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Abstract

Transformers have achieved great success in nu-
merous NLP tasks but continue to exhibit notable
gaps in multi-step factual reasoning, especially
when real-world knowledge is sparse. Recent ad-
vances in grokking have demonstrated that neural
networks can transition from memorizing to per-
fectly generalizing once they detect underlying
logical patterns – yet these studies have primarily
used small, synthetic tasks. In this paper, for the
first time, we extend grokking to real-world fac-
tual data and address the challenge of dataset spar-
sity by augmenting existing knowledge graphs
with carefully designed synthetic data to raise the
ratio ϕr of inferred facts to atomic facts above the
threshold required for grokking. Surprisingly, we
find that even factually incorrect synthetic data
can strengthen emergent reasoning circuits rather
than degrade accuracy, as it forces the model
to rely on relational structure rather than mem-
orization. When evaluated on multi-hop reason-
ing benchmarks, our approach achieves up to 95–
100% accuracy on 2WikiMultiHopQA – substan-
tially improving over strong baselines and match-
ing or exceeding current state-of-the-art results.
We further provide an in-depth analysis of how
increasing ϕr drives the formation of generalizing
circuits inside Transformers. Our findings sug-
gest that grokking-based data augmentation can
unlock implicit multi-hop reasoning capabilities,
opening the door to more robust and interpretable
factual reasoning in large-scale language models.
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1 Introduction and Related Work
Transformers have demonstrated remarkable success across
a wide range of natural language processing (NLP) tasks,
such as text classification, summarization, and machine
translation. Nevertheless, they still face significant chal-
lenges when asked to perform multi-step or multi-hop fac-
tual reasoning, particularly in real-world scenarios where
knowledge is both vast and sparsely distributed. A key
reason for this difficulty lies in the model’s tendency to
memorize rather than generalize – a problem that becomes
acute in knowledge-intensive tasks with insufficiently rich
data distributions.

Figure 1. Average accuracy on 2WikiMultiHopQA for comparison
task. Despite GPT2-small being a model with 124 million parame-
ters, grokked version achieves almost 100% accuracy, beating the
most recent gpt-4o and o1-mini models.

From Toy Grokking to Real-World Data. Recent work
on grokking (Power et al., 2022) has shown that, under
certain conditions, overparameterized neural networks sud-
denly transition from pure memorization to near-perfect
generalization after long training. Early studies have typi-
cally focused on highly controlled, synthetic tasks such as
modular arithmetic or simplified algorithmic datasets. In
these toy settings, the number of inferred facts (i.e., multi-
step or composed patterns) can be systematically increased
until a threshold ratio ϕ is reached, at which point a “gener-
alizing circuit” emerges in the model (Belkin et al., 2019;
Nakkiran et al., 2020; Thilak et al., 2022; Humayun et al.,
2023; Nanda et al., 2023).

However, real-world datasets present a stark contrast: fac-
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tual knowledge is extremely sparse and often scattered
across incomplete or noisy knowledge graphs. Thus, the
core challenge is to ensure that there are enough higher-
order inferred facts in relation to the atomic facts (direct
statements) to enable the internal circuit-formation process
that grokking requires. Put differently, in real-world sce-
narios, one cannot trivially guarantee a sufficiently large
ratio ϕ between multi-step (inferred) facts and single-hop
(atomic) facts. Our work addresses precisely this obstacle
by proposing a data-synthesis strategy that augments and
re-balances real-world knowledge bases.

Multi-hop Question Answering (QA). 2WikiMulti-
HopQA (Yang et al., 2018; Ho et al., 2020; Trivedi et al.,
2022) is particularly well-suited to assess multi-step factual
reasoning. This dataset contains Wikipedia-based queries
that require retrieving and combining multiple pieces of evi-
dence (spread across different pages or paragraphs) before
producing an answer. This property aligns closely with our
focus on multi-hop reasoning and underscores the need for
implicit reasoning capability: in many cases, a system must
link and traverse several factual nodes – e.g., “Michelle is
the wife of Obama” and “Michelle was born in 1964” – to
arrive at a final conclusion (e.g., about Michelle’s birth year
or other derived facts). Moreover, they reflect a large, com-
plex knowledge graph with real-world entities, ambiguous
language, and long-tail relations – all of which make them
an archetypal testbed for factual reasoning at scale.

Grokking and Its Role in Transformer Generalization.
The concept of grokking, introduced in Power et al. (2022),
demonstrated that neural networks could learn not just su-
perficial patterns but also deeper, generalizable reasoning
mechanisms under prolonged training with suitable induc-
tive biases. Subsequent work has linked grokking to double
descent (Belkin et al., 2019; Nakkiran et al., 2020), the
geometry of deep-network loss landscapes (Davies et al.,
2023), and weight decay (Pezeshki et al., 2022; Nanda et al.,
2023), suggesting that the right regularization can encour-
age the emergence of generalizing circuits. These circuits
– once formed – enable out-of-distribution reasoning that
surpasses naive memorization (Varma et al., 2023; Liu et al.,
2023).

Gap in the Literature. Despite extensive research on
knowledge graph completion (Liu et al., 2022) and multi-
hop question answering via retrieval-based methods (Yang
et al., 2018; Ho et al., 2020), very few studies have examined
whether the internal grokking phenomenon can be harnessed
for implicit multi-hop reasoning in a real-world textual
setting. Most prior approaches either:

• Focus on toy tasks: e.g., modular addition or synthetic
math problems (Power et al., 2022; Nanda et al., 2023;
Wang et al., 2024).

• Rely on explicit prompting or chain-of-thought: where

intermediate reasoning steps must be spelled out in ex-
ternal text (Plaat et al., 2024), rather than learned as an
implicit circuit.

• Use standard graph-completion architectures: e.g.,
GNN-based solutions to augment partial knowledge
graphs (Liu et al., 2022), which do not necessarily yield
late-phase internal circuit formation or sudden generaliza-
tion.

To the best of our knowledge, no existing work has used a
grokking-based approach to demonstrate how a Transformer
can implicitly discover multi-hop reasoning skills on large-
scale factual data.

Contributions. In this paper, we bridge that gap through
the following contributions:

• We incorporate a targeted data synthesis procedure to
ensure sufficiently large ϕ for each relation, thereby un-
locking the potential for internal generalization circuits
to form in real-world Wikipedia-based tasks.

• We show that even factually incorrect synthetic data can
boost the ratio of inferred to atomic facts, often strength-
ening rather than harming logical consistency.

• Our experiments on 2WikiMultiHopQA confirm that once
the ratio ϕ surpasses a certain threshold, grokking emerges
– enabling Transformers to perform complex multi-step
reasoning without explicit chain-of-thought prompts or
elaborate external scaffolding.

In the following sections, we detail the mathematical basis
of our data augmentation strategy, the empirical setups on
2WikiMultiHopQA, and the new insights gained about im-
plicit multi-hop reasoning. Our findings show that grokking
is not an artifact confined to contrived toy datasets but a
powerful mechanism that, with suitable data distribution ad-
justments, can be harnessed for real-world factual reasoning
at scale.

2 Problem Description

The concept of multi-hop reasoning presupposes a knowl-
edge graph (KG) whose nodes (entities) and edges (rela-
tions) can be traversed via a chain of inference steps. In our
setting, this KG is encoded in textual form, but structurally,
we are still dealing with multi-hop question answering over
a KG (Multi-hop KGQA). Prior work (Liu et al., 2022)
has already observed that knowledge graph completion can
be critical for multi-hop KGQA; for grokking-based Trans-
former generalization circuits to form, it becomes impera-
tive to extend the original KG such that sufficiently many
multi-step (inferred) facts exist. This section formalizes
our problem of augmenting a KG to enable Transformer
grokking.
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2.1 Definitions and Basics

We begin by introducing key notations for clarity. Readers
can refer to Table 1 at any time for a concise summary of
the main symbols.

Knowledge Graph.

Definition 2.1 (Knowledge Graph). We define a knowledge
graph as a tuple KG = (V,R,FA), where

• V is a finite set of entities (nodes or vertices),
• R is a finite set of relation types (edges/predicates),
• E ≡ FA ⊆ V × R × V is a finite set of atomic facts

(triplets) of the form (h, r, t), where h ∈ V is a head
(subject), t ∈ V is a tail (object), and r ∈ R is the
relation.

In natural language, entities are typically connected by rela-
tional statements. Although some relations (e.g., “son of”)
are directed, one can also treat the KG as undirected for
graph traversal since a statement is often queryable in both
directions (subject/object).

Definition 2.2 (Norm over edges). For counting strictly
directed edges in KG as if they were undirected, we use the
trivial count: | | =

∑
(h,...,t)∈E 1.

Definition 2.3 (Average branching factor). The average
branching factor of a knowledge graph is: b = |FA|

|V| .

Definition 2.4 (Atomic Facts). Following prior work, we
use FA (or equivalently F1) to denote the set of atomic
facts, i.e., all first-order triplets explicitly stored in the
knowledge graph.

Example 1 (Running Example: Basic KG). Consider the
KG in Figure 2 with

V = {“Obama”,“Michelle”,“1964”,“Mary Poppins”},
R = {“wife of”,“born in”,“aired in”}.

The atomic facts FA include:(
“Michelle”,“wife of”,“Obama”

)
,(

“Michelle”,“born in”,“1964”
)
,(

“Mary Poppins”,“aired in”,“1964”
)
.

Hence, F1 = FA. The average branching factor here is
b = 0.75.

Inference Steps and Paths.

Definition 2.5 (Inference Step). An inference step is a func-
tion I : V ×R → V that traverses the graph from one entity
to a neighboring entity via one relation:

I(h, r) = t where (h, r, t) ∈ FA.

Definition 2.6 (Inference Path). An inference path pn of
length n is a sequence of relations pn = (r1, . . . , rn) ∈ Rn.
The path is simple if each relation leads to exactly one

  

Obama Michelle

1964

born in

“Mary 
Poppins”

aired in

Bob

Alice

mother of

sister ofwife of

Figure 2. Exemplary Knowledge Graph with Synthesized Data.
Four original nodes (black) and three relations (blue) result in
two inferred facts. Two additional synthetic nodes and relations
(red) extend the amount of inferred facts by four. Consequently,
ϕI = ϕ2 increases from 2

3
≈ 0.66 to 6

5
= 1.2.

successor node (no branching ambiguity):

∀ri ∈ pn : ∃vi−1, vi ∈ V such that I(vi−1, ri) = vi

∧ ∀vj ∈ V :
(
I(vi−1, ri) = vj =⇒ vj = vi

)
.

Definition 2.7 (N-th Order Deductions). For an inference
path pn = (r1, . . . , rn) of length n connecting v0 (head) to
vn (tail), the n-th order deductions are:

Fn ⊆
{
(v0, r1, . . . , rn, vn) | vi ∈ V, ri ∈ R

}
.

Example 2 (2-Hop Deductions). A second-order (2-hop)
fact arises from concatenating two atomic facts via one
bridge entity. For instance:

(h, r1, b, r2, t) with (h, r1, b), (b, r2, t) ∈ FA.

In Example 1, we might ask: “Which year was Obama’s
wife born in?” ⇒ I(“Obama”,“wife of”) = “Michelle”
and I(“Michelle”,“born in”) = “1964”.

Inferred vs. Atomic Facts.

Definition 2.8 (Inferred Facts). All n-th order facts with
n > 1 constitute the inferred facts,

FI =

∞⋃
n=2

Fn.

Clearly, FA ∩ FI = ∅.
Example 3 (3-Hop Deduction). Continuing the
example of Obama, consider the path p3 =
(“wife of”,“born in”,“aired in”) . By chaining three
steps, we deduce:

(“Obama”, “wife of”, “born in”, “aired in”, “Mary Poppins”)

which answers “Which movie aired in the same year
Obama’s wife was born?”

2.2 Generalization Over Inference Paths

Definition 2.9 (Implicit Reasoning). We define implicit
reasoning as reasoning without the need for explicit inter-
mediate prompts or developer-introduced structure.

Unlike explicit reasoning approaches (e.g., chain-of-thought
prompts (Plaat et al., 2024)), implicit reasoning relies on
the model forming internal circuits during training (Nanda
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et al., 2023). Grokking studies (Power et al., 2022; Wang
et al., 2024) have shown that Transformers can, under certain
conditions, shift from memorizing to perfectly generalizing
by learning these internal circuits.

Relation-Specific Ratios. As noted by Wang et al. (2024),
a critical factor for circuit formation is the ratio of inferred
facts to atomic facts for each relation r. Let

FA,r ⊆ FA and FI,r ⊆ FI

denote the sets of atomic and inferred facts that involve
relation r. Then:

Definition 2.10 (Generalization Ratio). For each relation

r ∈ R, we define ϕr =

∣∣FI,r

∣∣∣∣FA,r

∣∣ .

When ϕr crosses a certain threshold—empirically found to
be around 3.6 for slow generalization and up to 18 for faster
circuits in GPT-2 style Transformers—the model tends to
form a generalizing circuit for that relation(Power et al.,
2022). These thresholds are approximate and architecture-
dependent (Nanda et al., 2023; Wang et al., 2024) but illus-
trate the core principle: without sufficiently many multi-hop
facts, the model never “grokks” the underlying relation.

Partial vs. Full Generalizability. Even if a knowledge
base is only partially rich in multi-hop data (i.e., some
relations meet the threshold ϕG, while others do not), it can
still benefit certain reasoning tasks. However, to achieve full
generalizability, all relations must surpass the threshold:

Definition 2.11 (Generalizable Knowledge Base). A knowl-
edge base KG is generalizable if

∀r ∈ R : ϕr ≥ ϕG,

where ϕG is the minimal generalization ratio required by a
given model setup. If this condition holds for only a subset
of relations, we call KG partially generalizable.

2.3 Bounds for Generalizable Knowledge Bases

Because each relation r has its own ratio ϕr, a knowledge
base (KB) may fail to support grokking if any ϕr remains
too low. Analytic bounds (see Appendix A.3) reveal that:

• The ratio ϕr can be increased by adding new nodes or by
augmenting edges related to r, but this effect is limited by
how the graph is connected and how often the relation r
appears.

• Typical real-world KGs tend to be sparse, which is why
data synthesis (described in later sections) is crucial to
boost ϕr.

Example 4 (Insufficient Branching Factor). Suppose a
family KG has {father,mother, child1, . . .} with edges like

“parent of,” “sibling of,” “owned by.” Although the graph
is well-connected at a glance, its relation-specific branch-
ing factors might still be too small to pass the threshold

ϕG ≈ 3.6. Hence, the KB remains not fully generalizable,
preventing a Transformer from forming robust multi-hop
circuits for all relations.

2.4 Setup and Querying

In practice, we test a model’s multi-hop reasoning by asking
queries whose unique answer resides at the end of a simple
(acyclic) inference path. For instance:

Example 5 (Chaining 3 Steps). The textual query “Which
movie aired in the same year as Obama’s wife was born?”
corresponds to a 3-hop deduction:

(“Obama”,“wife of”,“born in”,“aired in”, t).

Here, the model must internally infer:

I(“Obama”,“wife of”) → “Michelle”,

I(“Michelle”,“born in”) → “1964”,

I(“1964”,“aired in”) → t = “Mary Poppins”.

Successful implicit reasoning requires the model to both
memorize the atomic facts and chain them together via a
generalizing circuit.

  

ID OODIFIF

AF AF AF AF AF AF

Figure 3. Conceptual difference between ID and OOD: In-
distribution (ID, 3orange) and Out-of-distribution (OOD, red)
inferred facts are shown. All green components are seen during
training, including all atomic facts (AF) and some inferred facts
(IF).

Definition 2.12 (In-distribution vs. Out-of-distribution).
In-distribution (ID): An inferred fact derived from com-
binations of atomic facts that were present in the training
data but never appeared together in this specific combination.
The model has seen all knowledge components separately
and different reasoning combinations involving them, but
not in this particular test arrangement.
Out-of-distribution (OOD): An inferred fact derived from
atomic facts that were present in the training data but
never used in any train reasoning paths. The model has
seen the individual knowledge components, but not how
they should be applied in the context being tested.
Figure 3 shows trained facts (atomic and inferred) related
to ID and OOD testing facts.

As we show in our experiments, OOD queries can be espe-
cially challenging, requiring truly structural generalization
rather than partial memorization. This is precisely where
sufficiently high ϕr ratios become critical for enabling the
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Transformers’ grokking-driven jump from local memoriza-
tion to robust multi-hop reasoning.

2.5 Lemmas and Bounds

The first lemma we introduce makes clear that (1) picking
nodes vs. arranging them in paths vs. the existence of edges
leads to an asymptotic upper bound, and (2) even large KBs
do not grow ϕn,r beyond roughly bn−1 without additional
data augmentation.

Lemma 1 (Asymptotic Bound on the Number of n-hop
Paths). Consider a knowledge base (KB) with |V| entities,
average branching factor b, and an (approximate) random-
graph assumption that each potential directed edge between
two distinct nodes is present with probability b

|V|−1 . Then,
for large |V|, the expected number of valid n-hop paths
satisfies:

|Fn| ≈
(

|V|
n+ 1

)
(n+ 1)!

(
b

|V|−1

)n
.

Moreover, in the limit |V| → ∞, the relation-specific ratio
ϕn,r (i.e., the ratio of n-hop to 1-hop facts for relation r)
remains bounded above by bn−1.

For a Proof of Lemma 1 see Appendix A.1. For a lower gen-
eralization bound on the number of nodes |V|, see Appendix
A.3. The second lemma makes clear that each relation’s
branching factor br must be sufficiently large to surpass the
empirical threshold ϕG. If one or more relations fall below
that threshold, full generalization across all relations will
not occur – even though partial generalization might emerge
for the higher- br relations.

Lemma 2 (Necessary Condition for Full Generalizabil-
ity). Let ϕG be the minimal ratio required to trigger
grokking-based generalization for a given model architec-
ture. A KB is fully generalizable over n-hop facts only if
∀ r ∈ R

ϕn,r ≥ ϕG ⇒ br > n−1

√
ϕG |V| (|V| − 1)n( |V|

n+1

)
(n+ 1)!

,

where br =
|FA,r|
|V| is the relation-specific branching factor.

Equivalently, if any br falls below this threshold, the KB
cannot be fully generalizable.

For a Sketch of Proof of Lemma 2 see Appendix A.2.

3 Method
Our method follows a two-stage pipeline designed to en-
able grokking in real-world multi-hop reasoning tasks. First,
we augment the original Wiki2Hop dataset with synthetic
knowledge, increasing the ratio of multi-hop (inferred)
to single-hop (atomic) facts. Second, we train a Trans-
former model for hundreds of thousands of steps, leveraging
the late-phase generalization phenomenon characteristic of

Table 1. Key Notation Table. Frequently used symbols through-
out this paper.

Symbol Meaning

V Set of entities (nodes) in the KG
R Set of relation types (edges)

FA Atomic facts (1-hop) ⊆ V ×R× V
FI Inferred facts (multi-hop)

⋃
n≥2 Fn

b Average branching factor |FA|
|V|

ϕr
|FI,r|
|FA,r| (ratio of inferred to atomic facts)

ϕG Minimal generalization ratio for successful grokking
I(h, r) Inference step: from entity h via relation r to a neighbor

grokking (Power et al., 2022; Wang et al., 2024).

3.1 Dataset

2WikiMultiHopQA Overview. We use the 2WikiMulti-
HopQA dataset (Ho et al., 2020), a well-known benchmark
for retrieval-augmented generation (RAG) and multi-hop
QA. 2WikiMultiHopQA consists of Wikipedia paragraphs,
supporting facts (triplets), and reasoning queries that often
require chaining multiple pieces of evidence. Despite its
breadth, the initial ratio ϕ ≈ 0.5 – that is, each two atomic
fact spawn only one inferred fact – making it insufficient for
grokking to emerge naturally.

Structured vs. Unstructured. We divide 2WikiMulti-
HopQA into two subsets:

• Structured: supporting facts are simplified into short
triplets (e.g., Paris -- country -- France).

• Unstructured: supporting facts are embedded in full
Wikipedia paragraphs, offering richer context but also
more noise and complexity.

Within these subsets, we focus on two of the four main
multi-hop tasks:

1. Comparison, which compares attributes of different en-
tities (e.g., same location or release year),

2. Composition, which chains multiple relations to derive
answers (e.g., who directed the sequel of a certain film?).

Our objective is to raise ϕ for both comparison and com-
position queries so that Transformers can develop internal
reasoning circuits.

3.2 Data Augmentation

To increase the coverage of multi-hop questions, we sys-
tematically add both atomic and inferred facts via LLM-
based generation. In each case, we ensure consistency with
2WikiMultiHopQA style, maintain balanced class distribu-
tions, and closely track ϕ so it exceeds known thresholds
for grokking (Wang et al., 2024).

3.2.1 COMPARISON TASK

In the comparison task, atomic facts (e.g., City --
country -- X) are paired to form questions about
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Algorithm 1 Augmentation algorithm for comparison
Require: loc examples // sample atomic facts
Require: detailed examples // extended paragraphs
1: atomic← generate locations(loc examples)
2: if task type == “full text” then
3: atomic← detalize locations(atomic, detailed examples)
4: end if
5: inferred← generate inferred(atomic)
6: return atomic, inferred

shared attributes. Initially, we select 120 atomic facts and
60 inferred facts centered on geographic locations (India,
France, the U.S., Canada, Russia). Using our augmenta-
tion strategy, we expand this to 1,000 atomic facts and
8,000 inferred facts, yielding ϕG = 8 – well above the
bare-minimum ratio of 3.6 reported by Wang et al. (2024)
for slow grokking.

Generating New Locations. We first produce atomic
facts describing additional cities or regions not present in
the original set. For the structured version, these remain
in the (City,country,Country) format. For unstruc-
tured data, we prompt a Large Language Model (LLM) to
generate concise, Wikipedia-like paragraphs (e.g., “Paris
Louvre Museum: The Louvre is a world-famous art mu-
seum...”).

Generating Inferred Examples. Next, we create
comparison-based queries by selecting two distinct location
facts and prompting, e.g., “Are Avignon Rocher des Doms
and Paris Louvre Museum both located in the same coun-
try?.” Algorithm 1 shows the pseudo-code for this procedure,
where generate inferred systematically merges atomic facts
into comparison questions:

3.2.2 COMPOSITIONAL TASK

Compositional tasks require linking multiple relations
in sequence (e.g., Person -- spouse of -- X --
born in -- Year). We begin with 200 atomic facts
and 100 inferred facts, ensuring no direct mention of dates
as an answer, and expand to 800 atomic facts plus 5,000
inferred facts. This boosts ϕG to 6.25 – enough to trigger
grokking dynamics in practice.

Graph Processing. We transform the textual facts into a
graph representation, extracting nodes (entities) and edges
(relations) via an LLM-based parser. We then enrich this
graph by adding new atomic edges (avoiding cycles) and
sampling multi-hop paths that yield additional inferred facts.

Inferred Question Pentads. Each multi-hop path
of length two or three corresponds to a pentad
(obj1, rel1, obj2, rel2, obj3). An LLM then converts these
pentads into natural-language questions (e.g., “Why did Ran-
dal Plunkett, 19th baron of Dunsany’s father die?”), approx-
imating real 2WikiMultiHopQA style. Algorithm 2 details
this approach:

Algorithm 2 Augmentation algorithm for composition
Require: text // original atomic facts in textual form
1: graph← parse graph(text)
2: atomic← graph.augment atomic()
3: inferred← graph.augment inferred()
4: inferred← diversify(inferred)
5: return atomic, inferred

Example of Augmented Facts. Table 2 provides a sam-
ple of how an atomic fact, a detailed version, and an in-
ferred question look after augmentation. Note how the final
question elegantly ties both locations to a yes/no query on
whether they share the same country.

Table 2. Examples of augmented facts for the 2WikiMultiHopQA
comparison task

Type Example

Atomic Fact Louvre Museum -- country --
France

Detailed
Fact

Paris Louvre Museum: The
Louvre Museum is a world-famous
art museum...

Inferred
Question

Are Avignon Rocher des Doms and Paris Louvre
Museum both located in the same country? (An-
swer: Yes)

After these augmentation steps, the resulting dataset attains
a sufficiently high ϕ. In the next section, we detail how we
train a GPT-2 style Transformer on this enriched corpus,
and how prolonged optimization reveals the hallmark late-
phase jump in multi-hop reasoning accuracy.

4 Experiments

We evaluate our grokking-based approach on the 2WikiMul-
tiHopQA dataset (Ho et al., 2020), augmented to ensure a
sufficiently large ratio ϕ. We report results on both struc-
tured (4.3) and unstructured (4.4) subsets, as well as the
original (unaugmented) data (4.2). Finally, we compare
performance across all settings (4.5) and offer qualitative
insights (4.6).

4.1 Setup

Model and Training. We train an 8-layer GPT-2–style
Transformer (768 hidden units, 12 attention heads) from
scratch using AdamW (?) with a learning rate of 5× 10−5,
batch size of 512, and weight decay 1. We rely on
the HuggingFace Trainer1 with default scheduling,
bf16 precision, and torch compile for speed. Train-
ing runs up to ∼300k steps or a late-phase jump in out-of-
distribution (OOD) accuracy emerges. We use three random
seeds on a single A100 GPU (48 hours each), reporting the
best run (variability ±1–2%).

1https://github.com/huggingface/
transformers
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ID vs. OOD Evaluation. In-Distribution (ID) queries
reuse entity/relation combinations observed in training,
whereas Out-of-Distribution (OOD) queries involve en-
tirely new combinations. The hallmark of “grokking” is a
delayed surge in OOD accuracy after prolonged training
(Power et al., 2022).

4.2 Original Dataset (No Augmentation)

Training solely on the original structured comparison data
produces 100% training accuracy with no late-phase OOD
jump (Figure 4 (a)).

This plateau aligns with earlier findings that ϕ ≈ 0.5 is
insufficient to induce grokking (Wang et al., 2024).

4.3 Structured Compositional and Comparison Tasks

Structured Comparison Tasks. Figure 4 (b) demon-
strates a clear late-phase jump in OOD accuracy when
queries ask if two entities share a property (e.g., City A
-- country -- France vs. City B -- country
-- France). This simpler relational structure more readily
triggers the formation of a generalizing circuit.

Structured Compositional Tasks. Figure 4 (c) shows
training curves for compositional tasks using triplet-based
facts, where chains of the form X -- spouse of --
Y -- nationality -- Z are needed.

• ID Accuracy rises to near perfection, indicating strong
memorization of seen patterns.

• OOD Accuracy remains low, showing no late-phase im-
provement. Complex multi-hop relations appear harder to
internalize even with augmentation (Nanda et al., 2023).

4.4 Unstructured Tasks

Moving to full Wikipedia paragraphs (vs. triplets) adds noise
and length (see Figure 4 (d)):

• Slower Convergence (ID): Parsing longer text delays
training progress.

• Modest OOD Gains: Even with data augmentation, text
distractors and ambiguous references limit improvement.

For easier comparison queries, the model still attains decent
ID accuracy but struggles to generalize OOD, reflecting the
sparser effective ϕ in unstructured text.

4.5 Comparison Table

Table 3 compares our Grokked GPT-2–small against GPT-
4o and o1-mini on the structured dataset. Our method out-
performs others, especially in the comparison task where we
reach nearly 100% even in OOD settings. Pretrained models
like GPT-4o may not provide a clear ID/OOD distinction
since they have seen extensive Wikipedia text.

Table 3. Structured 2WikiMultiHopQA results. *It is unclear
how to provide a clear ID/OOD distinction since models have seen
extensive Wikipedia text during training.

Method Comparison Composition Avg

ID OOD ID OOD ID OOD

GPT2-Small 0.70 0.59 – 0.03 0.70 0.31
GPT-4o* 0.87 0.25 0.56
o1-mini* 0.88 0.32 0.60

Grokked 1.00 0.96 0.93 0.07 0.97 0.52GPT2-Small

4.6 Qualitative Analysis

Success Cases. When synthetic augmentation covers
multi-hop chains (2–3 hops), the model handles queries like

“Which painter was born in the same city as the founder of
Company X?” or “Do City A and City B share the same
country?” — tasks that otherwise fail at lower ϕ.

Failure Cases. Rare relations or ambiguous entity names
still present challenges. If multiple entities share a label
but the dataset lacks proper disambiguation, the model may
conflate them, hindering OOD performance. Appendix A.4
highlights some examples.

Overall Findings. These results confirm that increasing
ϕ via carefully designed synthetic data is key for grokking-
based multi-hop QA. While composition tasks and unstruc-
tured text may need larger or more targeted augmentation,
the “memorization-to-generalization” jump for simpler rela-
tional queries demonstrates that grokking can significantly
boost OOD performance in real-world factual reasoning.

5 Limitations and Future Work
There are several avenues for improving and extending our
grokking-based approach to multi-hop reasoning. While
our proof-of-concept experiments on 2WikiMultiHopQA
provide promising evidence, there remain important open
questions regarding data complexity, interpretability, and
resource feasibility.

Datasets and Benchmarks. Our results demonstrate that
Transformer grokking can be induced on real-world datasets
such as 2WikiMultiHopQA. Nevertheless, a broader spec-
trum of challenging reasoning benchmarks could illuminate
the true scope and boundaries of our method. For instance,
tasks requiring longer reasoning chains, specialized domain
knowledge (e.g., biomedical), or temporal reasoning may
reveal nuanced constraints that do not emerge in standard
Wikipedia-based QA.

Analysis and Explainability. Although we observe emer-
gent generalization circuits, the precise mechanics of how
these circuits form remains only partially understood. Fu-

7
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Figure 4. (a) Accuracy on the comparison task for the original and grokked GPT-2-small. While both models eventually reach
perfect training accuracy (green curves), only the grokked GPT-2-small exhibits a significant late-phase improvement in OOD accuracy
(blue curves). This indicates that the grokked model continues to learn generalizable structure beyond the training data. (b) Training
curves for the structured comparison task. ID and OOD behave similarly. (c) The structured compositional task. We see near-perfect
ID accuracy but no late-phase jump in OOD test accuracy. (d) Training curves for the unstructured (full paragraph Wikipedia)
comparison setting. Complexity slows convergence and limits OOD gains, although ID accuracy still improves significantly.

ture work can:

• Quantify factual drift: Investigate how adding synthetic
(hallucinated) facts impacts the model’s factual consis-
tency and other downstream metrics.

• Mechanistic interpretability: Extend the logit-lens or
attention-probing analyses of Wang et al. (2024) to more
complex, real-world tasks. Doing so may reveal how
sub-networks handle shifting knowledge distributions –
particularly if a separate memory module is involved.

Factuality. A key question is how synthetic data (some
of it intentionally or accidentally hallucinated) affects the
model’s factual accuracy. While our experiments show that
moderate amounts of non-factual data can bolster general-
ization, we acknowledge potential risks:

• Distortion of real-world knowledge: Without careful fil-
tering, hallucinations might overwrite or obscure genuine
facts.

• Factual fragility: Certain tasks (e.g., medical or legal rea-
soning) demand rigorous correctness, making any factual
drift untenable.

As a partial solution, we envision more sophisticated
constraint-based data augmentation that preserves core fac-
tuality while still boosting the inferred-to-atomic ratio ϕ.
Investigating such hybrid strategies is an intriguing direc-
tion for future work.

Scope. We expanded the scope from contrived toy prob-
lems to large-scale, factual datasets derived from Wikipedia.
However, there remain many open questions:

• Non-Wikipedia Domains: Would the same grokking
dynamics hold in domain-specific corpora (e.g., arXiv
papers, biomedical literature, or news articles)?

• Other Reasoning Paradigms: Beyond factual QA, it is
unknown whether a generalizing circuit would also yield
improvements on commonsense or moral reasoning tasks,

where the inference rules are less formally grounded.

Feasibility. Finally, we note that training large Trans-
former architectures for extended periods, as required by
grokking, can be prohibitively expensive. Techniques to
reduce this overhead, such as those described by Lee et al.
(2024), are essential. Concretely, future work might explore:

• Scaling Laws: Determining how model size, dataset size,
and ratio ϕ collectively influence training cost.

• Accelerated Convergence: Applying curriculum learn-
ing or specialized optimizers that shorten the “memoriza-
tion phase” and expedite the onset of generalization.

• Pre-training: Pre-trained models can facilitate grokking
by leveraging prior knowledge, improving performance,
and accelerating the transition from memorization to gen-
eralization. Since they already encode fundamental pat-
terns (e.g., linguistic or mathematical rules), they might
require less training time to achieve generalization.

In summary, while we establish the efficacy of grokking for
multi-hop factual QA, there is ample room to refine, extend,
and better explain these emergent capabilities. We hope our
work can serve as a foundation for future explorations into
more powerful, transparent, and efficient forms of implicit
reasoning in large language models.

6 Conclusion
We have demonstrated that carefully crafted data synthesis
can reshape the distribution of factual language corpora in
a way that unlocks grokking-based generalization. Even
a moderately sized GPT-2 model can achieve substantial
gains in multi-hop reasoning by leveraging the late-phase
formation of internal circuits – outperforming more power-
ful models that do not receive synthetic data augmentation.
Moreover, our empirical results indicate that factuality is not
significantly compromised; on average, the model’s answers
become more accurate when given a well-balanced mixture
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of real and synthesized facts. The main message of this
work is that boosting the inferred-to-atomic ratio ϕr via
synthetic data remains the most direct route to emergent
reasoning circuits.

Nevertheless, our approach also highlights several limita-
tions. Full generalization across all relations requires each
relation’s atomic facts to be sufficiently augmented, which
can be challenging for rare or low-frequency relations. In
many real-world corpora, knowledge graphs are not only
sparse but also disconnected or partially non-injective, lim-
iting the number of multi-hop paths the model can learn
from.

Finally, natural language challenges persist in practical
contexts. Real-world text often contains ambiguous ref-
erences, unevenly distributed relations, and disjoint sub-
graphs, making high-quality data augmentation non-trivial.
Nonetheless, our work illustrates the promise of implicit
reasoning – once the ratio of inferred facts surpasses a crit-
ical threshold, the model internalizes robust logic circuits
that can tackle complex multi-hop queries. We hope these
findings encourage further research on efficient synthesis
methods, broader domain applications, and deeper analysis
of the mechanics behind grokking in large language models.

Impact Statement
By demonstrating how targeted data augmentation can un-
lock emergent multi-hop reasoning capabilities, this work
paves the way for more robust, interpretable, and efficient
knowledge-intensive NLP.

The ability to induce “grokking” on real-world factual
datasets promises broader applications, ranging from high-
stakes domains (e.g., medical, legal, educational) to every-
day question answering.

At the same time, this work underscores the importance
of careful curation of synthesized facts to prevent misin-
formation. This balance between enhanced reasoning and
factual accuracy marks a crucial step toward trustworthy,
generalizable language models.
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A Appendix

A.1 Sketch of Proof of Lemma 1

Proof. We break the argument into three parts.

1. Counting all potential (n+ 1)-node sequences. A simple n-hop path is determined by choosing an ordered tuple of
(n+ 1) distinct entities. The number of ways to choose distinct nodes v0, v1, ..., vn out of |V| is:(

|V|
n+ 1

)
(n+ 1)!.

Here,
( |V|
n+1

)
is the number of ways to pick n+ 1 distinct nodes (unordered), and (n+ 1)! is the number of ways to order

those nodes into a possible directed path of length n.

2. Probability of each directed path being valid. Under the random-graph assumption, the probability that there is a
directed edge from vi−1 to vi (for i = 1, ..., n) is b

|V|−1 . Assuming independence across edges, the probability that all n
edges are present simultaneously is (

b
|V|−1

)n

3. Expected number of valid n-hop paths. By linearity of expectation (applied to each of the
( |V|
n+1

)
(n+ 1)! ordered

node tuples), the expected value of |Fn| is:

E[|Fn|] =
(

|V|
n+ 1

)
(n+ 1)!

(
b

|V|−1

)n

.

For large |V|, one can use the binomial approximation
(
n
k

)
≤ nk

k! for
( |V|
n+1

)
, such as

(
|V|

n+ 1

)
≤ |V|n+1

(n+ 1)!
(for fixed n as |V| → ∞ )

Computing Bound By definition 2.3 and 2.10,

ϕn,r =
|Fn,r|
|FA,r|

and |FA,r| = |V| · br.

Together with the result from the third step being E[|Fn|] =
( |V|
n+1

)
(n+ 1)!

(
b

|V|−1

)n

, we obtain,

E[ϕn,r] =
|Fn,r|
|V| · br

=

( |V|
n+1

)
(n+ 1)!

(
br

|V|−1

)n

|V| · br

≤
|V|n+1

(n+1)! (n+ 1)!bnr

|V|br(|V| − 1)n

=
|V|nbn−1

r

(|V| − 1)n

= bn−1
r

( |V|
(|V| − 1)

)n

= bn−1
r

( 1

1− 1
|V|

)n

11



Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers

Which gives us the asymtotic upper bound,

lim
|V|→∞

E[ϕn,r] = lim
|V|→∞

bn−1
r

( 1

1− 1
|V|

)n

→ bn−1
r

Hence ϕn,r (and therfore ϕn overall) remains boudned above by bn−1, completing the proof.

A.2 Proof of Lemma 2

Sketch of Proof. By definition 2.3 and 2.10,

ϕn,r =
|Fn,r|
|FA,r|

and |FA,r| = |V| · br.

From A.1, we have

|Fn,r| ≲

(
|V|

n+ 1

)
(n+ 1)!

( br
|V| − 1

)n

.

because br
|V|−1 is the approximate probability that a randomly chosen edge belongs to relation r.

Thus,

ϕn,r =
|Fn,r|
|FA,r|

=
|Fn,r|
|V| br

≲

(
|V|

n+ 1

)
(n+ 1)! bn−1

r

|V| (|V| − 1)n
.

Full generalization requires ϕn,r ≥ ϕG for all r yielding the required constraint

ϕG ≤ ϕn,r

⇔ ϕG ≤
(

|V|
n+ 1

)
(n+ 1)! bn−1

r

|V| (|V| − 1)n

⇔ br ≥ n−1

√
ϕG |V| (|V| − 1)n( |V|

n+1

)
(n+ 1)!

.

In other words, if any relation r has br (its branching factor) that fails to exceed this threshold, then ϕn,r cannot reach ϕG.
Hence, that particular relation will not “grok,” so the KB is not fully generalizable over n-hop facts (although it might still
be partially generalizable for other relations).

A.3 Formal Derivation of the Node-Count Bound

Similar to A.2, for full generalization we can derive a bound for the node count |V|. From the requirement ∀r ∈ R, ϕn,r ≥
ϕG, we derive,

∀r ∈ R, ϕn,r ≥ ϕG

⇔ min
r

(
|V|

n+ 1

)
(n+ 1)!bn−1

r

mathcalV |(|V| − 1)n
≥ ϕG

in other words, the worst generalizable relation r still needs to fulfill ϕn,r ≥ ϕG for KB to be fully generalizable. Resolving
after |V| without the use of the binomial approximation yields,

12



Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers

min
r

(
|V|

n+ 1

)
(n+ 1)!bn−1

r

|V|(|V| − 1)n
≥ ϕG

⇔ min
r

|V|!
(n+ 1)!(|V| − n− 1)!

(n+ 1)!bn−1
r

|V|(|V| − 1)n
≥ ϕG

⇔ min
r

|V|!
(|V| − n− 1)!

bn−1
r

|V|(|V| − 1)n
≥ ϕG

⇔ (|V| − 1)!

(|V| − n− 1)!(|V| − 1)n
min
r

bn−1
r ≥ ϕG

⇔ (|V| − 1)!

(|V| − n− 1)!(|V| − 1)n
≥ max

r

ϕG

bn−1
r

⇔ Γ(|V|)
Γ(|V| − n)(|V| − 1)n

≥ max
r

ϕG

bn−1
r

Thus we have:

|V| ≥ min
{
v ∈ N :

Γ(v)

Γ(v − n
)
(v − 1)n

≥ max
r

ϕG

bn−1
r

}
.

For an empirical example (i.e., using a randomly generated graph), see Figure 5.

Figure 5. Growth of ϕ3,r (y-axis) with |V| (x-axis) for br = 2. The red line is ϕ3,r =
(|V|

4

)
96

|V|(|V|−1)3
(formula values). The green line

are empirical values obtained by randomly generating a graph with the same amount of nodes (|V|) and edges (|V|br). Due to randomness,
our generated/empirical graph can have locally higher branching factors, resulting in overall more inferred facts. Our formula for ϕ3,r

therefore effectively underestimates the true value of ϕ3,r . Nevertheless, the formula correctly approximates the shape and order of
magnitude. This holds also for other combinations of br and n.

A.4 Qualitative Examples

In the following section, we present qualitative examples of QA pairs (”Question”, ”Ground Truth”) from the composition
and comparison tasks that the model failed to classify correctly. Some errors stem from inconsistencies in the 2WikiMul-
tiHopQA dataset, while others arise due to our augmentation strategy. Overall, we believe that the model is capable of
achieving 100% accuracy, as demonstrated in previous studies.

Composition There are several grammatical inconsistencies in the 2WikiMultiHopQA dataset that prevent our model from
reaching 100% accuracy.

Nationality questions may have inconsistent ground truth formats For nationality-related questions, the ground truth
can be either an adjective or the name of a country, even when the latter is grammatically incorrect.

13



Grokking in the Wild: Data Augmentation for Real-World Multi-Hop Reasoning with Transformers

Question: What nationality is William Seymour, 3rd Duke of Somerset’s father?
Ground Truth: English

Question: What nationality is Amadeus VIII, Duke of Savoy’s mother?
Ground Truth: France

Adjective instead of noun in country-related answers In some cases, the ground truth is an adjective instead of a noun
referring to a country.

Question: Which country is the trumpeter of Paper Bird from?
Ground Truth: American

Comparison Comparison errors are primarily due to limitations in the data augmentation algorithm, which failed to generate
a sufficient number of inferred facts for some relational queries. Most of them are related to lakes, rivers, or airports, which
we attribute to the sparsity of the base data.

Question: Are both Wainwright/Wainwright Field 21 Airport and Roberval Air Saguenay Water Aerodrome
located in the same country?
Ground Truth: Yes

Question: Are Long Lake, East Ferris, Ontario, and Montreal Lake, Saskatchewan, both located in the same
country?
Ground Truth: Yes

Question: Are Deer Creek, Osage River, and Big Prairie Dog Creek both located in the same country?
Ground Truth: Yes

Question: Are Chicoutimi/Saint-Honoré Aerodrome and Rtishchevo Air Base both located in the same country?
Ground Truth: No

A.5 Data Synthesis

Here, we present the prompts used throughout our data augmentation process. During our experiments, we leveraged both
GPT-4o and o1-mini to generate diverse and high-quality augmented data.

A.5.1 COMPOSITION

Graph parsing

You are graph gpt. You build graph based on the provided text. Find all objects, their
relations and types.
Pick one of the following types: - Person - Location - Object (include everything that
was not above)
Return the following format with numbering: 1. <Avatar; Film><director><James Cameron;
Person> 2. <James Cameron; Person><directed><Titanic; Object>

Question formatting

You are a question formatting assistant. Your task is to create questions based on the
given relations and objects.
Use the provided examples as a guide for the question style. Ensure that the answer
remains unchanged and enclosed in <a> tags. You may rephrase one question, given the
example format. Strictly follow the logic of given examples. Connect it in the following
logic: <obj1> -> <rel1> -> <rel2> -> <obj3>
Return numbered responses in format: 1. What is the director of the film that James
Cameron produced?<a>Steven Spielberg</a> 2. Who directed the movie starring Tom
Cruise?<a>Christopher Nolan</a>
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A.5.2 COMPARISON

Atomic fact generation

You are a helpful assistant that generates geographical facts. Generate new unique
locations and their countries in the following format: Follow the style of the examples,
but do not use the same locations.
Rules: 1. Use real locations and countries 2. Each location should be unique 3. DO
NOT REUSE PROVIDED EXAMPLES 4. Do not answer the question - only provide locations 5. Do
not use formatting except for numbering 6. Generate equal amount of NEW!!! locations for
following countries:

Detailed atomic fact generation

You are a helpful assistant that generates geographical facts. Based on the provided
examples, generate a paragraph for each location-country pair. Strictly follow the
style and lenght of the provided examples Do not answer the question - only provide the
paragraph with numbering. DO not return empty lines. One by one. Return the number
according to the given data. Here are the examples:
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