AutoL2S: Auto Long-Short Reasoning for Efficient
Large Language Models

Feng Luo'* Yu-Neng Chuang'* Guanchu Wang®? Hoang Anh Duy Le' Shaochen Zhong!
Hongyi Liu' Jiayi Yuan! Yang Sui! Vladimir Braverman3* Vipin Chaudhary’® Xia Hu'
Rice Univeristy, 2University of North Carolina at Charlotte,
3Johns Hopkins University, *Google Research, °Case Western Reserve University
{f138, ynchuang, el72, hz88, hl87, yj101, yang.sui, xia.hu} @rice.edu
gwang16@charlotte.edu, vova@cs.jhu.edu, vipin.chaudhary @case.edu

Abstract

The reasoning-capable large language models (LLMs) demonstrate strong perfor-
mance in complex reasoning tasks but often suffer from overthinking issues after
distillation, generating unnecessarily long chain-of-thought (CoT) reasoning paths
for easy reasoning questions, thereby increasing inference cost and latency. Recent
work largely applies reinforcement learning to shorten reasoning paths in models
that already possess reasoning capability. However, these approaches generalize
poorly to non-reasoning LLMs, as they assume initial reasoning ability and rely on
sparse, outcome-based rewards that make optimization unstable and limit effective
learning. In this paper, we propose Auto Long-Short Reasoning (AutoL2S), a
dynamic and model-agnostic framework that enables LL.Ms to adaptively adjust
reasoning length according to input complexity, while specifically targeting the
stage of transferring non-reasoning LLMs into reasoning-capable but efficient ones
via distillation. AutoL2S introduces a learned mechanism in which LLMs are
trained on data annotated with long and short CoT paths, together with a special
<EASY> token that signals when long reasoning can be skipped. During inference,
the <EASY> token can indicate when the model can skip generating lengthy CoT
reasoning. Furthermore, we extend our framework with AutoL.2S-Plus, which
employs the AutoL2S as a reference model in a length-aware fine-tuning objective
to calibrate expected reasoning length, enabling further efficiency gains without
loss of accuracy. We theoretically and empirically find that the joint training of long
and short CoT paths not only enables dynamic reasoning but also helps the training
of shorter CoT generation through knowledge transfer from longer CoT paths.
Extensive experiments demonstrate that AutoL2S effectively reduces reasoning
length without sacrificing performance, establishing it as an effective framework
for scalable and efficient LLM reasoning.

1 Introduction

Large Language Models (LLMs) have rapidly emerged as essential components in complex reasoning
tasks, demonstrating impressive capabilities across advanced applications [22, 3]]. However, their
deployment in such settings is hampered by fundamental inefficiencies: complex reasoning often
requires long-context decoding and extended output generation, which significantly amplifies the
computational cost due to the autoregressive nature of LLMs. Specifically, as the reasoning chain
grows longer, the computational costs in both memory and inference latency increase quadratically.
These issues, known as overthinking problems [4} 20], are further exacerbated by the fact that

“Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Efficient Reasoning.

reasoning-capable LLMs are typically large in scale [8], compounding the cost of inference. As
a result, practical deployment becomes increasingly cost-prohibitive. This motivates the need
for lightweight alternatives that can preserve strong reasoning capabilities while operating with
substantially lower resource demands.

To enable scalable deployment of reasoning-capable LLMs, recent works have explored knowledge
distillation techniques [8} 15} 20 |34]], where non-reasoning LLMs are trained to mimic the reasoning
patterns exhibited by stronger reasoning-capable LLMs. These distilled strategies offer significant
reductions in parameter and computational cost during training, but simultaneously increase the
generated length of chain-of-thought (CoT) reasoning paths, which causes significant cost for
decoding. This is because the distillation often replicates the full long-context reasoning paths
from the teacher models (i.e., the LLMs with stronger reasoning capabilities) in order to preserve
reasoning performance, resulting in considerable computational overhead during inference. Existing
work, such as Qwen3 [32] and Claude [2]], addresses the overthinking issue by relying on users’
manual selection based on prior knowledge to guide LLMs toward either long-form or short-form
reasoning. Moreover, other approaches [17, [18] have primarily employed reinforcement learning
(RL) to shorten reasoning paths on top of reasoning-capable LLMs, where these methods heavily
rely on models that already exhibit reasoning ability, as these RL-based methods depend on strong
reference policies and sparse, outcome-based rewards. However, they still lack the flexibility to
dynamically adjust CoT length to the input context, remain constrained by the model’s inherent
reasoning capability, and are difficult to extend to non-reasoning LLMs.

We identify two fundamental challenges in optimizing towards LLM efficient reasoning. First, the key
challenge is to determine when a short reasoning path is sufficient and when a longer one is required.
The redundancy of CoT reasoning varies with input complexity, where simple questions can often be
answered with minimal reasoning, whereas complex ones demand multi-step reasoning. Without a
criterion to adaptively choose between short and long reasoning, models either waste computation
on easy cases or risk omitting essential steps for difficult ones. Second, the lack of supervision for
short CoT reasoning paths makes it difficult for LLMs to determine the minimal amount of reasoning
required to solve a task. Existing training data rarely indicate when shorter reasoning is adequate,
making it difficult for non-reasoning models to acquire efficient reasoning ability by learning to
omit unnecessary steps without degrading accuracy [19]]. As a result, even well-aligned LLMs may
struggle to identify and retain only the essential reasoning steps [38} |16} 36]. Therefore, effective
CoT compression should be input-aware and dynamically estimate the appropriate reasoning length
based on input complexity. However, determining the optimal reasoning length per input is inherently
ambiguous, making the efficient-oriented training a challenging and non-trivial problem. This raises
a natural question: How can we enable LLMs to automatically and dynamically stop overthinking
when long and detailed reasoning is unnecessary?

To address these challenges, we propose Auto Long-Short Reasoning (AutoL.2S), a dynamic and
model-agnostic framework that enables LLMs to adaptively control reasoning length. AutoL2S
automatically determines when long reasoning is necessary and when concise reasoning suffices,
thereby bypassing redundant steps without degrading accuracy. Our approach relies on augmented
training data that explicitly annotates instances where short CoT reasoning is adequate. This dataset
is constructed by pairing long- and short-form CoT reasoning paths, with <EASY> tokens indicating
cases where long reasoning can be skipped. We provide both theoretical and mechanistic analyses
showing that training with long-form CoT paths improves the quality of short-form reasoning,
ensuring robust performance even when the model selects shorter outputs. Furthermore, we extend
AutoL2S with a length-aware fine-tuning objective (AutoL2S-Plus) that leverages a reference model
to calibrate expected reasoning length, yielding additional compression of CoT without sacrificing
correctness. We evaluate AutoL2S on two base LLMs across five reasoning benchmarks spanning
mathematics and physics questions. Results show that AutoL.2S and AutoL.2S-Plus reduces reasoning
length by up to 68.9% while preserving task accuracy. Our contributions are summarized as follows:

* Auto Long-Short Reasoning. AutoL.2S provides a model-agnostic framework that adaptively
selects long or short reasoning paths with <EASY> token based on input complexity.

* Long2Short Insight. Theoretical and empirical analyses indicate that long CoT paths benefit the
learning of short reasoning, enabling concise outputs without accuracy loss.

* Extensive AutoL2S-Plus. We extend AutoL2S as a reference model with a length-aware fine-
tuning objective guided to further compress reasoning paths.

* Reasoning Evaluation. Across five benchmarks in mathematics and physics, AutoL2S reduces
CoT length by up to 68.9% while preserving performance.

2 Preliminary

In this section, we first formally define the Auto Long-Short reasoning problem. We then illustrate
the challenges in distilling reasoning capabilities from large reasoning-capable LLMs.

2.1 Problem Definition

We study the problem of distilling strong but long reasoning traces from a reasoning-capable LLMs
into a smaller, non-reasoning-capable LLMs f(- | §) with trainable parameters 6, with the goal of
enabling it to generate shorter reasoning paths while maintaining task performance. Specifically,
let Viong denote a set of long reasoning responses produced by reasoning-capable LLMs such as
DeepSeek-R1 [8] or QwQ-32B-preview [28]], and let Vgp0: denote a set of short reasoning responses
from models with inherent shorter reasoning path such as Qwen2.5-Math-7B-Instruct [32]. We
construct a distillation dataset D = {S,L}, where L C Vjong and S C YVpor¢ are collections of
valid long and short CoT paths as defined in Definition|[I]

The objective is to train f(- |) in D such that, after training, the distilled model f(- | 6p) can
automatically adapt its reasoning length to the complexity of the input question, generating a short
path when sufficient and a long path when necessary. We expect the outputs of f(- | p) to be
significantly shorter than those of a model trained only on long-form responses f(- | 6y), while
preserving correctness. This reduction in output length translates directly to fewer generated tokens
and thus faster inference. To this end, we propose the Auto Long-Short Reasoning framework to
enable efficient LLM reasoning through joint utilization of valid long and short CoT paths.

Definition 1 (Valid Long and Short CoT Reasoning). Ler X denote the input with ground-truth
answer y*. Let S = (s1,...,87¢) and L = ({1,..., 01,) be token sequences in a vocabulary V),
with lengths Ts < Ty, Fort € [1,Ts| and t € [1,Tyr], we define the prefixes Scy = (81,...,8t—-1)
and Loy = (£q,...,0;_1). We say that S and L are effective short and long CoT paths if every next
token is semantically valid given the input and prefix, and the final sequence yields the correct answer
y*. Formally, the sets of all such sequences are

s;:{Sest

(X7 S<t) l_ St, Vt S [17TS]7 f(Xa S) = y*}v

L::{LEVTL

(X,Ley) by, V€ [1,Ty), f(X,L)= y}

2.2 Challenges of Distilled Reasoning LL.Ms

To equip a non-reasoning model (Qwen [31], Llama3 [7]]) with reasoning capabilities, DeepSeek-R1
proposes to distill such non-reasoning models using supervised fine-tuning (SFT) with a curated
reasoning dataset generated by DeepSeek-R1 [§8]. Rather than relying on reinforcement learning (RL),
SFT provides a simpler and more effective approach for enhancing reasoning capabilities. However,
SFT-trained reasoning models still face a critical challenge: they often generate overly lengthy outputs
containing redundant or irrelevant content [26]. To mitigate this overthinking problem, a series of
works leverage SFT to achieve efficient reasoning [18} [30]. Specifically, they curate a reasoning
dataset with variable lengths and fine-tune the model on these information-dense samples to develop
concise reasoning capabilities.

Striking a balance between brevity and completeness remains non-trivial in removing lengthy outputs.
Compressing the reasoning path too aggressively risks omitting essential logical steps, which may
degrade model performance on complex tasks. Moreover, in the absence of definitive supervision
signals for the minimal sufficient reasoning trace, LLMs may struggle to determine the optimal
stopping point for their reasoning process. To address this, we propose the Auto Long-Short
Reasoning framework, which encourages LLMs themselves to autonomously decide when to generate
shorter or longer reasoning based on the input context.

3 Auto Long-Short Reasoning

We systematically introduce the AutoL.2S framework in this section. AutoL.2S aims to distill reasoning
capabilities from reasoning-capable LL.Ms, allowing the model to learn effective reasoning patterns
while reducing the length of reasoning paths required to arrive at correct reasoning answers. In
particular, AutoL2S effectively identifies easy questions and applies short reasoning for efficiency,
while preserving long-form reasoning only for more complex cases, ultimately resulting in a reduced
average number of generated reasoning tokens. We further present the proposed training methodology
and efficient inference process of AutoL2S for efficient LLM reasoning.

3.1 Training Stage of Auto Long-Short Reasoning

AutoL2S constructs a diverse reasoning dataset by preparing both long and short CoT reasoning
paths, based on the complexity of each question. Specifically, long CoT reasoning paths are provided
for all questions to capture the complete reasoning process. In contrast, short CoT reasoning paths
are more preferable when they can still lead to correct answers, providing more efficient reasoning
representation. Formally, questions that are solvable through a short reasoning path are defined as
EASY questions. AutoL2S aims to train LLMs not only to learn both long and short reasoning
patterns, but also to identify EASY questions, enabling LLMs to perform efficient reasoning when
appropriate. More details are provided in Appendix

Constructing Long CoT Reasoning Paths. We use Bespoke-Stratos-17k [[15] as the source of
questions. Then, we employ DeepSeek-R1 [8] to generate CoT traces along with final answers as the
basic long CoT reasoning dataset. Specifically, AutoL2S follows the format in Equation [3]to annotate
long CoT reasoning paths and answer for questions in the dataset. The annotation of the reasoning
path aims to distill the decision-making capabilities of DeepSeek-R1 into the target model.

Constructing Short CoT Reasoning Paths for EASY Questions. Rather than utilizing entire
long CoT responses for all questions, an effective reasoning dataset for concise reasoning should
contain shorter CoT responses for easy questions. In principle, as long as the answer remains correct,
shorter CoT are preferable as training samples. To curate such concise CoT for easier questions, we
apply Qwen2.5-Math-7B-Instruct [32] to the same Bespoke-Stratos-17k dataset, generating reasoning
traces with shorter CoT trajectories. We employ rejection sampling to filter and retain only those
traces that produce correct answers, replacing the corresponding long CoT responses with these
shorter alternatives. We annotate the corresponding questions using the <EASY> token. In contrast,
questions for which only long CoT responses yield correct answers are without the <EASY> token,
and their original long CoT traces are retained in the training dataset.

AutoL2S Training Strategy. We distill the reasoning ability from the target model by supervised
fine-tuning on the constructed dataset D, which contains paired long- and short-form CoT reasoning
paths. Formally, let f(-|6) be a targeted non-reasoning base LLM, and x; € D be text data within D.
The fine-tuned f*(-|0p) is optimized using the standard perplexity objective as follows.

. . 1
min Layeros = minE, p {— E
> D |D|

|D|
1 log f(x; | 1,22, Jz‘—h@)]

%

3.2 Concatenation Advantage for Long to Short Reasoning Training

In this section, we analyze AutoL2S from both theoretical and empirical perspectives to highlight
the mechanism and advantages behind AutoL2S training. We provide Theorem [I|to formalize that
concatenating long and short CoT paths benefits the training of the short path, with the improvement
quantified by conditional mutual information and mechanism analysis.

Theorem 1 (Concatenation Advantage for Long—Short CoT Training). Ler X denote the input,
L = (¢4,...,41,) the long-CoT token sequence, and S = (s1,...,81s) the short-CoT token
sequence, with training order L to S. Then, the conditional entropy H(:|-) of the next short token
satisfies:

H(S; | X,L,S<«;) < H(S: | X,S5«), Vte][l,Ts]. €))

[<Long trigger> J { Long reasoning] [<EASY> J\ { Short reasoning }
4

\
Y 7} \)
\
Take the <Long trigger> I Replace the <EASY>
for input || into <Short trigger>
1
4 4 4 \ 4
[Question } [<Long trigger> J [Question] \[<Short trigger> }
(a) Generating the long reasoning (b) Generating the short reasoning

Figure 1: During the inference process, LLMs generate (a) a long reasoning path in the case without
<EASY> token; and generate (b) a short reasoning path in the case with <EASY> token. Note that the
generation of either long or short CoT reasoning paths is automatically determined by the model
without any human intervention.

Equivalently, averaging across all positions with the improvement quantified as

Ts 1 Ts

H(S: | X, 8c) = H(S. | X, L, Sci)| = 72 DTS5 L] X,8) 20, @
t=1

1
Ts =

Thus, the long CoT path L provides additional mutual information I(-|-) that strictly increases the
entropy of the short CoT path S whenever L is informative about S.

Theorem [T shows that concatenating the long and short CoT paths reduces the conditional entropy of
the short CoT path under long CoT path distillation settings, since the long path provides additional
information. In the model training case, where the loss is cross-entropy or equivalently perplexity,
the same inequality holds under AutoL2S settings. Thus, long CoT concatenation benefits the
training of the short CoT path by providing more information during training. In addition, rejection
sampling offers a principled mechanism for aligning the training distribution with our theoretical
framework. From Theorem [T} long CoT reasoning paths provide auxiliary information that reduces
the entropy of short-path learning; while rejection sampling effectively tunes how much positive
signal is preserved in training by filtering short CoT reasoning paths to ensure correctness while
varying their informational overlap with long paths.

Importantly, we find that long reasoning paths help LLMs better acquire short reasoning paths. As
shown empirically in Section[4.4] providing a long CoT paths supplies additional context that enables
the model to learn short CoT reasoning with additional information, where the attention maps become
noticeably sparser after training. This offers evidence that long CoT acts as a useful guide for short
CoT, consistent with the information-theoretic prediction of Theoremm

3.3 Inference Stage of Auto Long-Short Reasoning

During the inference stage, AutoL2S automatically determines whether to reason with long or short
CoT reasoning paths. Specifically, guided by the data formats in Equations (@) and (5), the model
begins generation by producing either a <Long Trigger> or an <EASY> token, corresponding to a
regular or EASY question, respectively. In practice, as illustrated in Figure (1| AutoL2S dynamically
adapts its reasoning strategy based on the initial token generated after receiving a user prompt. If
the model outputs a <Long Trigger> token (Figure[I[a)), it indicates that the question requires a
long reasoning path; the model then proceeds with standard autoregressive generation to complete
the reasoning and produce the final answer. In contrast, if the model generates an <EASY> token
(Figure[T|b)), this suggests the question is solvable with a short reasoning path.

Here, Theorem 2| formalizes this mechanism by showing that the choice between long and short CoT
paths can be cast as an optimal threshold rule as risk minimization problem, balanced by distributional
divergence and token cost. Each candidate path is associated with a per-instance risk. The optimal
adaptation policy is then obtained by minimizing the expected risk between the two options.

Theorem 2 (Optimal Adaptation with <EASY> Token). Let pf (- | X) and p3 (- | X) denote the
predictive distributions when decoding with the long and short CoT paths L = (¢1,... 07,) and

S = (s1,...,87s), respectively. Given an input X, define the per-instance risks as
Js(X) =E[D(p§(- | X) | ph (-1 X))] + AE[Ts(X)],
J(X) = A (E[TL(X)] + ex),

where D(-||-) is a statistical divergence, Ts(X) and Ty, (X) denote the token lengths of the short and
long CoT reasoning paths, A > 0 is the per-token cost, and c¢; > 0 is a fixed overhead for invoking
the long path. Then the optimal long-to-short adaptation policy can be:

0 ifJs(X) < Jp(X) (choose short CoT),
1 otherwise (choose long CoT).

(X) = { 3)

Theorem [2] establishes that an optimal adapting strategy always exists between the short and long CoT
paths, and is uniquely determined by a threshold trade-off between the divergence of their predictive
distributions and the token cost during inference. Thus, the decision boundary is well-defined and
deterministic almost everywhere in the adaptation policy. Our training objective in Equation [I]
implicitly minimizes the per-instance risk. Specifically, as shown in Theorem [T} concatenating
long and short CoT paths reduces the distributional divergence term, while the use of <EASY>
tokens enables the model to approximate the optimal adaptation policy by balancing divergence
reduction against token cost during inference. In particular, Theorem [2] also establishes that optimal
adaptation depends on balancing the divergence between long and short predictive distributions with
the per-token inference cost.

3.4 AutoL2S-Plus Fine-tuning

Leveraging the ability of AutoL2S to dynamically adjust between short and long reasoning, we
further extend to AutoL2S-Plus to enhance efficiency in LLM reasoning. AutoL2S-Plus incorporates
a length-aware reinforcement learning objective that explicitly encourages shorter reasoning when
appropriate. Motivated by O1-Pruner [17], we adopt the Length-Harmonizing Fine-Tuning objective,
but employ different rewarding lengths guided by f*(:|0p). We formally define the length-aware
loss with the reference model f*(-|0p) as:

LPIUS(@; x, y) = fEI,N’D, Yt (yl2) |:Inin (T(@)Rplus(x, y|f*), Clip(r(@), 1—e, 1+€)Rp1us(x’ ylf*))} 7

where 7(6) denotes the likelihood ratio between the target policy 6 and the reference policy mef,
Rps (z, y|f*) is the reward to length of reasoning of f*(-|0p), and clip() is the clipping function.

Using a more accurate reference model to derive the expected reasoning length yields stronger
compression and improves efficiency without degrading accuracy. We leverage the long- and short-
form outputs of the fine-tuned AutoL2S model—used as the reference model—to estimate the
expected average length and accuracy across the mixture of CoT paths. This objective encourages the
model to harmonize long and short reasoning by rewarding generations that match the target length
distribution while preserving correctness.

4 Experiments

In this section, we conduct experiments to evaluate the performance of AutoL.2S framework, aiming
to answer the following three research questions: RQ1: How does AutoL2S perform on LLM
reasoning tasks in terms of accuracy and efficiency? RQ2: Does the proposed long-short reasoning
annotation contribute to effective length compression of the reasoning path during training? RQ3:
What mechanisms enable auto long-short reasoning to preserve reasoning performance despite
reduced output length?

4.1 Datasets and Baselines

Datasets We train the AutoL2S framework on the Bespoke-Stratos-17k dataset [15] and evalu-
ate it on six reasoning benchmarks: Math500 [11], GPQA-Diamond (GPQA) [24]], GSMS8K [5],

OlympiadBench-Math [10]], AIME25. Additional dataset statistics and preprocessing details are
provided in Appendix

Baseline Methods We compare AutoL2S framework with the three state-of-the-art baselines to
assess the effectiveness of length reduction and performance preservation. The baselines are listed
as follows: (1) R1-Distilled reasoning LL.Ms (Bespoke-Stratos-3B/7B) [35]]: LLMs fine-tuned in
a supervised manner using the Bespoke-Stratos-17k reasoning dataset, which serves as an oracle
for reasoning. (2) Ol-pruner [17]: introduces a Length-Harmonizing Reward, integrated with a
PPO-style loss, to reduce the length of generated CoT reasoning. (3) CoT-Valve [18]: controls
the length of reasoning by combining the LoRA weights of distilled long-form reasoning CoT and
non-reasoning model. (4) DPO [23]]: finetunes on the same aligned long-short CoT pairs. For each
example, the short CoT is preferred if correct; otherwise, the long one is chosen, ensuring alignment
with efficient and accurate reasoning goals (5) TokenSkip [30]]: trains on compressed CoT paths with
mixed compression ratios. More details on baselines can be found in Appendix [C|

4.2 Experimental Settings

In this section, we present the experimental settings used to train and assess AutoL.2S. The following
outlines the evaluation metrics and corresponding implementation details.

Evaluation of Efficient LLM Reasoning. Following the settings of [[17, [35]], we evaluate the
efficiency of the reasoning task from two perspectives: (1) accuracy and (2) length of generated
tokens. The ideal outcome is to maintain reasoning performance while minimizing the number of
output tokens required for reasoning. Given the autoregressive decoding nature of LL.Ms, a shorter
output CoT reasoning path directly leads to faster inference. Thus, in this work, we use the length of
tokens as a metric to evaluate the efficiency of LLM reasoning.

Implementation Details. To demonstrate the flexibility of AutoL2S across different LLM backbones,
we train the framework using two non-reasoning base LLMs: Llama3.2-3B-Instruct [29] and Qwen2.5-
7B-Instruct. The short reasoning samples are generated via rejection sampling with sampling numbers
4 and 8 using the math-capable Qwen2.5-Math-7B-Instruct model, with the inference temperature
fixed at 0.7, following the settings of [35, 33]]. We filter out duplicate question—answer pairs that
appear with both <Easy> and <Long Trigger> after rejection sampling, retaining only the pairs
associated with <Easy> in such cases. For AutoL2S-plus training, we estimate the expected average
reasoning length by sampling 16 generations per input under AutoL2S with a rejection sample size of
8. More details are in Appendix [E]

4.3 Reasoning Efficiency of AutoL2S (RQ1)

We compare AutoL.2S with the baseline methods in reasoning tasks. The results are presented in
Table[I] showing the reasoning accuracy and output length for the models. Additional results from
repetition experiments are provided in Appendix [F} The bold numbers represent the best performance,
and underline refers to the second best among the settings. We calculate the improvement percentile
relative to the Bespoke-Stratos-3B/7B model, a strong baseline finetuned on the Bespoke-Stratos-17k
dataset. The AIME accuracy in Llama3.2-3B-Instruct is masked due to the 0.0 accuracy, even in
strong baseline. We conclude observations as follows:

* Baseline Comparison. AutoL2S outperforms CoT-Valve [18] with better accuracy preservation
and shorter reasoning path; and achieves shorter reasoning path than O1-pruner [[17] with competi-
tive accuracy preservation on average in four reasoning datasets. While both O1-pruner and the
proposed AutoL.2S are able to preserve reasoning accuracy, AutoL.2S achieves approximately 4X
shorter reasoning paths compared to O1-pruner. Furthermore, AutoL2S achieves nearly identical
average reasoning accuracy compared to the oracle SFT R1-Distilled reasoning LLMs, while pro-
ducing significantly shorter reasoning paths. This demonstrates that AutoL.2S attains competitive
performance in efficient reasoning tasks.

¢ AutoL2S-Plus Comparison. We compare AutoL2S-Plus with both the baseline and the base
AutoL2S framework. AutoL2S-Plus achieves up to a 67.7% reduction in reasoning length without
degrading accuracy, demonstrating the effectiveness of length-aware fine-tuning. Relative to
AutoL2S, it further compresses the reasoning path while preserving task performance.

Table 1: Accuracy (Acc) and Token Length (Len) across five reasoning benchmarks for 3B and 7B
models. “rj” represents the number of rejection sampling for the long-short reasoning data annotation.

| Average | MATH500 | GPQA | GSMSK | Olympiad | AIME25
\ Acc Len Acc Len Acc Len Acc Len Acc Len Acc Len

Llama-3.2-3B-Instruct

Llama-3.2-3B-Instruct
Bespoke-Stratos-3B
CoT-Valve

O1-pruner

DPO

TokenSkip
AutoL2S (rj = 0)
AutoL2S (1j = 4)
AutoL2S (1j = 8)

AutoL2S-Plus

0.393 890 0.404 740 0.293 498 0.729 203 0.147 2117 0.000 887
0479 9015 0.574 10148 0.273 8888 0.822 1387 0.246 15635 0.000 22677

0422 10349 0478 10890 0.283 9634 0773 2238 0.154 18634 - 24736
(-0.057) (+14.8%) (-0.096) (+7.3%) (+0.010) (+8.4%) (-0.049) (+61.4%) (-0.092) (+19.2%) - (+9.1%)
0481 5043 0562 5295 0308 5394 0816 860 0236 8622 - 14614
(+0.002) (-44.1%) (-0.012) (-47.8%) (+0.035) (-39.3%) (-0.006) (-38.0%) (-0.010) (-44.9%) - (-35.6%)
0479 5864 0574 5363 0283 6740 0.832 OIl 0227 10441 - 13856
(+0.000) (-35.0%) (+0.000) (-47.2%) (+0.010) (-24.2%) (+0.010) (-34.3%) (-0.019) (-332%) - (-38.9%)
0441 9464 0512 10327 0258 9438 0.801 2238 0.191 15853 - 21098
(-0.038) (+5.0%) (-0.062) (+1.8%) (-0.015) (+6.2%) (-0.021) (+61.4%) (-0.055) (+1.4%) - (-3.4%)
0492 6904 0552 5990 0389 7520 0.823 1166 0206 12941 - 21248
(+0.014) (-23.4%) (-0.022) (-41.0%) (+0.116) (-15.4%) (+0.001) (-15.9%) (-0.040) (-17.2%) - (-6.3%)
0474 6680 0574 5666 0283 7546 0812 1322 0226 12185 - 18579
(-0.005) (-25.9%) (+0.000) (-44.2%) (+0.010) (-15.1%) (-0.010) (-4.7%) (-0.021) (-22.1%) - (-18.1%)
0483 5518 0.546 4181 0369 6165 0.800 1021 0218 10706 - 19422
(+0.004) (-38.8%) (-0.028) (-58.8%) (+0.096) (-30.6%) (-0.022) (-26.4%) (-0.028) (-31.5%) - (-14.4%)
0467 1830 0550 1819 0273 2048 0810 353 0233 3099 - 5022
(-0.012) (-79.7%) (-0.024) (-82.1%) (+0.000) (-77.0%) (-0.012) (-74.5%) (-0.013) (-80.2%) - (-77.9%)

Qwen2.5-7B-Instruct

Qwen2.5-7B-Instruct
Bespoke-Stratos-7B
CoT-Valve

Ol-pruner

DPO

TokenSkip
AutoL2S (1j = 0)
AutoL2S (1j = 4)
AutoL2S (1j = 8)

AutoL2S-Plus

0495 728 0748 556 0308 27 0902 260 0384 896 0.133 1902
0.544 8139 0.824 5383 0359 6049 0926 1321 0444 11322 0.167 16619
0495 6306 0730 4483 0369 4930 0.898 928 0378 8647 0.100 12540
(-0.049) (-22.5%) (-0.094) (-16.7%) (+0.010) (-18.5%) (-0.028) (-29.7%) (-0.066) (-23.6%) (-0.067) (-24.5%)
0.547 7797 0832 5104 0399 5312 0936 1065 0433 958 0.133 17920
(+0.003) (-4.2%) (+0.008) (-5.2%) (+0.040) (-12.2%) (+0.010) (-19.4%) (-0.011) (-15.3%) (-0.033) (+7.8%)
0.556 6060 0.806 3688 0374 5961 0920 1576 0447 7364 0233 11712
(+0.012) (-25.5%) (-0.018) (-31.5%) (+0.015) (-1.5%) (-0.006) (+19.3%)(+0.003) (-35.0%) (+0.066) (-29.5%)
0.552 7944 0.826 5335 0434 5508 0918 1165 0447 10947 0.133 16767
(+0.008) (-2.4%) (+0.002) (-0.9%) (+0.075) (-9.0%) (-0.008) (-11.8%) (+0.003) (-3.3%) (-0.034) (+0.9%)
0.561 6886 0.800 3468 0434 4777 0934 735 0470 9068 0.167 16384
(+0.017) (-15.4%) (-0.024) (-35.6%) (+0.075) (-21.0%) (+0.008) (-44.4%) (+0.026) (-19.9%) (+0.000) (-1.4%)
0.550 5872 0.786 2560 0409 3495 0017 509 0438 7991 0200 14807
(+0.006) (-27.8%) (-0.038) (-52.4%) (+0.050) (-42.2%) (-0.008) (-61.5%) (-0.006) (-29.4%) (+0.033) (-10.9%)
0.538 5141 0798 2416 0394 3492 0929 488 0436 6459 0.133 12852
(-0.006) (-36.8%) (-0.026) (-55.1%) (+0.035) (-42.3%) (+0.003) (-63.1%) (-0.008) (-43.0%) (-0.033) (-22.7%)
0.558 ~ 2531 0.820 1719 0424 3485 0920 880 0424 3041 0200 3528
(+0.014) (-68.9%) (-0.004) (-68.1%) (+0.065) (-42.4%) (-0.006) (-33.4%) (-0.020) (-73.1%) (+0.033)(-78.8%)

* Rejection Sampling. We find that moderate rejection sampling (e.g., tj = 4) achieves nearly 2X
reduction in reasoning length with negligible accuracy loss compared to 1j = 0. This reveals a
sweet spot where the training distribution is dense enough to capture efficiency benefits without
sacrificing correctness. At higher 1j (e.g., 8), reasoning length is further compressed but at the cost
of small accuracy drops. These results indicate that AutoL.2S is not merely truncating reasoning
steps; rather, it learns to generalize efficiency from curated supervision, producing compressed
reasoning trajectories that respect correctness guarantees.

4.4 TImpact on Long-short Reasoning Annotation (RQ2)

In this section, we analyze the impact of our concatenation strategy to combine long and short CoT
reasoning paths in the long-short reasoning adaptation process. We conduct ablation studies on
different distillation strategies for long-short CoT reasoning paths, with Qwen2.5-7B-Instruct model
serving as the non-reasoning base model. We compare three other different format of annotation to
the proposed Long-to-short Reasoning Annotation (i.e., Long-short Distill): (1) Long-only Distill
represents the original distillation from only long reasoning in Bespoke-Stratos-17k reasoning dataset,
following the format in Equation [5} (2) Short-long Distill switches the position of long and short
reasoning path in Equation {4} and (3) Long-short Separated Distill constructs the long and short CoT
reasoning paths following the format in Equation[5] where short CoT reasoning paths are replaced
with long reasoning paths only whenever the corresponding answers are correct. All results are
demonstrated in Table[2] Compared with other formats of long-short term annotation, we observe that
Long-Short Distill achieves the best performance in terms of accuracy preservation and output length.

Table 2: Ablation studies of different annotation strategies on training the AutoL.2S framework.

Method | Average | MATHS500 | GPQA | GSMSK | Olympiad

| Acc Len | Acc Len | Acc Len | Acc Len | Acc Len
Long-only Distill 0.638 6019 | 0.824 5383 | 0.359 6049 | 0.926 1321 | 0.444 11322
Long-short Separated Distill | 0.626 4250 | 0.798 3123 | 0.389 5096 | 0.919 864 0.399 7919
Short-Long Distill 0.610 1798 | 0.758 3239 | 0.414 1754 | 0.883 701 0.384 1499

Long-Short Distill (rj = 0) ‘ 0.660 4512

0.800 3468 ‘ 0.434 4777

0.934 735 ‘0.470 9068

Long-Short Distill (j = 8) 0.639 3214 | 0.798 2416 | 0.394 3492 | 0929 488 | 0436 6459
Short-to-Long Reasoning Attention: Early vs. Late Training Step

—_ e
©n o —_ — 0.15 +
EE 0 Step = 300 0 Step = 1551 g
G @ 90 20 0105
& § 180 180 pl
>E 270 270 0058
9 5 360 360 S
o5 435 870 1305 1740 435 870 1305 1740 Logo

Key Positions (Long Reasoning) Key Positions (Long Reasoning)

Figure 2: Comparison of attention maps at early and late training steps of AutoL2S. Step 1551
corresponds to the final training step. Given the long sequence lengths, we group every 20 tokens
together to calculate attention scores between long and short reasoning paths for better visualization.

4.5 Impact of the <EASY> Token (RQ2)

In this section, we examine the impact of the <EASY> token on enhancing both the efficiency and
efficacy of LLM reasoning tasks. The results are showcased in Table [3] We conduct the ablation
studies on three different cases in terms of the long-short triggers and <EASY> tokens that we utilize in
the AutoL2S framework. Based on the AutoL2S framework, (1) “w/ Force-Short” refers to the setting
where <Short Trigger> is always used to initiate reasoning path generation; (2) “w/ Force-Long”
denotes the setting where <Longer Trigger> is consistently used to initiate CoT generation; and
(3) “w/o <EASY>” indicates that no explicit trigger is applied and the model generates reasoning paths
in formats that follow either Equation [5|or Equation[d] We summarize the findings as follows:

* AutoL2S vs. “w/o <EASY>"": AutoL2S outperforms the “w/o <EASY>” variant in both reasoning
accuracy and in the length of the generated CoT reasoning paths. This further demonstrates that
incorporating the <EASY> token to automatically switch between easy and regular reasoning modes
improves efficiency without compromising performance.

* AutoL2S vs. “Force-Long”: Compared to the “Force-Long” case, AutoL.2S obtains a similar
reasoning accuracy on average while generating around 30% shorter of the reasoning length.
Furthermore, compared to “Force-Long” with Bespoke-Stratos-7B, trained on the entire long
CoT reasoning data, we can observe that “Force-Long” outperforms Bespoke-Stratos-7B in terms
of reasoning accuracy while holding similar reasoning path length. These results indicate that
the long reasoning paths generated by our method are of higher quality than those produced by
Bespoke-Stratos-7B.

Table 3: Ablation studies of auto long-short reasoning using <EASY> token.

Method | Average | MATHS500 | GPQA | GSMSK | Olympiad
| Acc Len | Acc Len | Acc Len | Acc Len | Acc Len

Qwen2.5-Math-7B-Instruct | 0.603 1072 | 0.792 798 0.288 1806 | 0.943 357 0.389 1328
Bespoke-Stratos-7B 0.638 6019 | 0.824 5383 | 0.359 6049 | 0.926 1321 | 0.444 11322
AutoL2S w/o <EASY> 0.644 6327 | 0.792 5999 | 0.399 6489 | 0923 1389 | 0.463 11432
AutoL2S w/ Force-Short 0.639 1668 | 0.776 1616 | 0.409 1943 | 0.925 343 0.444 2768
AutoL2S w/ Force-Long 0.664 5912 | 0.844 5437 | 0.409 5808 | 0.922 1230 | 0.481 11173
AutoL2S (1j = 0) ‘ 0.660 4512 ‘ 0.800 3468 ‘ 0.434 4777 ‘ 0934 735 ‘ 0.470 9068

4.6 Mechanism behind the Auto Long-short Reasoning (RQ3)

In this section, we discuss the mechanism explanation of AutoL.2S training. To assess the mechanism
behind, Figure [2] presents the attention map comparisons across different training steps of AutoL2S,
highlighting the benefit of the concatenation order used in Long-Short Distill. In the early stages
of training (i.e., Figure [2|left side: training step 300), we observe that long CoT reasoning paths
significantly impact the attention patterns of short CoT reasoning paths, indicating that long-form
reasoning benefits the learning of short reasoning generation. As training progresses till the end (i.e.,
Figure [2]right side: training step 1551), the correlation between long and short CoT reasoning paths
significantly diminishes, indicating that they evolve into two distinct components. This separation
further explains why Auto Long-Short Reasoning is effective and flexible in switching to easy
questions simply using the <Short Trigger> when the <EASY> token is presented during inference.
The phenomenon again meets the properties of Theorem [I] where long CoT reasoning paths provide
auxiliary information for short-path learning. This also explain the reason why the direct use of
<Short Trigger> remains effective, without introducing dummy key—value pairs or modifying
positional encodings.

5 Conclusion

This paper presents the Auto Long-Short Reasoning (AutoL2S), a dynamic and model-agnostic
framework for improving the efficiency of LLM reasoning. By training on proposed annotated data
that pairs long and short CoT reasoning paths and incorporating a special <EASY> token, AutoL2S
enables LLMs to decide when extended reasoning is necessary and when a concise path suffices.
This learned adaptive behavior helps avoid overthinking simple questions, reducing unnecessary
computation. Experimental results show that AutoL2S reduces reasoning length by up to 68.9%
without degrading performance, demonstrating its effectiveness for scalable and cost-efficient LLM
deployment in real-world settings.

6 Acknowledgements

VB is partially supported by NSF CNS 2528780 award. This research was partially supported by NSF
Awards ITE2429680, 11S2310260, OAC2320952, OAC2112606, and OAC2117439. Additionally,
this research was supported by US Department of Transportation (USDOT) Tierl University Trans-
portation Center (UTC) Transportation Cybersecurity Center for Advanced Research and Education
(CYBERCARE) grant #69A3552348332.

Further, this work made use of the High Performance Computing Resource in the Core Facility for
Advanced Research Computing at Case Western Reserve University (CWRU). We give special thanks
to the CWRU HPC team for their prompt and professional help and maintenance. The views and
conclusions in this paper are those of the authors and do not represent the views of any funding or
supporting agencies.

10

References

(1]

(2]
(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning. arXiv preprint arXiv:2503.04697, 2025.

Anthropic. Claude, July 2023.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang
Hu, Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long
chain-of-thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi
Liu, Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the
overthinking of ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han,
Chen Luo, Jing Huang, Zhen Li, et al. Stepwise perplexity-guided refinement for efficient
chain-of-thought reasoning in large language models. arXiv preprint arXiv:2502.13260, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Chunrong Fang, Shiyu Zhao, Shiqing Ma, Zhenyu Chen, and Zhenting Wang.
Token-budget-aware 1lm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
arXiv preprint arXiv:2103.03874, 2021.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

Huiqgiang Jiang, Qianhui Wu, Chin-Yew Lin, Yuqing Yang, and Lili Qiu. Llmlingua:
Compressing prompts for accelerated inference of large language models. arXiv preprint
arXiv:2310.05736, 2023.

Bespoke Labs. Bespoke-stratos: The unreasonable effectiveness
of reasoning distillation. https://www.bespokelabs.ai/blog/
bespoke-stratosthe-unreasonable-effectiveness-of-reasoningdistillation,
2025. Accessed: 2025-01-22.

Tengxiao Liu, Qipeng Guo, Xiangkun Hu, Cheng Jiayang, Yue Zhang, Xipeng Qiu, and Zheng
Zhang. Can language models learn to skip steps? arXiv preprint arXiv:2411.01855, 2024.

11

https://www.bespokelabs.ai/blog/bespoke-stratosthe-unreasonable-effectiveness-of-reasoningdistillation
https://www.bespokelabs.ai/blog/bespoke-stratosthe-unreasonable-effectiveness-of-reasoningdistillation

[17] Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naigiang Tan, Xiaochun
Cao, and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning
pruning. arXiv preprint arXiv:2501.12570, 2025.

[18] Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve:
Length-compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025.

[19] Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve:
Length-compressible chain-of-thought tuning, 2025. URL https://arxiv. org/abs/2502, 9601,
2025.

[20] Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi,
Luke Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. s1: Simple
test-time scaling. arXiv preprint arXiv:2501.19393, 2025.

[21] OpenAl. Learning to reason with llms.
urlhttps://openai.com/index/learning-to-reason-with-1lms/.

[22] Avinash Patil. Advancing reasoning in large language models: Promising methods and ap-
proaches. arXiv preprint arXiv:2502.03671, 2025.

[23] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model.
Advances in neural information processing systems, 36:53728-53741, 2023.

[24] David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a
benchmark. In First Conference on Language Modeling, 2024.

[25] Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang,
Kai Wang, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reasoning models.
arXiv preprint arXiv:2503.04472, 2025.

[26] Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi
Liu, Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on
efficient reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

[27] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

[28] Qwen Team. Qwq-32b-preview.
urlhttps://qwenlm.github.io/blog/qwq-32b-preview/.

[29] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[30] Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

[31] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen?2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

[32] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yugiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

12

[33] Wang Yang, Hongye Jin, Jingfeng Yang, Vipin Chaudhary, and Xiaotian Han. Thinking
preference optimization. arXiv preprint arXiv:2502.13173, 2025.

[34] Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is
more for reasoning. arXiv preprint arXiv:2502.03387, 2025.

[35] Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long
chain-of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

[36] Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv
preprint arXiv:2407.06023, 2024.

[37] Zhaojian Yu, Yinghao Wu, Yilun Zhao, Arman Cohan, and Xiao-Ping Zhang. Z1: Efficient
test-time scaling with code, 2025.

[38] Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng
Liu, Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in
mathematical reasoning. arXiv preprint arXiv:2501.07301, 2025.

13

A Details of AutoL2S Annotation

We provide the complete data formats used to annotate both long and short CoT reasoning paths.
These formats serve as templates for generating training samples in AutoL.2S.

Short CoT Reasoning Paths for EASY Questions. EASY questions include both long and short
reasoning paths. The <EASY> token indicates that the question is solvable through a short reasoning
path. <Long Trigger> and <Short Trigger> mark the start of the long and short reasoning, and
<Answer Trigger> marks the start of the answer. The complete data format for the EASY questions
is given as follows:

Question <EASY> <Long Trigger> Long reasoning path <Answer> Final answer

<Short Trigger> Short reasoning path <Answer Trigger> Final answer . “)

Long CoT Reasoning Paths. Non-EASY questions are annotated only with the long reasoning path.
Similarly, <Long Trigger> marks the beginning of the long reasoning and <Answer Trigger>
marks the start of the answer. The format is:

Question <Long Trigger> Long reasoning path <Answer Trigger> Final answer . (5)

These annotations provide both complete and concise reasoning trajectories and allow for the distilla-
tion of the decision-making capabilities of DeepSeek-R1 into the target model.

B Details of Dataset

We train the AutoL2S framework under Bespoke-Stratos-17k [[15]] dataset and assess the framework
on long-to-short reasoning task under four different reasoning datasets. The details of the assessment
datasets are provided as follows:

* Math500 [11]: A challenging benchmark consisting of 500 high-quality math word problems that
require multi-step symbolic reasoning.

* GPQA-Diamond (GPQA) [24]: The Graduate-Level Physics Question Answering (GPQA) dataset
contains 198 multiple-choice questions from graduate-level physics exams.

* GSMSK [5]: A widely-used benchmark comprising 1319 grade school-level math word problems.

* Olympiad Bench Math (Olympiad) [[10]: A collection of 674 math competition problems inspired
by middle and high school mathematics Olympiad competitions.

* AIME2S: A benchmark based on problems from the American Invitational Mathematics Examina-
tion, comprising 30 challenging questions that require concise yet deep reasoning steps.

C Details of Baseline Implementation

C.1 Bespoke-Stratos

We implement this baseline by fully fine-tuning language models on the Bespoke-Stratos-17k dataset,
which comprises 17,000 examples of questions, long-form reasoning traces, and corresponding
answers. The resulting model serves as an oracle reference for reasoning performance.

Following standard SFT procedures, training is performed by minimizing the standard cross-entropy
loss over the input sequence. We employ the AdamW optimizer with a learning rate of 1le—5 and a
batch size of 32. Fine-tuning is conducted for three epochs on two NVIDIA A100 80GB GPUs with
mixed-precision training enabled. For the 7B base model, we directly utilize the publicly released
checkpoint[VanWang/Bespoke-Stratos-7B-repro-SFT.

C.2 Ol-pruner

Ol-pruner introduces a Length-Harmonizing Reward, integrated with a PPO-style loss, to optimize the
policy model 7y and reduce the length of generated chain-of-thought (CoT) reasoning. Considering

14

https://huggingface.co/VanWang/Bespoke-Stratos-7B-repro-SFT

the effectiveness of off-policy training with pre-collected data, O1-pruner adopts an off-policy training
approach by sampling from the reference model 7,¢¢ rather than from 7. Specifically, the training
procedure consists of two steps: (1) generating CoT samples using 7y, and (2) fine-tuning the policy
model with the proposed PPO-style objective based on the generated samples.

In our implementation, we follow the original experimental setting and reproduce the method based on
its official repositoryE] For training, we sample 5,000 problems from the Bespoke-Stratos-17k dataset
and generate 16 solutions for each problem. We then perform length-harmonizing fine-tuning for one
epoch to jointly optimize both output length and answer correctness. To ensure fair comparison with
our method, we use Bespoke-Stratos-3B/7B as the reference model and set the maximum sequence
length to 10,240 tokens when training.

C.3 CoT-Valve

COT-Valve is designed to enable models to generate reasoning chains of varying lengths. It controls
the length of reasoning by linearly combining the LoRA weights of distilled long-form reasoning
CoT and non-reasoning model. For the specifc Long to Short CoT task, it has three stages: (1)
finetune the LLM base model on a long-cot dataset using Lora to identify a direction in the parameter
space that control the length of generated CoT(2) merge Lora weights with the base model at varying
interpolation ratios generate models and use them construct datasets containing CoT of decreasing
lengths (3) finetuning the distilled reasoning model with the generated dataset in a progressive way,
where the model is trained with shorter reasoning path samples between epochs. This progressive
training strategy enables the model to gradually compress its reasoning while maintaining correctness.

In our implementation, we follow the original configuration in CoT-Valve. The LoRA rank and LoRA
alpha are set to 32 and 64, respectively, for both the first and third stages. In the first stage, we finetune
the non-reasoning models Qwen2.5-3B-Instruct/Qwen2.5-7B-Instruct on the Bespoke-Stratos-17k
dataset for three epochs using Lora. The learning rate is 4e-5 and the batch size is 64. In the second
stage, we apply LORA weight interpolation with coefficients 0.8 and 0.6. Due to resource constraints,
we randomly sample 2,000 questions for each interpolated model to generate responses, and retain
only those samples with correct answers. In the third stage, the model that we get in the first stage is
further fine-tuned for 2 epochs on each type of generated dataset, using the same learning rate of 4e-5
and a batch size of 64.

D PROOF OF THEOREM

In this section, we present and prove Theorem (1| and Theorem [2| with accompanying remarks to
provide intuitive explanations.

Theorem 1 (Concatenation Advantage for Long—Short CoT Training). Ler X denote the input,
L = (l1,...,0p,) the long-CoT token sequence, and S = (s1,...,Stq) the short-CoT token
sequence, with training order L to S. Then, the conditional entropy H(:|) of the next short token
satisfies:

H(S; | X,L,S<«;) < H(S¢ | X,S5«1), Vte][l,Ts]. 6)

Equivalently, averaging across all positions with the improvement quantified as

1

Ts
1
Ts {H(St|Xa5<t)—H(St|X7LaS<t)} :?SZI(St;L|XaS<t) 2 0. (N
t=1 t=1

Thus, the long CoT path L provides additional mutual information 1(-|) that strictly increases the
entropy of the short CoT path S whenever L is informative about S.

Proof. The inequality follows directly from the fact that conditioning reduces entropy: adding L to
the conditioning set cannot increase the uncertainty of S;. Formally, for each ¢ € [Ts],

H(S: | X,L,5<:) < H(S:| X,S<«).

Averaging over t yields the stated inequality.

"https://github.com/StarDewXXX/01-Pruner

15

https://github.com/StarDewXXX/O1-Pruner

The gap between the two sides can be expressed as the conditional mutual information:

Ts

1

Ts
1
™ [H(S: | X, S<t) — H(S | X,L,S<,)] = ™ S I(S;L|X,Sx) >0
t=1 t=1

In the realizable training case under long CoT path distillation, the model is optimized with the
per-token cross-entropy objective

E(S|C) ZE —logpg(s. | C,5<0)],

where the context C is either (X) or (X, L). When py matches the true distribution, the cross-entropy
coincides with the entropy above. Thus, the same inequality carries over to cross-entropy:

CE(S | X,L) < CE(S | X),

with the gap equal to the average conditional mutual information. Finally, since perplexity is defined
as PPL(S | C) = exp(CE(S | C)), the inequality extends directly to perplexity:

PPL(S | X,L) < PPL(S | X).

O

Theorem 2 (Optimal Adaptation with <EASY> Token). Let pk (- | z) and pj (- | =) denote the

predictive distributions when decoding with the long and short CoT paths L = (¢1,...,0r,) and
S = (s1,...,S1s), respectively. Given an input x €), define the per-instance risks as

Js(@) =E[D(p§(- | @) | ph (- 12))] + AETs(@), ®)

Jo(@) = A (E[To(@)] + r). ©)

where D(-||-) is a statistical divergence, Ts(x) and Ty, (x) denote the token lengths of the short and
long CoT paths, \ > 0 is the per-token cost, and c; > 0 is a fixed overhead for invoking the long
path. Then the optimal adaptation policy is

o (z) = {0 if Js(z) < Jp(x) (choose short),

1 otherwise (choose long).

(10)

Proof. We provide the proof within the following six steps.

Assumptions from AutoL.2S Design. Let) be the input space with data distribution D. Assume
D(:||) > 0 is a statistical divergence for which E[D(p5 (- |) || pk(- | z))] exists, and the token
lengths Ts(x), T, (z) are nonnegative random variables with finite expectations. Let an adaptation
policy be a measurable mapping 7 :) — {0, 1}, where m(2)=0 chooses short reasoning CoT and
m(2)=1 chooses long reasoning CoT. For a policy 7, define the population risk

R(m) :=Epp [Js(x) 1{n(z) =0} + Jp(z) 1{m(x) = 1} |.
By the assumptions above, R () is well-defined and finite.

Step 1 (Reduction to deterministic policies). Consider any randomized policy that, for a fixed z,
chooses short with probability a(z) € [0, 1] and long with probability 1 — «(z). Its conditional (on
x) contribution to risk equals
a(x) Js(z) + (1 — a(z)) Jo(x) = Jo(z) + a(z) A(x), where A(z) := Jg(z) — Jp(z).
Since this expression is linear in (), its minimum over a(x) € [0, 1] is always achieved at an
extreme point a(z) € {0,1}:
1, if A(z) <0,
a*(z) =140, if A(z) >0,
any in [0,1], if A(z) =0.

16

Hence randomization cannot improve over a deterministic rule, and it suffices and prove to optimize
over deterministic policy 7.

Step 2 (Pointwise decomposition). For any deterministic 7,
R(m) =E[Jp(z)] + E[A(z) 1{x(z) = 0}].

The first term does not depend on 7, so minimizing R (7) reduces to minimizing the second term.
Because the expectation is taken with respect to D and the integrand depends on 7 only through the
indicator, this is a pointwise decision:

Step 3 (Pointwise optimal action). For a fixed x:

{A(:c), ifa=0and A(z) <0,
0

min {A@ Ha =04} = 07" 40 1 or A@) >0,

a€{0,1}

which is achieved by choosing a=0 (short) when A(z) < 0, and a=1 (long) otherwise. Thus the
Bayes-optimal policy is

() = 0, ifA(z) <0 (ie., Js(z) < Jp(2)),
|1, otherwise.

This is exactly the threshold rule stated in the theorem.

Step 4 (Existence and uniqueness). Existence follows because the pointwise minimum is always
attained by an action in {0, 1}. Uniqueness holds everywhere except on the tie set {z : A(x) = 0}
where both actions yield the same risk; changing 7* on this set does not alter R(7*). Hence the
optimal policy is unique almost surely (up to ties).

Step 5 (Explicit threshold and interpretation). Expanding A(z) gives

Ax) =E[D(p§(- |) | ph(|2)] + 2 (ElTs(2)) - ETL ()] - e)-

predictive distribution divergence

Thus 7*(x)=0 (choose short) iff the divergence penalty is outweighed by the token savings:

E[D (pg H pé)} < A (E[TL(x)] Fen— E[Ts(x)]).

Equivalently, choose short when predicted distributions are sufficiently close and the token savings
are large enough.

Step 6 (Comparative statics). The decision boundary moves monotonically: increasing c, or the
long/short length gap E[T}] — E[Ts] makes short more favorable; increasing the divergence or
decreasing the length gap makes long more favorable. Increasing A amplifies the weight on token
savings, thus favoring short when E[T] + ¢, > E[T5s]. O

Remark 1. Theorem[2]establishes that an optimal adaptation strategy between long and short CoT
paths always exists and is essentially unique, reducing to a deterministic threshold rule. The policy
selects the short path whenever the predictive distribution of the short rationale is sufficiently close
to that of the long reasoning while offering enough token savings to offset the overhead of using
the long path. This shows that the <EASY> token is not an ad hoc mechanism, but corresponds to
a Bayes-optimal decision that balances semantic fidelity and inference efficiency. Together with
Theorem |l| this highlights that the long reasoning paths not only improves the learnability of the
short reasoning paths during training, but also guides optimal switching at inference time.

17

E Details of Implementation and Instruction Prompt and Triggers

In this section, we introduce the format of instruction prompts and triggers that we utilized in our
AutoL2S framework.

E.1 Details of Implementation Settings

All experiments for the 7B base model are conducted using four NVIDIA A100 80G GPUs, while
those for the 3B base model utilize two NVIDIA A100 80GB GPUs. We leverage the Transformers
library for fine-tuning and vLLM for efficient inference. Fine-tuning is performed using the AdamW
optimizer with a learning rate of 1e-5. The temperature is fixed at 0.7 in both AutoL.2S and baselines,
ensuring that the output reasoning sequences are fully generated without truncation.

E.2 System prompt and Inference Prompt

System Prompt / Inference Prompt

Your role as an assistant is to solve problems using one of two ways.

First, think step-by-step and give the answer. The solution should be formatted as follows:
<|begin_of_solution|>

{precise and concise solution}

<|end_of_solution|>

Second, your output thoroughly explores questions through a systematic long thinking
process before providing the final precise and accurate solutions. This requires engaging
in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection,
backtracing, and iteration to develop well-considered thinking process.

Please structure your response into two main sections: Thought and Solution.

In the Thought section, detail your reasoning process using the specified format:
<|begin_of _thought |> {thought with steps separated with ’\n\n’}
<|end_of_thought|>

Each step should include detailed considerations such as analysing questions, summarizing
relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining
any errors, and revisiting previous steps.

In the Solution section, based on various attempts, explorations, and reflections from the
Thought section, systematically present the final solution that you deem correct. The solution
should remain a logical, accurate, concise expression style and detail necessary steps needed to
reach the conclusion, formatted as follows:

<|begin_of_solution|>

{final formatted, precise, and clear solution}

<|end_of_solution]|>

Now, try to solve the following question through the above guidelines:

E.3 Special Token and Long-short Trigger

Special Easy Token and Long-short Trigger

<Easy> Token: <specialLong>
Short Trigger: This is a trigger to ensure the model’s upcoming output <short>.

Long Trigger: Let’s consider this problem in a <pureLong> way.

18

F Robustness Analytics of AutoL.2S

To assess the robustness of our method, we further evaluated AutoL.2S on both 3B and 7B models
under three different runs with different random seeds. The reported values correspond to the mean
and standard deviation with same settings presented in Section[d] The bold numbers represent the
best performance, and underline refers to the second best among the settings.

Based on the average performance, AutoL2S outperforms CoT-Valve by achieving higher accuracy
and generating shorter reasoning paths. Compared to O1-pruner, AutoL2S produces shorter reasoning
paths while maintaining comparable average accuracy across all four reasoning benchmarks. Further-
more, AutoL.2S achieves nearly the same average accuracy as the oracle SFT R1-distilled models
(i.e., Bespoke-Stratos-3B/7B), while significantly reducing reasoning path length. This presents the
same observation showcased in Section [l

Considering standard deviation, AutoL2S continues to outperform both the oracle SFT R1-distilled
models and other baselines, offering better accuracy and lower average token usage. For example,
with AutoL2S based on Qwen2.5-7B-Instruct, the performance remains the best among all methods,
while also achieving the shortest reasoning lengths. These results demonstrate that AutoL.2S has both
competitive and robust performance in efficient reasoning tasks.

Table 4: Evaluation results of AutoL.2S based on Qwen2.5-3B-Instruct.(mean =+ std)

Average MATHS500 GPQA GSMS8K Olympiad
Acc Len Acc Len Acc Len Acc Len Acc Len
Qwen2.5-3B-Instruct 0.479 777 0.622 806 0.349 770 0.679 376 0.266 1158

Bespoke-Stratos 0516 8931 0.636 9246 0.308 10129 0.848 1624 0.272 14724
CoT-Valve 0484 5889 0.602 4980 0.258 6898 0.805 1660 0.270 10017
O1-pruner 0535 6686 0.704 6769 0.283 7348 0.859 1210 0.295 11416

AutoL2S (5 =0) 0.523 5083 0.656 4287 0.322 4018 0.830 1109 0.284 10919
uto = +0.006 +737 +0.015 +£605 £0.003 +941 +0.026 +224 +£0.023 £1293

AutoL2S (5 = 4) 0.524 3569 0.646 2713 0347 4118 0826 503 0278 6942
utoL2s (= +0.009 +506 +0.016 =£135 +£0.015 £514 +0.003 4 +0.007 1915

0.523 3255 0.671 2523 0.317 4135 0.825 417 0.280 5947

AutoL28 (rj = 8) 40007 +548 +0.021 4200 +0.008 +598 +0.004 41 +0.005 1796

Table 5: Evaluation results of AutoL.2S based on Qwen2.5-7B-Instruct.(mean + std)

Average MATHS00 GPQA GSMS8K Olympiad
Acc Len Acc Len Acc Len Acc Len Acc Len
Qwen2.5-7B-Instruct ~ 0.586 435 0.748 556 0.308 27 0.902 260 0.384 896

Bespoke-Stratos 0.638 6019 0.824 5383 0.359 6049 0.926 1321 0444 11322
CoT-Valve 0.594 4747 0.730 4483 0.369 4930 0.898 928 0.378 8647
Ol-pruner 0.650 5267 0832 5104 0.399 5312 0.936 1065 0.433 9586

0.652 4348 0.795 3278 0.431 4590 0923 595 0.460 8932
+0.007 +£306 £0.005 +£240 +£0.006 £532 +0.011 +150 +£0.010 +335

0.630 3233 0.788 2200 0.375 3103 0915 439 0.442 7190
+0.011 +474 +£0.017 £354 +£0.033 £494 +£0.003 +68 £0.009 £9%4

0.626 2746 0.785 2019 0380 2587 0915 415 0.422 5964
+0.013 +496 +0.012 +368 =+0.019 +799 +0.015 +75 +0.016 £921

AutoL2S (1j = 0)
AutoL2S (1j =4)

AutoL2S (rj = 8)

19

G Case Studies of AutoL.2S

In this section, we present additional case studies to demonstrate the efficiency of AutoL2S. The
AutoL2S responses shown in this section are generated by a model trained on Qwen2.5-7B-Instruct
with rj = 8. The baseline responses in the first two examples are produced by Bespoke-Stratos-
7B [15]. We include three types of inference modes: Auto Long Reasoning, Auto Short Reasoning,
and AutoL2S without <EASY>.

G.1 Qualitative Analysis of AutoL2S

The AutoL2S response shown here is generated by a model trained in Qwen2.5-7B-Instruct with
rj = 8, and the baseline response is produced by Bespoke-Stratos-7B. The case studies demonstrate
clear improvements in AutoL2S output after training. Before training, responses were often verbose,
meandering, and filled with self-doubt, with frequent backtracking and confusion in applying domain
knowledge. This will lead to several rounds of redundant thinking and verification steps. We
observe that in some simple questions, complex verification steps can be reduced or even omitted,
where LLMs are strong enough to precede the answers. After training with AutoL.2S, the outputs
became more structured and coherent, with reasoning expressed in a logical step-by-step manner
and conclusions stated concisely and decisively. The use of special triggers aligned better with the
intended long—short reasoning split, domain knowledge was applied more accurately, and verbose
exploration was replaced by tighter yet sufficiently detailed explanations. Overall, training enhanced
fluency, confidence, and correctness while reducing redundancy, showing a clear shift from rambling
exploration to disciplined, solution-oriented reasoning.

G.2 Auto Long Reasoning for Regular Questions

We showcase an example when encountering a regular question. AutoL2S automatically chooses to
reason longer but eliminates the token usage compared to baseline responses.

Case Study: The Lollipop Packing Problem

User Prompt: Jean has 30 lollipops. Jean eats 2 of the lollipops. With the remaining lollipops,
Jean wants to package 2 lollipops in one bag. How many bags can Jean fill?

Baseline Response (445 Tokens):

<|begin_of_thought |> Okay, let’s see. Jean has 30 lollipops. She eats 2 of them. Then she
wants to put the remaining ones into bags, with each bag holding 2 lollipops. The question is,
how many bags can she fill? Hmm, first step, I need to figure out how many lollipops Jean has
left after she eats 2. So originally, she has 30. If she eats 2, that means she subtracts 2 from 30.
Let me write that down: 30 minus 2 equals 28. So she has 28 lollipops left. Now, she wants
to put 2 lollipops in each bag. So, to find out how many bags she can fill, I need to divide the
number of remaining lollipops by 2. That would be ...[251 tokens omitted]

AutoL.2S Response (136 Tokens):

<|begin_of_solution|> <EASY><Short Trigger> This is a trigger to ensure the model’s
upcoming output <short>. Let’s approach this step by step. Jean starts with 30 lollipops. She
eats 2, so we need to subtract those from the total. 30 minus 2 equals 28. So, Jean has 28
lollipops left. Now, Jean wants to put 2 lollipops in each bag. To find out how many bags she can
fill, we divide the number of remaining lollipops by the number of lollipops per bag. 28 divided
by 2 equals 14. Therefore, Jean can fill 14 bags. <|end_of _solution|>

20

Case Study: Auto Long Reasoning for Regular Questions

User Prompt: Melissa works as a pet groomer. This week, she has 8 dogs that need to be bathed,
5 cats that need their nails clipped, 3 birds that need their wings trimmed, and 12 horses that
need to be brushed. If she splits the grooming jobs evenly over the days, how many animals will
she groom each day of the week?

Baseline Response (2207 Tokens):

<|begin_of _thought|>

Okay, let’s see. Melissa is a pet groomer, and she has different animals to groom this week. The
problem is asking how many animals she’ll groom each day if she splits the jobs evenly over the
days. Alright, so first, I need to figure out the total number of animals she has to groom. Let me
list them out:

- Dogs: 8 that need bathing.

- Cats: 5 that need their nails clipped.

- Birds: 3 that need their wings trimmed.

- Horses: 12 that need brushing.

...[1889 tokens omitted]...

<|end_of_thought|>

<|begin_of_solution|>

Melissa has a total of 8 dogs, 5 cats, 3 birds, and 12 horses to groom. To find the total number of
animals:

8 (dogs) + 5 (cats) + 3 (birds) + 12 (horses) = 28 (total animals)

The problem asks how many animals she will groom each day if the jobs are split evenly over
the days. Assuming she works 7 days a week, the calculation is:

28 (total animals)

7 (days) = 4 (animals per day)

Thus, the final answer is .
<|end_of_solution|>

AutoL.2S Response (1351 Tokens):

<|begin_of _thought|>

Let’s consider this problem in a <pureLong> way. Okay, let’s see. So the problem is about
Melissa, who’s a pet groomer. She has different animals to groom: 8 dogs, 5 cats, 3 birds, and 12
horses. The question is asking how many animals she will groom each day if she splits the jobs
evenly over the days of the week.

First, I need to figure out the total number of grooming jobs she has.

...[1112 tokens omitted]...

<|end_of_thought|>

<|begin_of_solution|>

Melissa has a total of 8 dogs, 5 cats, 3 birds, and 12 horses to groom. Adding these together
gives:

8+5+3+12=28

She needs to split these 28 grooming jobs evenly over 7 days of the week. Dividing the total
number of jobs by the number of days gives:

28+7=4
Thus, the number of animals she will groom each day is:

<|end_of_solution|>

21

G.3 Auto Short Reasoning for EASY Questions

We showcase the example when AutoL2S encounter a regular question. The results show AutoL2S
can automatically switch to from long reasoning path to short reasoning path without sacrificing the
reasoning performance.

Case Study: Auto Short Reasoning for EASY Questions

User Prompt: Andrew plans a road trip from New Jersey to Rochester. It takes 6 days to travel
by bus and half as many days to travel by car from New Jersey to Rochester. How many days
will he travel if he plans to go to Rochester by bus and return from Rochester by car?

Baseline Answer (573 Tokens):

<|begin_of _thought|>

Okay, so Andrew is planning a road trip from New Jersey to Rochester. The problem says it
takes 6 days to travel by bus, and half as many days by car. Then he wants to go by bus and
return by car. I need to figure out the total number of days he’ll travel.

First, let me parse the information. The trip from New Jersey to Rochester by bus takes 6 days.
Then, the return trip by car would take half as many days as the bus trip. So, half of 6 days is 3
days. That makes sense because the problem states "half as many days to travel by car," so it’s
half the bus time.

So, going by bus: 6 days. Coming back by car: 3 days. To find the total travel time, I need to
add both legs of the journey. That would be 6 days + 3 days. Let me do the math: 6 + 3 equals 9.
So, the total travel time is 9 days.

Wait a second, let me make sure I didn’t miss anything. The problem says he plans to go to
Rochester by bus and return from Rochester by car. So, it’s a round trip. The key here is that the
return trip is from Rochester back to where he started, which is New Jersey. So, the distances are
the same, but the mode of transportation changes.

The bus trip to Rochester is 6 days, car trip back is half that, so 3 days. Adding them together
gives 9 days total travel time. That seems straightforward. Is there any part of this that could be
interpreted differently?

For example, maybe the problem is referring to something else, like including time in New Jersey
or Rochester? But the problem specifically mentions the travel time by bus and car for the same
distance. So, it’s just the round trip, with each leg’s time as given.

Another check: if the bus takes 6 days, then half of that is indeed 3 days. So, 6 + 3 is 9. Yeah,
that seems right. I don’t see any other factors here. The answer should be 9 days.
<|end_of_thought|>

<|begin_of_solution|>

Andrew plans to travel from New Jersey to Rochester by bus, which takes 6 days. The return trip
by car takes half as many days as the bus trip, which is 6 = 2 = 3 days. The total travel time is
the sum of both trips:

6 days (bus) + 3 days (car) = 9 days

The final answer is @
<|end_of_solution|>

AutoL2S Answer (200 Tokens): <|begin_of_solution|>

This is a trigger to ensure the model’s upcoming output <short>. To determine the total number
of days Andrew will travel, we need to consider both the trip to Rochester and the return trip
from Rochester. Let’s break it down step by step.

1. **Trip to Rochester by bus:** - It takes 6 days to travel by bus from New Jersey to Rochester.
2. **Return trip from Rochester by car:** - The problem states that it takes half as many days to
travel by car as it does by bus. - Since the bus trip takes 6 days, the car trip will take g = 3 days.
3. **Total travel time:** - Add the time taken for both trips: 6 days (bus)+3 days (car) = 9 days.

Therefore, the total number of days Andrew will travel is @
<|end_of_solution|>

22

G.4 AutoL2S w/o <EASY>

We showcase an example of not using <EASY> in AutoL2S.

Case Study: AutoL2S w/o <EASY>

User Prompt: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
market?

AutoL2S w/o <EASY> (986 Tokens):

<|begin_of_thought |>

<specialLong> We will provide a detailed explanation and solution. Okay, let’s see. So Janet’s
ducks lay 16 eggs every day. That’s the starting point. Then she does a couple of things with
those eggs. First, she eats three for breakfast every morning, and then she uses four to bake
muffins for her friends each day. The rest of the eggs, which are left after she uses them for
her own consumption and baking, she sells at the farmers’ market for $2 each. The question is
asking how much money she makes from selling those eggs each day.

...[504 tokens omitted]...

<lend_of_thoughtl>

<|begin_of_solution|>

Janet starts with 16 eggs each day. She eats 3 eggs for breakfast and uses 4 eggs to bake muffins,
totaling 3 + 4 = 7 eggs used per day. Subtracting this from the daily gives 16 - 7 = 9 eggs left to
sell. Each egg is sold for $2, so the total money made from selling the eggs is 9 x 2 = 18 dollars.
The final answer is .< lend_of_solution|><seperate><|begin_of_solution|>

This is a trigger to ensure the model’s upcoming output <short>. To determine how much Janet
makes every day at the farmers’ market, we need to follow these steps:

1. **Calculate the total number of eggs laid by the ducks per day:** Janet’s ducks lay 16 eggs
per day.

2. **Determine the number of eggs Janet eats for breakfast each day:** Janet eats 3 eggs for
breakfast every morning.

3. **Determine the number of eggs Janet uses to bake muffins each day:** Janet bakes muffins
for her friends every day with 4 eggs.

4. **Calculate the total number of eggs Janet uses each day:**

3 (eggs for breakfast) 4 4 (eggs for muffins) = 7 eggs
5. **Calculate the number of eggs remaining after Janet uses some for breakfast and baking:**
16 (total eggs) — 7 (eggs used) = 9 eggs

6. **Determine the amount of money Janet makes from selling the remaining eggs:** Janet sells
the remaining 9 eggs at the farmers’ market for $2 per egg.

9 eggs x 2 dollars per egg = 18 dollars

Therefore, the amount of money Janet makes every day at the farmers’” market is .
<|end_of_solution|>

AutoL2S w <EASY> (314 Tokens):

<|begin_of_solution|>

This is a trigger to ensure the model’s upcoming output <short>. To determine how much Janet
makes every day at the farmers’ market, we need to follow these steps:

1. **Calculate the total number of eggs laid by the ducks per day:** Janet’s ducks lay 16 eggs
per day. ...[158 tokens omitted]...

4. **¥Determine how much Janet makes from selling the remaining eggs:** Janet sells the
remaining 9 eggs at the farmers’ market for $2 per egg. Therefore, the total amount she makes is:

9 eggs x 2 dollars per egg = 18 dollars

Thus, the amount Janet makes every day at the farmers’ market is dollars.
<|end_of_solution|>

23

Overall Performance for Qwen-2.5-7b-Instruct

instruct model
distilled model
Autol2S
AutoL2S-Plus

(2531, 0.558)

en,,
450%
e

(5141, 0.538) (8139, 0.544)

Avg. Accuracy

N .
6\"‘\\ y et
o
,5“06 \,0“’9‘0
<
NS

(728, 0.495)

Avg. # Tokens

Figure 3: Visualizations for AutoL2S’ optimization trace.

H Visualizations for AutoL.2S’ Optimization Trace

Figure [3] visualizes the optimization trajectory of AutoL2S and AutoL2S-Plus on Qwen2.5-7B—
Instruct model, illustrating how they achieve the trade-off between reasoning length (Avg. # Tokens)
and accuracy (Avg. Accuracy). Specifically, AutoL2S employs long-short distillation to move beyond
the instruct model toward higher accuracy, achieving better performance and shorter reasoning
paths than the long-only distilled model. Building upon this, AutoL2S-Plus further compresses the
reasoning length without compromising accuracy by optimizing under the length-aware reinforcement
learning objective. These optimization traces demonstrate that, by dynamically balancing long
and short reasoning paths, AutoL.2S and AutoL.2S-Plus achieves efficient reasoning—substantially
reducing reasoning length while preserving task accuracy.

I Related Work

Reasoning-capable LLMs. Recent advancements in LLMs have significantly enhanced their
reasoning capabilities, exemplified by large reasoning models such as OpenAl ol [21] and DeepSeek-
R1 [8]], and QwQ-32B [28]]. OpenAl ol [21]] introduces advanced reasoning mechanisms designed
to tackle complex problems, such as mathematical and programming tasks. Similarly, DeepSeek-
R1 [8] enhances reasoning abilities by employing RL to incentivize effective reasoning behaviors.
Additionally, DeepSeek-R1 curates specialized reasoning datasets, enabling the explicit distillation of
reasoning capabilities into smaller models through SFT.

Efficient LLM Reasoning. Thinking steps of LLMs have become longer, leading to the “over-
thinking problem” [4, 26]]. To mitigate lengthy responses and reasoning processes, several works
have been conducted to shorten the thinking steps and produce more concise reasoning [26]. RL-
based methods aim to encourage full-length reasoning models to generate concise thinking steps
or train non-reasoning models to learn efficient reasoning by incorporating a length-aware re-
ward [27, [17, [1} 35,25} [12]]. Specifically, they propose designing a length-based score to penalize
excessively lengthy responses, complementing original rewards (e.g., format reward and accuracy
reward). Kimi K1.5 [27] calculates a length reward based on the response length relative to the
shortest and longest responses. L1 [1]] modifies the training data with the designated length constraint
instruction, and then add the length reward. O1-Pruner [17] introduces the length-harmonizing reward,
which calculates the ratio of lengths between the reference model and predicted model along with
the accuracy-based constraints. SFT-based methods curate variable-length CoT training datasets to
fine-tune overthinking reasoning models for shorter reasoning paths or to equip non-reasoning models
with efficient reasoning capabilities [9} 130} |18} 137, |6]. Specifically, based on long CoT reasoning
data, they curate shorter yet accurate CoT reasoning paths as training data. Token-skip [30] leverages
LLMLingua [14] to compress lengthy CoT responses into shorter ones based on semantic scores,
and then fine-tunes the model for efficient reasoning. CoT-Valve [18]] controls the magnitude of
LoRA [13] weights to generate variable-length CoT training data, which are then used to fine-tune an

24

efficient reasoning model. Token-Budget [9] assigns specific token budgets to prompts in order to
generate shorter reasoning steps, and these concise CoT examples are then used for model fine-tuning.

25

	Introduction
	Preliminary
	Problem Definition
	Challenges of Distilled Reasoning LLMs

	Auto Long-Short Reasoning
	Training Stage of Auto Long-Short Reasoning
	Concatenation Advantage for Long to Short Reasoning Training
	Inference Stage of Auto Long-Short Reasoning
	AutoL2S-Plus Fine-tuning

	Experiments
	Datasets and Baselines
	Experimental Settings
	Reasoning Efficiency of AutoL2S (RQ1)
	Impact on Long-short Reasoning Annotation (RQ2)
	Impact of the <EASY> Token (RQ2)
	Mechanism behind the Auto Long-short Reasoning (RQ3)

	Conclusion
	Acknowledgements
	Details of AutoL2S Annotation
	Details of Dataset
	Details of Baseline Implementation
	Bespoke-Stratos
	O1-pruner
	CoT-Valve

	PROOF OF THEOREM
	Details of Implementation and Instruction Prompt and Triggers
	Details of Implementation Settings
	System prompt and Inference Prompt
	Special Token and Long-short Trigger

	Robustness Analytics of AutoL2S
	Case Studies of AutoL2S
	Qualitative Analysis of AutoL2S
	Auto Long Reasoning for Regular Questions
	Auto Short Reasoning for EASY Questions
	AutoL2S w/o <EASY>

	Visualizations for AutoL2S' Optimization Trace
	Related Work

