Proceedings of Machine Learning Research — Under Review:1-11, 2020 Full Paper — MIDL 2020 submission

Training Models 20X Faster in Medical Image Analysis

Author Namel! ABC@QSAMPLE.EDU
L Address 1

Editors: Under Review for MIDL 2020

Abstract

Analyzing high-dimensional medical images (2D/3D/4D CT, MRI, large-scale histopatho-
logical images, etc.) plays an important role in many biomedical applications, such as
anatomical pattern understanding, disease diagnosis, and treatment planning. The AI
assisted models have been widely adopted in the domain of medical image analysis with
great successes. However, training such models with large-size data is expensive in terms of
computation and memory consumption. In this work, we provide solutions for improving
model training efficiency, which will speed up the training of Al models (20 times faster
on an exemplary 3D segmentation framework), and enable researchers and radiologists to
improve the efficiency in their clinical studies. The overall efficiency improvement comes
from both improved algorithms and engineering advance.

Keywords: Medical image analysis, deep learning, segmentation.

1. Introduction

Analyzing high-dimensional medical imaging (2D/3D/4D CT, MRI, large-scale histopatho-
logical images, etc.) is becoming increasingly common, and plays an important role in
many biomedical applications such as anatomical pattern understanding, disease diagnosis
and treatment planning. To better study the medical images, machine learning methods are
widely applied to analyze the region-of-interest based on contextual information. Leverag-
ing the large datasets with expert-level annotation, such methods improve the performance
in many challenging applications compared to conventional methods.

Deep neural network (DNN) is a promising approach for machine learning and is also
used as a means of extracting features to handle low-level vision problems. The main advan-
tage of DNN is that training and inference are automated with very few human heuristics
and interaction. Meanwhile, using the modern computing devices (e.g. GPU) makes the
training and inference extremely efficient. Nowadays, convolutional neural networks (CNN)
is the state-of-the-art method for many applications in medical imaging (Isensee et al.,
2018). Although the system with neural networks is relatively straightforward, the ques-
tion remains that how the networks can be trained properly and efficiently for various
applications. Given the large size and computation requirement of the medical imaging,
careful designation of all components and their connecting functions is in a stringent need
to improve the efficiency and productivity of researchers (Ioannou et al., 2019).

In this paper, we treat neural network training in medical imaging as a challenging prob-
lem. As an example, applications in 3D medical image segmentation are utilized because
they are typical in medical image analysis and challenging with high resolution and large

© 2020 A. Namel.

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

mean_dice

Name | E’:tep Time ?Ral

e
. seg_spleen_gpud_ahnet_repeat4_Ir0.001_cc/models 0.9411 é 0.9411 i 80 Thu Sep 26, 17:23:56 'i_1_6rn 42§_i

Figure 1: Left: validation accuracy in TensorBoard. Using the proposed framework, the
expected validation accuracy 0.940 (Dice’s score) is achieved within 16.5 minutes;
middle: the red contour denotes prediction from model within one sectional plane;
right: volumetric rendering of prediction in 3D space.

data size in 3D. The analysis of the applications proves the effectiveness and efficiency of
our proposed framework. The exemplary pipeline will be released soon.

2. Background & motivation

In the past decade, numerous deep learning algorithms have been developed for medical
imaging analysis, such as segmentation, detection, classifications, etc. Most approaches
follow similar pipelines of the corresponding applications in image processing, which mainly
apply to 2D images. They usually follow a common basic training pipeline: 1) data feeding,
2) pre-processing and augmentation (e.g. flip, rotate, normalization), 3) sending data to
network for prediction, and 4) loss computation and back-propagation. However, the impact
of the difference between natural images and medical images on training efficiency has not
been studied well in most algorithms. For example, most 2D images has relatively small
size, while 3D images are typically much larger: one 512 x 512 x 400 CT image has more
than 400MB disk size while one 256 x 256 image in ImageNet is only ~ 250kB. The 1/O
loading speed and pre-processing speed that has less effect in natural images processing will
trigger the efficiency issue when applied directly to medical imaging use cases.

NiftyNet (Pawlowski et al., 2017) and DLTK (Gibson et al., 2018) are currently two
available deep learning toolkits based on TensorFlow (Abadi et al., 2016) for specific ap-
plications in medical imaging. They both include various modules designed for medical
imaging analysis with deep learning, such as data loader, transforms, networks, losses, and
metrics. They also provide multiple examples for medical imaging segmentation, classi-
fication and image synthesis. However, they focus more on the correctness of algorithm
in development, while paying less attention to the training efficiency, which shall hinder
their applications in large scale training tasks. Take GPU cluster use cases as an example,
if most jobs have low efficiency and require long training times, less jobs will be finished

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

Smart caching Validation

Multi-GPU
sliding window

q .

@
~a) Reader | —=p r N_» Neural networks | = !
® 6/. \ J

Input data Preprocessing (Training Final model

F—————
|

h | Patch sampling ratio, AMP, i
: “NovoGrad”, etc. I

o
v

L

Figure 2: The flowchart of our proposed framework.

within the same amount of time, which results in less productivity for researchers. In the
meantime, running experiments with multiple parameter combinations is usually necessary
to obtain the best configuration. This becomes problematic when applying to large number
of training data, which tends to result in more robust and powerful model. In this paper,
we developed multiple efficient modules for medical imaging analysis, which greatly reduces
the training time and improves the GPU utilization rate.

3. Execution model

In the modern medical image processing, segmentation is one of the most important tasks
for various applications, including clinical study, disease diagnosis, and treatment plan-
ning. During the segmentation process, the anatomical objects (e.g. organs, bones, or
tumors) are identified and parsed from 2D, 3D, or 4D medical images via automated or
semi-automated approaches. How to process the large-size data (e.g. 3D/4D CT, MRI)
with high resolution in an accurate yet efficient fashion has been challenging for the image
segmentation. Computing large-volume data can cause massive GPU memory consumption
and long computation time, even for simple convolution operations. This issue becomes
even more serious as the complexity of operations or the quantity of data points increases.
Therefore, how to improve the model training efficiency has attracted great interests from
both academia and industry. In this work, we propose an effective solution to improve the
model training efficiency by a large scale (20X faster), leveraging the recent advances from
both algorithmic and engineering sides.

To validate our proposed work, we use the organ and lesion segmentation in 3D abdom-
inal CT and cardiac MRI for demonstration. Similar approaches can be applied to other
related tasks, such as 3D /4D medical image classification, detection and segmentation. The
details of our findings are shown in the following section. The model training time has been
successfully reduced from 5 — 8 hours (the baseline version) to less than 20 minutes.

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

4. Extensibility case studies

Datasets The Medical Segmentation Decathlon (MSD) includes several tasks of 3D medi-
cal image segmentation (msd, 2018). We choose the tasks of spleen CT segmentation, left
atrium MRI segmentation, liver and liver lesion CT segmentation for experiments. Three
tasks covers different imaging modalities and different types of body anatomy (large organs
versus small lesions). And we split the data for training/validation (specifically, for spleen
segmentation, 32 CT volumes for training, and 9 CT volumes for validation; for left atrium
segmentation, 16 MRI volumes for training, and 4 volumes for validation; for liver and
lesion segmentation, 104 CT volumes for training, and 27 volumes for validation). Datasets
are re-sampled into the isotropic resolution 1.0 mm to ensure that fine details would be well
observed by models, and model has balanced reception in 3D space. For CT volumes, The
voxel intensities of the images are normalized to the range according to the 5th and 95th
percentiles of the overall foreground intensities. For MRI volumes, the non-zero voxel inten-
sities are processed via standard normalization. The largest image size after re-sampling in
the training pool is [462, 462, 520]. Because of its size, the entire volume cannot be fitted
into any the “state-of-the-art” segmentation network directly on a single GPU for either
training or inference.

Baseline approach The baseline approach is straight forward using fully convolutional
network, which has won the 2" place of the MSD challenge in 2018. In this approach,
the network input is the patches with the size of [112, 112, 112] during training, which
are randomly cropped from 3D volumes. Relevant data augmentation techniques, including
random axis flipping and random intensity shift, are used for training models. Moreover,
the validation follows the scanning-window fashion with small overlaps (32 voxels) between
neighboring windows. The window size is [224, 224, 224]. The scanning-window scheme is
used mainly to ensure that the input size would not run out-of-memory during computation.
The validation accuracy is measured with per-class Dice’s score. Accordingly, we use soft
dice loss (Milletari et al., 2016) as optimization objectives for all our experiments. p and g
are model output (before thresholding) and ground truth, respectively.

2 Zz]\i1 Di Yi
Zz]'\il 1312 + foil 91‘2
For the baseline approach, the optimizer is Adam optimizer with learning rate 0.0001. The
whole framework is implemented with TensorFlow v1.x and trained on NVIDIA V100 GPUs
with 16 GB memory.

The expected Dice’s score for the spleen segmentation is around 0.940, 0.912 for left
atrium segmentation in MRI. The expected numbers for liver and lesion segmentation are
0.940 and 0.520, respectively. As far as we know, the aforementioned Dice’s scores are the
state-of-the-art performance given contemporary studies. Our experiments focus more on
model convergence, and how and when our model reaches the target performance. Thus,
we intend not to train models for a long time.

(1)

ldice =1-

5. Implementation and evaluation

Neural network architectures The established network architectures, 3D U-Net (Ron-
neberger et al., 2015), is used for investigation. The network follows the fashion of con-

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

Tasks Spleen Left atrium Liver & lesion
Best metrics | Acc. Time | Acc. Time | Acc. 1 Acc. 2 Time
Native TF | 0.940 13~ | 0.912 10h | 0.940 0.520 86h
Proposed | 0.948 30m | 0.917 16m | 0.941 0.545 Th

Table 1: Comparison on three tasks with single GPU. The numbers are the best accuracy
at the specific time. Our proposed framework has clear advantage in terms of
performance and efficiency.

Num. of GPUs ‘ 1 4 8 Tasks Spleen Liver & lesion
Native TF | 13h 95h 7.5h Metrics | Acc. Iter. Acc. Tter.
Proposed | 30m 16.5m 8m Non Ada. | 0.956 1.44k | 0.733 13.4k

Ada. | 0952 1.28k | 0.735 8.4k

Table 2: Comparison on Spleen CT seg-

mentation with different num- Table 3: Validation on adaptive patch
ber of GPUs. More GPUs sampling strategy (Ada.). With
not only increase batch size for adaptive strategy, the models

achieved the expected performance
with much less training iterations.

training, but also reduce on-the-
fly validation time.

volutional encoder-decoder. We also experimented the vanillar U-Net with other types of
normalization methods to replace batch normalization. Because batch size of 3D networks
cannot be large due to GPU memory limitation, and batch normalization works less stable
with small batch size.

Smart caching and smarter caching It requires efficient use of computing resources and
effective use of training data to train DNN models with high speed and descent accuracy.
The major computing resources are 10, CPU, and GPU, where 10 is usually the bottleneck
and GPU would be the most efficient. Though GPUs provides efficient computing, it is not
a general-purpose computing device. Execution of training algorithm is done by CPU.

In model training, the same training dataset is used repeatedly. In each epoch of the
training, a set of training images must be loaded from files and then processed through
a chain of transformations, before fed to the training graph for GPU accelerated compu-
tation. Transformation represents data pre-processing and augmentation. Currently all
transformations take place on CPU. IO and data transformation are the major bottleneck
of training efficiency, causing low GPU utilization rate. The problem becomes even severe
with 3D datasets and 3D networks. Think about the time needed to load multiple 3D
volumes each with hundreds of MB in every training iteration. We developed the smart
caching technique to store some intermediate results in the RAM which leverage the high
communication speed between GPU and RAM, reducing the burden on slow 10. It reduces
the time that GPU is waiting for each batch data to be ready for training, increases the
GPU utilization rate and reduces the training time.

The 15 smart thing of smart cache is determining the most effective data to cache based

on the determinism of transformations. By most effective, we mean “generating

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

most of time saving”. Note that data loading is also considered a data transformation.
A transformation is called deterministic if it always produces the same output for the
same input. Data loading is deterministic, and so are many other transforms. Another
observation is that the sequence of multiple deterministic transforms is also deterministic.
Given a chain of transforms, the most effective data to cache is the output of the longest
deterministic sequence of transforms, starting from the 1st transform. By caching this data,
we bypass all transforms in the sequence in future uses.

The training dataset can be arbitrarily large; hence we cannot assume that all data
items can be cached in memory at the same time, especially when the data items are large
3D volumes. Therefore, we must allow the cache capacity to be configured. Then we have a
problem. As we know, all data items are repeatedly used with equal chance. If the caching
space is not big enough to hold all data items, the items not in cache will still be subject
to the slowness of disk 10 and transformation. This is where the smart cache offers the 24
smart thing: gradual replacement of cache contents.

It works as follows. First of all, the smart cache must be configured properly: 1) num-
ber of cached objects: the number of objects to be cached; 2) replacing rate: percentage of
objects to be replaced in each round. At any time, the cache pool only keeps a subset of
the whole. In each round (epoch), only the items in the cache pool are used for training.
This ensures that the data items needed for training are readily available, hence keeping
GPU busy. Note that cached items may still have to go through some non-deterministic
transformations before fed to GPU. At the same time, another thread is preparing re-
placement items by applying the deterministic transform sequence to selected items not in
cache. Once one round is completed, smart cache replaces the same number of items with
the replacement items.

The smart caching covers deterministic components of computation chain (data pre-

processing) without any requirement of disk space. After applying the techniques, the
training time is reduced by 50%, and the GPU utilization rate maintains at an extremely
high level (close to 100%).
Adaptive positive/negative sampling ratio Because the sizes of training data vary
resulted from the different field-of-views and GPU memory limit does not allow training
networks with the entire 3D volumes, image cropping is necessary during training. During
each iteration, the volumetric patches are sampled from different data points to form the
mini-batch. Due to highly imbalance issue of foreground and background, the patches needs
to be carefully sampled for each iteration.

We define two kinds of patches: positive patches P and negative patches P_. Py is
defined as its center voxel represents foreground classes in ground truth label, and P_’s
center voxel represents background classes. A straightforward strategy would be sampled
P, and P_ with equal chances to train networks with balanced data distribution. The
strategy works well but takes long time to ensure model convergence, because models need
to see enough background samples to perform robustly (here we assume background is the
majority class). Another strategy could be sampling P, and P_ based on overall class
distribution in terms of voxel quantities. However, the network trained with large amount
of P_ and the false negative rate in the final prediction would raise.

In order to reach a balanced but efficient patch sampling strategy, we proposed an
adaptive method to adjust ratio r between Py and P- dynamically during training. Let’s

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

set ¥ = 1 : 1 in the beginning of training. After first-time validation, we can compute the
false positive index rpp and false negative index rry for the prediction as follows.

Zn pn,c . (1 - gn,c)
nc+gnc -2 *Pn,c- +gn,c

Z (1 DPn, c) In,c
PN = ’ 3
C ZZ pnc+gnc_2 pn,c’+gn,c ()

T‘FP:é'ZZp (2)

rpp is defined as the portion of false positive error with the whole error mass, and rpy is
defined as the portion of false negative error. In Eq. 3, p. and g. denotes prediction (after
thresholding) and ground truth for foreground class c. C'is the number of foreground classes,
and n is the voxel location. Once rpp and rpy are computed with validation ground truth,
the new ratio 7’ between positive and negative patches for next epoch can be determined
as follows. 7 is a tunable parameter with positive value, which controls the magnitude of
ratio changes for next epoch of training. « is set to 1 in our experiments.

()
TFP
For instance, larger rgp means more false positive errors within prediction. Then the model
should see more negative samples in the future training. We update r after each validation
during training, the model would be trained with balanced samples and training efficiency
is largely improved.

However, the adaptive sampling strategy could be hazard when model training is almost
converged. At that time, both types of error are very small but the ratio rgp and rgpx could

be very large. Large but imbalanced r would slow down the convergence, make the training
process unstable. Thus, we make further improvement based on Eq. 3 as following equations.

Z pn c’ gn c) +pn,c : gn,c _ l . Z ann,c
Z pn c + gn c pn,c : gn,c C c Zn pn,c + gn,c - pn,c : gn,c

TFN—* ZZ pnc)'gnc+pn,c'gn,c:l.2 ann,c
C Z Pn,ct 9ne — Pnc nc C s Zn Pr,ct 9ne — Pnc Inc

()

7’FP—5

(6)

We add true positive prediction to both numerator and denominator. The new definitions
represent relationship between false positives and false negatives. And when errors be-
come very small, rpp and rpy are all close to 1. The balanced sampling helps for model
convergence at the end of training.

The effectiveness of the proposed patch sampling strategy is shown in Table 3. With

adaptive strategy, the models achieved the expected performance of different applications
with much less training iterations.
Optimizer The novel “NovoGrad” optimizer utilizes the layer-wise gradient normaliza-
tion together with stochastic gradient descent (SGD), which has been validated in several
applications, such as ImageNet classification, and applications of natural language pro-
cessing (Ginsburg et al., 2019). “NovoGrad” works better with faster convergence rate,
compared to Adam or vanilla SGD.

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

Figure 3: Left: the red contour denotes LA prediction from model, and volumetric rendering
in space (model trained within 6 minutes); right: the red and green contours
denote prediction of liver and lesion respectively, and volumetric rendering in
space (model trained within 6 hours).

Automated Mixed Precision (AMP) AMP is an advanced technology to reduce training
time and memory consumption (Micikevicius et al., 2017). The main idea is that convert-
ing part of operations into float16 operations during training in order to reduce resource
demands. Meanwhile, the training efficiency maintains at the same level.

Determinism Our framework enable the deterministic training with TensorFlow following
instructions in (det). After setting all possible random seeds (Python, TensorFlow, Numpy
etc.), the results are fully reproducible after training with the same computing environment.
The random seeds are the same across all experiments to make fair comparison (models see
the same patches with the order during training).

Multi-GPU We conducts experiments with 1 GPU, 4 GPUs, and 8 GPUs shown in Table
2. More GPUs for training, enabled by (hor), mean larger batch size, and it does improve
the convergence rate. The bonus to use multi-GPU is enabling efficient validation, which
means different GPU works on separate data points with sliding-window scheme.

In general, the most efficient and effective framework is the combination of
smart caching, adaptive patch sampling, AMP, multi-GPU, and “NovoGrad”.
Our proposed frame has outstanding efficiency and effectiveness with different image modal-
ities and human anatomies (shown in Table 1). The conventional U-Net models can be
trained in an efficient fashion. In the Table 1. The ”Native TF” denotes one of the avail-
able public toolkits with TensorFlow for medical image analysis. The liver lesion segmen-
tation takes much longer time because the dataset is relatively large (compared to other
two), and liver lesion segmentation is challenging (small lesion with large background area).
Our framework is capable to train conventional network more than 20 times faster with
state-of-the-art accuracy.

6. Conclusions

To summarize, the optimal training solution is a combination of several advanced technolo-
gies. Multi-GPU training using smart caching, adaptive sampling, AMP and ” NovoGrad”
introduces promising training efficiency improvements. By carefully designing for each spe-
cific application, model training can be increased more than 20 times faster for large-scale
medical image analysis. We hope that a wide audience, including but not limited to re-
searchers and radiologists, can benefit from our proposed solutions.

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

References
Tensorflow determinism. URL https://github.com/NVIDIA/tensorflow-determinism.

Horovod: Distributed training framework for tensorflow, keras, pytorch, and apache mxnet.
URL https://github.com/horovod/horovod.

Medical decathlon challenge, 2018. URL http://medicaldecathlon. com.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th { USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 265283, 2016.

Eli Gibson, Wenqi Li, Carole Sudre, Lucas Fidon, Dzhoshkun I Shakir, Guotai Wang,
Zach Eaton-Rosen, Robert Gray, Tom Doel, Yipeng Hu, et al. Niftynet: a deep-learning
platform for medical imaging. Computer methods and programs in biomedicine, 158:
113-122, 2018.

Boris Ginsburg, Patrice Castonguay, Oleksii Hrinchuk, Oleksii Kuchaiev, Vitaly Lavrukhin,
Ryan Leary, Jason Li, Huyen Nguyen, and Jonathan M Cohen. Stochastic gradient
methods with layer-wise adaptive moments for training of deep networks. arXiv preprint
arXiw:1905.11286, 2019.

Nikolas Toannou, Milos Stanisavljevic, Andreea Anghel, Nikolaos Papandreou, Sonali An-
dani, Jan Hendrik Riischoff, Peter Wild, Maria Gabrani, and Haralampos Pozidis. Ac-
celerated ml-assisted tumor detection in high-resolution histopathology images. In Inter-
national Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 406-414. Springer, 2019.

Fabian Isensee, Jens Petersen, Andre Klein, David Zimmerer, Paul F Jaeger, Simon Kohl,
Jakob Wasserthal, Gregor Koehler, Tobias Norajitra, Sebastian Wirkert, et al. nnu-net:
Self-adapting framework for u-net-based medical image segmentation. arXiv preprint
arXw:1809.10486, 2018.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al.
Mixed precision training. arXiv preprint arXiv:1710.03740, 2017.

Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi. V-net: Fully convolutional
neural networks for volumetric medical image segmentation. In 2016 Fourth International
Conference on 8D Vision (3DV), pages 565-571. IEEE, 2016.

Nick Pawlowski, S. Ira Ktena, Matthew C.H. Lee, Bernhard Kainz, Daniel Rueckert, Ben
Glocker, and Martin Rajchl. DItk: State of the art reference implementations for deep
learning on medical images. arXiv preprint arXiw:1711.06853, 2017.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234-241. Springer, 2015.

https://github.com/NVIDIA/tensorflow-determinism
https://github.com/horovod/horovod
http://medicaldecathlon.com

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

mean_dice train_loss

P i1l

Smoothed Value Step Time Relative
[@ seg_spleen_gpul/models 09191 09222 1638k SatSep21,03:39:31 8h31m 28s
seg_spleen_gpul_adam/models 0.5754 0.5915 16.38k SatSep21,04:26:48 9h17m 57s

Smoothed Value Step Time Relative
. seg_spleen_gpul/models 02181 01733 21.41k SatSep 21,06:14:00 11h7m 44s

seg_spleen_gpul_adam/models 02232 01828 21.41k SatSep21,07:13:26 12h 6m 20s
. seg_spleen_gpul_sgd/models 0.2743 02234 2141k SunSep 22,1217:16 11h42m4ds

@ seq spleen_gpul_sgd/models 0.1278 01282 16.38k SunSep 22 09:32:26 B8h 55m 20s

Figure 4: Left: validation accuracy for different optimizer (“NovoGrad” is the orange
curve); right: training loss for different optimizer. Apparently, “NovoGrad” works
better with faster convergence rate, compared to Adam or vanilla SGD.

Appendix A. More experiments

Post-processing “Keeping the largest connected component” would introduce additional
benefits to improve the model training efficiency for organ segmentation. And the training
time for organ segmentation can be further reduced.

AMP AMP is able to achieve the same level of validation accuracy, compared to training
without AMP, shown in Figure 5. And the average validation accuracy over all epochs has
a little gap shown in the figure. This would be the side effect when converting some of
operations into half precision format (e.g. float16 casting, loss scaling). However, it does
not matter if we care more about the best validation scores.

The speedup is mostly dependent on how many nodes in the graph can be converted

into the half precision format. It is fully determined be the AMP algorithm. In the case
shown in the figure, only 10% of nodes are able to be converted. In general, 3D conv. was
not well supported until the most recent TensorFlow.
Misc. We run experiments on several normalization options: batch normalization, in-
stance normalization, layer normalization, weight normalization. Instance normalization
is computed across different instances, layer normalization is computed for each layer, and
weight normalization is conducted on the kernel weights. U-Net is used here for comparison.
Weight normalization does not help for convergence, so its result can be ignored. The light
blue curve represents the result of using instance normalization, which works the best in
this scenario. The batch normalization causes the slow convergence since our batch size is
small compared to the one used in 2D image classification. The statistics of a mini-batch
cannot fully represent the full volume. (For all our experiments, batch size is 6 per GPU
instance shown in Figure 5.)

Batch size options for training: 2, 4, 6 (default), 12. In general, the large batch size
works better for convergence, but the side-effect is that the large batch size requires longer
time for model training. The trade-off decision needs to be made by users.

Input shape options for training: 643, 1123(default), 128% shown in Figure 6. In general,
the large patch size works better for convergence, but the side-effect is that large patch size

10

TRAINING MODELS 20X FASTER IN MEDICAL IMAGE ANALYSIS

mean_dice

mean_dice

4 WM ﬂ“} PRI

Name Smoothed Value Step Time Relative
1] . seg_spleen_gpud/models 0.6762 0.6113 1.72k FriSep20,19:46:28 39mé6s
seg_spleen_gpud_bn/models 0.6846 0.7183 1.72k SatSep21,21:1216 50m27s

Name Smoothed Value Step Time Relative

[@ seg spleen_gpud/models 0.8467 09179 2.24k FriSep20,19:5856 51m 34s
seg_spleen_gpu4_no_amp/models 0.9208 09378 2.24k SunSep22,01:07:06 1h18m 49s

O seg_spleen_gpu4_In/models 0.5366 0.4849 1.72k SatSep 21,21:09:52 40m 20s

Figure 5: Left: validation accuracy for three normalization layers, instance normalization
(IN), batch normalization (BN), and layer normalization (LN). Instance normal-
ization is the light blue curve; right: validation accuracy for the same the frame-
work with or without AMP. Using AMP is able to maintain the same level of
accuracy but with higher efficiency.

mean_dice mean_dice

Name Smoothed Value Step Time Relative Name Smoothed Value Step Time Relative
1 . seg_spleen_gpud/models 0.6466 0.6934 520 FriSep20,19:18:37 11m14s

@ seg spleen_gpud/models 0.8469 08434 1.4k FriSep20,19:38:49 31m26s

seg_spleen_gpud_Ir0.0001/models 0.145 0.1757 520 FriSep 20,21:15:32 13m10s seg_spleen_gpud_patch128/models 0.8392 09029 1.4k SunSep22,17:3416 52m 298

@ seg_spleen_gpu4 Ir0.001/models 0.6247 0.8291 520 FriSep20,21:58:27 15m12s © seg_spleen_gpua_patchéd/models 0.4526 03803 1.4k SunSep22,11:48:35 40m 31s

Figure 6: Left: validation accuracy for three different learning rate. Learning rate 0.0005 is
the light blue curve; right: validation accuracy for different patch sizes (64, 112,
128).

requires longer time for model training. The trade-off decision needs to be made by users.
However, the patch size cannot be too small.

Learning rate options: 0.001, 0.0005 (default), 0.0001. Large learning rate promotes the
fast convergence shown in Figure 6, but the validation score will be less stable compared to
the results from smaller learning rates.

11

	Introduction
	Background & motivation
	Execution model
	Extensibility case studies
	Implementation and evaluation
	Conclusions
	More experiments

