
Under review as submission to TMLR

DIG-MILP: a Deep Instance Generator for Mixed-Integer
Linear Programming with Feasibility Guarantee

Anonymous authors
Paper under double-blind review

Abstract

Mixed-integer linear programming (MILP) stands as a notable NP-hard problem pivotal
to numerous crucial industrial applications. The development of effective algorithms, the
tuning of solvers, and the training of machine learning models for MILP resolution all hinge
on access to extensive, diverse, and representative data. Yet compared to the abundant
naturally occurring data in image and text realms, MILP is markedly data deficient, un-
derscoring the vital role of synthetic MILP generation. We present DIG-MILP, a deep
generative framework adept at extracting deep-level structural features from highly limited
MILP data and producing instances that closely mirror the target data. Notably, by lever-
aging the MILP duality, DIG-MILP guarantees a correct and complete generation space as
well as ensures the boundedness and feasibility of the generated instances. Our empirical
study highlights the novelty and quality of the instances generated by DIG-MILP through
two distinct downstream tasks: (S1) Data sharing, where solver solution times correlate
highly positive between original and DIG-MILP-generated instances, allowing data sharing
for solver tuning without publishing the original data; (S2) Data Augmentation, wherein the
DIG-MILP-generated instances bolster the generalization performance of machine learning
models tasked with resolving MILP problems.

1 Introduction

Mixed integer linear programming (MILP) is a prominent problem central to operations research
(OR) (Achterberg & Wunderling, 2013; Wolsey, 2020). It forms the basis for modeling numerous crucial
industrial applications, including but not limited to supply chain management (Hugos, 2018), production
scheduling (Branke et al., 2015), financial portfolio optimization (Mansini et al., 2015), and network de-
sign (Al-Falahy & Alani, 2017; Radosavovic et al., 2020). This article aims to answer the question: How
can one produce a series of high-quality MILP instances? The motivation behind this inquiry is illustrated
through the subsequent scenarios:

(Scenario I). In industry, clients from real-world business seek specialized companies to develop or fine-
tune intricate solver systems (Cplex, 2009; Bestuzheva et al., 2021; Gurobi, 2023) for solving MILP problems.
The empirical success of the systems heavily depends on well-tuned hyper-parameters for the solvers, which
demands ample and representative testing cases that accurately reflect the actual cases. However, real
data is often scarce during the early stages of a business. In addition, clients are typically reluctant to
publish data that might encompass some specific information (e.g., schedules or contract stipulations for
flight arrangement (Richards & How, 2002; Roling et al., 2008), platform costs or audience data for ad
placements (Rodríguez et al., 2016)). These scenarios intensify the emergent need for generating instances
that closely mirror the target data.

(Scenario II). In academia, beyond the improvement of algorithms (Lawler & Wood, 1966; Gamrath et al.,
2015) for solving MILP, recent efforts have explored the use of machine learning (ML), which bypasses the
need for expert knowledge and instead leverages historical data to foster accelerated resolutions (Khalil
et al., 2016; 2017; Nair et al., 2020). Notably, the efficacy of ML-driven approaches relies on high-quality,
large-capacity, and representative training data (Lu et al., 2022).

1



Under review as submission to TMLR

Given the scarce availability of real-world datasets (Gleixner et al., 2021), the scenarios mentioned above
underscore the motivation to synthetically generate novel instances that resemble the limited existing MILP
data. To meet the requirements of both the industrial and academic sectors, the challenge in synthetic MILP
generation lies in ensuring feasibility-boundedness, representativeness, and diversity. “Feasibility-
boundedness” refers to the general expectation in business scenarios that practical MILP problems would
expect bounded and feasible solutions, where, otherwise, the applicability of the corresponding real-world
problem would diminish significantly. “Representativeness” means that the generated data should closely
mirror the original data in terms of scale and modeling logic (the structure of objective and constraints).
“Diversity” implies that the generation method should be capable of catering to different problem formula-
tions and encompassing extreme cases such as large dynamic ranges or degeneracy (Gamrath et al., 2020).
A randomly generated MILP instance could be infeasible or unbounded with high probability. Existing
methods for MILP generation might fall short of fulfilling the criteria above: 1) Some are tailored to specific
problems (e.g., knapsack (Hill et al., 2011) and quadratic assignment (Drugan, 2013)), requiring expert do-
main knowledge, hence struggling to generalize across different problems; 2) Some sample new instances in
an embedding space with handcraft statistics (Smith-Miles & Bowly, 2015; Bowly et al., 2020; Bowly, 2019).
These methods model MILPs’ coefficients with simple distributions such as Gaussian, generate instances
with very limited structural characters that may not be representative enough. 3) A concurrent paper (Geng
et al., 2024) with our work trys to learn the MILP distribution over instance space with neural networks
(NNs). The generated instances from Geng et al. (2024) do not enjoy feasibility-boundedness guarantee.
Our work proposes an entire different feature encoding logic over the solution space instead of the instance
space and therefore could generate feasible-bounded only MILP instances, simultaneously satisfying all the
three properties.

solution space

coefficient matrix

solution space

coefficient matrix

Figure 1: DIG-MILP generates feasible-bounded in-
stances that resemble the target MILP data from dis-
tribution DH′ by learning to sample the coefficient ma-
trix along with a set of feasible solutions for both the
primal format and dual format of the linear relaxation
from the corresponding distribution GF . See detailed
explanations in Section. 3.

By employing deep NNs to extract the in-depth
structural information, DIG-MILP generates “rep-
resentative” data that resembles the original sam-
ples without expert knowledge. DIG-MILP lever-
ages the MILP duality theories to ensure the fea-
sibility and boundedness of each generated instance
by controlling its primal format and the dual format
of its linear relaxation having at least a feasible solu-
tion, which achieves the “feasibility-boundedness” of
the generated data. Moreover, any feasible-bounded
MILP is inside the generation space of DIG-MILP,
meeting the demand for “diversity”. An illustration
of DIG-MILP’s generation strategy is shown in Fig-
ure. 1. Recognizing the limited original data along
with the requirements on scalability and numerical
precision in MILP generation, instead of generating
from scratch, DIG-MILP iteratively modifies parts
of existing MILPs, allowing control on the degree of
structural similarity towards the original data.

We conduct two downstream tasks to validate the quality and novelty of DIG-MILP-generated instances,
corresponding to the motivation of data generation in industry and in academia respectively. The first task
involves MILP problem sharing for solver hyper-parameter tuning without publishing original data. Across
four problems, the solution time of solver SCIP (Bestuzheva et al., 2021) exhibits a highly positive correlation
between the DIG-MILP-generated instances and the original data w.r.t. different hyper-parameter sets. The
other task is envisioned as data augmentation, where the generated instances assist in training NNs to predict
the optimal objective values for MILP problems (Chen et al., 2023). Models trained on datasets augmented
with DIG-MILP-generated instances demonstrate enhanced generalization capabilities.

2 Related Work

In the following, we discuss works on MILP generation and works on generative models.

2



Under review as submission to TMLR

In light of Hooker’s proposals (Hooker, 1994; 1995), research on MILP generation diverges into two paths.
The first focuses on leveraging expert domain knowledge to create generators for specific problems such as set
covering (Balas & Ho, 1980), traveling sales person (Pilcher & Rardin, 1992; Vander Wiel & Sahinidis, 1995),
graph colouring (Culberson, 2002), knapsack (Hill et al., 2011), and quadratic assignment (Drugan, 2013).
This specificity causes poor generalization across different problems and thus fails diversity. In contrast,
the second path aims at generating general MILPs. Asahiro et al. (1996) propose to generate completely
random instances, which is inadequate for producing instances with specific distributional features (Hill &
Reilly, 2000). Bowly (2019); Bowly et al. (2020) attempt to sample feasible instances similar to target data
by manually controlling distributions in an embedding space. Its manual feature extraction and statistic
control by simple distributions leads to instances with limited structural characteristics. A concurrent work
Geng et al. (2024) adopts NNs to further improve the expressive capability of the instance generator in
Bowly (2019) and thus achieves more similar instances, yet the framework could not produce instances
with boundedness-feasibility guarantees. Inspired by Bowly (2019), DIG-MILP generates instances from the
solution space and uses DNNs to dig out more details, aiming to delineate the structural attributes more
precisely and generate feasible-bounded instances.

Recent years have witnessed the fast development of generative models, such as GAN Creswell et al. (2018),
VAE Kipf & Welling (2016), and diffusion models Ho et al. (2020); Song & Ermon (2019). Considering the
training complexity, and the strongly-structured MILP instances, we adopt VAE as the generative backbone
in this paper, and we leave the utilization of more advanced generative models with potentially higher
training computational cost as a feature direction to explore.

3 Methodology

We start by providing a preliminary background on MILP generation. Subsequently, we discuss the theo-
retical foundation based on which DIG-MILP’s generation strategy ensures the feasibility and boundedness
of its generated instances. Finally, we delve into the training and inference process of DIG-MILP along with
its neural network architecture.

3.1 Preliminaries

Given a triplet of coefficient matrix A ∈ Rm×n, right-hand side constant b ∈ Rm, and objective coefficient
c ∈ Rn, an MILP is defined as:

MILP(A, b, c) : max
x

c⊤x, s.t. A x ≤ b, x ∈ Zn
≥0. (1)

To solve MILP is to identify a set of non-negative integer variables that maximize the objective function while
satisfying a series of linear constraints. Merely finding a set of feasible solutions to such a problem could
be NP-hard. Within the entire MILP space H = {[A, b, c] : A ∈ Rm×n, b ∈ Rm, c ∈ Rn}, the majority of
MILP problems are infeasible or unbounded. However, In real-world business scenarios, MILPs derived from
practical issues are often either naturally or modified to be feasible, bounded, and yield an optimal solution1,
as no company would take efforts in solving and modeling infeasible real-world problems. Therefore, we are
particularly interested in feasible-bounded MILPs from the space H′ as follows: 2

H′ := {[A, b, c] : A ∈ Qm×n, b ∈ Qm, c ∈ Qn and MILP(A, b, c) is feasible and bounded.}.

Suppose a target MILP dataset D that models a particular business scenario is sampled from a distribution
DH′(A, b, c) defined on H′, the task of MILP instance generation is to approximate the distribution DH′

and sample novel MILP instances from it.

1Definitions of boundedness, feasibility, and optimal solution of MILP in Definition. 1 2 3 in the appendix.
2Narrowing from the real domain to the rational domain is common in MILP studies to avoid cases where an MILP is feasible

and bounded but lacks an optimal solution Schrijver (1998). For example, min
√

3x1 − x2, s.t.
√

3x1 − x2 ≥ 0, x1 ≥ 1, x ∈ Z2
≥0.

No feasible solution has objective equal to zero, but there are feasible solutions with objective arbitrarily close to zero.

3



Under review as submission to TMLR

3.2 DIG-MILP with Feasibility Guarantee

An intuitive idea for MILP generation is to directly sample [A, b, c] from DH′ , which is practically hard to
implement as it’s hard to guarantee the generated instance to be feasible-bounded.

According to MILP duality theories, we observe that as long as DIG-MILP could ensure that a generated
instance’s primal format MILP(A, b, c) and the dual format of its linear relaxation DualLP(A, b, c) (as
defined in Equation. 2) both have at least one set of feasible solutions, then the newly generated instance
will be guaranteed to be feasible-bounded (as proved in Proposition. 1).

DualLP(A, b, c) : min
y

b⊤y, s.t. A⊤y ≥ c, y ≥ 0, (2)

To guarantee the existence of feasible solutions to both problems, inspired by (Bowly, 2019), we propose to
sample the instances from another space F , where

F := {[A, x, y, s, r] : A ∈ Qm×n, x ∈ Zn
≥0, y ∈ Qm

≥0, s ∈ Qn
≥0, r ∈ Qm

≥0}. (3)

F defines an alternative space to represent feasible-bounded MILPs, with each element [A, x, y, s, r] consist-
ing of the coefficient matrix A along with a set of feasible solutions x, y to MILP(A, b, c) and DualLP(A, b, c),
respectively, where b, c are determined by the corresponding slacks s, r via the equalities defined in Equa-
tion. 4. By leveraging this idea, DIG-MILP aims to learn a distribution GF over the space of F to sample
[A, x, y, s, r], which can be further transformed into [A, b, c] that defines an MILP problem based on Equa-
tion. 4.

Slack Variables: Ax + r = b, A⊤y − s = c, where r ∈ Qm
≥0, s ∈ Qn

≥0 (4)

Such a generation strategy offers theoretical guarantees on the boundedness and feasibility of the gener-
ated instances, ensuring the “feasibility-boundedness” of the produced data. Moreover, all the feasible and
bounded MILPs in H′ correspond to at least a tuple [A, x, y, s, r]. Therefore, this procedure also offers
theoretical assurances for the capability to produce “diverse” instances. These points are formally stated in
Proposition. 1. See detailed proof in A.1 in the appendix.
Proposition 1 (Boundedness and Feasibility Guarantee of DIG-MILP). DIG-MILP guarantees to
produce feasible-bounded MILP instances only, and any feasible-bounded MILP could be generated by DIG-
MILP. In other words, it holds that H′ =

{
[A, b, c] : b = Ax + r, c = A⊤y − s, [A, x, y, s, r] ∈ F

}
.

3.3 Generation Process and Architecture

Having shown the equivalence between sampling from space F and H′, we then present how DIG-MILP
learns a distribution GF to sample [A, x, y, x, r] from. We encode each [A, x, y, s, r] as a variable-constraint
(VC) bipartite graph G(V, C, E): On side V, each node in {v1, ..., vm} corresponds to a variable, while on C
side, each node in {c1, ..., cm} represents a constraint. Edges in E connect constraints to variables according
to the non-zero entries in the coefficient matrix A, implying that A serves as the adjacency matrix of graph
G. The input features of nodes and edges are detailed in Table. 1. With this graph representation, we
transform the MILP generation challenge into a graph generation task. DIG-MILP iteratively modifies part
of the original graph to produce new graphs.

Table 1: The input encoding into G from MILP.
object feature

constraint nodes:
C = {c1...cm}

y = [y1, ..., ym]⊤
r = [r1, ..., rm]⊤

variable nodes:
V = {v1...vn}

x = [x1, ..., xn]⊤
s = [s1, ..., sn]⊤

edge E non-zero weights in A

Generation pipeline We display the training and infer-
ence pipeline in Figure. 2. As illustrated in Algorithm. 1,
on each training step of DIG-MILP, we randomly select and
remove a constraint node ci (corresponding to the i-th con-
straint) from the bipartite graph, along with all its con-
nected edges EG(ci). Concurrently, we erase the features of
the solution space x, y, s, r on all the nodes, resulting in an
incomplete graph G′(C\ci−y,s;V−x,r; E\EG(ci)). The train-
ing objective is to learn DIG-MILP to reconstruct G from
the given G′ by maximizing the log likelihood:

4



Under review as submission to TMLR

Encoder

V-C bipartite graph G

z

incomplete G’

decoder

standard Gaussian
sampling z decoder

reconstructed G

new instance

Training

Inference

repeat times

Figure 2: The training and inference pipeline of DIG-MILP. In each training step, DIG-MILP removes a
random constraint node, its connected edges, along with the solution and slack features on all the nodes,
resulting in an incomplete graph G′. The training objective of DIG-MILP is to reconstruct G from G′ and
z sampled by the encoder qϕ. As to inference, DIG-MILP employs an auto-regressive approach, generating
new instances by iteratively modifying the existing MILPs.

arg max
θ,ϕ

EG∼DEG′∼p(G′|G) logP(G|G′; θ, ϕ), (5)

where p(G′|G) refers to randomly removing structures to produce the incomplete graph. We adhere to stan-
dard VAEs (Kingma & Welling, 2013; Kipf & Welling, 2016) and introduce latent variable z = [z1, ..., zm+n]
with the assumption that z is independent with G′. Utilizing ELBO, we endeavor to maximize the training
objective through the optimization of the following loss function:

min
θ,ϕ

Lθ,ϕ = EG∼DEG′∼p(G′|G)
[
αEz∼qϕ(z|G)[− log pθ(G|G′, z)] + DKL[qϕ(z|G)∥N (0, I)]

]
, (6)

where the decoder p adeptly reconstructs graph G based on z and the incomplete graph G′; the encoder
q is to depict the posterior distribution of z. The hyper-parameter α functions as a balancing factor. See
detailed derivation in A.2 in the appendix. During training, DIG-MILP modifies one constraint of an
instance at a time. During inference, the graph rebuilt after removing a constraint can be fed back as
input, allowing iterative modifications to the original data. The number of iterations controls the degree of
structural similarity to the original problem. The inference procedure is shown in Algorithm. 2, where γ|C
denotes the number of iterations to remove a constraint.

Algorithm 1 DIG-MILP Training
Require: : dataset D, epoch N , batch size B

1: Solve MILPs for {[x, y, s, r]} over D
2: Encode MILPs into graphs {G(V, C, E)}
3: for epoch=1,...,N do
4: Allocate empty batch B ← ∅
5: for idx=1,...,B do
6: G ∼ D; G′ ∼ p(G′|G)
7: B ← B ∪ {(G, G′)}
8: Encode z ∼ qϕ(z|G)
9: Decode G ∼ pθ(G|G′, z)

10: Calculate Lθ,ϕ(G, G′)
11: end for
12: Lθ,ϕ ← 1

B

∑
(G,G′)∈B Lθ,ϕ(G, G′)

13: Update ϕ, θ by minimizing Lθ,ϕ

14: end for
15: return θ, ϕ

Algorithm 2 DIG-MILP Inference
Require: : dataset D, batch size B, constraint re-

place rate γ

1: Solve MILPs for {[x, y, s, r]} over D
2: Encode MILPs into graphs {G(V, C, E)}
3: Allocate empty batch B ← ∅
4: for id=1,...,B do
5: G ∼ D
6: for t=1,...,γ|C| do
7: G′ ∼ p(G′|G)
8: z ∼ N (0, I)
9: Decode G̃ ∼ pθ(G̃|G′, z)

10: G← G̃
11: end for
12: B ← B ∪G
13: end for
14: return new instance batch B

5



Under review as submission to TMLR

Neural Network Architecture For both the encoder and decoder, we employ the same bipartite graph
neural networks (GNN) as the backbone. The encoder is as follows:

qϕ(z|G) =
∏

u∈C∪V
qϕ(zu|G), qϕ(zu|G) = N (µϕ(hG

u ), Σϕ(hG
u )), (7)

where zu is conditionally independent with each other on G, hG = GNNϕ(G) denotes the node embeddings
of G outputted by the encoder backbone, µϕ and Σϕ are two MLP layers that produce the mean and variance
for the distribution of z. The decoder connects seven parts conditionally independent on the latent variable
and node representations, with detailed structure as follows:

pθ(G|G′, z) = pθ(dci |hG′

ci
, zci) ·

∏
u∈V

pθ(e(ci, u)|hG′

V , zV) ·
∏

u∈V:e(ci,u)=1

pθ(wci |hG′

V , zV)

·
∏
u∈C

pθ(yu|hG′

C , zC)pθ(ru|hG′

C , zC) ·
∏
u∈V

pθ(xu|hG′

V , zV)pθ(su|hG′

V , zV),
(8)

where zC , hG′

C denotes the latent variable and node representations on side C, while zV , hG′

V signifies those
on side V; dci

predicts the degree of the deleted node ci; e(ci, ·) denotes the probability of an edge between
ci and a node on side V; wci

is the edge weights connected with ci; x, y, s, r are value of the solution and
slacks. We use separate MLPs to model each part’s prediction as a regression task. We optimize each part
of the decoder with the Huber Loss (Huber, 1992). See Section. B.2 in the appendix for more details.

4 Numerical Evaluations
In this section, we first delineate the experimental setup. Then we calculate the structural statistical simi-
larity between generated and original instances. Subsequently, we evaluate DIG-MILP with two downstream
tasks: (i) MILP data sharing for solver tuning and (ii) MILP data augmentation for ML model training.

4.1 Settings

Table 2: Datasets Meta-data . For CVS and IIS, ‘training’ (non-bold) instances are for DIG-MILP or
downstream model training, ‘testing’ (bold) instances are used in downstream testing only.

SC CA CVS IIS

# data 1000 1000 training testing training testing
cvs08r139-94 cvs16r70-62 cvs16r89-60 cvs16r106-72 cvs16r128-89 iis-glass-cov iis-hc-cov

# variable 400 300 1864 2112 2384 2848 3472 214 297
# constraint 200 ∼10^2 2398 3278 3068 3608 4633 5375 9727

difficulty easy easy hard hard

Datasets: We perform DIG-MILP on four MILP datasets, encompassing scenarios involving simple and com-
plex instances, a mix of small and large problem scale, varying instance quantities, and generation/collection
from both synthetic and real-world sources. Specifically, we include two manually generated datasets, namely
the set covering (SC) and the combinatorial auctions (CA), following the generation methodologies outlined
in (Gasse et al., 2019). The remaining two datasets, namely CVS and IIS, are from the MIPLIB2017
benchmark (Gleixner et al., 2021)3, which comprises challenging instances from a large pool of problem-
solving contexts. CVS pertains to the capacitated vertex separator problem on hypergraphs, while IIS
mirrors real-world scenarios and resembles the set covering problems. Details are elaborated in Table. 2. It’s
worth emphasizing that for CVS and IIS, we exclusively employ the ‘training’ data during the training of
DIG-MILP and all downstream models. The ‘testing’ data is used only for downstream task evaluation.

Downstream Tasks: We devise two downstream applications, tailored to address distinct motivations.
One motivation pertains to generating and sharing data that can substitute target instances. The other
motivation involves data augmentation for better training ML models.

3https://miplib.zib.de/tag_benchmark.html

6

https://miplib.zib.de/tag_benchmark.html


Under review as submission to TMLR

100 150 200 250 300 350 400
Trial #1

Ti
ra

l #
2

(a) two trials

100 150 200 250 300 350 400
original

ra
nd

om
 (r

at
io

 =
 0

.1
)

(b) random (γ = 0.1)

100 150 200 250 300 350 400
original

ra
nd

om
 (r

at
io

 =
 0

.2
)

(c) random (γ = 0.2)

100 150 200 250 300 350 400
original

ra
nd

om
 (r

at
io

 =
 0

.3
)

(d) random (γ = 0.3)

100 150 200 250 300 350 400
original

B
ow

ly

(e) Bowly

100 150 200 250 300 350 400
original

ou
rs

 (r
at

io
 =

 0
.1

)

(f) ours (γ = 0.1)

100 150 200 250 300 350 400
original

ou
rs

 (r
at

io
 =

 0
.2

)

(g) ours (γ = 0.2)

100 150 200 250 300 350 400
original

ou
rs

 (r
at

io
 =

 0
.3

)

(h) ours (γ = 0.3)

Figure 3: The solution time (second) of SCIP on CVS with 45 different hyper-parameter sets.

(S1): Data Sharing for Solver Configuration Tuning We simulate the process where clients utilize DIG-MILP
to generate new instances and hand over to companies specializing in MILP solver tuning. In particular,
we calculate the Pearson positive correlation of the solution times required by the SCIP (Bestuzheva et al.,
2021) solver between the generated examples and the original testing data across various hyper-parameter
configurations. Should the solution time consistently demonstrate a positive correlation between the original
and generated problems across varied parameter settings, it implies a consistent level of the effectiveness on
the original and new instances under the same parameter configuration, which facilitates sharing data for
parameter tuning.

(S2): Optimal Value Prediction via ML We train GNNs to express the optimum of the objective function in
an MILP (Chen et al., 2023; 2024), where we use the instances generated by DIG-MILPas data augmentation.
For more detailed implementation, see B.6 in the appendix.

Solvers and Baselines: We use the open source solver SCIP (Bestuzheva et al., 2021) with its Python
interface, namely PySCIPOpt (Maher et al., 2016b) for all the experiments. We consider two approaches
as our baselines. The first, named ‘Bowly’, aligns with Bowly (2019) that generates MILP instances from
scratch by sampling in an embedding space based on manually designed distributions. The second baseline
‘random’ randomizes the network’s outputs, further validating the importance and efficacy of model training.
For more implementation details of the baselines, please refer to B.3 in the appendix.

4.2 Results and Analysis
It’s shown that the instances generated by DIG-MILP share higher similarity with the original instance
structures compared to baselines, for the statistical structural evaluation between the generated instances
and the original instances, please refer to Appendix. B.4 for implementation details and C.1 for results.

4.2.1 downstream task #1: Data Sharing for Solver Configuration Tuning

We conduct experiments across all the four datasets. SCIP boasts an extensive array of parameters, rendering
a tuning across the entire range impractical. Therefore, we adopt the reduced parameter space consistent
with mainstream research on SCIP solver tuning (Hutter et al., 2011; Lindauer & Hutter, 2018; Lindauer
et al., 2022). See Table. 11 in the appendix for detailed parameter space selection. We employ random seed
0− 44 to generate 45 distinct parameter configurations. To validate the impact of randomness on SCIP, we
initiate two independent trials on the same original testing data and compare the Pearson score of solution
time. As illustrated in the diagonal of Table. 3, it clearly demonstrates a very high positive correlation for
two independent trials on the same data. For subsequent experiments, each is run three times independently,

7



Under review as submission to TMLR

Table 3: The Pearson correlation coefficient (‘r’) and the significance value (‘p’) of the SCIP solution time
under 45 different hyper-parameters on dataset-pairs.

SC CA CVS IIS
SC r 0.732 0.599 0.115 0.088

p 1.058e-8 1.351e-5 0.449 0.561
CA r - 0.952 0.021 0.092

p - 0.762e-24 0.890 0.545
CVS r - - 0.997 0.550

p - - 4.723e-53 9.033e-5
IIS r - - - 0.988

p - - - 1.563e-36

Table 4: The Pearson correlation coefficient (‘r’) and the significance value (‘p’) of the SCIP solution time
between generated data and the original testing data under 45 different hyper-parameters on the SC, CA,
CVS, and IIS problem.

CA SC CVS IIS

Bowly r -0.048 0.683 -0.158 0.292
p 0.751 2.295e-7 0.298 0.051

ratio 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30 0.10 0.20 0.30

random r 0.723 0.563 0.515 0.542 0.568 0.609 -0.085 -0.337 -0.201 0.114 0.182 0.149
p 1.971e-8 5.522e-5 2.942e-4 1.174e-4 4.535e-5 9.028e-6 0.578 0.023 0.184 0.452 0.228 0.327

ours r 0.728 0.771 0.780 0.747 0.717 0.665 0.609 0.590 0.607 0.542 0.300 0.551
p 1.446e-8 5.371e-10 2.544e-10 3.646e-9 2.908e-8 6.353e-7 8.834e-6 1.986e-5 9.581e-6 1.187e-4 0.044 8.497e-5

with results averaged to mitigate randomness effects. We then compare the correlation of solution time on
the original data across different datasets, as presented in the upper triangle of Table. 3. We observe a
certain degree of positive correlation between synthetic datasets SC and CA, as well as between MIPLIB
datasets CVS and IIS, which reveals that the effectiveness of parameters may naturally exhibit some degree
of generalization across similar problems. However, the correlation between synthetic and MIPLIB datasets
tends to be much lower, underscoring the necessity of generating new instances for solver tuning on specific
problems. Finally, we compare the positive correlation of solution time between the generated instances
and the original testing instances of the same datasets, as shown in Table. 4. Across all four datasets,
the DIG-MILP-generated instances, exhibit the highest correlation with the testing data compared to the
baselines, with the lowest p-value of significance. On the MIPLIB test set, DIG-MILP-generated instances
exhibits a slightly lower correlation, primarily due to the very few samples in these datasets. We visualize
the correlation of solution time between the original testing data and the generated data on the CVS in
Figure. 3. More detailed implementation and the visualization of the other datasets can be found in B.5
and Figure. 4-7 in the appendix.

4.2.2 downstream task #2: Optimal Value Prediction via machine learning

We conduct experiments for the second downstream task on all four datasets.

Set Covering (SC) We select ‘density’ as a metric of the SC instance distribution, which represents the
number of sets to be covered within a constraint. We only include densities ranging from 0.15 to 0.35 in the
training set (for both DIG-MILP and the downstream predictor). We present in-distribution test set (0.15 to
0.35) as well as out-of-distribution test sets with densities falling within the unexplored range of 0.03 to 0.10,
to reflect the predictor’s ability to generalize across distribution shift. The relative mean squared error (MSE)
values of the models’ predictions are presented in Table. 5. In the upper rows (Datasets #1-#8), we fix the
size of training set as 1000. Dataset #1 consist of 1000 original data, dataset #2 consists 500 original with 500
instances generated via the ‘Bowly’, #3 uses the ‘random’ baseline. Datasets #4-#8 comprise a combination
of 500 original instances and 500 DIG-MILP-generated instances, with various constraint node replacement
ratios γ ranging from 0.01 to 0.50. Models trained exclusively on in-distribution data exhibit superior fitting
and predictive accuracy within the in-distribution test sets. However, models trained on a combination of
original and DIG-MILP-generated instances display significantly enhanced prediction accuracy on out-of-
distribution testing data. We attribute this phenomenon to the increased structural and label diversity in
the newly generated instances, mitigating over-fitting on in-distribution data and consequently bolstering

8



Under review as submission to TMLR

Table 5: The relative mean square error (MSE) of the optimal objective value task on the set covering (SC)
problem. The 500 original instances in training dataset #2−#14 are identical.

dataset #original #generated replace ratio out-of-distribution in-distribution
0.03 0.04 0.05 0.10 0.15 0.20 0.25 0.30 0.35

1 1000 0 - 0.792 0.640 0.488 0.022 0.009 0.009 0.010 0.011 0.015
2 500 500 (Bowly) - 3.498 17.671 43.795 81.408 0.037 0.052 0.052 0.065 0.045
3 500 500 (random) 0.10 0.449 4.176 12.624 86.592 0.048 0.064 0.053 0.069 0.045
4 500 500 (DIG-MILP) 0.01 0.505 0.280 0.142 0.032 0.032 0.040 0.044 0.044 0.040
5 500 500 (DIG-MILP) 0.05 0.575 0.329 0.155 0.080 0.036 0.044 0.046 0.056 0.056
6 500 500 (DIG-MILP) 0.10 0.362 0.141 0.045 0.065 0.017 0.012 0.012 0.010 0.015
7 500 500 (DIG-MILP) 0.20 0.625 0.418 0.265 0.034 0.059 0.083 0.077 0.099 0.069
8 500 500 (DIG-MILP) 0.50 0.884 0.822 0.769 0.285 0.017 0.025 0.033 0.047 0.032
9 500 0 - 0.868 0.758 0.637 0.072 0.016 0.014 0.014 0.017 0.027
10 500 50 (DIG-MILP) 0.10 0.693 0.497 0.327 0.031 0.035 0.039 0.046 0.039 0.052
11 500 100 (DIG-MILP) 0.10 0.603 0.361 0.179 0.096 0.031 0.033 0.038 0.042 0.038
12 500 200 (DIG-MILP) 0.10 0.628 0.396 0.215 0.086 0.038 0.035 0.039 0.043 0.039
13 500 500 (DIG-MILP) 0.10 0.362 0.141 0.045 0.065 0.017 0.012 0.012 0.010 0.015
14 500 1000 (DIG-MILP) 0.10 0.473 0.211 0.063 0.339 0.013 0.014 0.014 0.014 0.024

the model’s cross-distribution capabilities. It’s worth noting that ‘Bowly’ or ‘random’ neither enhances
the model’s in-distribution nor out-of-distribution performance. We believe this is due to the less precise
representation of the target distribution by the manually-designed ‘Bowly’ baseline and the excessively high
randomness in ‘random’, causing the generated instances to deviate substantially from the original problems
in both solution space and structure. In the lower rows (Datasets #9-#14), we investigate the impact
of progressively incorporating DIG-MILP-generated instances into the dataset, initially starting with 500
original instances. We observe a consistent improvement in model performance with the gradual inclusion
of additional newly generated instances, with peak performance achieved when augmenting the dataset with
500 newly generated instances.

Combinatorial Auctions (CA) We set the number of bid/item pairs that determines the quantity of
variables and constraints as the parameter for distribution shift. Our training set only comprises examples
with bid/item values ranging from 40/200 to 80/400, our testing set also introduces instances with bid/item
values ranging from 40/200 to 160/800. The relative mean squared error (MSE) of the model’s predictions
is provided in Table. 6. The experiments are also divided into two parts. The upper rows (Datasets #1-#8)
yields similar conclusions, where models trained solely on original data excel in fitting within in-distribution
test sets, models trained on a mixture of half original and half DIG-MILP-generated instances perform
better on test sets at scales never encountered during training (bid/item ranging from 100/500 to 160/800).
This observation is attributed to the diversity introduced by the generated instances, in terms of both the
problem structure and optimal objective labels, that prevents the models from over-fitting and thereby
enhance their generalization across scales. Consistent with the SC, the second part demonstrates the impact
of gradually increasing the new instances as training data and also achieves the peak performance with 500
newly generated instances.

CVS and IIS Experiments on CVS and IIS show similar insights, see Appendix. C.2 for details.

5 Conclusion

This paper introduces DIG-MILP, a deep generative framework for MILP. Contrasting with conventional
MILP generation techniques, DIG-MILP does not rely on domain-specific expertise. Instead, it employs
DNNs to extract profound structural information from limited MILP data, generating “representative” in-
stances. Notably, DIG-MILP guarantees the feasibility and boundedness of generated data, ensuring the
data’s “autheticity”. The generation space of DIG-MILP encompasses any feasible-bounded MILP, provid-
ing it with the capability of generating “diverse” instances. Experiment evaluations highlights DIG-MILP’s
potential in (S1) MILP data sharing for solver hyper-parameter tuning without publishing the original
data and (S2) data augmentation to enhance the generalization capacity of ML models tasked with solving
MILPs.

9



Under review as submission to TMLR

Table 6: The relative mean square error (MSE) of the optimal objective value task on the combinatorial
auction (CA) problem. The 500 original instances in training dataset #2−#14 are identical.

dataset #original #generated replace ratio in-distribution out-of-distribution
40/200 60/300 80/400 100/500 120/600 140/700 160/800

1 1000 0 - 0.246 0.003 0.060 0.155 0.239 0.312 0.379
2 500 500 (Bowly) - 0.202 0.004 0.080 0.183 0.272 0.346 0.410
3 500 500 (random) 0.10 0.242 0.006 0.077 0.179 0.269 0.347 0.409
4 500 500 (DIG-MILP) 0.01 0.346 0.008 0.043 0.131 0.219 0.292 0.359
5 500 500 (DIG-MILP) 0.05 0.345 0.009 0.041 0.125 0.211 0.284 0.352
6 500 500 (DIG-MILP) 0.10 0.385 0.015 0.036 0.118 0.201 0.276 0.340
7 500 500 (DIG-MILP) 0.20 0.428 0.019 0.035 0.116 0.203 0.275 0.344
8 500 500 (DIG-MILP) 0.30 0.381 0.012 0.040 0.126 0.215 0.289 0.356
9 500 500 (DIG-MILP) 0.50 0.398 0.014 0.035 0.117 0.203 0.276 0.344
10 500 0 - 0.216 0.004 0.068 0.165 0.249 0.324 0.388
11 500 50 (DIG-MILP) 0.10 0.382 0.006 0.040 0.130 0.218 0.293 0.361
12 500 100 (DIG-MILP) 0.10 0.446 0.014 0.031 0.116 0.201 0.275 0.344
13 500 500 (DIG-MILP) 0.10 0.385 0.015 0.036 0.118 0.201 0.276 0.340
14 500 1000 (DIG-MILP) 0.10 0.359 0.009 0.039 0.126 0.212 0.285 0.351

References
Tobias Achterberg and Roland Wunderling. Mixed integer programming: Analyzing 12 years of progress. In

Facets of combinatorial optimization: Festschrift for martin grötschel, pp. 449–481. Springer, 2013.

Naser Al-Falahy and Omar Y Alani. Technologies for 5g networks: Challenges and opportunities. It Profes-
sional, 19(1):12–20, 2017.

Yuihci Asahiro, Kazuo Iwama, and Eiji Miyano. Random generation of test instances with controlled at-
tributes. Cliques, Coloring, and Satisfiability, pp. 377–393, 1996.

Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and subgradient opti-
mization: a computational study. Springer, 1980.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Dimitris Bertsimas and John N Tsitsiklis. Introduction to linear optimization, volume 6. Athena scientific
Belmont, MA, 1997.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper van
Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip optimization
suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

Simon Bowly, Kate Smith-Miles, Davaatseren Baatar, and Hans Mittelmann. Generation techniques for
linear programming instances with controllable properties. Mathematical Programming Computation, 12
(3):389–415, 2020.

Simon Andrew Bowly. Stress testing mixed integer programming solvers through new test instance generation
methods. PhD thesis, School of Mathematical Sciences, Monash University, 2019.

Juergen Branke, Su Nguyen, Christoph W Pickardt, and Mengjie Zhang. Automated design of production
scheduling heuristics: A review. IEEE Transactions on Evolutionary Computation, 20(1):110–124, 2015.

Richard H Byrd, Alan J Goldman, and Miriam Heller. Recognizing unbounded integer programs. Operations
Research, 35(1):140–142, 1987.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear programs by
graph neural networks. International Conference on Learning Representations, 2023.

Ziang Chen, Jialin Liu, Xiaohan Chen, Xinshang Wang, and Wotao Yin. Rethinking the capacity of graph
neural networks for branching strategy. arXiv preprint arXiv:2402.07099, 2024.

10



Under review as submission to TMLR

IBM ILOG Cplex. V12. 1: User’s manual for cplex. International Business Machines Corporation, 46(53):
157, 2009.

Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A Bharath.
Generative adversarial networks: An overview. IEEE signal processing magazine, 35(1):53–65, 2018.

J Culberson. A graph generator for various classes of k-colorable graphs. URL http://webdocs. cs. ualberta.
ca/˜ joe/Coloring/Generators/generate. html, 2002.

Mădălina M Drugan. Instance generator for the quadratic assignment problem with additively decomposable
cost function. In 2013 IEEE Congress on Evolutionary Computation, pp. 2086–2093. IEEE, 2013.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Gerald Gamrath, Thorsten Koch, Alexander Martin, Matthias Miltenberger, and Dieter Weninger. Progress
in presolving for mixed integer programming. Mathematical Programming Computation, 7:367–398, 2015.

Gerald Gamrath, Timo Berthold, and Domenico Salvagnin. An exploratory computational analysis of dual
degeneracy in mixed-integer programming. EURO Journal on Computational Optimization, 8(3-4):241–
261, 2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combinatorial
optimization with graph convolutional neural networks. Advances in neural information processing systems,
32, 2019.

Zijie Geng, Xijun Li, Jie Wang, Xiao Li, Yongdong Zhang, and Feng Wu. A deep instance generative
framework for milp solvers under limited data availability. Advances in Neural Information Processing
Systems, 36, 2024.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo Berthold,
Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-driven com-
pilation of the 6th mixed-integer programming library. Mathematical Programming Computation, 13(3):
443–490, 2021.

Gurobi. Gurobi Optimizer Reference Manual, 2023. URL https://www.gurobi.com.

R Hill, JT Moore, C Hiremath, and YK Cho. Test problem generation of binary knapsack problem variants
and the implications of their use. Int. J. Oper. Quant. Manag, 18(2):105–128, 2011.

Raymond R Hill and Charles H Reilly. The effects of coefficient correlation structure in two-dimensional
knapsack problems on solution procedure performance. Management Science, 46(2):302–317, 2000.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

John N Hooker. Needed: An empirical science of algorithms. Operations research, 42(2):201–212, 1994.

John N Hooker. Testing heuristics: We have it all wrong. Journal of heuristics, 1:33–42, 1995.

Peter J Huber. Robust estimation of a location parameter. In Breakthroughs in statistics: Methodology and
distribution, pp. 492–518. Springer, 1992.

Michael H Hugos. Essentials of supply chain management. John Wiley & Sons, 2018.

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for general
algorithm configuration. In Learning and Intelligent Optimization: 5th International Conference, LION
5, Rome, Italy, January 17-21, 2011. Selected Papers 5, pp. 507–523. Springer, 2011.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016.

11

https://www.gurobi.com


Under review as submission to TMLR

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch in mixed
integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308, 2016.

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey. Operations research, 14(4):
699–719, 1966.

Marius Lindauer and Frank Hutter. Warmstarting of model-based algorithm configuration. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin Ben-
jamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization package
for hyperparameter optimization. The Journal of Machine Learning Research, 23(1):2475–2483, 2022.

Han Lu, Zenan Li, Runzhong Wang, Qibing Ren, Xijun Li, Mingxuan Yuan, Jia Zeng, Xiaokang Yang, and
Junchi Yan. Roco: A general framework for evaluating robustness of combinatorial optimization solvers
on graphs. In The Eleventh International Conference on Learning Representations, 2022.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous relaxation of
discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Stephen Maher, Matthias Miltenberger, João Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz, and Fe-
lipe Serrano. PySCIPOpt: Mathematical programming in python with the SCIP optimization suite.
In Mathematical Software – ICMS 2016, pp. 301–307. Springer International Publishing, 2016a. doi:
10.1007/978-3-319-42432-3_37.

Stephen Maher, Matthias Miltenberger, João Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz, and Felipe
Serrano. Pyscipopt: Mathematical programming in python with the scip optimization suite. In Mathemat-
ical Software–ICMS 2016: 5th International Conference, Berlin, Germany, July 11-14, 2016, Proceedings
5, pp. 301–307. Springer, 2016b.

Renata Mansini, odzimierz Ogryczak WĹ, M Grazia Speranza, and EURO: The Association of European Op-
erational Research Societies. Linear and mixed integer programming for portfolio optimization, volume 21.
Springer, 2015.

Robert R Meyer. On the existence of optimal solutions to integer and mixed-integer programming problems.
Mathematical Programming, 7:223–235, 1974.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Brendan
O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving mixed integer
programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

Martha G Pilcher and Ronald L Rardin. Partial polyhedral description and generation of discrete optimiza-
tion problems with known optima. Naval Research Logistics (NRL), 39(6):839–858, 1992.

12



Under review as submission to TMLR

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing network
design spaces. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10428–10436, 2020.

Arthur Richards and Jonathan P How. Aircraft trajectory planning with collision avoidance using mixed
integer linear programming. In Proceedings of the 2002 American Control Conference (IEEE Cat. No.
CH37301), volume 3, pp. 1936–1941. IEEE, 2002.

Ismael Rodríguez, Fernando Rubio, and Pablo Rabanal. Automatic media planning: optimal advertisement
placement problems. In 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 5170–5177. IEEE,
2016.

Paul C Roling, Hendrikus G Visser, et al. Optimal airport surface traffic planning using mixed-integer linear
programming. International Journal of Aerospace Engineering, 2008, 2008.

Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

Kate Smith-Miles and Simon Bowly. Generating new test instances by evolving in instance space. Computers
& Operations Research, 63:102–113, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Russ J Vander Wiel and Nikolaos V Sahinidis. Heuristic bounds and test problem generation for the time-
dependent traveling salesman problem. Transportation Science, 29(2):167–183, 1995.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Laurence A Wolsey. Integer programming. John Wiley & Sons, 2020.

13



Under review as submission to TMLR

A supplementary theoretical results

A.1 Proof of Proposition 1

To validate Proposition 1, we follow the methodology outlined in Bowly (2019). Before the proof of Proposi-
tion 1, we first give the definition of boundedness, feasibility and optimal solutions of MILP, then we discuss
the existence of optimal solutions of LP and MILP.
Definition 1 (Feasibility of MILP). An MILP(A, b, c) is feasible if there exists an x such that all the
constraints are satisfied: x ∈ Zn

≥0, Ax ≤ b. Such an x is named a feasible solution.

Definition 2 (Boundedness of MILP). An MILP(A, b, c) is bounded if there’s an upper bound on c⊤x across
all feasible solutions.
Definition 3 (Optimal Solution for MILP). A vector x⋆ is recognized as an optimal solution if it’s a feasible
solution and it is no worse than all other feasible solutions: c⊤x⋆ ≥ c⊤x, given x is feasible.

All LPs must fall into one of the following cases Bertsimas & Tsitsiklis (1997):

• Infeasible.

• Feasible but unbounded.

• Feasible and bounded. Only in this case, the LP yields an optimal solution.

However, general MILP will be much more complicated. Consider a simple example: min
√

3x1 −
x2, s.t.

√
3x1 − x2 ≥ 0, x1 ≥ 1, x ∈ Z2

≥0. No feasible solution has objective equal to zero, but there
are feasible solutions with objective arbitrarily close to zero. In other words, an MILP might be bounded but
with no optimal solutions. Such a pathological phenomenon is caused by the irrational number

√
3 in the

coefficient. Therefore, we only consider MILP with rational data:

A ∈ Qm×n, b ∈ Qm, c ∈ Qm.

Such an assumption is regularly adopted in the research of MILP.

Without requiring x to be integral, equation 1 will be relaxed to an LP, named its LP relaxation:

LP(A, b, c) : max
x

c⊤x, s.t. A x ≤ b, x ≥ 0.

The feasibility, boundedness, and existence of optimal solutions, along with the relationship with its LP
relaxation, are summarized in the following lemma.
Lemma 1. Given A ∈ Qm×n, b ∈ Qm, c ∈ Qm, it holds that

• (I) If LP(A, b, c) is infeasible, MILP(A, b, c) must be infeasible.

• (II) If LP(A, b, c) is feasible but unbounded, then MILP(A, b, c) must be either infeasible or un-
bounded.

• (III) If LP(A, b, c) is feasible and bounded, MILP(A, b, c) might be infeasible or feasible. If we
further assume MILP(A, b, c) is feasible, it must yield an optimal solution.

Proof. Conclusion (I) is trivial. Conclusion (II) is exactly (Byrd et al., 1987, Theorem 1). Conclusion (III)
is a corollary of (Meyer, 1974, Theorem 2.1). To obtain (III), we first write MILP(A, b, c) into the following
form:

max
x,r

c⊤x s.t. Ax + r = b, x ≥ 0, r ≥ 0, x is integral

Then the condition (v) in (Meyer, 1974, Theorem 2.1) can be directly applied. Therefore, the feasibility and
boundedness of MILP(A, b, c) imply the existence of optimal solutions, which concludes the proof.

14



Under review as submission to TMLR

With Lemma 1, we could prove Proposition 1 now.

Proof of Proposition 1. At the beginning, we define the space of [A, b, c] generated based on F as H′′ for
simplicity.

H′′ :=
{

[A, b, c] : b = Ax + r, c = A⊤y − s, [A, x, y, s, r] ∈ F
}

Then it’s enough to show that H′ ⊂ H′′ and H′′ ⊂ H′.

We first show H′′ ⊂ H′: For any [A, b, c] ∈ H′′, it holds that [A, b, c] ∈ H′. In another word, we have to
show MILP(A, b, c) to be feasible and bounded for all [A, b, c] ∈ H′′. The feasibility can be easily verified.
The boundedness can be proved by “weak duality." For the sake of completeness, we provide a detailed proof
here. Define the Lagrangian as

L(x, y) := c⊤x + y⊤ (b−Ax)

Inequalities Ax ≤ b and y ≥ 0 imply
L(x, y) ≥ c⊤x

Inequalities A⊤y ≥ c and x ≥ 0 imply
L(x, y) ≤ b⊤y

Since x ∈ Qn
≥0 and y ∈ Qm

≥0, it holds that

−∞ < c⊤x ≤ b⊤y < +∞

which concludes the boundedness of MILP(A, b, c).

We then showH′ ⊂ H′′: For any MILP(A, b, c) that is feasible and bounded, there must be [A, x, y, s, r] ∈ F
such that

b =Ax + r, (9)
c =A⊤y − s. (10)

The existence of x, r, along with equation 9, is a direct conclusion of the feasibility of MILP(A, b, c). Now
let’s prove the existence of rational vectors y, s, along with equation 10. Since MILP(A, b, c) is feasible and
bounded, according to Lemma 1, LP(A, b, c) must be feasible and bounded. Thanks to the weak duality
discussed above, we conclude that DualLP(A, b, c) must be feasible and bounded. As long as DualLP(A, b, c)
has an optimal solution y⋆ that is rational, one can obtain equation 10 by regarding [y⋆, A⊤y⋆−c] as [y, s].
Therefore, it’s enough to show DualLP(A, b, c) has a rational optimal solution.

Define:
A′ =[A⊤,−I]
y′ =[y⊤, s⊤]⊤

b′ =[b⊤, 0⊤]

Then DualLP can be written as a standard-form LP:

min
y′

(b′)⊤y′ s.t. A′y′ = c, y′ ≥ 0 (11)

As long as an LP has an optimal solution, it must have a basic optimal solution Bertsimas & Tsitsiklis (1997).
Specifically, we can split A′ in column-based fashion as A′ = [B′, N ′] and split y′ as y′ = [y⊤

B , y⊤
N ]⊤, where

yN = 0. Such a y′ is termed a basic optimal solution to the LP presented in equation 11. Therefore,

A′y′ = B′yB + N ′yN = B′yB = c =⇒ yB = (B′)−1c

Since B′ is a sub-matrix of A′, B′ is rational. Therefore, (B′)−1 and yB are rational, which implies y′

is rational. This concludes the existence of rational optimal solutions of DualLP, which finishes the entire
proof.

15



Under review as submission to TMLR

A.2 Derivation of the loss function

Here we show the derivation from the training objective in Equation. 5 towards the loss function in Equa-
tion. 6.

logP(G|G′; θ, ϕ) = Ez∼qϕ(z|G) logP(G|G′; θ, ϕ)

= Ez∼qϕ(z|G)[log pθ(G|G′, z)p(z)
qϕ(z|G)

qϕ(z|G)
p(z|G) ]

= Ez∼qϕ(z|G) log pθ(G|G′, z)p(z)
qϕ(z|G) + Ez∼qϕ(z|G)[log qϕ(z|G)

p(z|G) ]

= Ez∼qϕ(z|G)[log pθ(G|z, G′)]−DKL[qϕ(z|G)||p(z)] +DKL[qϕ(z|G)||p(z|G)]
≥ Ez∼qϕ(z|G)[log pθ(G|G′, z)]−DKL[qϕ(z|G)||N (0, I)]

, (12)

and thus we have
EG∼GEG′∼pG′|G) logP(G|G′; θ, ϕ) ≥ −Lθ,ϕ (13)

B supplementary implementation details

B.1 Hardware, Software and Platforms

At the hardware level, we employ an Intel Xeon Gold 6248R CPU and a Nvidia quadro RTX 6000 GPU.
For tasks that exclusively run on the CPU, we utilize a single core, for tasks that run on the GPU, we set
the upper limit to 10 cores. On the software side, we utilize PyTorch version 2.0.0+cu117 (Paszke et al.,
2019) and PyTorch Geometric version 2.0.3 (Fey & Lenssen, 2019). We utilize PySCIPOpt solver version
3.5.0 (Maher et al., 2016a) for optimization purposes with default configurations.

B.2 Implementation of DIG-MILP

For both the encoder and the decoder, we adopt the bipartite GNN exactly the same as that in Gasse et al.
(2019) as their backbones, the original codes for the backbone is publicly available4.

Encoder To obtain the latent variable samples, we feed the encoder with G encoded as per the method
in Table. 1, we then incorporate two distinct multi-layer perceptron (MLP) layers following the backbone
to output the mean and log variance of the latent variable z. During the training process, we use the re-
parametrization trick (Bengio et al., 2013; Maddison et al., 2016; Jang et al., 2016) to render the process of
sampling z from the mean and variance differentiable. During inference, we directly sample z ∼ N (0, I).

Table 7: The last layer design of decoder.
prediction embeddings
d, e, w, x, r hv, zv, v ∈ V

y, s hc, zc, c ∈ C

Decoder We feed the backbone of the decoder with the in-
complete graph G′ to obtain the latent node representations
hG′ = {hG′

c , hG′

v }. The backbone is then followed by seven
distinct heads conditionally independent on h and z, each cor-
responding to the prediction of: 1) the degree of the removed
node dci , 2) the edges e(ci, u) between the constraint node ci and the nodes in the other side, 3) the edge
weights wci , and 4) - 7) the value of x, y, r, s of the new graph G̃. Each head is composed of layers of MLP,
and takes different combinations hG′

, zG′ as inputs, which is illustrated in Table. 7. We perform min-max
normalization on all the variables to predict according to their maximum and minimum value occurred in
the training dataset. Each part is modeled as a regression task, where we use the Huber Loss Huber (1992)
as the criterion for each part and add them together as the total loss for decoder.

For the case of binary MILP problems, their primal, dual and slack variables could be written in the form
as Equation. 14 15 16:

4https://github.com/ds4dm/learn2branch/blob/master/models/baseline/model.py

16

https://github.com/ds4dm/learn2branch/blob/master/models/baseline/model.py


Under review as submission to TMLR

Primal (Binary)
max

x
c⊤x

s.t. Ax ≤ b

x ≤ 1
x ≥ 0
x ∈ Z

(14)

Dual (Binary)
(Linear Relaxation)

max
y

[b⊤, 1⊤]y

s.t. [A⊤, I]y ≥ c

y ≥ 0

(15)

Slack (Binary)

Ax + r = b

[A⊤, I]y − s = c

r ≥ 0
s ≥ 0

(16)

Considering the inherent structure of binary MILP, we can further decompose the dual solution y into two
parts: y1 (corresponding to regular constraints Ax ≤ b) and y2 (corresponding to constraints x ≤ 1). The
encoding of binary MILP problem into a bipartite VC graph is illustrated in Table. 8. And the decoder
could be models as Equation. 17.

pθ(G|G′, z) = pθ(dci
|hG′

ci
, zci

) ·
∏
u∈V

pθ(e(ci, u)|hG′

V , zV) ·
∏

u∈V:e(ci,u)=1

pθ(wci
|hG′

V , zV)

·
∏
u∈C

pθ(y1u|hG′

C , zC)pθ(ru|hG′

C , zC) ·
∏
u∈V

pθ(xu|hG′

V , zV)pθ(su|hG′

V , zV)pθ(y2u|hG′

V , zV),
(17)

where the decoder of DIG-MILP specifically designed for binary MILP partitions the predicted dual solution
y into two segments y1, y2 and predict each segment separately.

Table 8: V-C encoding for binary MILP.
object feature

constraint
node

C = {c1...cm}

all 0’s
y1 = {y11...y1m}

r = {s1...sm}

variable
node

V = {v1...vn}

all 1’s
x = {x1...xn}
s = {r1...rn}

y2 = {y21...y2n}
edge E non-zero weights in A

Hyper-parameters Across the four datasets, we set the same learning rate for DIG-MILP as 1e − 3. We
use the Adam optimizer (Kingma & Ba, 2014). For the SC, we set the α in Lθ,ϕ as 5, for the CA, the CVS,
and the IIS, we set α as 150. We use the random seed as 123 for DIG-MILP training across all the four
datasets.

B.3 Implementation of baseline

‘Bowly’ Here we show the implementation of generating instances from scratch with the baseline
Bowly (Bowly, 2019). The generation of matrix A is illustrated in the algorithm. 3. With the generated
adjacency matrix A, where we manipulate the hyper-parameters during the generation process to ensure
that the statistical properties of A align as closely as possible with the original dataset. Specifically, we keep
the size of graph (m, n) the same as the original dataset and uniformly sample pv, pc from [0, 1] for all the
four datasets. For the other hyper-parameter settings, see Tables. 9.

Then we uniformly sample the solution space x, y, s, r with intervals defined by their corresponding maximum
and minimum from the training dataset. Then we deduce b, c to get the new MILP instances.

‘Random’ We use exactly the same network architecture and generation process as DIG-MILP.
The key difference is that instead of utilizing the trained NN, we uniformly sample the variables
dci , e(ci, u), wci , y1, s, x, r, y2 required for decoder prediction within intervals delineated by the maximum

17



Under review as submission to TMLR

Algorithm 3 Bowly - generation of matrix A
Require: n ∈ [1,∞), m ∈ [1,∞), ρ ∈ (0, 1], pv ∈ [0, 1], pc ∈ [0, 1], µA ∈ (−∞,∞), σA ∈ (0,∞)
Ensure: Constraint matrixA ∈ Qm×n

1: Set target variable degree d(ui) = 1 for randomly selected i,0 for all others
2: Set target constraint degree d(ui) = 1 for randomly selected i,0 for all others
3: e← 1
4: while e < ρmn do
5: s← draw n values from U(0, 1)
6: t← draw m values from U(0, 1)
7: Increment the degree of variable node i with maximum pv

d(ui)
e + si

8: Increment the degree of constraint node j with maximum pc
d(vj)

e + tj

9: e← e + 1
10: end while
11: for i = 1, ..., n do
12: for j = 1, ..., m do
13: r ← draw from U(0, 1)
14: if r <

d(ui)d(vj)
e then

15: Add edge (i, j) to VC
16: end if
17: end for
18: end for
19: while min((d(ui), d(vj)) = 0 do
20: Choose i from {i|d(ui) = 0}, or randomly if all d(ui) > 0
21: Choose j from {j|d(vj) = 0}, or randomly if all d(vj) > 0
22: Add edge (i, j) to VC
23: end while
24: for (i, j) ∈ E(V C) do
25: aij = N (µA, σA)
26: end for
27: return A

18



Under review as submission to TMLR

Table 9: The hyper-parameter selection of the Bowly baseline.
density µA σA

SC U{0.15, 0.20, 0.25, 0.30, 0.35} -1 0
CA 0.05 1 U(0.1, 0.3)
CVS 0.0013 0.2739 0.961
IIS 0.0488 -1 0

and minimum values of each variable from the training set, simulating the random parameters of an untrained
neural network.

B.4 Implementation of the structural statistical characteristics

The explanation of various statistical metrics used for comparing the structural similarity of MILP problem
instances is detailed as shown in Table. 10. Specific numerical values for different metrics for the SC and
CA problems can be found in Table. 13 and Table. 14, respectively.

Table 10: Explanation of the statistic metrics of the MILP instances
name explanation

density mean the average number of non zero values in the constraint matrix
cons degree mean the average number of constraint node degree
cons degree std the standard variance of constraint node degree
var degree mean the average number of variable node degree
var degree std the standard variance of variable node degree

b mean the average b value
b std the standard variance of b value

c mean the average value of c
c std the standard variance of c value

For each statistic metric i shown in Table. 10, we begin by collecting lists of the values from four data sources:
the original dataset, the data generated by the ‘Bowly’ baseline, the data generated by the ‘random’ baseline,
and data generated by DIG-MILP. Each data source contains 1000 instances. We then employ the lists from
the four data sources to approximate four categorical distributions. Utilizing the numpy.histogram function,
we set the number of bins to the default value of 10, with the min and max values derived from the collective
minimum and maximum of a given metric across the four data sources, respectively. Next, we employ
Jensen-Shannon (JS) divergence Di

js via the function scipy.spatial.distance.jensenshannon (Virtanen et al.,
2020) to quantify the divergence between the original samples and the rest three data sources, resulting in
scorei for each statistical metric.

scorei = (max(Djs)−Di
js)/(max(Djs)−min(Djs)), (18)

where max(Djs), min(Djs) are the maximum and minimum of JS divergence across all the metrics.

Then we average the score for each statistic metric to obtain the final similarity score, as is shown in Table. 12:

score = 1
9

9∑
i=1

scorei. (19)

B.5 Implementation of Data Sharing for Solver Configuration Tuning

Below are the hyper-parameters that we randomly sample to test the positive-correlation of different dataset
pairs. We adhere to the configuration established in mainstream solver tuning literature to select the pa-

19



Under review as submission to TMLR

rameters requiring adjustment Hutter et al. (2011); Lindauer & Hutter (2018); Lindauer et al. (2022), . For
a detailed explanation of each parameter, please refer to the SCIP documentation5.

Table 11: The selected SCIP hyper-parameters and the range to randomly select from.
params whole range/choice default our range/choice

branching/scorefunc s, p, q s s, p, q
branching/scorefac [0, 1] 0.167 [0, 1]

branching/preferbinary True, False False True, False
branching/clamp [0,0.5] 0.2 [0,0.5]

branching/midpull [0,1] 0.75 [0,1]
branching/midpullreldomtrig [0,1] 0.5 [0,1]
branching/lpgainnormalize d, l, s s d, l, s

lp/pricing l, a, f, p, s, q, d l l, a, f, p, s, q, d
lp/colagelimit [-1,2147483647] 10 [0,100]
lp/rowagelimit [-1,2147483647] 10 [0,100]

nodeselection/childsel d, u, p, I, l, r, h h d, u, p, I, l, r, h
separating/minortho [0,1] 0.9 [0,1]

separating/minorthoroot [0,1] 0.9 [0,1]
separating/maxcuts [0,2147483647] 100 [0,1000]

separating/maxcutsroot [0,2147483647] 2000 [0,10000]
separating/cutagelimit [-1,2147483647] 80 [0,200]

separating/poolfreq [-1,65534] 10 [0,100]

B.6 Implementation of Optimal Value Prediction via ML

Neural Network Architecture In this downstream task, We also use the bipartite GNN backbone which
is exactly the same as that in Gasse et al. (2019). We use an MLP layer and global mean pooling to produce
the optimal objective value prediction. The learning rate is set as 1e− 3.

C Supplementary Experiment Results

C.1 statistical characteristics of the generated instances

Table 12: The similarity score ↑ between the original and generated data .
constraint replace rates γ - 0.01 0.05 0.10 0.20 0.50

SC
Bowly 0.337 - - - - -

random - 0.701 0.604 0.498 0.380 0.337
ours - 0.856 0.839 0.773 0.652 0.570

CA
Bowly 0.386 - - - - -

random - 0.630 0.566 0.508 0.432 0.306
ours - 0.775 0.775 0.768 0.733 0.630

We compare the statistical metrics between the generated instances and the original instances on the SC
and CA datasets. We do not calculate the statistics on the CVS and IIS due to their limited size that
prevents meaningful statistical comparisons. We count nine statistic metrics in total, see Table. B.4 in the
appendix for details. The similarity score is derived from the Jensen-Shannon (JS) divergence (the lower
the better) between each metric of the generated and original data, as shown in Table. 12. ‘Bowly’ shows
the least similarity. As the the constraint replacement ratio γ increases from 0.01 to 0.50, the table shows
a decreasing similarity between new and original instances for both DIG-MILP and ‘random’, aligning with
our expectation of controlling structural similarity by adjusting the number of constraint nodes to replace.
Instances generated by DIG-MILP more closely mirror the target data in structural statistical metrics across

5https://www.scipopt.org/doc/html/PARAMETERS.php

20



Under review as submission to TMLR

Table 13: Statistic value comparison across the original dataset and the generated datasets with different
constraints replacement rates on the set covering (SC) problem. ‘resolving time’ calculates under default
configuration of pySCIPopt. ‘density’ represents the ratio of non zero entries in the constraint matrix. ‘cons
degree’ denotes the degree of constraint nodes, ‘var degree’ stands for the degree of variable nodes. b denotes
the right hand side vector of the MILP, and c is the objective coefficient vector.

replace ratio resolving
time (s)

density
mean

cons degree
mean

cons degree
std

var degree
mean

var degree
std b mean b std c mean c std

original - 0.821 0.251 100.700 8.447 50.350 6.854 -1.0 0.0 50.490 28.814
Bowly - 0.205 82.312 35.131 41.305 21.628 1.484 3.504 403.208 198.571

random 0.01 127.723 0.251 100.774 9.853 50.387 6.841 1.294 3.045 422.65 65.078
random 0.05 143.883 0.253 101.039 14.070 50.519 6.787 1.218 3.123 431.422 66.082
random 0.10 187.851 0.253 101.357 17.706 50.678 6.727 1.164 3.210 441.696 67.250
random 0.20 304.216 0.255 101.900 22.808 50.950 6.607 1.062 3.351 460.696 69.379
random 0.50 1312.595 0.258 103.348 31.305 51.674 6.375 0.664 3.629 509.337 74.864

ours 0.01 83.681 0.251 100.700 8.876 50.350 7.431 -0.515 1.351 44.863 0.939
ours 0.05 70.476 0.251 100.712 10.202 50.356 9.977 -0.456 1.386 44.958 0.984
ours 0.10 54.650 0.251 100.738 11.365 50.369 13.354 -0.413 1.441 45.057 1.032
ours 0.20 54.830 0.251 100.754 12.872 50.377 19.992 -0.368 1.576 45.112 1.071
ours 0.50 22.462 0.252 100.830 14.433 50.415 37.017 -0.005 1.271 44.967 1.872

Table 14: Statistic value comparison across the original dataset and the generated datasets with different
constraints replacement rates on the combinatorial auction (CA) problem. ‘resolving time’ calculates under
default configuration of pySCIPopt. ‘density’ represents the ratio of non zero entries in the constraint matrix.
‘cons degree’ denotes the degree of constraint nodes, ‘var degree’ stands for the degree of variable nodes. b
denotes the right hand side vector of the MILP, and c is the objective coefficient vector.

replace ratio resolving
time (s)

density
mean

cons degree
mean

cons degree
std

var degree
mean

var degree
std b mean b std c mean c std

original - 1.360 0.050 14.538 13.834 5.578 3.253 1.0 0.0 330.999 234.444
Bowly - 0.281 0.048 14.415 13.633 5.544 7.262 1.668 1.617 510.211 1101.065

random 0.01 0.416 0.051 14.664 13.970 5.634 3.240 1.748 1.602 524.961 563.436
random 0.05 0.502 0.054 15.225 14.531 5.878 3.201 1.792 1.647 560.369 561.074
random 0.10 0.555 0.056 15.877 15.088 6.152 3.161 1.855 1.706 598.047 555.956
random 0.20 0.821 0.061 17.098 15.953 6.658 3.106 1.966 1.797 669.168 552.853
random 0.30 1.056 0.065 18.186 16.527 7.105 3.070 2.053 1.850 735.284 548.606
random 0.50 2.353 0.072 19.959 17.222 7.837 3.006 2.267 1.972 841.971 545.471

ours 0.01 0.361 0.050 14.490 13.776 5.565 3.253 1.645 1.348 361.711 264.798
ours 0.05 0.360 0.050 14.361 13.609 5.535 3.286 1.609 1.325 351.417 261.927
ours 0.10 0.301 0.050 14.205 13.401 5.500 3.366 1.589 1.329 342.702 261.313
ours 0.20 0.217 0.049 13.819 12.854 5.412 3.586 1.525 1.315 324.282 260.848
ours 0.30 0.140 0.047 13.454 12.330 5.344 3.847 1.454 1.280 304.911 260.949
ours 0.50 0.055 0.045 12.869 11.379 5.254 4.282 1.350 1.233 271.474 255.515

all γ. For detailed calculations of the similarity score and the specific values of each statistic metric, see B.4
and C.1 in the appendix.

C.2 Data Sharing for Solver configuration Tuning

CVS and IIS There are five total instances in CVS, comprising three for training DIG-MILP and the
downstream predictor and two for testing. The IIS has two instances, one for training and one for testing
(with allocation based on alphabetical order). Please refer to Table. 15 for the model’s performance. ‘ground
truth’ corresponds to the true values of the optimal objectives for each problem. Models trained exclusively
on the ‘original’ training set exhibit superior fitting and more accurate predictions on the training set itself.
However, models trained on the datasets where we introduce 20 additional newly generated instances by
DIG-MILP with varying constraint replacement ratio γ not only demonstrate minimal gap in prediction on
the training set towards the models trained solely on the original data compared with the baselines, but also
showcase improved predictive performance on previously unseen test sets. This underscores the notion that
the DIG-MILP-generated data can indeed increase structural and solution label diversity to a certain extent,
thereby enhancing the generalization capability and overall performance of the models. Again, similar to
the previous two experiments, ‘Bowly’ degrades the predictive performance of the model, ‘random’ results
in marginal improvement in out-of-distribution prediction accuracy.

21



Under review as submission to TMLR

Table 15: The predicted value and relative mean square error (MSE) of the optimal objective value on the
CVS and the IIS problem. In the CVS, ‘cvs08r139-94’,‘cvs16r70-62’,‘cvs16r89-60’ are used as training data,
‘cvs16r106-72’,‘cvs16r128-89’ are used as testing data. In the IIS, ‘iis-glass-cov’ is used as the training data,
‘iis-hc-cov’ is used as the testing data. ‘original’ shows the performance of the model trained merely on the
three (CVS) or single (IIS) original training instances.

in-distribution out-of-distributio in-distribution out-of-distribution
cvs08r139-94 cvs16r70-62 cvs16r89-60 cvs16r106-72 cvs16r128-89 iis-glass-cov iis-hc-cov

dataset ratio value msre value msre value msre value msre value msre value msre value msre
ground truth - 116 0 42 0 65 0 81 0 97 0 -17 0 -21 0

original - 115.994 2e-9 41.998 1e-9 64.997 1e-9 77.494 0.001 89.258 0.006 -20.999 3e-10 -94.451 20.756
Bowly - 65.712 0.187 82.353 0.923 66.858 8e-6 61.504 0.057 66.045 0.101 -88.756 17.816 -88.756 17.816

random 0.01 138.459 0.037 45.312 0.006 67.875 0.001 58.754 0.075 68.192 0.088 -22.263 3e-4 -83.146 15.139
random 0.05 163.412 0.167 34.571 0.031 45.605 0.089 41.110 0.242 24.952 0.551 -20.695 2e-4 -82.297 14.753
random 0.10 116.824 5e-5 60.440 0.192 79.152 0.047 68.641 0.023 79.321 0.033 -20.991 1e-7 -807.680 2163.238
random 0.20 144.962 0.062 79.849 0.812 99.552 0.282 71.821 0.0128 99.898 8e-4 -21.678 0.001 -227.610 153.482
random 0.50 159.807 0.142 49.364 0.030 65.213 1e-5 103.960 0.080 122.321 0.068 -21.633 9e-3 -100.224 23.966

DIG-MILP 0.01 116.981 7e-5 42.197 2e-5 64.876 3e-6 78.646 8e-4 96.831 3e-6 -20.933 1e-5 -90.556 18.721
DIG-MILP 0.05 161.558 0.154 26.181 0.141 23.439 0.408 66.119 0.033 76.119 0.046 -21.108 2e-5 -61.217 6.765
DIG-MILP 0.10 118.609 5e-4 45.461 0.006 67.216 0.001 80.706 1e-5 95.745 1e-4 -20.976 1e-6 -65.385 8.101
DIG-MILP 0.20 114.622 1e-4 42.933 4e-4 62.627 0.001 83.379 8e-4 120.641 0.0594 -20.159 0.001 -55.926 5.243
DIG-MILP 0.50 120.361 0.001 44.472 0.003 69.287 0.004 84.870 0.002 104.333 0.005 -21.009 2e-7 -90.427 18.655

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
combinatorial auctions original

se
t c

ov
er

in
g 

or
ig

in
al

(a) CA - SC

100 150 200 250 300 350 400
CVS original

co
m

bi
na

to
ri

al
 a

uc
tio

ns
 o

ri
gi

na
l

(b) CVS - CA

100 200 300 400 500 600
IIS original

co
m

bi
na

to
ri

al
 a

uc
tio

ns
 o

ri
gi

na
l

(c) IIS - CA

100 200 300 400 500 600
IIS original

C
VS

 o
ri

gi
na

l

(d) IIS - CVS

100 200 300 400 500 600
IIS original

se
t c

ov
er

in
g 

or
ig

in
al

(e) IIS - SC

100 150 200 250 300 350 400
CVS original

se
t c

ov
er

in
g 

or
ig

in
al

(f) CVS - SC

Figure 4: The solution time of SCIP with different parameter sets across different original datasets.

We present the visual results for CA, SC, and IIS datasets, see Fig. 5, 6, 7.

22



Under review as submission to TMLR

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Trial #1

Tr
ia

l #
2

(a) two trials

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
original

ra
nd

om
 (r

at
io

 =
 0

.1
)

(b) random (γ = 0.1)

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
original

ra
nd

om
 (r

at
io

 =
 0

.2
)

(c) random (γ = 0.2)

0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
original

ra
nd

om
 (r

at
io

 =
 0

.3
)

(d) random (γ = 0.3)

0.8 1.0 1.2 1.4 1.6 1.8 2.0
original

B
ow

ly

(e) Bowly

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
original

ou
rs

 (r
at

io
 =

 0
.1

)

(f) ours (γ = 0.1)

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
original

ou
rs

 (r
at

io
 =

 0
.2

)

(g) ours (γ = 0.2)

1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
original

ou
rs

 (r
at

io
 =

 0
.3

)

(h) ours (γ = 0.3)

Figure 5: The solution time of SCIP on the CA with 45 different hyper-parameter sets.

1.4 1.5 1.6 1.7
Trial #1

Ti
ra

l #
2

(a) two trials

1.35 1.40 1.45 1.50 1.55 1.60
original

ra
nd

om
 (r

at
io

 =
 0

.1
)

(b) random (γ = 0.1)

1.35 1.40 1.45 1.50 1.55 1.60
original

ra
nd

om
 (r

at
io

 =
 0

.2
)

(c) random (γ = 0.2)

1.35 1.40 1.45 1.50 1.55 1.60
original

ra
nd

om
 (r

at
io

 =
 0

.3
)

(d) random (γ = 0.3)

1.05 1.10 1.15 1.20 1.25 1.30 1.35
original

B
ow

ly

(e) Bowly

1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65
original

ou
rs

 (r
at

io
 =

 0
.1

)

(f) ours (γ = 0.1)

1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65
original

ou
rs

 (r
at

io
 =

 0
.2

)

(g) ours (γ = 0.2)

1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65
original

ou
rs

 (r
at

io
 =

 0
.3

)

(h) ours (γ = 0.3)

Figure 6: The solution time of SCIP on the SC with 45 different hyper-parameter sets.

23



Under review as submission to TMLR

100 200 300 400 500 600
Trial #1

Ti
ra

l #
2

(a) two trials

100 200 300 400 500 600
original

ra
nd

om
 (r

at
io

 =
 0

.1
)

(b) random (γ = 0.1)

100 200 300 400 500 600
original

ra
nd

om
 (r

at
io

 =
 0

.2
)

(c) random (γ = 0.2)

100 200 300 400 500 600
original

ra
nd

om
 (r

at
io

 =
 0

.3
)

(d) random (γ = 0.3)

100 200 300 400 500 600
original

B
ow

ly

(e) Bowly

100 200 300 400 500 600
original

ra
nd

om
 (r

at
io

 =
 0

.1
)

(f) ours (γ = 0.1)

100 200 300 400 500 600
original

ra
nd

om
 (r

at
io

 =
 0

.2
)

(g) ours (γ = 0.2)

100 200 300 400 500 600
original

ra
nd

om
 (r

at
io

 =
 0

.3
)

(h) ours (γ = 0.3)

Figure 7: The solution time of SCIP on the IIS with 45 different hyper-parameter sets.

24


	Introduction
	Related Work
	Methodology
	Preliminaries
	DIG-MILP with Feasibility Guarantee
	Generation Process and Architecture

	Numerical Evaluations
	Settings
	Results and Analysis
	downstream task #1: Data Sharing for Solver Configuration Tuning
	downstream task #2: Optimal Value Prediction via machine learning


	Conclusion
	supplementary theoretical results
	Proof of Proposition 1
	Derivation of the loss function

	supplementary implementation details
	Hardware, Software and Platforms
	Implementation of DIG-MILP
	Implementation of baseline
	Implementation of the structural statistical characteristics
	Implementation of Data Sharing for Solver Configuration Tuning
	Implementation of Optimal Value Prediction via ML

	Supplementary Experiment Results
	statistical characteristics of the generated instances
	Data Sharing for Solver configuration Tuning


