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ABSTRACT

Learning to infer the conditional posterior model is a key step for robust meta-
learning. This paper presents a new Bayesian meta-learning approach called Neu-
ral Variational Dropout Processes (NVDPs). NVDPs model the conditional poste-
rior distribution based on a task-specific dropout; a low-rank product of Bernoulli
experts meta-model is utilized for a memory-efficient mapping of dropout rates
from a few observed contexts. It allows for a quick reconfiguration of a globally
learned and shared neural network for new tasks in multi-task few-shot learn-
ing. In addition, NVDPs utilize a novel prior conditioned on the whole task data
to optimize the conditional dropout posterior in the amortized variational infer-
ence. Surprisingly, this enables the robust approximation of task-specific dropout
rates that can deal with a wide range of functional ambiguities and uncertainties.
We compared the proposed method with other meta-learning approaches in the
few-shot learning tasks such as 1D stochastic regression, image inpainting, and
classification. The results show the excellent performance of NVDPs.

1 INTRODUCTION

In traditional machine learning, a large amount of labeled data is required to train deep models
(LeCun et al., 2015). In practice, however, there are many cases where it is impossible to collect
sufficient data for a given task. On the other hand, humans can quickly understand and solve a new
task even from a few examples (Schmidhuber, 1987; Andrychowicz et al., 2016). This distinguishing
characteristic of humans is referred to as the meta-learning ability, which enables them to accumulate
past learning experiences into general knowledge and to utilize it for efficient learning in the future.
Incorporating the meta-learning capability into artificial machines has long been an active research
topic of machine learning (Naik & Mammone, 1992; Vinyals et al., 2016; Snell et al., 2017; Ravi &
Larochelle, 2017; Finn et al., 2017; Lee et al., 2019c; Hospedales et al., 2021).

Recently, Bayesian meta-learning methods have been attracting considerable interest due to incor-
porating uncertainty quantification of the Bayesian framework into the efficient model adaptation
of meta-learning approaches. An earlier study (Grant et al., 2018) extended the optimization-based
deterministic approach, model-agnostic meta-learning (MAML) (Finn et al., 2017), to a hierarchi-
cal Bayesian framework (Daumé III, 2009). Later, optimization-based variational inference (Yoon
et al., 2018; Finn et al., 2018; Ravi & Beatson, 2019; Lee et al., 2019a; Nguyen et al., 2020) and
model-based Bayesian meta-learning methods (Gordon et al., 2018; Garnelo et al., 2018a;b; Iakovl-
eva et al., 2020) were presented. These methods achieved outstanding results in various few-shot1
regression and classification tasks. In fact, the adaptation of deep models that can estimate uncer-
tainties is a core building block for reliable machine learning systems in real-world applications with
high judgmental risks, such as medical AI or autonomous driving systems.

Inspired by recent studies, we propose a new model-based Bayesian meta-learning approach, neural
variational dropout processes (NVDPs). The main contribution of this work is to design a new type
of Neural Network (NN) based conditional posterior model that can bypass the under-fitting and
posterior collapsing of existing approaches (Gordon et al., 2018; Garnelo et al., 2018a;b; Iakovleva
et al., 2020). NVDPs extend the simple yet effective posterior modeling of Variational Dropout
(VD) (Kingma et al., 2015; Gal & Ghahramani, 2016; Molchanov et al., 2017; Hron et al., 2018;

1The few-shot learning assumes only a few examples are available for each task, with the number of tasks
being large (Lake et al., 2015).
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Liu et al., 2019) in the context of meta-learning. A novel low-rank product of Bernoulli experts
meta-model is utilized in the dropout posterior to learn task-specific dropout rates conditioned on a
few learning examples. In this way, a full conditional posterior model over the NN’s parameters can
be efficiently obtained. In addition, we also propose a new type of prior to optimize the conditional
dropout posterior in variational inference, which supports the robust training of conditional poste-
riors. Although it is developed in conjunction with NVDPs, the formulation allows its adoption to
other recent methods, and we show the effectiveness. We have evaluated NVDPs compared with
other methods on various few-shot learning tasks and datasets. The experiments show that NVDPs
can circumvent the under-fitting and posterior collapsing and achieve outstanding performances in
terms of log-likelihood, active learning efficiency, prediction accuracy, and generalization.

2 BAYESIAN META-LEARNING

2.1 AMORTIZED VARIATIONAL INFERENCE FRAMEWORK IN THE MULTI-TASK DATA

A goal in meta-learning is to construct a model that can quickly solve new tasks from small amounts
of observed data. To achieve this, it is important to learn a general (or task-invariant) structure from
multiple tasks that can be utilized for the efficient model adaptation when necessary. Bayesian meta-
learning methods (Gordon et al., 2018; Garnelo et al., 2018b; Ravi & Beatson, 2019) formulate this
objective of meta-learning as an amortized variational inference (VI) of the posterior distribution in
multi-task environments. Suppose a collection of T related tasks is given, and each t-th task has
the training data Dt containing N i.i.d. observed tuples (xt;yt) = (xti; y

t
i)
N
i=1. Then, the evidence

lower-bound (ELBO) over the log-likelihood of the multi-task dataset can be derived as:

TX
t=1

log p(Dt; �) �
TX
t=1

fEq(�tjDt)[log p(ytjxt; �t)]� KL(q(�tjDt; �)jjp(�t))g: (1)

Here, p(ytjxt; �t) is a likelihood (or NN model) on the t-th training data and �t is a t-th task-specific
variable (i.e. a latent representation or weights of NN) and q(�tjDt; �) is a tractable amortized vari-
ational posterior model utilized to approximate the true unknown posterior distribution over �t for
each given t-th task data (i.e., p(�tjDt)) (Kingma & Welling, 2013; Gordon et al., 2018; Garnelo
et al., 2018b; Ravi & Beatson, 2019; Iakovleva et al., 2020). The parameter � represents the com-
mon structure that can be efficiently learned across multiple different tasks. The prespecified prior
distribution p(�t) in the Kullback–Leibler (KL) divergence term provides a stochastic regularization
that can help to capture the task-conditional uncertainty and prevent the collapsing of q(�tjDt; �).
In fact, the maximization of the ELBO, right side of equation 1, with respect to the conditional
variational posterior model is equivalent to the minimization of

PT
t=1 KL(q(�tjDt; �)jjp(�tjDt)).

Essentially, the goal in the amortized VI of Bayesian meta-learning is to learn the inference process
of the true conditional posterior distribution via the variational model q(�tjDt; �) and the shared
general structure � across multiple tasks since this task-invariant knowledge can later be utilized
for the efficient adaptation of the NN function on new unseen tasks. The approximation of the
conditional posterior also enables ensemble modeling and uncertainty quantification.

2.2 THE EXISTING CONDITIONAL POSTERIOR AND PRIOR MODELINGS

Many of the recent Bayesian meta-learning approaches can be roughly categorized into the
optimization-based (Grant et al., 2018; Yoon et al., 2018; Finn et al., 2018; Ravi & Beatson, 2019;
Lee et al., 2019a; Nguyen et al., 2020) or the model-based posterior approximation approaches (Gor-
don et al., 2018; Garnelo et al., 2018a;b; Kim et al., 2019; Iakovleva et al., 2020). In the optimization-
based approaches, the task-specific variable �t can be seen as the adapted NN weights. For example,
the deterministic model-agnostic meta-learning (MAML) (Finn et al., 2017) can be considered as
learning a Dirac delta variational posterior modeling (i.e., q(�tjDtC ; �) � �(�t � SGDj(DtC ; �)))
where the goal is to learn the shared global initialization NN’s parameters � such that a few j steps
of SGD updates on the small subset2 DtC of the t-th dataset Dt provides a good approximation
of the task-specific weights �t. Many optimization-based Bayesian meta-learning approaches such

2The subset Dt
C(� Dt) is known as a context (or support) set for each task. A small S size of context set

(e.g., 1-shot, 5-shot, or random) is often used in the few-shot learning tasks (Lake et al., 2015).
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as LLAMA (Grant et al., 2018), PLATIPIS (Finn et al., 2018), BMAML (Yoon et al., 2018), and
ABML (Ravi & Beatson, 2019) have incorporated the Gaussian type of posterior and prior models
into the deterministic adaptation framework of MAML in order to improve the robustness of mod-
els. Optimization-based approaches can be applied to various types of few-shot learning tasks, but
the adaptation cost at test time is computationally expensive due to the inversion of the Hessian or
kernel matrix; they may not be suitable for environments with limited computing resources at test.

On the other hand, the model-based Bayesian meta-learning approaches such as VERSA (Gordon
et al., 2018) or Neural Processes (Garnelo et al., 2018a;b) allow an instant estimation of the Bayesian
predictive distribution at test time via NN-based conditional posterior modeling. VERSA employs
an additional NN-based meta-modelg� (�) to directly predict the Gaussian posterior of agent NN's
task-speci�c weight� t from the small context set (i.e., q(� t jD t

C ; � ) = N (� t j(�; � ) = g� (D t
C )) ).

In this case, the shared structure� represents the meta-model's parameters. However, the direct
approximation of agent NN weights in VERSA could limit their scalability due to the large dimen-
sionality of the NN's weights; they only consider the task-speci�c weights for the single softmax
output layer. In addition, VERSA did not utilize any task-speci�c priorp(� t ), so the conditional
posterior could collapse into a deterministic one while training with the Monte Carlo approximation
(Iakovleva et al., 2020). Instead of the NN's weights, the Neural Processes (NPs) model the condi-
tional posterior with a latent representation (i.e., q(zt jD t ; � ) = N (zt j(�; � ) = g� (D t )) ) (Garnelo
et al., 2018b). Regarding the task-speci�c latent representation as a second input to the likelihood
p(y t jx t ; zt ) (similar to Kingma & Welling (2013) or Edwards & Storkey (2017)) provides another
ef�cient way to transfer the conditional information (Garnelo et al., 2018b). However, the following
studies indicate that NPs often suffer from under-�tting (Kim et al., 2019) and posterior-collapsing
behavior (Grover et al., 2019; Le et al., 2018). We conjecture that these behaviors are partially inher-
ent to its original variational formulation. Since the variational posterior in NPs rely on the whole
task data while training, the posterior do not exhibit good generalization performance at test. In
addition, it is well known that the highly �exible NN-based likelihood can neglect the latent repre-
sentation in variational inference (Hoffman & Johnson, 2016; Sønderby et al., 2016; Kingma et al.,
2016; Chen et al., 2017; Yeung et al., 2017; Alemi et al., 2018; Lucas et al., 2019; Dieng et al.,
2018); we could also observe the posterior collapsing behavior of the NPs in our experiments.

3 NEURAL VARIATIONAL DROPOUTPROCESSES

This section introduces a new model-based Bayesian meta-learning approach called Neural Varia-
tional Dropout Processes (NVDPs). Unlike the existing methods such as NPs or VERSA employing
conditional latent representation or direct modeling of NN's weights, NVDPs extend the posterior
modeling of the Variational Dropout (VD) in the context of meta-learning. We also introduce a new
type of task-speci�c prior to optimize the conditionaldropoutposterior in variational inference.

3.1 A CONDITIONAL DROPOUTPOSTERIOR

Variational dropout (VD) (Kingma et al., 2015; Gal & Ghahramani, 2016; Molchanov et al., 2017;
Hron et al., 2018; Liu et al., 2019) is a set of approaches that models the variational posterior dis-
tribution based on the dropout regularization technique. The dropout regularization randomly turns
off some of the Neural Network (NN) parameters during training by multiplying discrete Bernoulli
random noises to the parameters (Srivastava et al., 2014; Hinton et al., 2012). This technique was
originally popularized as an ef�cient way to prevent NN model's over-�tting. Later, the fast dropout
(Wang & Manning, 2013; Wan et al., 2013) reported that multiplying the continuous noises sampled
from Gaussian distributions works similarly to the conventional Bernoulli dropout (Srivastava et al.,
2014) due to the central limit theorem. The Gaussian approximation of the Bernoulli dropout is
convenient since it provides a fully factorized (tractable) posterior model over the NN's parameters
(Wang & Manning, 2013; Wan et al., 2013). In addition, VD approaches often utilize sparse pri-
ors for regularization (Kingma et al., 2015; Molchanov et al., 2017; Hron et al., 2018; 2017; Liu
et al., 2019). This posterior and prior distribution modeling in VD enables the learning of each inde-
pendent dropout rate over the NN parameters as variational parameters. This distinguishes the VD
approaches from the conventional dropouts that use a single �xed rate over all parameters. However,
thedropoutposterior in the conventional VD becomes �xed once trained and it is unable to express
the conditional posterior according to multiple tasks.
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Figure 1: (a) The low-rank product of Bernoulli experts meta-model of conditionaldropoutposterior.
(b) The probabilistic graphical model of Neural Variational Dropout Processes (NVDPs) with the
variational prior. Wheref x t

i ; yt
i g

N
i =1 is the N i.i.d samples from thet-th training datasetD t among

T tasks. The context setD t
C = f x t

i ; yt
i g

S
i =1 is a small subset of thet-th training dataset.

Conditional dropout posterior. We propose a new amortized variational posterior model that can
be ef�ciently adapted for each given task. Suppose we train a fully connected NN ofL layers,
then a conditionaldropoutposterior3 based on the task-speci�c dropout ratesP t over theK � D
dimensional deterministic parameters� of eachl-th layer of the NN can be given as follows:

q(� t jD t
C ; � ) =

KY

k=1

DY

d=1

q(� t
k;d jD t

C ) =
KY

k=1

DY

d=1

N (� t
k;d j(1 � P t

k;d )� k;d ; P t
k;d (1 � P t

k;d )� 2
k;d ): (2)

The parameter4 � k;d is shared across different tasks, representing the common task-invariant struc-
ture. In the equation 2, the task-speci�c NN parameter� t are fully described by the mean and
variance of each independent Gaussian distribution via� k;d andP t

k;d . Note that the variational pos-
terior model is explicitly conditioned on the subset of thet-th training datasetD t

C = f x t
i ; y t

i g
S
i =1

(� D t ) known as thet-th context set. The key idea of conditional posterior modeling in NVDPs
is to employ an NN-based meta-model to predict the task-speci�c dropout rateP t

k;d from the small
context setD t

C . The meta-model to approximateP t
k;d for each given task is simply de�ned as:

P t
k;d = s(ak ) � s(bd) � s(c); where(a; b; c) = g (r t ): (3)

Here, the set representationr t is de�ned as the mean of features obtained from each data int-th
context setD t

C (i.e., r t =
P S

i =1 h! (x t
i ; y t

i )=S, whereh! is a feature extracting NN parameterized by
! ), summarizing order invariant set information (Edwards & Storkey, 2017; Lee et al., 2019b). The
g (�) is meta NN model parameterized by to predict a set of logit vectors (i.e.,a 2 RK ; b 2 RD

andc 2 R). Then, thesigmoidfunction with a learnable temperature parameter� (i.e., s� (�) =
1=(1 + exp( � (�)=� ) ) is applied to them to get the low-rank components of task-speci�c dropout
ratesP t

k;d : the row-wises(ak ), column-wises(bd), and layer-wise dropout rates(c). In other
words, the task-speci�c dropout rateP t

k;d is obtained by multiplying low-rank components of the
conditionally approximated dropout rates from the NN-based meta-modelg (D t

C ) (see Figure1 (a)).

The product ofn Bernoulli random variables is also a Bernoulli variable (Leemis, 2020). By ex-
ploiting this property, we interpret the approximation of the task-speci�c dropout rates in terms
of the low-rank product of Bernoulli experts. Unlike VERSA whose meta-model's complexity is
O(LKD ) to model the full NN weight posterior directly, the complexity of meta-model in NVDPs
is O(L(K +D+1)). In addition, the meta-model's role is only to predict the low-rank components of
the task-speci�c dropout rates. With the shared parameter� , this can greatly reduce the complex-
ity of the posterior distribution approximation of the high-dimensional task-speci�c NN's weights
using only a few observed context examples. The product model tends to give sharp probability
boundaries, which is often used for modeling the high dimensional data space (Hinton, 2002).

3.2 THE TASK-SPECIFICVARIATIONAL PRIOR

To optimize the conditionaldropoutposterior in equation 2, a speci�cation of the prior distribution
p(� t ) is necessary to get a tractable derivation of the KL regularization term of the ELBO in equa-

3The original Gaussian approximation in the VD isq(� k;d ) = N (� k;d j� k;d ; �� 2
k;d ) with � = P k;d =(1 �

P k;d ). But, NVDPs extend the Bernoullidropoutmodel (Wang & Manning, 2013; Wan et al., 2013).
4We omit the layer indexl of the parameter� l;k;d for brevity.
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tion 1. The question is how we can de�ne the effective task-speci�c prior. In fact, an important
requirement in the choice of the prior distribution in the conventional VD framework (Kingma et al.,
2015) is that the analytical derivation of the KL term (i.e., KL(q(� t jD t

C ; � )jjp(� t )) in equation 1)
should not depend on the deterministic NN parameter� . This allows the constant optimization of
the ELBO w.r.t all the independent variational parameters (i.e., � l;k;d andP l;k;d for all l = 1 : : : L ,
k = 1 : : : K andd = 1 : : : D ). One way of modeling the prior is to employ the log-uniform prior
p(log(j� j) / c as in the conventional VD (Kingma et al., 2015). However, a recently known limita-
tion is that the log-uniform prior is an improper prior (e.g., the KL divergence between the posterior
and the log-uniform prior is in�nite). This could yield a degeneration of thedropoutposterior model
to a deterministic one (Molchanov et al., 2017; Hron et al., 2018; 2017; Liu et al., 2019). Besides,
the conventional prior used in VD approaches does not support a task-dependent regularization.

Variational prior. We introduce a new task-speci�c prior modeling approach to optimize the
proposed conditional posterior; it is approximated with thevariational prior de�ned by the same
dropoutposterior model in equation 2 except that the prior is conditioned on the whole task data
(i.e., p(� t ) � q(� t jD t )). The KL divergence between the conditionaldropoutposterior (with the
only context set) and thevariational prior (with the whole task data) can be derived as:

KL(q(� t jD t
C )jjq(� t jD t )) =

KX

k=1

DX

d=1

f
P t

k;d (1 � P t
k;d ) + ( P̂ t

k;d � P t
k;d )2

2P̂ t
k;d (1 � P̂ t

k;d )
+

1
2

log
P̂ t

k;d (1 � P̂ t
k;d )

P t
k;d (1 � P t

k;d )
g

(4)

where bothP k;d andP̂ k;d are the dropout rates predicted from the meta-model but with different
conditional set information:P k;d is obtained from the small context setD t

C , while P̂ k;d is from the
whole task setD t . Interestingly, the analytical derivation of the KL is independent of the shared
parameter� , thus this satis�es the necessary condition to be used as a prior in the VI optimization of
thedropoutposterior. Figure 1(b) depicts the variational prior is conditioned on the whole dataset.

The shared posterior model for the task-speci�c prior introduced here was inspired by recent
Bayesian meta-learning approaches (Garnelo et al., 2018b; Kim et al., 2019; Iakovleva et al., 2020),
but some critical differences are that: 1) we have developed thevariational prior to regularize the
task-speci�c dropout rates in the optimization of the conditionaldropoutposterior, 2) the denom-
inator and the numerator of the KL divergence term in equation 4 are reversed compared with the
existing approaches. In fact, some other recent studies of amortized VI inference (Tomczak &
Welling, 2018; Takahashi et al., 2019) analytically derived that the optimal prior maximizing VI ob-
jective is the variational posterior aggregated on the whole dataset:p� (� ) =

R
D q(� jD )p(D). Thus,

we hypothesized the conditional posterior model that depends on the whole dataset should be used
to approximate the optimal priorp� (� t ) � q(� t jD t ) since the variational model conditioned on the
aggregated set representation with much larger context (e.g.,D t � D t

C ) is likely to be much closer
to the optimal task-speci�c prior than the model conditioned only on a subset. The experiments in
Section 5 demonstrate that the proposedvariational prior approach provides a reliable regulariza-
tion for the conditionaldropoutposterior and the similar formulation is also applicable to the latent
variable based conditional posterior models (Garnelo et al., 2018b; Kim et al., 2019).

3.3 STOCHASTIC VARIATIONAL INFERENCE

With the conditional dropout posterior de�ned in equation 2 and the KL regularization term in
equation 4, we can now fully describe the ELBO objective of NVDPs for the multi-task dataset as:

TX

t =1

logp(D t ) �
TX

t =1

f Eq( � t jD t
C ;� ) [logp(y t jx t ; � t )] � KL(q(� t jD t

C ; � )jjq(� t jD t ; � ))g: (5)

The goal is to maximize the ELBO equation 5 w.r.t. the variational parameters (i.e. � ,  , ! , and
� ) of the posteriorq(� t jD t

C ; � ) de�ned in equation 2. The optimization of these parameters is done
by using thestochastic gradient variational Bayes(SGVB) (Kingma & Welling, 2013; Kingma
et al., 2014). The basic trick in the SGVB is to parameterize the random weights� t � q(� t jD t )
using a deterministic differentiable transformation� t = f (�; D t

C ) with a non-parametric i.i.d. noise
� � p(� ). Then, an unbiased differentiable minibatch-based Monte Carlo estimator,L̂ (�;  ; !; � ),
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of the ELBO of NVDPs can be de�ned as:

1
T0

T 0
X

t =1

f
1

M

MX

i =1

logp(y t
i jx

t
i ; f (�; D t

C )) � (
P t (1 � P t ) + ( P̂ t � P t )2

2P̂ t (1 � P̂ t )
+

1
2

log
P̂ t (1 � P̂ t )
P t (1 � P t )

)g (6)

T0 andM are the size of randomly sampled mini-batch of tasks and data points, respectively, per
each epoch (i.e.,f x t

i ; y t
i g

M
i =1 = D t � fD t gT 0

t =1 � D ). D t
C is the subset set ofD t discussed in sec-

tion 3.1 and 3.2. The transformation of the task-speci�c weights is given as� t
k;d = f (� k;d ; D t

C ) =

(1 � P t
k;d )� k;d +

q
P t

k;d (1 � P t
k;d )� k;d � k;d with � k;d � N (0; 1) from the equation 2. The inter-

mediate weight� t
k;d is now differentiable with respect to� k;d andP t

k;d . Also, P t
k;d (andP̂ t

k;d ) is
deterministically computed by the meta-model parameterized by , ! , and� as in equation 3. Thus,
the estimatorL̂ (�;  ; !; � ) in equation 6 is differentiable with respect to all the variational param-
eters and can be optimized via the SGD algorithm. In practice, a local reparameterization trick5 is
further utilized to reduce the variance of gradient estimators on training (Kingma et al., 2015).

4 RELATED WORKS

Gaussian Processes(GPs) (Rasmussen & Williams, 2005) are classical Bayesian learning approaches
closely related to NVDPs; GPs allow an analytical derivation of the posterior predictive distribution
given observed context points based on Gaussian priors and kernels. However, classical GPs re-
quire an additional optimization procedure to identify the suitable kernel for each task, and the time
complexity is quadratic to the number of contexts. Recently introduced model-based Bayesian meta-
learning methods (Garnelo et al., 2018b;a; Kim et al., 2019; Gordon et al., 2018; Iakovleva et al.,
2020) offer NN-based conditional posterior models that can be ef�ciently learned from data and later
provide an instant posterior predictive estimation at test time. One important aspect of these model-
based methods have in common is the utilization ofpermutation invariantset representation as an
input to the meta-model (Edwards & Storkey, 2017; Lee et al., 2019b; Bloem-Reddy & Teh, 2020;
Teh & Lecture, 2019), which makes a conditional posterior invariant to the order of the observed
context data. This property, known asexchangeability, is a necessary condition to de�ne a stochas-
tic process according to Kolmogorov's Extension Theorem (Garnelo et al., 2018b; Kim et al., 2019;
Øksendal, 2003). NVDPs also utilize the set representation to approximate the task-speci�c dropout
rates in the conditionaldropoutposterior. Another related work to NVDPs is Meta Dropout (Lee
et al., 2019a). They also proposed a unique input-dependent dropout approach; Gaussian-based
stochastic perturbation is applied to each preactivation feature of NN functions. Their approach,
however, is constructed using optimization-based meta-learning methods (Finn et al., 2017; Li et al.,
2017) without directly considering the set representation. NVDPs, employing set representation,
extend thedropoutposterior of Variational Dropout (VD) (Kingma et al., 2015; Wang & Manning,
2013; Wan et al., 2013; Liu et al., 2019; Molchanov et al., 2017) in the context of model-based
meta-learning and introduce a new idea ofvariational prior that can be universally applied to other
Bayesian learning approaches (Garnelo et al., 2018b; Kim et al., 2019). Gal & Ghahramani (2016)
also discussed the theoretical connection between VD and GPs.

5 EXPERIMENTS

Metrics in regression. In the evaluation of the conditional NN models' adaptation, the newly
observed task dataD � is split into the input-output pairs of thecontext setD �

C = f x i ; yi gS
i =1 and

the target setD �
T = f x i ; yi gN

i =1 (D �
C 6� D�

T in evaluation (Garnelo et al., 2018b; Gordon et al.,
2018)). (1) The log-likelihood (LL), 1

N + S

P
i 2D �

C [D �
T

Eq( � � jD �
C ) [logp(yi jx i ; � � )], measures the

performance of the NN model over the whole datasetD � conditioned on thecontext set. (2) The
reconstructive log-likelihood (RLL),1S

P
i 2D �

C
Eq( � � jD �

C ) [logp(yi jx i ; � � )], measures how well the
model reconstructs the data points in thecontext set. A low RLL is a sign of under-�tting. (3) The
predictive log-likelihood (PLL),1

N

P
i 2D �

T
Eq( � � jD �

C ) [logp(yi jx i ; � � )], measures the prediction on
the data points in thetarget set(not in thecontext set). A low PLL is a sign of over-�tting.

5We can sample pre-activationsBm;d for a mini-batch of sizeM directly using inputsAm;k (Bm;d �
N (Bm;d j

P K
k =1 Am;k (1 � P t

k;d )� k;d ;
P K

k =1 A2
m;k P t

k;d (1 � P t
k;d )� 2

k;d )).
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Figure 2: The 1D few-shot regression results of the models on GP dataset in�xed varianceand
learned variancesettings. The black (dash-line) represent the true unknown task function. Black
dots are a few context points (S = 5 ) given to the posteriors. The blue lines (and light blue area in
learned variancesettings) are mean values (and variance) predicted from the sampled NNs.

GP Dataset NP NP+VP NP+CNP NP+CNP+VP NVDP

Fixed LL � 0:98(� 0:08) � 0:96(� 0:06) � 0:95(� 0:05) � 0:94(� 0:05) � 0:94(� 0:04)
Variance RLL � 0:97(� 0:06) � 0:95(� 0:04) � 0:93(� 0:02) � 0:93(� 0:02) � 0:93(� 0:01)

PLL � 0:98(� 0:08) � 0:97(� 0:06) � 0:95(� 0:05) � 0:94(� 0:05) � 0:94(� 0:05)

Learned LL 0:19(� 1:87) 0:48(� 0:77) 0:70(� 0:89) 0:70(� 0:73) 0:83(� 0:61)
Variance RLL 0:72(� 0:57) 0:71(� 0:55) 1:03(� 0:39) 1:00(� 0:41) 1:10(� 0:34)

PLL 0:16(� 1:90) 0:46(� 0:78) 0:66(� 0:92) 0:68(� 0:75) 0:81(� 0:62)

Table 1: The validation result of the 1D regression models on the GP dataset in�xed varianceand
learned variancesettings. The higher LLs are the better. The models of NP, NP with variational prior
(NP+VP), NP with deterministic path (NP+CNP), NP+CNP+VP and NVDP (ours) are compared.

GP Samples.The 1D regression task is to predict unknown functions given some observed context
points; each function (or data point) is generated from a Gaussian Process (GP) with random kernel,
then the standard data split procedure is performed (i.e.S � U(3; 97) andN � U[S + 1 ; 100)) at
train time. For the baseline models, Neural Process model (NP) and NP with additional deterministic
representation (NP+CNP) described in (Garnelo et al., 2018b;a; Kim et al., 2019) is compared. We
also adopted the variational prior (VP) into the representation based posterior of NP and its variants
(NP+VP and NP+CNP+VP). For all models (including our NVDP), we used the same�xed variance
andlearned variancelikelihood architecture depicted in (Kim et al., 2019): the agent NN with 4
hidden layers of 128 units with LeLU activation (Nair & Hinton, 2010) and an output layer of 1 unit
for mean (or an additional 1 unit for variance). The dimensions of the set representationr t were
�xed to 128. The meta NNs in the conditionaldropoutposterior in NVDP has 4 hidden layers of
128units with LeakyReLU and an output layer of257units (i.e.K +D+1) for each layer of the agent
model. All models were trained with Adam optimizer (Kingma & Ba, 2015) with learning rate 5e-4
and16 task-batches for0:5 million iterations. On validation,50000random tasks (or functions)
were sampled from the GP function generator, and the split data ofS � U(3; 97) andN = 400 � S
were used to compute the log-likelihood (LL) and other evaluation metrics.

Table 1 summarizes the validation results of 1D regression with the GP dataset. NVDP achieves the
best LL scores compared with all other baselines in both the�xed andlearned variancelikelihood
model settings. The NVDPs record high RLL on the observed data points and excellent PLL scores
on the unseen function space in the new task; this indicates that the proposed conditionaldropout
posterior approach can simultaneously mitigate the under-�tting and over-�tting of the agent model
compared with the other baselines. When VP is applied to NP or NP+CNP, the PLL scores tend to
increase by meaningful margins in all cases. This demonstrates that the proposed variational prior
(VP) approach can also reduce the over-�tting of latent representation-based conditional posterior.
Figure 2 visualizes the few-shot 1D function regression results in both model settings. In the�xed
variancesetting, the functions sampled from NPs show high variability but cannot �t the context data
well. NP+CNP can �t the context data well but losesepistemicuncertainty due to the collapsing of
conditional posterior. On the other hand, the functions from NVDPs show a different behavior; they
capture the function's variability well while also �tting the observed context points better. NVDPs
also approximate the mean and variance of unknown function well inlearned variancesetting.
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