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Abstract

Low-rank adaptations (LoRA) are often employed to fine-tune large language1

models (LLMs) for new tasks. This paper investigates LoRA composability for2

cross-task generalization and introduces LoraHub, a strategic framework devised3

for the purposive assembly of LoRA modules trained on diverse given tasks, with4

the objective of achieving adaptable performance on unseen tasks. With just a few5

examples from a novel task, LoraHub enables the fluid combination of multiple6

LoRA modules, eradicating the need for human expertise and assumption. Notably,7

the composition requires neither additional model parameters nor gradients. Our8

empirical results, derived from the Big-Bench Hard (BBH) benchmark, suggest that9

LoraHub can effectively mimic the performance of in-context learning in few-shot10

scenarios, excluding the necessity of in-context examples alongside each inference11

input. A significant contribution of our research is the fostering of a platform for12

LoRA, where users can share their trained LoRA modules, thereby facilitating their13

application to new tasks. Code is available at github.com/sail-sg/lorahub.14

1 Introduction15

Significant progress in natural language processing has been largely fueled by large-scale pretrained16

language models (LLMs) such as OpenAI GPT (Brown et al., 2020), Flan-T5 (Chung et al., 2022), and17

LLaMA (Touvron et al., 2023). These models demonstrate top-tier performance across multiple NLP18

tasks. However, their enormous parameter size presents issues regarding computational efficiency and19

memory usage during fine-tuning. To mitigate these challenges, Low-Rank Adaptation (LoRA) (Hu20

et al., 2022) has emerged as a parameter-efficient fine-tuning technique (Lester et al., 2021; He et al.,21

2022; An et al., 2022). By reducing memory demands and computational costs, it speeds up LLM22

training. LoRA achieves this by freezing the base model parameters (that is, an LLM) and training a23

lightweight, ancillary module, which regularly delivers high performance on target tasks.24

In this paper, we tap into the potential of LoRA modularity for broad task generalization, going25

beyond single-task training to meticulously compose LoRA modules for malleable performance26

on unknown tasks. Crucially, our method enables an automatic assembling of LoRA modules,27

eliminating dependency on manual design or human expertise. With just a handful of examples from28

unencountered tasks (e.g., 5), our approach can autonomously orchestrate compatible LoRA modules29

without human intrusion. As our approach leverages several available LoRA modules, we refer to it30

as LoraHub and denote our learning method as LoraHub learning.31

To validate the efficiency of our proposed methods, we test our approaches using the widely recognized32

BBH benchmark with Flan-T5 (Chung et al., 2022) serving as the base LLM. The results underline33

the effectiveness of the LoRA module composition for unfamiliar tasks through a few-shot LoraHub34

∗The first three authors contributed equally to this work. Correspondence to Qian Liu at liuqian@sea.com.

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.

https://github.com/sail-sg/lorahub
mailto:liuqian@sea.com


learning process. Remarkably, our methodology achieves a score that closely matches the performance35

of few-shot, in-context learning. Additionally, our method substantially reduces the inference cost36

compared to in-context learning, eliminating the requirement of examples as inputs for the LLM. Our37

learning procedure is also notable for its computational efficiency, using a gradient-free approach to38

obtain the coefficients of LoRA modules and requiring only a handful of inference steps for unseen39

tasks. For instance, when applied to the BBH, our methodology can deliver superior performance in40

less than a minute using a single A100.41

Importantly, LoraHub learning can feasibly be accomplished with a CPU-only machine, given that it42

merely requires proficiency to process LLM inference. With its versatility and robust performance,43

our work lays the foundation for the genesis of a platform, where users could effortlessly share,44

access, and apply trained LoRA modules to new tasks in this arena. Through this platform, we foresee45

the creation of a repository of versatile LoRA modules, fostering collaborative AI development.46

This allows the community to enhance the LLM’s capabilities collectively through dynamic LoRA47

composition. Sharing and reusing modules optimizes resource utilization across diverse tasks.48

2 Problem Statement49

Large Language Models We assume that a large language model Mθ is based on Transformer50

architecture (Vaswani et al., 2017) and has been pre-trained on a large-scale natural language corpus.51

The model architecture can be either encoder-decoder (Raffel et al., 2020) or decoder-only (Brown52

et al., 2020). Also, Mθ could also have been fine-tuned with a large set of instruction-following53

datasets such as Flan Colleciton (Longpre et al., 2023) and PromptSource (Bach et al., 2022).54

Cross-Task Generalization Assume we have N distinct upstream tasks, referred to as T =55

{T1, ..., TN}. In practical situations, it is typical for users to desire an LLM to execute novel tasks56

that it has not encountered before— an ability widely known as cross-task generalization. Generally,57

cross-task generalization falls into two categories: zero-shot learning (Mishra et al., 2022; Sanh et al.,58

2022; Chung et al., 2022; OpenAI, 2022; Lin et al., 2022), which necessitates no labeled examples of59

the new task, and few-shot learning (Ye et al., 2021; Min et al., 2022) which demands a handful of60

labeled examples. Our paper principally concentrates on the latter, wherein for an unseen target task61

T ′ /∈ T, users can only furnish a limited set of labeled examples, Q. Our aim is to modify the model62

Mθ to accustom itself to task T ′ using only Q. An intuitive method would be to directly fine-tune63

the weights of Mθ based on Q, yielding an updated model Mϕ with enhanced performance on T ′.64

However, this approach is inefficient, time-consuming, and unstable when Q is small.65

LoRA Tuning LoRA (Hu et al., 2022), a parameter-efficient fine-tuning method, facilitates the66

adaptation of LLMs using lightweight modules, eliminating the need for fine-tuning the entire weights.67

LoRA tuning involves keeping the original model weights frozen while introducing trainable low-rank68

decomposition matrices as adapter modules into each layer of the model. Compared to the base LLM,69

this module possesses significantly fewer trainable parameters, paving the way for rapid adaptation70

using minimal examples. As such, LoRA tuning presents a resource-efficient technique to quickly71

adapt LLMs for new tasks with restricted training data. However, traditional LoRA methods primarily72

concentrate on training and testing within the same tasks (Gema et al., 2023), rather than venturing73

into few-shot cross-task generalization.74

3 Methodology75

As depicted in Figure 1, we initially train LoRA modules on a variety of upstream tasks. Specifically,76

for N distinct upstream tasks, we separately train N LoRA modules, each represented as mi for task77

Ti ∈ T. Subsequently, for a novel task T ′ /∈ T, such as Boolean Expressions represented in Figure 1,78

its examples Q are utilized to steer the LoraHub learning process.79

The LoraHub learning encapsulates two main phases: the COMPOSE phase and the ADAPT phase.80

In the COMPOSE phase, all available LoRA modules are synthesized into a single module m̂, using81

{w1, w2, . . . , wN} coefficients, represented as m̂ =
∑N

i=1 wi ×mi. Here, wi is a scalar weight that82

can assume positive or negative values. During the ADAPT phase, the assembled LoRA module m̂83

is amalgamated with the LLM Mθ, and its performance on few-shot examples from the new task84

T ′ is assessed. A gradient-free algorithm is subsequently deployed to update w, enhancing m̂’s85

performance (e.g., loss) on the few-shot examples Q.86
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Figure 1: Our method encompasses two stages: the COMPOSE stage and the ADAPT stage. During
the COMPOSE stage, existing LoRA modules are integrated into one unified module, employing a set
of weights, denoted as w, as coefficients. In the ADAPT stage, the amalgamated LoRA module is
evaluated on a few examples from the unseen task. Subsequently, a gradient-free algorithm is applied
to refine w. After executing K iterations, a highly adapted LoRA module is produced, which can be
incorporated with the LLM to perform the intended task.

Finally, after iterating through K steps, the optimum performing LoRA module is applied to the LLM87

Mθ, yielding the final LLM Mϕ = LoRA(Mθ, m̂). This serves as an effectively adjusted model for88

the unseen task T ′, which will then be deployed and not updated anymore.89

3.1 LoRA Tuning on Upstream Tasks90

LoRA (Hu et al., 2022) effectively minimizes the number of trainable parameters through the process91

of decomposing the attention weight matrix update of the LLM, denoted as W0 ∈ Rd×k, into92

low-rank matrices. In more specific terms, LoRA exhibits the updated weight matrix in the form93

W0 + δW = W0 + AB, where A ∈ Rd×r and B ∈ Rr×k are novel low-rank matrices with94

rank r, a dimension significantly smaller than those of d and k. In this context, the product AB95

defines the LoRA module m, as previously elaborated. By leveraging this low-rank decomposition,96

LoRA imposes limitations that substantially reduce the number of trainable parameters necessary for97

adjusting the LLM weights.98

3.2 COMPOSE: Element-wise Composition of LoRA Modules99

In the COMPOSE stage, we implement an element-wise method for composing LoRA modules. This100

process integrates the corresponding parameters of the LoRA modules, necessitating that the modules101

being combined maintain an identical rank r in order to align the structures effectively. Given that102

mi = AiBi, the combined LoRA module, denoted by m̂, can be represented as:103

m̂ = (w1A1 + w2A2 + · · ·+ wNAN )(w1B1 + w2B2 + · · ·+ wNBN ). (1)

3.3 ADAPT: Weight Optimization via Gradient-free Methods104

During the ADAPT stage, our task is to fine-tune the coefficients w in order to boost the model’s105

performace on a limited set of examples from a previously unseen task. One might think of using106

gradient descent for optimizing w, following standard backpropagation methods. However, this107

approach demands constructing a hypernet for all LoRA modules, reminiscent of differentiable108

architecture search methodologies (Zhang et al., 2019). This requirement for substantial GPU109

memory and time poses a challenge. Given that w consists of a relatively small number of parameters,110

we opted for gradient-free methods for optimization instead of gradient descent.111

We utilize a black-box optimization technique following previous works (Sun et al., 2022) to find112

the optimal weights. The optimization process is steered by the cross-entropy loss, setting the113

goal to locate the best weight set {w1, w2, . . . , wN} that reduces the loss L on the validation set Q.114

Furthermore, we incorporate L1 regularization to penalize the sum of the absolute values of all the115

ws, helping to prevent obtaining extreme values. Consequently, the final objective of LoraHub is to116

minimize L+ α ·
∑N

i=1 |wi|, where α serves as a hyperparameter.117

In most of the forthcoming experimental setups, we primarily employ the Covariance Matrix Adaptive118

Evolution Strategies (CMA-ES) (Hansen & Ostermeier, 1996). CMA-ES, as a stochastic, derivative-119
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free, population-based optimization algorithm, offers versatility in addressing a broad spectrum of120

optimization challenges. It dynamically adjusts a search distribution, which is defined by a covariance121

matrix. During each iteration, CMA-ES systematically updates both the mean and covariance of this122

distribution to optimize the target function. In our specific application, we employ this algorithm to123

mold the search space for the variable w. Ultimately, we use it to identify the optimal weights by124

evaluating their performance on a few-shot examples from an unseen task.125

4 Evaluation126

4.1 Experimental Framework127

Large Language Model We employ Flan-T5 (Chung et al., 2022) as our chosen Large Language128

Model (LLM). This series of models, characterized by similar structures and varying sizes, exhibits129

exemplary zero-shot and few-shot capabilities commensurate with the model size. Our investigation130

particularly targets the Flan-T5 large model.131

Candidate LoRA Modules Our methodology requires a compendium of LoRA modules trained132

on preceding tasks. For parity with Flan, we adopt the tasks utilized to instruct Flan-T5, thereby133

incorporating nearly 200 distinct tasks and their corresponding instructions 2. Following this, we134

created several LoRA modules as possible candidates 3. For the pre-filtering process, during each135

experimental sequence, we randomly select 20 LoRA modules for potential considerations.136

Dataset and Evaluation We employ 27 tasks from he Big-Bench Hard (BBH) benchmark, follow-137

ing the challenging stipulations for language models outlined by previous researchers. Throughout138

all tasks, we employ Exact Match (EM) as our evaluation metric.139

Baseline Setup To enhance the demonstration of our method’s performance, we expanded our140

comparisons beyond the zero-shot and in-context learning settings. We specifically chose three141

representative gradient-based methods for comparison: full fine-tuning (FFT), LoRA tuning (LoRA),142

and IA3 fine-tuning (IA3) (Liu et al., 2022). For all gradient-based methods, for a fair comparsion,143

we train for 40 epochs on the same three runs of 5 examples employed in our methods. In the case of144

FFT, a learning rate of 3e-5 is employed, whereas for IA3 and LoRA, we adopt a learning rate of145

2e-4. We report the performance of each method on the test set at the end of training (averaged over146

three runs) without any model selection to avoid potential selection bias.147

4.2 Implementation Details148

We implemented LoRA tuning using the Huggingface PEFT library (Mangrulkar et al., 2022), keeping149

the default LoRA tuning hyperparameter at r = 16. The gradient-free method was implemented using150

the open-source Nevergrad optimization library (Rapin & Teytaud, 2018), imposing a constraint that151

the absolute value of LoRA weights should not exceed 1.5. At the outset, all LoRA modules were set152

at zero weights. In our standard settings, we permitted a maximum of 40 attempts to calculate the loss153

on the samples, denoted by the maximum step size K. Five examples were used during optimization,154

the same number as used in the few-shot in-context learning scenario. And the hyperparameter α is155

set as 0.05.156

4.3 Main results157

As shown in Table 1, our experimental results demonstarte the superior efficacy of our method in158

comparison to zero-shot learning while closely resembling the performance of in-context learning159

(ICL) in few-shot scenarios. This observation is derived from an average performance of three runs,160

each leveraging different few-shot examples. Importantly, our model utilizes an equivalent number161

of tokens as the zero-shot method, notably fewer than the count used by ICL. Although occasional162

performance fluctuations, our method consistently outperforms zero-shot learning in most tasks. In163

the era of LLMs, the input length is directly proportional to the inference cost, and thus LoraHub’s164

ability to economize on input tokens while approaching the peak performance grows increasingly165

2We accessed these publicly available tasks via huggingface.co/datasets/conceptofmind/FLAN_2022.
3These LoRA modules can be accessed at huggingface.co/models?search=lorahub.
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Table 1: Experimental results of zero-shot learning (Zero), few-shot in-context learning (ICL), IA3
fine-tuning (IA3), LoRA tuning (LoRA), full fine-tuning (FFT) and our proposed few-shot LoraHub
learning (LoraHub) on the BBH benchmark with FLAN-T5-large as the base LLM. We denote
algorithmic tasks with the superscript § following previous work (Wu et al., 2023). Note that we
employ three runs, each leveraging different 5-shot examples per task, as demonstrations for all few-
shot methods. The average performance of all methods is reported below, and the best performance
of each few-shot method can be found in the Appendix A.

Task Zero ICLavg IA3avg LoRAavg FFTavg LoraHubavg

Boolean Expressions 54.0 59.6 56.2 56.0 62.2 55.5
Causal Judgement 57.5 59.4 60.2 55.6 57.5 54.3
Date Understanding 15.3 20.4 20.0 35.8 59.3 32.9
Disambiguation 0.0 69.1 0.0 68.0 68.2 45.2
Dyck Languages 1.3 0.9 4.2 22.2 19.5 1.0
Formal Fallacies 51.3 55.3 51.5 53.6 54.0 52.8
Geometric Shapes 6.7 19.6 14.7 24 31.1 7.4
Hyperbaton 6.7 71.8 49.3 55.3 77.3 62.8
Logical Deduction§

(five objects) 21.3 39.1 32.7 40.0 42.2 36.1

Logical Deduction§

(seven objects) 12.7 40.7 33.8 37.3 44.9 36.8

Logical Deduction§

(three objects) 0.0 51.6 8.5 53.6 52.9 45.7

Movie Recommendation 62.7 55.8 61.8 51.5 66.0 55.3
Multistep Arithmetic 0.7 0.7 0.7 0.2 0.0 0.4
Navigate 47.3 45.3 46.2 48.0 48.0 47.1
Object Counting 34.7 32.4 35.1 38.7 35.6 33.7
Penguins in a Table 43.5 41.3 45.0 36.2 31.9 35.9
Reasoning about Colored Objects 32.0 40.2 40.7 39.6 37.6 40.0
Ruin Names 23.3 19.3 24.4 37.8 61.3 24.4
Salient Translation Error Detection 37.3 47.3 37.1 16.0 16.2 36.0
Snarks 50.0 54.2 53.9 55.6 66.7 56.9
Sports Understanding 56.0 54.7 55.1 56.5 54.0 56.7
Temporal Sequences 16.7 25.1 18.2 25.1 37.8 18.2
Tracking Shuffled Objects§

(five objects) 12.0 12.0 12.0 13.8 16.9 12.3

Tracking Shuffled Objects§

(seven objects) 6.7 6.7 6.7 10.0 9.8 7.7

Tracking Shuffled Objects§

(three objects) 24.7 31.1 30.7 30.9 32.0 29.2

Web of Lies 54.0 53.8 54.2 52.7 48.2 50.1
Word Sorting 1.3 0.5 1.3 4.9 4.9 1.1

Avg Performance Per Task 27.0 37.3 31.6 37.7 42.1 34.7
Avg Tokens Per Example 111.6 597.8 111.6 111.6 111.6 111.6
Gradient-based Training No No Yes Yes Yes No

significant. Moreover, as shown in Appendix Table 2, the upper bound performance of our method166

across these runs can surpass ICL on 18 tasks, demonstrating its potential for future development.167

Even when compared to certain gradient-based optimization methods, our approach consistently168

demonstrates competitive performance. For example, as depicted in Table 1, our method exhibits a169

notable improvement of 3.1% on average in contrast to the promising IA3 method. Nevertheless, we170

acknowledge that our approach still falls behind LoRA tuning and full fine-tuning, especially in tasks171

that exhibit significant deviation from the upstream task. Taking Dyck Languages as an example,172

both LoraHub and ICL achieve only an average performance of nearly 1.0% on these tasks, while173

LoRA and FFT methods showcase impressive results with only 5 examples.174

4.4 Discussion175

LoraHub addresses the challenge of reducing inference costs by eliminating the need for processing176

additional tokens, resulting in a noticeable reduction in overall inference expenses. However, it177
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introduces an inherent cost during the ADAPT stage, necessitating extra inference steps, such as178

the 40 steps employed in our experiments. This introduces a trade-off between choosing the ICL179

approach and LoraHub, with the decision typically hinging on the nature of the situation.180

For one-time ad-hoc tasks, the ICL approach should be more pragmatic due to LoraHub’s additional181

inference step costs. In such scenarios, where immediate, single-use solutions are preferred, the182

simplicity and efficiency of ICL might outweigh the benefits of potential savings offered by LoraHub.183

Conversely, for recurring or similar tasks, LoraHub emerges as a compelling option. Despite the184

added inference step cost, LoraHub’s ability to efficiently handle repetitive tasks, often occurring185

thousands of times, while concurrently reducing overall expenses, positions it as a viable option in186

such kind of situations.187

In summary, our intention is not to replace ICL, but to present LoraHub as a complementary strategy188

with performance-efficiency trade-offs. Thus, we encourage a careful consideration of specific use189

cases and requirements when choosing between ICL and LoraHub, recognizing that the optimal190

solution may vary based on the nature and frequency of the tasks at hand.191

5 Related Work192

Model Merging Our method substantially draws on the concept of LoRA module composition, and193

thus, aligns with the significant thread of research in model merging. This research focus is broadly194

categorized based on the ultimate objectives of model merging.195

For merging entire models, models are combined to approximate ensemble or multi-task learning ben-196

efits. Previous works like Matena & Raffel (2021) and Jin et al. (2023) assumed shared architectures.197

Matena & Raffel (2021) uses Gaussian posterior distributions from Fisher information, while Jin et al.198

(2023) merges models by minimizing prediction differences. We can also merge models with varying199

architectures. For example, Ainsworth et al. (2023) adjusts model weights before merging, while200

Stoica et al. (2023) identifies common features for merging models on different tasks. In contrast, our201

work focuses on cross-task generalization through model merging.202

Module Merging The second category most closely aligns with our research, stemming from203

a shared motivation of module composition. Various scholars have made advances in this line204

of research: Kingetsu et al. (2021) decomposes and recomposes modules on the basis of their205

functionality; Ilharco et al. (2022) proposes modulating model behavior using task vectors; Wang206

et al. (2022) Lv et al. (2023) amalgamates parameter-efficient modules weighted according to task207

similarity; Zhang et al. (2023) crafts modules by employing specific arithmetic operations; Sun208

et al. (2023) improves few-shot performance of unseen tasks by multi-task pre-training of prompts;209

Chronopoulou et al. (2023) averages adapter weights intended for transfer; and Muqeeth et al.210

(2023) concentrates on amalgamating experts in mixture of experts models. However, these methods211

generally necessitate multi-task training or human prior on module selection for the downstream task.212

Mixture of Experts The Mixture of Experts (MoE) is an ensemble method, often visualized as a213

collection of sub-modules, or ’experts’, each specializing in processing different types of input data.214

Each expert in this system is controlled by a unique gating network, activated based on the distinct215

nature of the input data. This technique has proven instrumental in numerous domains, such as216

natural language processing and computer vision (Jacobs et al., 1991; Shazeer et al., 2017; Du et al.,217

2022; Zhang et al., 2022). Our methodology displays similarities to MoE, wherein upstream-trained218

LoRA modules can be aligned with MoE’s expert design. A noteworthy distinguishing factor is that219

our approach mechanism does not require any specialized manipulation of LoRAs during training220

while facilitating dynamic LoRA module assembly at any scale, each pre-tuned to different tasks.221

Recent studies on the interrelation between MoE and instruction tuning have demonstrated that the222

simultaneous application of both approaches enhances the effectiveness of each individually (Shen223

et al., 2023).224

6 Conclusion225

In this work, we have introduced LoraHub, a strategic framework for composing LoRA modules226

trained on diverse tasks in order to achieve adaptable performance on new tasks. Our approach227

enables the fluid combination of multiple LoRA modules using just a few examples from a novel228
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task, without requiring additional model parameters or human expertise. The empirical results on229

the BBH benchmark demonstrate that LoraHub can effectively match the performance of in-context230

learning in few-shot scenarios, removing the need for in-context examples during inference. Overall,231

our work shows the promise of strategic LoRA composability for rapidly adapting LLMs to diverse232

tasks. By fostering reuse and combination of LoRA modules, we can work towards more general and233

adaptable LLMs while minimizing training costs.234
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A Result of Best Results420

As shown in Table 2, compared to gradient-based parameter-efficient training methods like LoRA421

and IA3, our approach demonstrates superior performance in terms of best results over experimental422

runs. While it exhibits a noticeable lag behind the fully fine-tuning (FFT) method, which updates423

all parameters during training, this observation suggests that our proposed method has a promising424

upper limit. We anticipate that future research efforts can contribute to accelerating the optimization425

speed and further enhancing the efficacy of our approach.426

Table 2: Experimental results of several few-shot methods, including in-context learning (ICL), IA3
fine-tuning (IA3), LoRA tuning (LoRA), full fine-tuning (FFT) and our LoraHub learning (LoraHub)
on the BBH benchmark with FLAN-T5-large as the base LLM. We denote algorithmic tasks with the
superscript § following previous work (Wu et al., 2023). Note that we use 5 examples per task as
the demonstration for all methods. The best (best) performance is reported as the maximum value
obtained across three runs.

Task ICLbest IA3best LoRAbest FFTbest LoraHubbest

Boolean Expressions 62.7 58.0 60.7 65.3 60.7
Causal Judgement 59.8 62.1 57.5 60.9 63.2
Date Understanding 21.3 20.7 40.7 67.3 45.3
Disambiguation 69.3 0.0 68.7 70.7 68.0
Dyck Languages 2.0 4.7 25.3 33.3 2.7
Formal Fallacies 59.3 52.0 56.7 56.0 59.3
Geometric Shapes 20.0 15.3 28.7 39.3 18.7
Hyperbaton 72.7 49.3 57.3 82.0 72.7
Logical Deduction§

(five objects) 39.3 32.7 41.3 43.3 40.0

Logical Deduction§

(seven objects) 42.0 34.0 42.7 46.0 46.0

Logical Deduction§

(three objects) 52.7 8.7 56.7 60.7 52.7

Movie Recommendation 56.7 62.0 64.5 70.7 62.0
Multistep Arithmetic 0.7 0.7 0.7 0.0 1.3
Navigate 46.7 47.3 50.7 50.0 51.3
Object Counting 34.7 35.3 42.0 38.0 36.7
Penguins in a Table 43.5 45.7 41.3 37.0 47.8
Reasoning about Colored Objects 41.3 41.3 40.7 38.7 44.7
Ruin Names 20.7 25.3 42.0 66.0 28.7
Salient Translation Error Detection 48.0 37.3 17.3 21.3 42.7
Snarks 55.1 56.4 59.0 69.2 61.5
Sports Understanding 56.7 55.3 58.7 58.7 62.7
Temporal Sequences 26.7 18.7 31.3 48.7 21.3
Tracking Shuffled Objects§

(five objects) 12.0 12.0 16.0 20.0 16.7

Tracking Shuffled Objects§

(seven objects) 6.7 6.7 12.0 10.0 15.3

Tracking Shuffled Objects§

(three objects) 31.3 30.7 32.0 36.0 31.3

Web of Lies 54.0 54.7 55.3 54.0 57.3
Word Sorting 0.7 1.3 5.3 6.0 1.3

Best Performance (Average) 38.4 32.1 40.9 46.2 41.2
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