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ABSTRACT

Learning to infer the conditional posterior model is a key step for robust meta-
learning. This paper presents a new Bayesian meta-learning approach called Neu-
ral Variational Dropout Processes (NVDPs). NVDPs model the conditional poste-
rior distribution based on a task-specific dropout; a low-rank product of Bernoulli
experts meta-model is utilized for a memory-efficient mapping of dropout rates
from a few observed contexts. It allows for a quick reconfiguration of a globally
learned and shared neural network for new tasks in multi-task few-shot learn-
ing. In addition, NVDPs utilize a novel prior conditioned on the whole task data
to optimize the conditional dropout posterior in the amortized variational infer-
ence. Surprisingly, this enables the robust approximation of task-specific dropout
rates that can deal with a wide range of functional ambiguities and uncertainties.
We compared the proposed method with other meta-learning approaches in the
few-shot learning tasks such as 1D stochastic regression, image inpainting, and
classification. The results show the excellent performance of NVDPs.

1 INTRODUCTION

In traditional machine learning, a large amount of labeled data is required to train deep models
(LeCun et al., 2015). In practice, however, there are many cases where it is impossible to collect
sufficient data for a given task. On the other hand, humans can quickly understand and solve a new
task even from a few examples (Schmidhuber, 1987; Andrychowicz et al., 2016). This distinguishing
characteristic of humans is referred to as the meta-learning ability, which enables them to accumulate
past learning experiences into general knowledge and to utilize it for efficient learning in the future.
Incorporating the meta-learning capability into artificial machines has long been an active research
topic of machine learning (Naik & Mammone, 1992; Vinyals et al., 2016; Snell et al., 2017; Ravi &
Larochelle, 2017; Finn et al., 2017; Lee et al., 2019c; Hospedales et al., 2021).

Recently, Bayesian meta-learning methods have been attracting considerable interest due to incor-
porating uncertainty quantification of the Bayesian framework into the efficient model adaptation
of meta-learning approaches. An earlier study (Grant et al., 2018) extended the optimization-based
deterministic approach, model-agnostic meta-learning (MAML) (Finn et al., 2017), to a hierarchi-
cal Bayesian framework (Daumé III, 2009). Later, optimization-based variational inference (Yoon
et al., 2018; Finn et al., 2018; Ravi & Beatson, 2019; Lee et al., 2019a; Nguyen et al., 2020) and
model-based Bayesian meta-learning methods (Gordon et al., 2018; Garnelo et al., 2018a;b; Iakovl-
eva et al., 2020) were presented. These methods achieved outstanding results in various few-shot1
regression and classification tasks. In fact, the adaptation of deep models that can estimate uncer-
tainties is a core building block for reliable machine learning systems in real-world applications with
high judgmental risks, such as medical AI or autonomous driving systems.

Inspired by recent studies, we propose a new model-based Bayesian meta-learning approach, neural
variational dropout processes (NVDPs). The main contribution of this work is to design a new type
of Neural Network (NN) based conditional posterior model that can bypass the under-fitting and
posterior collapsing of existing approaches (Gordon et al., 2018; Garnelo et al., 2018a;b; Iakovleva
et al., 2020). NVDPs extend the simple yet effective posterior modeling of Variational Dropout
(VD) (Kingma et al., 2015; Gal & Ghahramani, 2016; Molchanov et al., 2017; Hron et al., 2018;

1The few-shot learning assumes only a few examples are available for each task, with the number of tasks
being large (Lake et al., 2015).

1



Published as a conference paper at ICLR 2022

Liu et al., 2019) in the context of meta-learning. A novel low-rank product of Bernoulli experts
meta-model is utilized in the dropout posterior to learn task-specific dropout rates conditioned on a
few learning examples. In this way, a full conditional posterior model over the NN’s parameters can
be efficiently obtained. In addition, we also propose a new type of prior to optimize the conditional
dropout posterior in variational inference, which supports the robust training of conditional poste-
riors. Although it is developed in conjunction with NVDPs, the formulation allows its adoption to
other recent methods, and we show the effectiveness. We have evaluated NVDPs compared with
other methods on various few-shot learning tasks and datasets. The experiments show that NVDPs
can circumvent the under-fitting and posterior collapsing and achieve outstanding performances in
terms of log-likelihood, active learning efficiency, prediction accuracy, and generalization.

2 BAYESIAN META-LEARNING

2.1 AMORTIZED VARIATIONAL INFERENCE FRAMEWORK IN THE MULTI-TASK DATA

A goal in meta-learning is to construct a model that can quickly solve new tasks from small amounts
of observed data. To achieve this, it is important to learn a general (or task-invariant) structure from
multiple tasks that can be utilized for the efficient model adaptation when necessary. Bayesian meta-
learning methods (Gordon et al., 2018; Garnelo et al., 2018b; Ravi & Beatson, 2019) formulate this
objective of meta-learning as an amortized variational inference (VI) of the posterior distribution in
multi-task environments. Suppose a collection of T related tasks is given, and each t-th task has
the training data Dt containing N i.i.d. observed tuples (xt,yt) = (xti, y

t
i)
N
i=1. Then, the evidence

lower-bound (ELBO) over the log-likelihood of the multi-task dataset can be derived as:

T∑
t=1

log p(Dt; θ) ≥
T∑
t=1

{Eq(φt|Dt)[log p(y
t|xt, φt)]− KL(q(φt|Dt; θ)||p(φt))}. (1)

Here, p(yt|xt, φt) is a likelihood (or NN model) on the t-th training data and φt is a t-th task-specific
variable (i.e. a latent representation or weights of NN) and q(φt|Dt; θ) is a tractable amortized vari-
ational posterior model utilized to approximate the true unknown posterior distribution over φt for
each given t-th task data (i.e., p(φt|Dt)) (Kingma & Welling, 2013; Gordon et al., 2018; Garnelo
et al., 2018b; Ravi & Beatson, 2019; Iakovleva et al., 2020). The parameter θ represents the com-
mon structure that can be efficiently learned across multiple different tasks. The prespecified prior
distribution p(φt) in the Kullback–Leibler (KL) divergence term provides a stochastic regularization
that can help to capture the task-conditional uncertainty and prevent the collapsing of q(φt|Dt; θ).
In fact, the maximization of the ELBO, right side of equation 1, with respect to the conditional
variational posterior model is equivalent to the minimization of

∑T
t=1 KL(q(φt|Dt; θ)||p(φt|Dt)).

Essentially, the goal in the amortized VI of Bayesian meta-learning is to learn the inference process
of the true conditional posterior distribution via the variational model q(φt|Dt; θ) and the shared
general structure θ across multiple tasks since this task-invariant knowledge can later be utilized
for the efficient adaptation of the NN function on new unseen tasks. The approximation of the
conditional posterior also enables ensemble modeling and uncertainty quantification.

2.2 THE EXISTING CONDITIONAL POSTERIOR AND PRIOR MODELINGS

Many of the recent Bayesian meta-learning approaches can be roughly categorized into the
optimization-based (Grant et al., 2018; Yoon et al., 2018; Finn et al., 2018; Ravi & Beatson, 2019;
Lee et al., 2019a; Nguyen et al., 2020) or the model-based posterior approximation approaches (Gor-
don et al., 2018; Garnelo et al., 2018a;b; Kim et al., 2019; Iakovleva et al., 2020). In the optimization-
based approaches, the task-specific variable φt can be seen as the adapted NN weights. For example,
the deterministic model-agnostic meta-learning (MAML) (Finn et al., 2017) can be considered as
learning a Dirac delta variational posterior modeling (i.e., q(φt|DtC ; θ) ≈ δ(φt − SGDj(DtC , θ)))
where the goal is to learn the shared global initialization NN’s parameters θ such that a few j steps
of SGD updates on the small subset2 DtC of the t-th dataset Dt provides a good approximation
of the task-specific weights φt. Many optimization-based Bayesian meta-learning approaches such

2The subset Dt
C(⊆ Dt) is known as a context (or support) set for each task. A small S size of context set

(e.g., 1-shot, 5-shot, or random) is often used in the few-shot learning tasks (Lake et al., 2015).
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as LLAMA (Grant et al., 2018), PLATIPIS (Finn et al., 2018), BMAML (Yoon et al., 2018), and
ABML (Ravi & Beatson, 2019) have incorporated the Gaussian type of posterior and prior models
into the deterministic adaptation framework of MAML in order to improve the robustness of mod-
els. Optimization-based approaches can be applied to various types of few-shot learning tasks, but
the adaptation cost at test time is computationally expensive due to the inversion of the Hessian or
kernel matrix; they may not be suitable for environments with limited computing resources at test.

On the other hand, the model-based Bayesian meta-learning approaches such as VERSA (Gordon
et al., 2018) or Neural Processes (Garnelo et al., 2018a;b) allow an instant estimation of the Bayesian
predictive distribution at test time via NN-based conditional posterior modeling. VERSA employs
an additional NN-based meta-model gθ(·) to directly predict the Gaussian posterior of agent NN’s
task-specific weight φt from the small context set (i.e., q(φt|DtC ; θ) = N (φt|(µ, σ) = gθ(DtC))).
In this case, the shared structure θ represents the meta-model’s parameters. However, the direct
approximation of agent NN weights in VERSA could limit their scalability due to the large dimen-
sionality of the NN’s weights; they only consider the task-specific weights for the single softmax
output layer. In addition, VERSA did not utilize any task-specific prior p(φt), so the conditional
posterior could collapse into a deterministic one while training with the Monte Carlo approximation
(Iakovleva et al., 2020). Instead of the NN’s weights, the Neural Processes (NPs) model the condi-
tional posterior with a latent representation (i.e., q(zt|Dt; θ) = N (zt|(µ, σ) = gθ(Dt))) (Garnelo
et al., 2018b). Regarding the task-specific latent representation as a second input to the likelihood
p(yt|xt, zt) (similar to Kingma & Welling (2013) or Edwards & Storkey (2017)) provides another
efficient way to transfer the conditional information (Garnelo et al., 2018b). However, the following
studies indicate that NPs often suffer from under-fitting (Kim et al., 2019) and posterior-collapsing
behavior (Grover et al., 2019; Le et al., 2018). We conjecture that these behaviors are partially inher-
ent to its original variational formulation. Since the variational posterior in NPs rely on the whole
task data while training, the posterior do not exhibit good generalization performance at test. In
addition, it is well known that the highly flexible NN-based likelihood can neglect the latent repre-
sentation in variational inference (Hoffman & Johnson, 2016; Sønderby et al., 2016; Kingma et al.,
2016; Chen et al., 2017; Yeung et al., 2017; Alemi et al., 2018; Lucas et al., 2019; Dieng et al.,
2018); we could also observe the posterior collapsing behavior of the NPs in our experiments.

3 NEURAL VARIATIONAL DROPOUT PROCESSES

This section introduces a new model-based Bayesian meta-learning approach called Neural Varia-
tional Dropout Processes (NVDPs). Unlike the existing methods such as NPs or VERSA employing
conditional latent representation or direct modeling of NN’s weights, NVDPs extend the posterior
modeling of the Variational Dropout (VD) in the context of meta-learning. We also introduce a new
type of task-specific prior to optimize the conditional dropout posterior in variational inference.

3.1 A CONDITIONAL DROPOUT POSTERIOR

Variational dropout (VD) (Kingma et al., 2015; Gal & Ghahramani, 2016; Molchanov et al., 2017;
Hron et al., 2018; Liu et al., 2019) is a set of approaches that models the variational posterior dis-
tribution based on the dropout regularization technique. The dropout regularization randomly turns
off some of the Neural Network (NN) parameters during training by multiplying discrete Bernoulli
random noises to the parameters (Srivastava et al., 2014; Hinton et al., 2012). This technique was
originally popularized as an efficient way to prevent NN model’s over-fitting. Later, the fast dropout
(Wang & Manning, 2013; Wan et al., 2013) reported that multiplying the continuous noises sampled
from Gaussian distributions works similarly to the conventional Bernoulli dropout (Srivastava et al.,
2014) due to the central limit theorem. The Gaussian approximation of the Bernoulli dropout is
convenient since it provides a fully factorized (tractable) posterior model over the NN’s parameters
(Wang & Manning, 2013; Wan et al., 2013). In addition, VD approaches often utilize sparse pri-
ors for regularization (Kingma et al., 2015; Molchanov et al., 2017; Hron et al., 2018; 2017; Liu
et al., 2019). This posterior and prior distribution modeling in VD enables the learning of each inde-
pendent dropout rate over the NN parameters as variational parameters. This distinguishes the VD
approaches from the conventional dropouts that use a single fixed rate over all parameters. However,
the dropout posterior in the conventional VD becomes fixed once trained and it is unable to express
the conditional posterior according to multiple tasks.
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Figure 1: (a) The low-rank product of Bernoulli experts meta-model of conditional dropout posterior.
(b) The probabilistic graphical model of Neural Variational Dropout Processes (NVDPs) with the
variational prior. Where {xti, yti}Ni=1 is the N i.i.d samples from the t-th training dataset Dt among
T tasks. The context set DtC = {xti, yti}Si=1 is a small subset of the t-th training dataset.

Conditional dropout posterior. We propose a new amortized variational posterior model that can
be efficiently adapted for each given task. Suppose we train a fully connected NN of L layers,
then a conditional dropout posterior3 based on the task-specific dropout rates Pt over the K × D
dimensional deterministic parameters θ of each l-th layer of the NN can be given as follows:

q(φt|DtC ; θ) =
K∏
k=1

D∏
d=1

q(φtk,d|DtC) =
K∏
k=1

D∏
d=1

N (φtk,d|(1−Ptk,d)θk,d,P
t
k,d(1−Ptk,d)θ

2
k,d). (2)

The parameter4 θk,d is shared across different tasks, representing the common task-invariant struc-
ture. In the equation 2, the task-specific NN parameter φt are fully described by the mean and
variance of each independent Gaussian distribution via θk,d and Ptk,d. Note that the variational pos-
terior model is explicitly conditioned on the subset of the t-th training dataset DtC = {xti,yti}Si=1
(⊆ Dt) known as the t-th context set. The key idea of conditional posterior modeling in NVDPs
is to employ an NN-based meta-model to predict the task-specific dropout rate Ptk,d from the small
context set DtC . The meta-model to approximate Ptk,d for each given task is simply defined as:

Ptk,d = s(ak) · s(bd) · s(c), where (a,b, c) = gψ(r
t). (3)

Here, the set representation rt is defined as the mean of features obtained from each data in t-th
context setDtC (i.e., rt =

∑S
i=1hω(x

t
i,y

t
i)/S, where hω is a feature extracting NN parameterized by

ω), summarizing order invariant set information (Edwards & Storkey, 2017; Lee et al., 2019b). The
gψ(·) is meta NN model parameterized by ψ to predict a set of logit vectors (i.e., a ∈ RK ,b ∈ RD
and c ∈ R). Then, the sigmoid function with a learnable temperature parameter τ (i.e., sτ (·) =
1/(1 + exp(−(·)/τ) ) is applied to them to get the low-rank components of task-specific dropout
rates Ptk,d: the row-wise s(ak), column-wise s(bd), and layer-wise dropout rate s(c). In other
words, the task-specific dropout rate Ptk,d is obtained by multiplying low-rank components of the
conditionally approximated dropout rates from the NN-based meta-model gψ(DtC) (see Figure1 (a)).

The product of n Bernoulli random variables is also a Bernoulli variable (Leemis, 2020). By ex-
ploiting this property, we interpret the approximation of the task-specific dropout rates in terms
of the low-rank product of Bernoulli experts. Unlike VERSA whose meta-model’s complexity is
O(LKD) to model the full NN weight posterior directly, the complexity of meta-model in NVDPs
is O(L(K+D+1)). In addition, the meta-model’s role is only to predict the low-rank components of
the task-specific dropout rates. With the shared parameter θ, this can greatly reduce the complex-
ity of the posterior distribution approximation of the high-dimensional task-specific NN’s weights
using only a few observed context examples. The product model tends to give sharp probability
boundaries, which is often used for modeling the high dimensional data space (Hinton, 2002).

3.2 THE TASK-SPECIFIC VARIATIONAL PRIOR

To optimize the conditional dropout posterior in equation 2, a specification of the prior distribution
p(φt) is necessary to get a tractable derivation of the KL regularization term of the ELBO in equa-

3The original Gaussian approximation in the VD is q(φk,d) = N (φk,d|θk,d, αθ2k,d) with α = Pk,d/(1 −
Pk,d). But, NVDPs extend the Bernoulli dropout model (Wang & Manning, 2013; Wan et al., 2013).

4We omit the layer index l of the parameter θl,k,d for brevity.
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tion 1. The question is how we can define the effective task-specific prior. In fact, an important
requirement in the choice of the prior distribution in the conventional VD framework (Kingma et al.,
2015) is that the analytical derivation of the KL term (i.e., KL(q(φt|DtC ; θ)||p(φt)) in equation 1)
should not depend on the deterministic NN parameter θ. This allows the constant optimization of
the ELBO w.r.t all the independent variational parameters (i.e., θl,k,d and Pl,k,d for all l = 1 . . . L,
k = 1 . . .K and d = 1 . . . D). One way of modeling the prior is to employ the log-uniform prior
p(log(|φ|) ∝ c as in the conventional VD (Kingma et al., 2015). However, a recently known limita-
tion is that the log-uniform prior is an improper prior (e.g., the KL divergence between the posterior
and the log-uniform prior is infinite). This could yield a degeneration of the dropout posterior model
to a deterministic one (Molchanov et al., 2017; Hron et al., 2018; 2017; Liu et al., 2019). Besides,
the conventional prior used in VD approaches does not support a task-dependent regularization.

Variational prior. We introduce a new task-specific prior modeling approach to optimize the
proposed conditional posterior; it is approximated with the variational prior defined by the same
dropout posterior model in equation 2 except that the prior is conditioned on the whole task data
(i.e., p(φt) ≈ q(φt|Dt)). The KL divergence between the conditional dropout posterior (with the
only context set) and the variational prior (with the whole task data) can be derived as:

KL(q(φt|DtC)||q(φt|Dt)) =
K∑
k=1

D∑
d=1

{
Ptk,d(1−Ptk,d) + (P̂tk,d −Ptk,d)

2

2P̂tk,d(1− P̂tk,d)
+

1

2
log

P̂tk,d(1− P̂tk,d)

Ptk,d(1−Ptk,d)
}

(4)

where both Pk,d and P̂k,d are the dropout rates predicted from the meta-model but with different
conditional set information: Pk,d is obtained from the small context set DtC , while P̂k,d is from the
whole task set Dt. Interestingly, the analytical derivation of the KL is independent of the shared
parameter θ, thus this satisfies the necessary condition to be used as a prior in the VI optimization of
the dropout posterior. Figure 1(b) depicts the variational prior is conditioned on the whole dataset.

The shared posterior model for the task-specific prior introduced here was inspired by recent
Bayesian meta-learning approaches (Garnelo et al., 2018b; Kim et al., 2019; Iakovleva et al., 2020),
but some critical differences are that: 1) we have developed the variational prior to regularize the
task-specific dropout rates in the optimization of the conditional dropout posterior, 2) the denom-
inator and the numerator of the KL divergence term in equation 4 are reversed compared with the
existing approaches. In fact, some other recent studies of amortized VI inference (Tomczak &
Welling, 2018; Takahashi et al., 2019) analytically derived that the optimal prior maximizing VI ob-
jective is the variational posterior aggregated on the whole dataset: p∗(φ) =

∫
D q(φ|D)p(D). Thus,

we hypothesized the conditional posterior model that depends on the whole dataset should be used
to approximate the optimal prior p∗(φt) ≈ q(φt|Dt) since the variational model conditioned on the
aggregated set representation with much larger context (e.g.,Dt ⊇ DtC) is likely to be much closer
to the optimal task-specific prior than the model conditioned only on a subset. The experiments in
Section 5 demonstrate that the proposed variational prior approach provides a reliable regulariza-
tion for the conditional dropout posterior and the similar formulation is also applicable to the latent
variable based conditional posterior models (Garnelo et al., 2018b; Kim et al., 2019).

3.3 STOCHASTIC VARIATIONAL INFERENCE

With the conditional dropout posterior defined in equation 2 and the KL regularization term in
equation 4, we can now fully describe the ELBO objective of NVDPs for the multi-task dataset as:

T∑
t=1

log p(Dt) ≥
T∑
t=1

{Eq(φt|Dt
C ;θ)[log p(y

t|xt, φt)]− KL(q(φt|DtC ; θ)||q(φt|Dt; θ))}. (5)

The goal is to maximize the ELBO equation 5 w.r.t. the variational parameters (i.e. θ, ψ, ω, and
τ ) of the posterior q(φt|DtC ; θ) defined in equation 2. The optimization of these parameters is done
by using the stochastic gradient variational Bayes (SGVB) (Kingma & Welling, 2013; Kingma
et al., 2014). The basic trick in the SGVB is to parameterize the random weights φt ∼ q(φt|Dt)
using a deterministic differentiable transformation φt = f(ε,DtC) with a non-parametric i.i.d. noise
ε ∼ p(ε). Then, an unbiased differentiable minibatch-based Monte Carlo estimator, L̂(θ, ψ, ω, τ),
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of the ELBO of NVDPs can be defined as:

1

T ′

T ′∑
t=1

{ 1

M

M∑
i=1

log p(yti |xti, f(ε,DtC)) − (
Pt(1−Pt) + (P̂t −Pt)2

2P̂t(1− P̂t)
+

1

2
log

P̂t(1− P̂t)

Pt(1−Pt)
)} (6)

T ′ and M are the size of randomly sampled mini-batch of tasks and data points, respectively, per
each epoch (i.e.,{xti,yti}Mi=1 = Dt ∼ {Dt}T ′t=1 ∼ D). DtC is the subset set of Dt discussed in sec-
tion 3.1 and 3.2. The transformation of the task-specific weights is given as φtk,d = f(εk,d,DtC) =
(1 − Ptk,d)θk,d +

√
Ptk,d(1−Ptk,d)θk,dεk,d with εk,d ∼ N(0, 1) from the equation 2. The inter-

mediate weight φtk,d is now differentiable with respect to θk,d and Ptk,d. Also, Ptk,d (and P̂tk,d) is
deterministically computed by the meta-model parameterized by ψ, ω, and τ as in equation 3. Thus,
the estimator L̂(θ, ψ, ω, τ) in equation 6 is differentiable with respect to all the variational param-
eters and can be optimized via the SGD algorithm. In practice, a local reparameterization trick5 is
further utilized to reduce the variance of gradient estimators on training (Kingma et al., 2015).

4 RELATED WORKS

Gaussian Processes(GPs) (Rasmussen & Williams, 2005) are classical Bayesian learning approaches
closely related to NVDPs; GPs allow an analytical derivation of the posterior predictive distribution
given observed context points based on Gaussian priors and kernels. However, classical GPs re-
quire an additional optimization procedure to identify the suitable kernel for each task, and the time
complexity is quadratic to the number of contexts. Recently introduced model-based Bayesian meta-
learning methods (Garnelo et al., 2018b;a; Kim et al., 2019; Gordon et al., 2018; Iakovleva et al.,
2020) offer NN-based conditional posterior models that can be efficiently learned from data and later
provide an instant posterior predictive estimation at test time. One important aspect of these model-
based methods have in common is the utilization of permutation invariant set representation as an
input to the meta-model (Edwards & Storkey, 2017; Lee et al., 2019b; Bloem-Reddy & Teh, 2020;
Teh & Lecture, 2019), which makes a conditional posterior invariant to the order of the observed
context data. This property, known as exchangeability, is a necessary condition to define a stochas-
tic process according to Kolmogorov’s Extension Theorem (Garnelo et al., 2018b; Kim et al., 2019;
Øksendal, 2003). NVDPs also utilize the set representation to approximate the task-specific dropout
rates in the conditional dropout posterior. Another related work to NVDPs is Meta Dropout (Lee
et al., 2019a). They also proposed a unique input-dependent dropout approach; Gaussian-based
stochastic perturbation is applied to each preactivation feature of NN functions. Their approach,
however, is constructed using optimization-based meta-learning methods (Finn et al., 2017; Li et al.,
2017) without directly considering the set representation. NVDPs, employing set representation,
extend the dropout posterior of Variational Dropout (VD) (Kingma et al., 2015; Wang & Manning,
2013; Wan et al., 2013; Liu et al., 2019; Molchanov et al., 2017) in the context of model-based
meta-learning and introduce a new idea of variational prior that can be universally applied to other
Bayesian learning approaches (Garnelo et al., 2018b; Kim et al., 2019). Gal & Ghahramani (2016)
also discussed the theoretical connection between VD and GPs.

5 EXPERIMENTS

Metrics in regression. In the evaluation of the conditional NN models’ adaptation, the newly
observed task data D∗ is split into the input-output pairs of the context set D∗C = {xi, yi}Si=1 and
the target set D∗T = {xi, yi}Ni=1 (D∗C 6⊆ D∗T in evaluation (Garnelo et al., 2018b; Gordon et al.,
2018)). (1) The log-likelihood (LL), 1

N+S

∑
i∈D∗C∪D∗T

Eq(φ∗|D∗C)[log p(yi|xi, φ∗)], measures the
performance of the NN model over the whole dataset D∗ conditioned on the context set. (2) The
reconstructive log-likelihood (RLL), 1

S

∑
i∈D∗C

Eq(φ∗|D∗C)[log p(yi|xi, φ∗)], measures how well the
model reconstructs the data points in the context set. A low RLL is a sign of under-fitting. (3) The
predictive log-likelihood (PLL), 1

N

∑
i∈D∗T

Eq(φ∗|D∗C)[log p(yi|xi, φ∗)], measures the prediction on
the data points in the target set (not in the context set). A low PLL is a sign of over-fitting.

5We can sample pre-activations Bm,d for a mini-batch of size M directly using inputs Am,k (Bm,d ∼
N (Bm,d|

∑K
k=1Am,k(1−Pt

k,d)θk,d,
∑K

k=1A
2
m,kP

t
k,d(1−Pt

k,d)θ
2
k,d)).
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Figure 2: The 1D few-shot regression results of the models on GP dataset in fixed variance and
learned variance settings. The black (dash-line) represent the true unknown task function. Black
dots are a few context points (S = 5) given to the posteriors. The blue lines (and light blue area in
learned variance settings) are mean values (and variance) predicted from the sampled NNs.

GP Dataset NP NP+VP NP+CNP NP+CNP+VP NVDP

Fixed LL −0.98(±0.08) −0.96(±0.06) −0.95(±0.05) −0.94(±0.05) −0.94(±0.04)
Variance RLL −0.97(±0.06) −0.95(±0.04) −0.93(±0.02) −0.93(±0.02) −0.93(±0.01)

PLL −0.98(±0.08) −0.97(±0.06) −0.95(±0.05) −0.94(±0.05) −0.94(±0.05)
Learned LL 0.19(±1.87) 0.48(±0.77) 0.70(±0.89) 0.70(±0.73) 0.83(±0.61)
Variance RLL 0.72(±0.57) 0.71(±0.55) 1.03(±0.39) 1.00(±0.41) 1.10(±0.34)

PLL 0.16(±1.90) 0.46(±0.78) 0.66(±0.92) 0.68(±0.75) 0.81(±0.62)

Table 1: The validation result of the 1D regression models on the GP dataset in fixed variance and
learned variance settings. The higher LLs are the better. The models of NP, NP with variational prior
(NP+VP), NP with deterministic path (NP+CNP), NP+CNP+VP and NVDP (ours) are compared.

GP Samples. The 1D regression task is to predict unknown functions given some observed context
points; each function (or data point) is generated from a Gaussian Process (GP) with random kernel,
then the standard data split procedure is performed (i.e. S ∼ U(3, 97) and N ∼ U [S + 1, 100)) at
train time. For the baseline models, Neural Process model (NP) and NP with additional deterministic
representation (NP+CNP) described in (Garnelo et al., 2018b;a; Kim et al., 2019) is compared. We
also adopted the variational prior (VP) into the representation based posterior of NP and its variants
(NP+VP and NP+CNP+VP). For all models (including our NVDP), we used the same fixed variance
and learned variance likelihood architecture depicted in (Kim et al., 2019): the agent NN with 4
hidden layers of 128 units with LeLU activation (Nair & Hinton, 2010) and an output layer of 1 unit
for mean (or an additional 1 unit for variance). The dimensions of the set representation rt were
fixed to 128. The meta NNs in the conditional dropout posterior in NVDP has 4 hidden layers of
128 units with LeakyReLU and an output layer of 257 units (i.e. K+D+1) for each layer of the agent
model. All models were trained with Adam optimizer (Kingma & Ba, 2015) with learning rate 5e-4
and 16 task-batches for 0.5 million iterations. On validation, 50000 random tasks (or functions)
were sampled from the GP function generator, and the split data of S ∼ U(3, 97) and N = 400−S
were used to compute the log-likelihood (LL) and other evaluation metrics.

Table 1 summarizes the validation results of 1D regression with the GP dataset. NVDP achieves the
best LL scores compared with all other baselines in both the fixed and learned variance likelihood
model settings. The NVDPs record high RLL on the observed data points and excellent PLL scores
on the unseen function space in the new task; this indicates that the proposed conditional dropout
posterior approach can simultaneously mitigate the under-fitting and over-fitting of the agent model
compared with the other baselines. When VP is applied to NP or NP+CNP, the PLL scores tend to
increase by meaningful margins in all cases. This demonstrates that the proposed variational prior
(VP) approach can also reduce the over-fitting of latent representation-based conditional posterior.
Figure 2 visualizes the few-shot 1D function regression results in both model settings. In the fixed
variance setting, the functions sampled from NPs show high variability but cannot fit the context data
well. NP+CNP can fit the context data well but loses epistemic uncertainty due to the collapsing of
conditional posterior. On the other hand, the functions from NVDPs show a different behavior; they
capture the function’s variability well while also fitting the observed context points better. NVDPs
also approximate the mean and variance of unknown function well in learned variance setting.
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Figure 4: The results from the 2D image completion tasks on CelebA, MNIST, and Omniglot dataset.
Given the observed context points (10, 30, 100, half, and full pixels), the mean values of two inde-
pendently sampled functions from the models (i.e. NP, NP+CNP and NVDP (ours)) are presented.

Image Dataset NP NP+VP NP+CNP NP+CNP+VP NVDP

MNIST LL 0.54(±0.51) 0.76(±0.14) 0.83(±0.21) 0.86(±0.16) 0.90(±0.16)
RLL 0.94(±0.18) 0.90(±0.10) 1.12(±0.09) 1.12(±0.09) 1.15(±0.05)
PLL 0.51(±0.51) 0.75(±0.14) 0.80(±0.20) 0.83(±0.15) 0.88(±0.15)

MNIST (train) LL 0.35(±0.29) 0.56(±0.10) 0.64(±0.17) 0.68(±0.13) 0.70(±0.13)
to RLL 0.72(±0.19) 0.73(±0.12) 0.95(±0.09) 0.98(±0.09) 0.99(±0.07)
Omniglot (test) PLL 0.32(±0.28) 0.54(±0.11) 0.60(±0.16) 0.64(±0.13) 0.66(±0.12)
CelebA LL 0.51(±0.27) 0.60(±0.12) 0.76(±0.15) 0.77(±0.15) 0.83(±0.15)

RLL 0.63(±0.11) 0.68(±0.06) 0.91(±0.05) 0.92(±0.05) 0.99(±0.04)
PLL 0.50(±0.27) 0.59(±0.12) 0.75(±0.15) 0.76(±0.15) 0.82(±0.15)

Table 2: The summary of 2D image completion tasks on the MNIST, CelebA, and Omniglot dataset.

Figure 3: Active learning performance
on regression after up to 19 selected data
points. NVDPs can use its uncertainty
estimation to quickly improve LLs, while
other models are learning slowly.

Active learning with regression. To further compare
the uncertainty modeling accuracy, we performed an ad-
ditional active learning experiment on the GP dataset de-
scribed above. The goal in active learning is to improve
the log-likelihood of models with a minimal number of
context points. To this end, each model chooses addi-
tional data points sequentially; the points with maximal
variance across the sampled regressors were selected at
each step in our experiment. The initial data point is ran-
domly sampled within the input domain, followed by 19
additional points that are selected according to the vari-
ance estimates. As seen in Figure 3, NVDPs outperform
the others due to their accurate variance estimation, es-
pecially with a small number of additional points, and
show steady improvement with less over-fitting.

Image completion tasks. The image completion tasks are performed to validate the performance
of the models in the more complex function spaces (Garnelo et al., 2018b;a; Kim et al., 2019).
Here, we treat the image samples from MNIST (LeCun et al., 1998) and CelebA (Liu et al., 2015)
as unknown functions. The task is to predict a mapping from normalized 2D pixel coordinates xi
(∈ [0, 1]2) to pixel intensities yi (∈ R1 for greyscale, ∈ R3 for RGB) given some context points. We
used the same learned variance baselines implemented in the GP data regression task (except the
2D input and 3D output for the agent NN and rt = 1024 were used for CelebA). At each iteration,
the images in the training set are split into S context and N target points (e.g., S ∼ U(3, 197),
n ∼ U [N + 1, 200) at train and S ∼ U(3, 197), N = 784− S at validation). Adam optimizer with
a learning rate 4e-4 and 16 task batches with 300 epochs were used for training. The validation is
performed on the separated validation set. To see the generalization performance on a completely
new dataset, we also tested the models trained on MNIST to the Omniglot validation set.

Table 2 summarizes the validation results of image completion tasks. NVDPs achieve the out-
performing LLs compared with all other baselines. Interestingly, NVDPs (trained on the MNIST
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Omniglot dataset MiniImageNet dataset
5-way accuracy (%) 20-way accuracy (%) 5-way accuracy (%)

Method 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Nets 98.1 98.9 93.8 98.5 46.6 60.0
Prototypical Nets 97.4 99.3 95.4 98.7 46.61± 0.78 65.77± 0.70

CNP 95.3 98.5 89.9 96.8 48.05± 2.85 62.71± 0.58
Meta-SGD (MSGD) - - 96.16± 0.14 98.54± 0.07 48.30± 0.64 65.55± 0.56

MSGD + Meta-dropout - - 97.02± 0.13 99.05± 0.05 50.87± 0.63 65.55± 0.57
MAML 98.70± 0.40 99.90± 0.10 95.80± 0.63 98.90± 0.20 48.70± 1.84 63.11± 0.92
VERSA 99.70± 0.20 99.75± 0.13 97.66± 0.29 98.77± 0.18 53.40± 1.82 67.37± 0.86
NVDP 99.70± 0.12 99.86± 0.28 97.98± 0.22 98.99± 0.22 54.06± 1.86 68.12± 1.04

Table 3: Few-shot classification results on Omniglot and MiniImageNet dataset. The baselines are
Matching Nets, Prototypical Nets, MAML, Meta-SGD, Meta-dropout, CNP, VERSA, and NVDP
(our). Each value corresponds to the classification accuracy (%) (and std) on validation set.

dataset) also achieve the best results on the Omniglot dataset. Figure 4 shows the image reconstruc-
tion results with a varying number of random context pixels. NP generated various image samples
when the number of contexts was small (e.g., m ≤ 30 or half), but those samples could not approx-
imate the true unknown images well compared with the other models. The NP+CNP achieves crisp
reconstruction results compared with NP and also shows a good generalization performance on the
Omniglot dataset, but the sampled images (or functions) from NP+CNP had almost no variability
due to its posterior collapsing behavior. On the other hand, the samples from NVDPs exhibit com-
parable reconstruction results while also showing a reasonable amount of variability. In addition,
NVDPs also present an outstanding generalization performance on the unseen Omniglot dataset.
This implies that NVDPs not only fit better in the complex function regression but can also capture
more general knowledge that can be applied to new unseen tasks.

Few-shot classification tasks. NVDPs can also be successfully applied for few-shot classification
tasks; we have tested NVDPs on standard benchmark datasets such as Omniglot (Lake et al., 2015)
and MiniImagenet (Ravi & Larochelle, 2017) with other baselines: VERSA (Gordon et al., 2018),
CNP (Garnelo et al., 2018a), Matching Nets (Vinyals et al., 2016), Prototypical Nets (Snell et al.,
2017), MAML (Finn et al., 2017), Meta-SGD (Li et al., 2017) and Meta-dropout (Lee et al., 2019a).
For the classifier, we used one-layer NNs with hidden units of 512. For the meta-model, we used
two-layer NNs with hidden units of 256 similar to VERSA’s conditional posterior model. For an
image input, the NN classifier outputs one logit value per each class; class-specific dropout rates
for the NN classifier are computed with the image features rt ∈ R256 aggregated by the same
class in the few-shot context examples. The same deep (CONV5) feature extractor architecture is
used as in VERSA (Gordon et al., 2018). For each class, 1 or 5 few-shot context samples (i.e.,
labeled images) are given. Among 5 or 20 classes, only the logit value related to the true label
is maximized. We use the same batch sizes, learning rate, and epoch settings depicted in VERSA
(Gordon et al., 2018). Table 3 summarizes the results. NVDPs achieve higher predictive accuracy
than the model-based meta-learning approaches CNP and VERSA and is comparable with the state-
of-the-art optimization-based meta-learning approaches such as MAML or Meta-Dropout on the
Omniglot dataset. NVDPs also record a good classification accuracy in the MiniImageNet dataset.

6 CONCLUSION

This study presents a new model-based Bayesian meta-learning approach, Neural Variational
Dropout Processes (NVDPs). A novel conditional dropout posterior is induced from a meta-model
that predicts the task-specific dropout rates of each NN parameter conditioned on the observed con-
text. This paper also introduces a new type of variational prior for optimizing the conditional
posterior in the amortized variational inference. We have evaluated the proposed method compared
with the existing approaches in various few-shot learning tasks, including 1D regression, image in-
painting, and classification tasks. The experimental results demonstrate that NVDPs simultaneously
improved the model’s adaptation to the context data, functional variability, and generalization to new
tasks. The proposed variational prior could also improve the variability of the representation-based
posterior model (Garnelo et al., 2018b). Adapting the advanced set representations of (Lee et al.,
2019b; Kim et al., 2019; Volpp et al., 2020) or investigating more complex architectures (Chen et al.,
2019; Gordon et al., 2020; Foong et al., 2020) for NVDPs would be interesting future work.
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A DERIVATION OF THE ELBO OF NVDPS

This section describes a detailed derivation of the evidence lower-bound (ELBO) of NVDPs in
equation 5. Given the context dataDtC = (xtC ,y

t
C) and target dataDt = (xt,yt), the KL divergence

between the true unknown posterior distribution over parameter p(φt|xt,yt) and the (conditional)
variational posterior q(φt|DtC) is given by:

T∑
t=1

DKL(q(φ
t|DtC)||p(φt|Dt)) =

T∑
t=1

∫
q(φt|DtC) log

q(φt|DtC)
p(φt|xt,yt)

dφt

=

T∑
t=1

∫
q(φt|DtC) log

q(φt|DtC)p(yt|xt)
p(yt|xt, φt)p(φt)

dφt (7)

=

T∑
t=1

∫
q(φt|DtC)

{
log

q(φt|DtC)
p(φt)

+ log p(yt|xt)− log p(yt|φt,xt)
}
dφt

=

T∑
t=1

DKL(q(φ
t|DtC)||p(φt)) + log p(yt|xt)− Eq(φt|Dt

C)[log p(y
t|φt,xt)]. (8)

The step (7) is due to Bayes rule of p(φt|xt,yt) = p(yt|φt,xt)p(φt)
p(yt|xt) where φt is often assumed to be

independent of xt. By reordering (8), we get

T∑
t=1

log p(yt|xt) ≥
T∑
t=1

Eq(φt|Dt
C)[log p(y

t|xt, φt)]−DKL(q(φ
t|DtC)||p(φt)) (9)

≈
T∑
t=1

Eq(φt|Dt
C)[log p(y

t|φt,xt,DtC)]−DKL(q(φ
t|DtC)||q(φt|Dt)) (10)

The lower-bound in (9) is due to the non-negativity of the omitted term∑T
t=1DKL(q(φ

t|DtC)||p(φt|Dt)) In the lower-bound of (9), the choice of p(φt) is often dif-
ficult since the biased prior can lead to over-fitting or under-fitting of the model. However,
some recent studies of the amortized VI inference (Tomczak & Welling, 2018; Takahashi et al.,
2019) analytically discussed that the optimal prior in the amortized variational inference is the
aggregated conditional posterior model on whole dataset: p∗(φ) =

∫
D q(φ|D)p(D). Usually, the

aggregated posterior cannot be calculated in a closed form due to the expensive computation cost
of the integral. However, the aggregation on the whole dataset in the model-based conditional
posterior is constructed based on the set representation. This motivates us to define the conditional
posterior given the whole task dataset as an empirical approximation of the optimal prior (i.e.,
p∗(φt) ≈ q(φt|Dt)). We call this a variational prior. Thus, the approximation of pt(φ) in (9) with
the variational prior yields the approximated lower bound of (10).

B DERIVATION OF THE KL DIVERGENCE IN THE ELBO OF NVDPS

An essential requirement in the choice of the prior is that the analytical derivation of the KL diver-
gence term in equation (10) should not depend on the deterministic NN parameter θ (Kingma et al.,
2015; Molchanov et al., 2017; Hron et al., 2018; 2017; Liu et al., 2019). This allows the constant
optimization of the ELBO w.r.t all the independent variational parameters (i.e. θl,k,d and Pl,k,d for
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all l = 1 . . . L, k = 1 . . .K, and d = 1 . . . D). In fact, the conditional posterior defined in (2) is a
Gaussian distribution, thus KL(q(φt|DtC ; θ)||q(φt|Dt; θ)) is analytically defined as:

DKL(q(φ
t|DtC ; θ)||q(φt|Dt; θ)))

=
Pt(1−Pt)θ2 + ((1−Pt)θ − (1− P̂t)θ)2

2P̂t(1− P̂t)θ2
+ log

√
P̂t(1− P̂t)θ2√
Pt(1−Pt)θ2

− 1

2
(11)

=
Pt(1−Pt)@@θ

2 + (P̂t −Pt)2@@θ
2

2P̂t(1− P̂t)@@θ
2

+
1

2
log

P̂t(1− P̂t)@@θ
2

Pt(1−Pt)@@θ
2
− 1

2
(12)

=
Pt(1−Pt) + (P̂t −Pt)2

2P̂t(1− P̂t)
+

1

2
log

P̂t(1− P̂t)

Pt(1−Pt)
− 1

2
(13)

where both P and P̂ are the dropout rates predicted from the meta-model via the equation (3) but
with different conditional set information: P is obtained from the small context set DtC , while P̂ is
from the whole task set Dt. (11) is derived using the analytical formulation of KL divergence be-
tween two Gaussian distributions. (13) is equivalent to the KL term defined in (4) of the manuscript
(except that the constant term 1/2 is omitted for brevity). Interestingly, the analytical derivation of
the KL is independent of the shared parameter θ, thus this satisfies the necessary condition to be
used as a prior in the VI optimization of the dropout posterior.

The KL divergence in (13) intuitively means that the dropout rates predicted from a small context
set should be close to the dropout rates predicted from a much larger context set while training.
The experiments validated that this surprisingly works well to induce a robust conditional functional
uncertainty. However, one practical issue while training the dropout rate with the KL term (13)
is that the dropout rate could converge to zeros during the early training period due to the larger
gradients from the KL than from the likelihood 6. In practice, we adopt the dropout rate clipping
technique often used in other Variational Dropout approaches (Kingma et al., 2015; Hron et al.,
2018; Liu et al., 2019; Molchanov et al., 2017; Gal & Ghahramani, 2016; Liu et al., 2019). We use
the dropout rate range of (0.01, 0.99) for all experiments.

C ADDITIONAL EXPERIMENTAL DETAILS ON THE 1D REGRESSION.

Setup. We explored the 1D function regression on the data generated from the synthetic GPs with
varying kernels7 in the previous work (Garnelo et al., 2018b;a; Kim et al., 2019) that is suitable for
measuring the uncertainty adaptation. For the baseline models, Neural Process model (NP) and NP
with additional deterministic representation (NP+CNP) described in (Garnelo et al., 2018b;a; Kim
et al., 2019) is compared. We also adopted the variational prior (VP) into the representation-based
posterior of NP and its variants (NP+VP and NP+CNP+VP). For all models (including our NVDP),
we used the same fixed variance and learned variance likelihood architecture depicted in (Kim et al.,
2019): the agent NN with 4 hidden layers of 128 units with LeLU activation (Nair & Hinton, 2010)
and an output layer of 1 unit for mean (or an additional 1 unit for variance). The dimensions of
the set representation rt were fixed to 128. The meta NNs in the conditional dropout posterior in
NVDPs have 4 hidden layers of 128 units with LeakyReLU and an output layer of 257 units (i.e.
K+D+1) for each layer of the agent model. All models were trained with Adam optimizer (Kingma
& Ba, 2015) with learning rate 5e-4 for 0.5 million iterations. We draw 16 functions (a batch) from
GPs at each iteration. Specifically, at every training step, we draw 16 functions f(·) from GP prior
with the squared-exponential kernels, k(x, x′) = σ2

f exp(−(x − x′)2/2l2), generated with length-
scale l ∼ U(0.1, 0.6) and function noise level σf ∼ U(0.1, 1.0). Then, x values was uniformly
sampled from [−2, 2], and corresponding y value was determined by the randomly drawn function
(i.e. y = f(x), f ∼ GP). And the task data points are split into a disjoint sample of m contexts
and n targets as m ∼ U(3, 97) and n ∼ U [m + 1, 100), respectively. In the test or validation, the
numbers of contexts and targets were chosen as m ∼ U(3, 97) and n = 400 − m, respectively.
50000 functions were sampled from GPs to compute the log-likelihood (LL) and other scores for
validation.

6It also turns out to be a floating-point exception problem. We later set the minimum noise (i.e., eps) to
1e 9 10 in the calculation of log, sqrt, and division function, and the collapsing problem did not occur again.

7https://github.com/deepmind/neural-processes
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The architecture of NVDP model is as follows:

(Deterministic) Feature Encoder. r(xts,yts) : 2× |C|
lin+relu−→ 128× |C|︸ ︷︷ ︸

6 times

mean−→ 128.

Decoder (Agent). f(xi) : 1
lin+relu−→ 128︸ ︷︷ ︸

4 times

lin+relu−→ 2
split−→ (µ, σ) (where σ = 0.1 + 0.9· softplus(logstd)).

Meta Model. g(l)(r) : dr
lin+leakyReLu−→ 128︸ ︷︷ ︸

4 times

lin+leakyReLu−→ (K(l), D(l), 1)
split−→ (a,b, c)

where g(l)(r) is the meta NN for the l-th layer of the decoder, and K(l) × D(l) is the number of
parameters in the l-th layer.

GP Dataset CNP

Fixed LL −0.94(±0.05)
Variance RLL −0.93(±0.01)

PLL −0.94(±0.05)
Learned LL 0.72(±0.54)
Variance RLL 1.03(±0.38)

PLL 0.69(±0.53)

Table 4: An additional summary of the 1D regression with the GP with random kernel dataset. The
deterministic baseline (CNP) is presented. We could observe that the performance of the CNP is
close to or slightly better than the NP+CNP in Tables 1 of the manuscript. However, the CNP model
could lose the functional variability as shown in Figure 2.

D ADDITIONAL EXPERIMENTAL DETAILS ON THE IMAGE COMPLETION
TASK.

Setup. The image completion tasks are performed to validate the performance of the models in
more complex function spaces (Garnelo et al., 2018b;a; Kim et al., 2019) Here, we treat the image
samples from MNIST (LeCun et al., 1998) and CelebA (Liu et al., 2015) as unknown functions. The
task is to predict a mapping from normalized 2D pixel coordinates xi (∈ [0, 1]2) to pixel intensities
yi (∈ R1 for greyscale, ∈ R3 for RGB) given some context points. For 2D regression experiments,
we used the same learned variance baselines implemented in the GP data regression task, except
the input and output of the decoder are changed according to dataset, e.g., xi ∈ [0, 1]2, and yi ∈ R1

for MNIST (or ∈ R3 and rt = 1024 for CelebA). At each iteration, the images in the training
set are split into S context and N target points (e.g., S ∼ U(3, 197), n ∼ U [N + 1, 200) at train
and S ∼ U(3, 197), N = 784 − S at validation). Adam optimizer with a learning rate 4e-4 and
16 batches with 300 epochs were used for training. The validation is performed on the separated
validation images set. To see the generalization performance on a completely new dataset, we also
tested the models trained on MNIST to the Omniglot validation set.

E ADDITIONAL EXPERIMENTS ON 1D FUNCTION REGRESSION ON A TOY
TRIGONOMETRY DATASET

Setup. To further investigate how the proposed meta-model utilizes the common structures of
the NN parameters, we trained a small NVDP model (of the size of 13-12-12-2) on a mixture of
scaled trigonometric functions: x is sampled in a range of [−π, π], and y is determined by y =
a ∗ f(2 ∗ x − b ∗ π) where f is one of three functions sine, cosine, and tanh with the probability
of one third, and a ∼ U(1.5, 2) and b ∼ U(−0.1, 0.1). We used the training procedures in the next
section except the the simple model architecture and learning rate 5e− 4.

For the small NVDP model on 1D function regression with Trigonometry dataset, the following
architecture was employed:
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NP

NP+VP

NP+CNP

NVDP

Sample	1 Sample	2

Figure 5: The additional 1D few-shot regression results of the models on GP dataset in fixed variance
settings. The black dotted lines represent the true unknown task functions. Black dots are a few
context points (S = 5) given to the posteriors. The blue lines are mean values predicted from the
sampled NNs.

(Deterministic) Feature Encoder. r(xts,yts) : 2× |C|
lin+relu−→ 12× |C|︸ ︷︷ ︸

6 times

mean−→ 12.
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NP

NP+VP

NP+CNP

NVDP

Sample	1 Sample	2

Figure 6: The additional 1D few-shot regression results of the models on GP dataset in learned
variance settings. The black (dash-line) represent the true unknown task function. Black dots are
a few context points (S = 5) given to the posteriors. The blue lines and light blue area are mean
values and variance predicted from the sampled NNs, respectively.

Decoder (Agent). f(xi, r) : (1 + dr)
lin+relu−→ 12︸ ︷︷ ︸

2 times

lin+relu−→ 2
split−→ (µ, σ) (where σ = 0.1 + 0.9· soft-

plus(logstd)).
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Image Dataset CNP

MNIST LL 0.87(±0.16)
RLL 1.14(±0.08)
PLL 0.83(±0.15)

MNIST LL 0.68(±0.11)
to RLL 0.99(±0.08)
Omniglot PLL 0.64(±0.13)
CelebA LL 0.78(±0.15)

RLL 0.93(±0.05)
PLL 0.77(±0.15)

Table 5: An additional summary of the 2D image completion tasks on the MNIST, CelebA, and
Omniglot dataset. The deterministic baseline (CNP) is presented. We could observe that the per-
formance of the CNP is close to or slightly better than the NP+CNP in Tables 2 of the manuscript.
However, the CNP model could lose the functional variability as shown in Figure 4.
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Figure 7: The additional results from the 2D image completion tasks on MNIST dataset. Given the
observed context points (10, 30, 100, half, and full pixels), the mean values of two independently
sampled functions from the models (i.e. NP, NP+CNP and NVDP (ours)) are presented.

Meta Model. g(l)(r) : dr
lin+Mish−→ 12︸ ︷︷ ︸

4 times

lin+Mish−→ (K(l), D(l), 1)
split−→ (a,b, c)

where g(l(r) is the meta NN for the l-th layer of the decoder, and K(l) × D(l) is the number of
parameters in the l-th layer.
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Figure 8: The additional results from the 2D image completion tasks on Omniglot dataset. Given
the observed context points (10, 30, 100, half, and full pixels), the mean values of two independently
sampled functions from the models (i.e. NP, NP+CNP and NVDP (ours)) are presented.

Results. Figure 11 displays the trained NVDP on the trigonometry function dataset. The NVDP
could capture the probability of dropout for each parameter θ of the agent, successfully predicting
the task-specific trigonometric functions conditioned on the small (S = 4) context set. This shows
that the task-specific dropout rates can transform a single conventional NN agent to express multiple
functions. It is interesting to see that the contexts from sine and cosine functions yield similar
dropout rates for the second layer. On the other hand, the contexts from tanh function results in
different dropout structures for all layers.
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CelebA
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Figure 9: The additional results from the 2D image completion tasks on CelebA dataset. Given the
observed context points (10, 30, 100, half, and full pixels), the mean values of two independently
sampled functions from the models (i.e. NP, NP+CNP and NVDP (ours)) are presented.

20



Published as a conference paper at ICLR 2022

10 30 100 half      1024

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

Co
nt
ex
t

CelebA

NP

NP+VP

NP+CNP

NP+CNP+VP

NVDP

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

Sa
m
pl
e	
2

Sa
m
pl
e	
1	

10 30 100 half      1024

Figure 10: The additional results from the 2D image completion tasks on CelebA dataset. Given the
observed context points (10, 30, 100, half, and full pixels), the mean values of two independently
sampled functions from the models (i.e. NP, NP+CNP and NVDP (ours)) are presented.
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Figure 11: (a) sine, (b) cosine, (c) tanh function (left) with the probabilities of using parameters (1-
Pt) (right) predicted with small NVDPs (13-12-12-2) conditioned on 4-shot context points (black
dots), and (d) the trigonometry dataset (left) and the deterministic shared NN parameters θ (right).
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