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Abstract

Understanding the actions of both humans and ar-
tificial intelligence (AI) agents is important before
modern AI systems can be fully integrated into
our daily life. In this paper, we show that, despite
their current huge success, deep learning based AI
systems can be easily fooled by subtle adversarial
noise to misinterpret the intention of an action in
interaction scenarios. Based on a case study of
skeleton-based human interactions, we propose
a novel adversarial attack on interactions, and
demonstrate how DNN-based interaction models
can be tricked to predict the participants’ reac-
tions in unexpected ways. Our study highlights
potential risks in the interaction loop with AI and
humans, which need to be carefully addressed
when deploying AI systems in safety-critical ap-
plications.

1. Introduction
State-of-the-art action recognition and prediction models
are deep neural networks (DNNs), due to their capability
of modeling complex problems (Si et al., 2019; Li et al.,
2019a;b) in an accurate way. Nonetheless, it has also been
shown that these models are prone to adversarial examples
(or attacks). DNNs can behave erratically when processing
inputs with carefully crafted perturbations, even though
such perturbations are imperceptible to humans (Biggio
et al., 2013; Szegedy et al., 2013; Goodfellow et al., 2014).

In this work, we investigate the adversarial vulnerability
of DNN reaction prediction (i.e., regression) models in
skeleton-based interactions. Skeleton signals are among one
of the most commonly used representations for human or
robot motion (Zhang et al., 2016; Wang et al., 2018). While
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adversarial attacks have been extensively studied on images
(Goodfellow et al., 2014; Su et al., 2019; Brown et al., 2017;
Duan et al., 2020), very few works have been proposed for
skeletons (Liu et al., 2019; Wang et al., 2019; Zheng et al.,
2020). In comparison to the image space, which is continu-
ous and where pixels can be perturbed freely without raising
obvious attack suspicions, the skeleton space is sparse and
discrete. It has a temporal nature that needs to be taken into
account. Consequently, attacking skeleton-based models
requires many more constraints than the image space.

Existing work on attacking skeleton-based models have only
considered the single-person scenario, and have all focused
towards recognition (i.e., classification) models (Liu et al.,
2019; Wang et al., 2019; Zheng et al., 2020). However,
interaction scenarios involving two or more characters are
essential to the interaction between humans and AI. They
should not be overlooked if our ultimate goal is to build AI
agents that can fit into our daily life.

To close this gap, we propose an Adversarial Interaction
Attack (AIA) to test the vulnerability of regression DNNs in
skeleton-based interactions involving two characters. Being
able to recognize a person’s action accurately is important,
but it is equally important to be able to go a step further
and respond to the action in an appropriate way. In light
of this, the usage of regression models is necessary. We
hence modified the output layers of two state-of-art models
on action recognition to return reactor sequences instead of
class labels, and we trained them on skeleton-based interac-
tion data. We examine the performance of AIA under both
white-box and black-box settings. We show that our AIA
attack can easily fool the two regression models to misinter-
pret the actor’s intentions and predict unexpected reactions.
Such reactions have detrimental effects on either the actor
or the reactor. Overall, our work reveals potential threats of
subtle adversarial attacks on interactions involving AI.

In summary, our contributions are:

• We propose an adversarial attack approach - Ad-
versarial Interaction Attack (AIA), that is domain-
independent, and has the potential to work for general
sequential regression models.

• We propose an evaluation metric that can be applied
to evaluate the performance of sequential regression
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attacks. Such a metric is currently missing from the
literature.

• We empirically show that our AIA attack can gener-
ate targeted adversarial action sequences with small
perturbations, which fool DNN regression models into
making incorrect (possibly dangerous) predictions.

Note that the goal of our work is to design a new type of
attack and evaluation metric that is capable of handling any
type of regression-based problems in general. We thus leave
the compatibility between our work and previously proposed
anthropomorphic constraints (Liu et al., 2019; Wang et al.,
2019; Zheng et al., 2020) as a future area of interest.

2. Proposed Adversarial Interaction Attack
In this section, we first provide a mathematical formulation
of the targeted adversarial sequence attack problem. We
then introduce the loss functions used by our AIA attack.

Overview. Intuitively, the goal of our AIA attack is to
deceive the reactor AI agent into thinking that the actor is
doing a different specific action by making minor changes
to the positions of the actor’s joints or the angles between
joints. The reactor agent will consequently respond by
performing the reaction that is targeted by the attack.

2.1. Formal Problem Definition

A skeleton sequence with T frames can be represented math-
ematically as the vector X = (x1,x2, ...,xT ) where xi is
a skeleton representation of the ith frame, which is a vec-
tor consists of 3D-coordinates of the human skeleton joints.
More specifically, xi ∈ RN×3, where N denotes the number
of the joints. In our approach, we flattened xi into R3N .

First, we define the formal notion of interaction. Suppose
the two characters in a two-person interaction scenario are
actor A and reactor B. The task of an interaction prediction
model f is to predict an appropriate reaction (i.e., skeleton)
yt at each time step t for reactor B based on the observed
skeleton sequence of actor A (x1, · · · ,xt). This can be
written mathematically as:

f(x1, · · · ,xt−1,xt) = yt.

Given an input skeleton sequence X = (x1,x2, ...,xT ), an
adversarial target skeleton sequence Y′ = (y′1,y

′
2, ...,y

′
T ),

and a prediction model f : RT×3N → RT×3N , the goal
of our AIA attack is to find an adversarial input sequence
X′ = (x′1, · · · ,x′T ) by solving the following optimization
problem:

min
X′

∑
t∈T
‖x′t−xt‖∞s.t.

∑
t∈T
‖f(x′1, · · · ,x′t)−y′t‖2 < κ,

(1)

where, ‖ · ‖p is the Lp norm, and κ ≥ 0 is a tolerance fac-
tor, which serves as a cutoff that distinguishes whether the
output sequence is recognizable as the target reaction. This
gives us more flexibility when crafting the adversarial input
sequence X′ because the acceptable target sequence is non-
singular; the output sequence does not need to be exactly the
same as the target sequence to resemble a particular action.
We empirically determine this factor based on informal user
survey in Appendix B.1. Intuitively, the above objective is
to find a sequence X′ with minimum perturbation from X,
such that the distance between the output and the target is
less than κ/T on average for each time step.

2.2. Adversarial Loss Function

Our goal is to develop a mechanism that crafts an adver-
sarial input sequence which solves the above optimization
problem given any target output sequence, while also main-
taining the naturalness of the adversarial input sequence. In
order to achieve this goal, we propose the following adver-
sarial loss function:

Ladv = Lspatial + λLtemporal, (2)

where the Lspatial loss term minimizes the spatial distance
between the output sequence and the target sequence, and
the Ltemporal loss term maximizes the coherence of the
perturbed input sequence so as to maintain the naturalness
of the adversarial input sequence.

Spatial Loss. The spatial loss term aims to generate adver-
sarial output sequences that are visually similar to the target
reaction sequences; that is, its objective is to minimize the
spatial distance between the output joint locations and the
neighbourhood of the target joints for every time step. Fol-
lowing the formulation of the relaxed optimization problem
in Equation 1, we use the L2 norm to measure the distance
between two sets of joint locations:

Lspatial =
∑
t∈T

inf{‖f(x′1, · · · ,x′t)−pt‖2 | pt ∈ St} (3)

with St being an (N -1)-sphere defined by:

St(y
′
t, η) = {pt ∈ R3N | ‖pt − y′t‖2 = η}. (4)

Here, η = κ/T is the mean of the enabling tolerance factor
κ in equation Equation 1 over time T .

Temporal Loss. The temporal loss term is to guarantee
the naturalness of the generated adversarial input sequence.
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Specifically, the movement of each joint should be continu-
ous in time, and motions with abrupt huge change or tele-
portation should be penalised. The Ltemporal term achieves
this goal by maximizing the coherence of each element in
the perturbed input sequence with respect to its neighboring
elements in the temporal dimension. This gives:

Ltemporal =
∑
t∈T

(‖x′t − x′t−1‖2 + ‖x′t − x′t+1‖2) (5)

A scaling factor 0 ≤ λ ≤ 1 is introduced in front of
Ltemporal to balance the two loss terms.

We use the first-order method Project Gradient Descent
(PGD) (Madry et al., 2018) to minimize the combined ad-
versarial loss iteratively as follows:

X′0 = XX′m+1 = ΠX,ε

(
X′m−α · (∇X′

m
Ladv(X′m,Y′))

)
(6)

where, ΠX,ε(·) is the projection operation that clips the
perturbation back to ε-distance away from X when it goes
beyond,∇X′

m
Ladv(X′m,Y′) is the gradient of the adversar-

ial loss to the input sequence, m is the current perturbation
step for a total number of M steps, α is the step size and ε
is the maximum perturbation factor. The sequence Y′ for
a target reaction can be either customized or sampled from
the original dataset.

3. Overview on a Case Study
In this section, we conduct a study on a selected set of attack
objectives that can be easily associated with real scenarios
and can serve as motivations behind our approach. We
provide two extra case studies in Appendix A. Detailed
experimental settings can be found in Section 4.

3.1. Case Study: ‘punching’ to ‘handshaking’

In this case study we consider a case opposite to the previ-
ous one, where human exploiters are capable of attacking
AI agents actively and derive benefit from being active at-
tackers. In the future, it could become a common practice
to utilize AI agents to complete dangerous tasks so as to
lower the chance of human operators incurring injuries or
fatalities. Security guard is one such job that might be taken
over by an AI agent. Imagine a secret agency that hires AI
security guards is invaded by intruders and is placed in a
scenario where combat becomes necessary. The AI guard
will fail in its role if the invaders know how to apply effec-
tive adversarial attacks towards it. This is the case in Figure
1 where the model was fooled to suggest ‘handshaking’ for
the reactor (the green character) rather than ‘punching’.

4. Performance Evaluation
In this section, we conduct an experiment to evaluate the
effectiveness (white-box attack success rate) of our AIA at-

tack. We conduct an extra experiment on the transferability
(black-box attack success rate) in Appendix C.

4.1. Experimental Settings

Dataset. We conduct our experiments on the SBU Kinect
Interaction Dataset, which is composed of interactions of
eight different categories, namely ‘approaching’, ‘depart-
ing’, ‘kicking’, ‘punching’, ‘pushing’, ‘hugging, ‘handshak-
ing’, and ‘exchanging’. It contains 21 sets of data sampled
from 7 participants using a Microsoft Kinect sensor, with
approximately 300 interactions in total. Each character’s
information is encoded into 15 joints with the x, y, and
depth dimensions. The values of x and y fall within [0, 1],
and depth in [0, 7.8125].

We partitioned each interaction into two individual se-
quences corresponding to each character, respectively. One
sequence will be used as the action (input), and another will
be used as the reaction (output). Due to the lack of data in
this dataset, we trained our response predictors from both
characters’ perspectives. With this belief, we used the skele-
ton sequences of both characters as input data independently.
That is, for each interaction sequence x = x1 _ x2, we
create two input/target pairs (x1,x2) and (x2,x1).

Models and Training. We adopted one convolutional
model, TCN (Bai et al., 2018), and one recurrent model,
DeepGRU (Maghoumi & LaViola Jr, 2019), and modified
them such that the models predict sequences instead of cate-
gorical labels. Our TCN model has 10 hidden layers with
256 units in each layer, and our DeepGRU model follows
Maghoumi & LaViola Jr (2019) exactly, with the output
being a linear layer instead of the attention-classifier frame-
work. We trained each model on the preprocessed dataset
for 1,000 epochs using the Adam optimizer with a learning
rate of 0.001. We held out sets s01s02, s03s04, s05s02,
s06s04 in the original dataset as our test set.

Attack Setting. We used the same step size of α = 0.03
and ran our AIA attack for M = 400 iterations in all ex-
periments. In addition, we used the Adam optimizer with
a learning rate of 1e-3 to minimize the adversarial loss
function Ladv. The scaling factor λ for the temporal loss
term Ltemporal was set to 0.1. The tolerance factor κ was
selected for each target reaction based on our previous in-
formal user survey in Appendix B.1.

4.2. Effectiveness of our AIA Attack

In this experiment, we examine the effectiveness of our AIA
attack under the white-box setting with different values of
maximum perturbation ε allowed. Successful attacks need to
satisfy two conditions: 1) the adversarial output sequences
need to be recognizable as the target reaction (related to κ),
and 2) the adversarial input sequences need to be visually
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Figure 1. Side-by-side comparison of Case Study ‘punching’ to ‘handshaking’. Top-Bottom: original prediction, adversarial prediction.
Blue character: input, green character: output.

similar enough compared to the natural input sequences
such that it can circumvent security detection (related to ε).
Hence, the smaller the ε the attack can work under, the more
effective the attack is.

To control the overall change to the input sequence, we per-
turbed only the depth dimension for each joint. This makes
it much easier to visualize perturbations. On a side note, this
is a stricter optimization problem with constraints compared
to the original proposed problem. Thus, the outcome of this
experiment is applicable to the original problem as well.

4.2.1. ADVERSARIAL TARGETS.

We created 8 sets of target reactions, corresponding to all
8 interactions in the SBU Kinect Interaction Dataset. The
objective of each set of targets is to change the output re-
actions of all test data into one specific target reaction. We
then perform targeted adversarial attacks based on these
objectives over a range of ε values.

We consider an attack to be successful if the sum term in
Equation 1 computed on the test datum is less than the
human-determined κ based on the sample sets. Otherwise
we consider the attack to have failed. The average attack
success rates over all 8 target sets under various ε are re-
ported for both models in Figure 2. We used the κ sampled
from human judges to evaluate attack success rates for ob-
jectives 1 to 5. We used the average κ over 5 objective sets
to evaluate the remaining 3 attack objectives.

4.2.2. RESULTS.

On average, with a perturbation factor ε of 0.225 to 0.3,
our AIA attack is able to alter almost all output sequences
of the DeepGRU model into any target sequence. In con-
trast, a larger ε of 0.375 to 0.45 is necessary for AIA to
achieve a similar level of performance on the TCN model.
In general, the TCN model is more robust to our attack than
the DeepGRU model. However, under this white-box set-
ting, we were able to achieve a 100% attack success rate
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Figure 2. Average white-box attack success rate of our AIA attack
on TCN and DeepGRU.

on almost all target sets for both models. Overall, our AIA
algorithm is able to accomplish most attack objectives with
small perturbations of 2% to 5% to natural input sequences.

5. Conclusion
In this paper, we presented a framework for attacking
skeleton-based interaction prediction models. We proposed
the first targeted sequential regression attack that is capable
of altering the entire output sequence completely - Adversar-
ial Interaction Attack (AIA). On top of that, we also defined
an evaluation metric that can be adopted to evaluate the
performance of adversarial attacks on sequential regression
problems. We demonstrated on variants of two previous
state-of-art action recognition models, TCN and DeepGRU,
that our AIA attack is very effective. Additionally, we
showed that our AIA attacks are highly transferable if ref-
erenced from proper models. We also discussed through
a case study, how AIA might impact interactions between
human and AI in real scenarios. Future work will look into
the extension of AIA to other spatio-temporal regression set-
tings. We hope this serves to motivate careful consideration
about how to effectively incorporate AI based agents into
human daily life.
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A. Extra Case Studies
A.1. Extra Case Study 1: ‘handshaking’ to ‘punching’

Figure 3 illustrates a successful AIA attack that fools the
model to predict a ‘punching’ action for the reactor (the
green character) as a response to the adversarially perturbed
‘handshaking’ action of the actor (the blue character). Note
that the perturbation only slightly changed the actor’s action.
This reveals an important safety risk that needs to be care-
fully addressed before machine learning based AI agents
can be widely used in human daily life. Suppose that we are
at an AI interactive exhibition, a participant would like to
shake hands with an AI robot agent. He gradually extends
his hand, sending out an interaction request to the AI agent
and is expecting the AI agent to respond to his handshaking
invitation by shaking hand with him. However, instead of
reaching its hands out gently, the AI agent decided to punch
the participant in the face because the participant’s body
does not stay straight. It would be extremely hazardous if
the human character unintentionally wiggled his body in
a pattern similar to the adversarial perturbation introduced
in this case study. While the actual chance of this happen-
ing is extremely low due to the high complexity of data in
both the spatial and the temporal dimensions, this threat
might nevertheless happen if AI workers become widely
deployed worldwide. In this case, the human is a victim
by inadvertently performing an adversarial attack (wiggling
their body).

A.2. Extra Case Study 2: ‘approaching’ to ‘remaining’

Extra Case Study 2 demonstrated in Figure 4 examines
the case of how a cheater might be able to bypass an AI
agent’s detection. Whilst automatic ticket checkers have
been widely adopted, manual ticket checking is still required
for numerous situations. For instance, public transportation
companies may want to check whether a passenger has paid
for the upgrade fee if he or she is in a first class seat. Now
suppose that a public transportation company decides to
hire AI agents to do the ticket checking job. The public
transportation company will lose a huge amount of income
if passengers know how to stop the ticket checkers from ‘ap-
proaching’ as in Figure 4, or even change their ‘approaching’
response to ‘departing’.

B. Empirical Understanding of AIA
B.1. Tolerance Factor κ

The objective of AIA attack is defined with respect to a
tolerance factor κ (see Equation 1, Equation 3 and Equation
4), which is a flexible metric that distinguishes whether the
output sequence is close to the targeted adversarial reaction.
Because there are many factors involved, such as the char-

acter’s height, handedness, and the direction the character
is facing, conventional distance metrics such as L1 and L2

norms are not suitable to define precisely what the pattern of
a specific action should look like. Therefore, we determine
the value of κ based on human perception via an informal
user survey.

In order to obtain appropriate values for κ to evaluate
whether an attack is successful, we randomly sampled 5
out of 8 sets of attack objectives and presented them to 82
human judges, including computer science faculties and stu-
dents. Each objective set is composed of an action-reaction
pair and contains output sequences generated from 6 dif-
ferent values of ε (from left to right in ascending order).
For each sample set, we asked the human judges to choose
the leftmost sequence they believe is performing the target
reaction. Sampled objectives and the responses from the 82
human judges are recorded in Table 1.

Based on the responses from the 82 human judges, we
computed the tolerance factor κ in the optimization problem
defined in Equation 1 based on the average of∑

t∈T
‖f(x′1, · · · ,x′t)− y′t‖2 (7)

over the 5 sample objective sets. The calculation of Equation
7 for each objective set is based on the minimum ε polled
from the 82 human judges, and the corresponding value of
κ is then selected as the optimal value (boldfaced in Table
1).

Note that, κ serves as a geometrical boundary between the
natural and the adversarial outputs, whereas ε is a maxi-
mum perturbation constraint that we don’t want the input
perturbation to go beyond.

B.2. Effect of the Temporal Constraint

Here, we study the effect of the temporal constraint
Ltemporal defined in Equation 5 on the naturalness of the
generated adversarial input action sequence. Specifically,
we investigate how the input skeleton sequence changes
in the depth axis as that is the only perturbed dimension
throughout our experiments. Our hypothesis is that this ad-
ditional factor will enable our AIA attack to find adversarial
input sequences that change more smoothly with respect to
time.

We demonstrate visually a comparison between adversarial
sequences generated with and without the temporal con-
straint in Figure 5. The top sequence is an adversarial in-
put sequence generated with the Ltemporal term removed,
whereas the bottom sequence is an adversarial input se-
quence generated with λ = 0.1 scaling factor applied to the
Ltemporal term. In comparison to the previous experiment,
we plot the skeletons from the depth-y point of view as we
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Figure 3. Side-by-side comparison of Extra Case Study 1 ‘handshaking’ to ‘punching’. Top-Bottom: original prediction, adversarial
prediction. Blue character: input, green character: output.

Figure 4. Side-by-side comparison of Extra Case Study 2 ‘approaching’ to ‘remaining’. Top-Bottom: original prediction, adversarial
prediction. Blue character: input, green character: output.

Table 1. Responses from the 82 human judges. The optimal κ for each attack objective is highlighted in bold.
ε = 0.075 0.15 0.225 0.3 0.375 0.45
Handshaking 1 (κ = 90.9) 4 (κ = 84.28) 44 (κ = 79.52) 3 (κ = 74.49) 12 (κ = 45.04) 14 (κ = 35.03)
Punching 58 (κ = 52.04) 13 (κ = 47.63) 6 (κ = 43.97) 3 (κ = 41.76) 0 (κ = 39.14) 2 (κ = 34.91)
Kicking 3 (κ = 100.61) 71 (κ = 93.17) 7 (κ = 86.57) 1 (κ = 80.68) 0 (κ = 47.47) 0 (κ = 35.36)
Departing 0 (κ = 85.03) 7 (κ = 76.78) 26 (κ = 71.77) 12 (κ = 67.58) 1 (κ = 41.78) 10 (κ = 32.70)
Pushing 6 (κ = 28.66) 3 (κ = 26.55) 2 (κ = 25.16) 14 (κ = 23.98) 49 (κ = 22.77) 5 (κ = 21.31)

Figure 5. Adversarial input action sequences generated by our AIA attack with (bottom row, and λ = 0.1) or without (top row) the
temporal constraint Ltemporal.

are more interested in visualizing the perturbation.

As shown in Figure 5, it is observable that in general, the top
sequence has more abrupt changes in body position between
each time step. This almost never happens in the bottom
sequence. More specifically, in the bottom sequence, when

a larger change to the body posture is necessary, the change
is always preceded by smaller changes in the same direction.
In contrast, in the top sequence, any large changes can take
place in just one time step. This type of aggressive change
should be avoided as much as possible, as it could make the
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attack more easily detectable.

C. Extra Experiment on Black-Box
Transferability

In addition to white-box effectiveness, we examine how
transferable our attack is. An adversarial example generated
based on one model is said to be transferable if it can also
fool other independently trained models. In this experiment,
we examine robustness of the TCN model and the DeepGRU
model towards adversarial examples generated based on
each other.

C.1. Black-box Setting.

We employed the same metric established in Section 5.1 to
determine an attack to be successful or not. To evaluate how
strong our attack is under the black-box setting, we reused
the adversarial input sequences in the previous experiment.
We feed all adversarial sequences generated based on one
model into another and inspect their effectiveness when used
to attack unseen model. In other words, we use adversarial
sequences generated based on the DeepGRU model into the
TCN model and vice versa. The average black-box attack
success rates over a range of ε are reported for both models
in Figure 6.

C.2. Results.

Surprisingly, adversarial examples generated from the TCN
model are remarkably strong. With an ε value of 0.375 to
0.45, adversarial actions generated from the TCN model
successfully fooled the DeepGRU model more than 80%
of the time for almost all attack objectives. Along with the
results in Section 4.2, this substantiates that our AIA attack
has high transferability in addition to being effective.

We also observed that adversarial actions generated from the
DeepGRU model are rather weak on the TCN model under
the black box setting. It is only able to achieve an average
success rate of 30% irrespective to the maximum pertur-
bation ε permitted. The TCN model is more robust than
DeepGRU in the white-box setting. We suspect that this
is because the convolutional layers used in TCN are more
robust than the gated recurrent units of DeepGRU. Specif-
ically, in order to fool the TCN model, the attack needs
to take into account the high level feature maps between
the convolutional layers. However, adversarial examples
generated from the DeepGRU model might not be able to
fool the convolutional layers of TCN because these high
level features were not taken into consideration in the first
place. Note that, while being relatively more robust, TCN
also leads to more transferable attacks. We leave further
inspection to this disparity as a future work.
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Figure 6. Average black-box attack success rate of our AIA attack
on TCN and DeepGRU.


