoms. The test sets are the remaining QM7b-T molecules and
the whole GDB-13-T dataset [3, 13, 24] containing 1000 organic molecules with 13 heavy atoms.
The Matérn 5/2 kernel is used in all the GP trainings. We independently implement the BBMM ac-
cording to the description of the mBCG and hyperparameter optimization in Ref. 7. The symmetric
Nystroem preconditioner and the block CG are used in this work. In both BBMM and AltBBMM,
the rank r of the preconditioner is chosen as 10000, the BCG block size s is fixed as 50, and the
BCG iterations stop when all the s relative residuals are smaller than 10−6. The hyperparameters
are optimized from a full GP trained on 50 random molecules. To overcome the memory limit and
maximize the multi-GPU efficiencies, the kernel computations in CG are performed in 4096× 4096
batches, and such computations are dynamically distributed to all the available GPUs. Additionally,
we add a Gaussian noise regularization σ2

add = 10−5 to the optimized Gaussian noise reduce the
singularity of K̂.

5 Results

5.1 Low noise regularization for accurate GP

We first demonstrate the necessity of utilizing a low noise regularization to achieve accurate predic-
tions. We train all the offdiagonal energies (ϵo) pairs from 1000 QM7b-T molecules with different

1mBCG (modified batched conjugate gradients) differs from BCG (block conjugate gradient )
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σ2
add and test on the ϵo of the rest QM7b-T molecules. The training time and the prediction mean

absolute error (MAE) are displayed in Table 1. For both BBMM and AltBBMM, regularizing with
σ2

add = 10−1 results in a less singular K̂ and saves half the training time, but its prediction MAE
doubles when compared to the results of σ2

add = 10−5. Since the MOB-ML data generation is sig-
nificantly more expensive than model training, we fix σ2

add = 10−5 for all of the following BBMM
and AltBBMM experiments to achieve the most accurate model with the least amount of data.

Table 1: Test MAEs (kcal/mol) of offdiagonal contributions (
∑

ϵo) in each molecule, training time
(s) and memory usage (MB) by training on ϵo pairs from 1000 QM7b-T molecules (N=175,795)
with different Gaussian noise regularizations.

BBMM AltBBMM Memory/GPU (MB)
σ2

add Test MAE Time (s) Test MAE Time (s)

10−1 0.636 1104.30 0.619 456.46 3,891
10−5 0.314 2150.93 0.312 760.54

Table 2: Test MAEs (kcal/mol), training time (hrs) and memory usage (MB) of BBMM and Al-
tBBMM trained on 6500 QM7b-T moleculesa with the same initial hyperparameters.

Algorithm QM7b-T MAE GDB-13-T MAE/7HA Time (hr) Memory/GPU (MB)

BBMM 0.185 0.490 26.52 15,359AltBBMM 0.193 0.493 6.24
a Training size of ϵo is 1,152,157 and training size of ϵd is 124,973
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Figure 1: Learning curves for MOB-ML with different training protocols trained on QM7b-T and
tested on (a) QM7b-T and (b) GDB-13-T. The accuracies of QM7b-T and GDB-13-T are measured
by the MAEs and MAEs per 7 heavy atoms (MAE/7HA) of test molecules, respectively. We addi-
tionally plot the current best results in low and big data regimes, i.e., MOB-ML training with full
GPR from Ref. 13 and the state-of-art DeePHF/extended NN from Ref. 2, respectively. The gray
shaded area represents the chemical accuracy of 1 kcal/mol.

5.2 BBMM and AltBBMM for energies of organic molecules

We now examine the accuracy and transferability of BBMM and AltBBMM in learning QM7b-T
and GDB-13-T molecular energies. The transferability of MOB-ML is assessed by the MAEs per 7
heavy atoms (MAE/7HA) of test GDB-13-T molecules predicted by the models trained on QM7b-T
molecules. Table 2 lists the wall-clock time of training on 6500 QM7b-T molecules by BBMM
and AltBBMM and the corresponding prediction MAEs on test QM7b-T and GDB-13-T molecules.
Similar to the results in Table 1, by utilizing our AltBBMM approach, we gain a four-fold speedup in
the training timings while only introducing 4% and 1% additional MAE in the prediction of QM7b-T
and GDB-13-T, respectively, compared with BBMM.

In addition, we compare the performance of BBMM and AltBBMM with the results of the cur-
rent most accurate literature methods, i.e., MOB-ML with full GP (MOB-ML/Full GP) [13] and
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DeePHF with extended neural network regressor (DeePHF/extended NN) [2]. The literature results
of MOB-ML/Full GP are only available with up to 220 training molecules due to the limited mem-
ory resources. The introduction of BBMM and AltBBMM allows MOB-ML to scale up the training
to 6500 molecules (over 1 million training pair energies) while retaining the accuracy and transfer-
ability compared with MOB-ML/full GP in Figure 1. By training on 6500 molecules, BBMM and
AltBBMM reach the current best MAE/7HA for GDB-13-T as 0.490 kcal/mol and 0.493 kcal/mol,
respectively. In all the cases we tested, BBMM and AltBBMM provide a better accuracy on QM7b-T
and a better transferability on GDB-13-T than DeePHF/extended NN.

6 Conclusion

In this work, we successfully apply the BBMM algorithm and a new alternative implementation,
AltBBMM, to Gaussian process-training for the MOB-ML method on over a million pair energies.
Even though the use of BBMM alone increases our previously attainable training-set size limit
over 30 times, our newly introduced AltBBMM implementation improves this further by offering a
four-fold speed-up while maintaining high accuracy. With the BBMM and AltBBMM approaches,
MOB-ML models can be trained using datasets with over 6500 QM7b-T molecules, yielding the
best accuracy to date for the QM7b-T and GDB-13-T datasets. Future work will include extension
of the approach for the prediction of other molecular properties within the MOB-ML framework.

Acknowledgments and Disclosure of Funding

We thank Dr. J. Emiliano Deustua for helpful discussions. This work is supported in part by
the U.S. Army Research Laboratory (W911NF-12-2-0023), the U.S. Department of Energy (DE-
SC0019390), the Caltech DeLogi Fund, and the Camille and Henry Dreyfus Foundation (Award
ML-20-196). Computational resources were provided by the National Energy Research Scientific
Computing Center (NERSC), a DOE Office of Science User Facility supported by the DOE Office
of Science under contract DE-AC02-05CH11231.

References
[1] F. Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on Learning Theory,

pages 185–209. PMLR, 2013.

[2] Y. Chen, L. Zhang, H. Wang, and W. E. Ground state energy functional with hartreefock efficiency and
chemical accuracy. J. Phys. Chem. A, 124(35):7155–7165, 2020.

[3] L. Cheng, M. Welborn, A. S. Christensen, and T. F. Miller III. A universal density matrix functional from
molecular orbital-based machine learning: Transferability across organic molecules. J. Chem. Phys., 150
(13):131103, 2019.

[4] A. S. Christensen, L. A. Bratholm, F. A. Faber, and O. Anatole von Lilienfeld. FCHL revisited: Faster
and more accurate quantum machine learning. J. Chem. Phys., 152(4):044107, 2020.

[5] K. Cutajar, M. Osborne, J. Cunningham, and M. Filippone. Preconditioning kernel matrices. In Interna-
tional Conference on Machine Learning, pages 2529–2538. PMLR, 2016.

[6] D. A. DiRocco, Y. Ji, E. C. Sherer, A. Klapars, M. Reibarkh, J. Dropinski, R. Mathew, P. Maligres, A. M.
Hyde, J. Limanto, et al. A multifunctional catalyst that stereoselectively assembles prodrugs. Science,
356(6336):426–430, 2017.

[7] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. Gpytorch: Blackbox matrix-
matrix Gaussian process inference with GPU acceleration. In Advances in Neural Information Processing
Systems, pages 7576–7586, 2018.

[8] A. Greenbaum. Iterative methods for solving linear systems. SIAM, 1997.

[9] S. Guerin, A. Stapleton, D. Chovan, R. Mouras, M. Gleeson, C. McKeown, M. R. Noor, C. Silien, F. M.
Rhen, A. L. Kholkin, et al. Control of piezoelectricity in amino acids by supramolecular packing. Nat.
Mater., 17(2):180–186, 2018.

5



[10] H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the pivoted cholesky
decomposition. Appl. Numer. Math., 62(4):428–440, 2012.

[11] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proceedings of the Twenty-
Ninth Conference on Uncertainty in Artificial Intelligence, pages 282–290, 2013.

[12] K. Hongo, M. A. Watson, R. S. Sanchez-Carrera, T. Iitaka, and A. Aspuru-Guzik. Failure of conventional
density functionals for the prediction of molecular crystal polymorphism: a quantum monte carlo study.
J. Phys. Chem. Lett., 1(12):1789–1794, 2010.

[13] T. Husch, J. Sun, L. Cheng, S. J. Lee, and T. F. Miller III. Improved accuracy and transferability of
molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interac-
tions, and transition states. J. Chem. Phys., 154(6):064108, 2021.

[14] E. E. Kwan, Y. Zeng, H. A. Besser, and E. N. Jacobsen. Concerted nucleophilic aromatic substitutions.
Nat. Chem., 10(9):917–923, 2018.

[15] R. J. Maurer, C. Freysoldt, A. M. Reilly, J. G. Brandenburg, O. T. Hofmann, T. Björkman, S. Lebègue, and
A. Tkatchenko. Advances in density-functional calculations for materials modeling. Annu. Rev. Mater.
Res., 49:1–30, 2019.

[16] D. P. O’Leary. The block conjugate gradient algorithm and related methods. Linear Algebra Its Appl., 29:
293–322, 1980.

[17] Z. Qiao, M. Welborn, A. Anandkumar, F. R. Manby, and T. F. Miller III. Orbnet: Deep learning for
quantum chemistry using symmetry-adapted atomic-orbital features. J. Chem. Phys., 153(12):124111,
2020.

[18] A. R. Rosales, J. Wahlers, E. Limé, R. E. Meadows, K. W. Leslie, R. Savin, F. Bell, E. Hansen, P. Helquist,
R. H. Munday, et al. Rapid virtual screening of enantioselective catalysts using catvs. Nat. Catal., 2(1):
41–45, 2019.

[19] M. Rossi, P. Gasparotto, and M. Ceriotti. Anharmonic and quantum fluctuations in molecular crystals: A
first-principles study of the stability of paracetamol. Phys. Rev. Lett., 117(11):115702, 2016.

[20] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R. Müller. Schnet–A deep learning
architecture for molecules and materials. J. Chem. Phys., 148(24):241722, 2018.

[21] M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial intelli-
gence and statistics, pages 567–574. PMLR, 2009.

[22] H. A. Van der Vorst. Iterative Krylov methods for large linear systems. Number 13. Cambridge University
Press, 2003.

[23] K. Wang, G. Pleiss, J. Gardner, S. Tyree, K. Q. Weinberger, and A. G. Wilson. Exact Gaussian processes
on a million data points. In Advances in Neural Information Processing Systems, volume 32, pages
14648–14659. Curran Associates, Inc., 2019.

[24] M. Welborn, L. Cheng, and T. F. Miller III. Transferability in machine learning for electronic structure
via the molecular orbital basis. J. Chem. Theory Comput., 14(9):4772–4779, sep 2018.

6


	Introduction
	Background
	Molecular orbital based machine learning (MOB-ML)
	Gaussian Processes (GP)

	Method
	Conjugate gradient (CG)
	Blackbox matrix-matrix multiplication (BBMM) and Alternative BBMM (AltBBMM)

	Computational details
	Results
	Low noise regularization for accurate GP
	BBMM and AltBBMM for energies of organic molecules

	Conclusion

