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Abstract

Large Language Models (LLMs) show remarkable proficiency in natural language tasks,
yet their frequent overconfidence—misalignment between predicted confidence and true

correctness—poses significant risks in critical decision-making applications.

We present

a comprehensive analysis on calibration in LLMs across nine LLMs and three factual
Question-Answering (QA) datasets, systematically comparing standard free-generation set-

tings against structured distractor-augmented prompts.

Our evaluation reveals that ex-

plicitly incorporating distractors can substantially mitigate miscalibration, achieving rel-
ative accuracy improvements up to 460% and ECE reductions up to 90%. Despite gen-
eral trends, we uncover nuanced findings: large RLHF-tuned models display inherent cal-
ibration strengths but can paradoxically suffer increased miscalibration on easier queries,
whereas smaller models benefit disproportionately from distractor prompts but remain sig-
nificantly miscalibrated. Through detailed analyses across question types, we identify per-

sistent calibration failures, particularly in person-based queries.

We conclude with con-

crete recommendations—targeted fine-tuning, structured prompting, and strategic model
choice—to ensure reliable, trustworthy LLM deployments. Code is publicly available at:
https://github.com/prateekchhikara/llms-calibration
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Figure 1: An instance from SimpleQA dataset where an LLM assigns high confidence to an incorrect answer.


https://openreview.net/forum?id=lyaHnHDdZl
https://github.com/prateekchhikara/llms-calibration

Published in Transactions on Machine Learning Research (12/2025)

1 Introduction

Large Language Models (LLMs) have significantly advanced natural language understanding, achieving state-
of-the-art results across tasks including conversational Al (Skjuve et al., 2024} [Zhang) 2024), scientific dis-
covery (Kumar, 2024), and multimodal systems (Zhang et all |2023} [Chhikara et al.| [2024; Zhang et al.). As
LLMs increasingly guide critical decisions in sensitive domains—such as healthcare, finance, and law—the
reliability of their confidence estimates becomes paramount. Misalignment between model confidence and ac-
tual correctness, known as miscalibration, poses severe risks, potentially eroding user trust and causing costly
or hazardous errors (Dhuliawala et al., 2023} |Geng et al., [2024)). For example, as illustrated in Figure when
asked “Who received the IEEE Frank Rosenblatt Award in 201077, a leading LLM confidently but incorrectly
answers “Geoffrey Hinton” with a confidence of 93%, despite the correct answer being “Michio Sugeno”.
Such pronounced overconfidence can lead users to mistakenly trust erroneous outputs—particularly prob-
lematic in high-stakes applications such as medical diagnoses or financial decisions. Well-calibrated models,
on the other hand, report confidence scores accurately reflecting their true reliability, thus enabling systems
to flag uncertain predictions for human oversight and significantly mitigating real-world risks.

Modern Question-Answering (QA) pipelines adopt “one-right+several-wrong” format — whether through
retrieval-augmented candidate spans, knowledge-graph sibling entities, self-consistency checks, or ensemble
methods—to improve answer selection. However, these structured, distractor-rich settings introduce novel
challenges for confidence estimation—challenges that classical post-hoc calibration methods (temperature
scaling, Platt scaling, isotonic regression (Guo et al},2017))) were not originally designed to address. Although
such methods have proven effective on small- to medium-scale neural networks, their applicability to today’s
large-scale LLMs under real-world, distractor-heavy conditions remains unclear. Prior work has examined
isolated factors—model scale, architecture (dense vs. mixture of experts (MoE)), and fine-tuning regime
(supervised fine-tuning (SFT) vs. reinforcement learning from human feedback (RLHF)) (Leng et al., 2024;
Li et al., |2024)—but has not extensively examined how explicit distractors, ubiquitous in deployed QA
systems, affect calibration accuracy and confidence ranking for modern LLMs.

Mitigating overconfidence through distractors Research in cognitive psychology demonstrates that
human overconfidence can be reduced by explicitly considering alternative answers before making decisions
(Lord et al. [1984; [Mussweiler et al., 2000). Inspired by this “consider-the-opposite” strategy, we investi-
gate whether presenting LLMs with plausible distractors similarly mitigates their systematic overconfidence
and enhances calibration. To be specific, we conduct the first large-scale empirical study of LLM cali-
bration, comparing performance under standard (free-generation) and distractor-augmented settings. Our
contributions are fourfold: (1) we introduce a unified calibration benchmark evaluating nine state-of-the-art
LLMs—spanning model sizes (8B-70B to greater than 1T), architectures (dense vs. MoE), and fine-tuning
methods (SFT vs. RLHF)—across three factual QA datasets (SimpleQA, FaVIQ, TriviaQA); (2) we pro-
pose a structured distractor-augmented evaluation paradigm, where models select answers from one correct
and multiple plausible incorrect options, enabling simultaneous assessment of accuracy improvements and
Expected Calibration Error (ECE); (3) we perform fine-grained analyses across question types (e.g., person,
date) to identify conditions of severe miscalibration; and (4) we systematically disentangle how scale, tuning
regime, and architecture independently influence model calibration and responsiveness to distractors.

2 Related Work

Intrinsic calibration Methods directly elicit uncertainty from LLMs. Prompt-based approaches that
verbalize confidence (Tian et al.l 2023} Mielke et al., [2022; [Lin et al.) or aggregate multiple outputs (Xiong
et al.) have demonstrated effectiveness, particularly for black-box models.

Fine-tuning strategies Approaches such as calibration-aware RLHF (Leng et al.; 2024) and Mixup-style
data augmentation (Park & Caragea, |2022)) aim to optimize calibration during training. While these methods
reduce ECE, they remain sensitive to distribution shifts (Liu et al.).
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Calibration during pre-training and alignment [Chen et al.|(2023) show that calibration emerges early
in self-supervised pre-training, and [Zhu et al.| (2023) demonstrate that instruction tuning and RLHF can
preserve or even enhance these gains. [Jiang et al.[(2021)) find that post-hoc methods like temperature scaling
often fail to align confidence with accuracy in factual QA. However, the effects of explicit distractor-based
prompting on LLM calibration remain unexplored.

Post-hoc calibration Techniques adjust predictions after training, with classical approaches like tempera-
ture scaling (Guo et al., 2017)) still underexplored for contemporary LLMs. Recent studies indicate persistent
overconfidence even at larger scales, highlighting a potential degradation in calibration performance with
increased model size (Zhou et al. 2024azb]).

Despite extensive research, existing literature lacks a systematic exploration of structured distractor effects
on calibration. Motivated by psychological findings that considering alternative answers can reduce human
overconfidence, our work introduces a structured distractor-augmented evaluation framework. Unlike prior
methods, we empirically investigate how explicit distractor scenarios—common in practical applications such
as retrieval-augmented generation and multiple-choice contexts—impact LLM calibration. Additionally, we
conduct detailed, fine-grained analyses across different question types (e.g., person, date, place), uncovering
context-dependent calibration challenges previously overlooked. Our findings thus address critical gaps
in calibration research, offering practical insights to enhance the reliability and trustworthiness of LLM
deployments.

3 Experimental Setup

3.1 Evaluation Datasets:

SimpleQA We use the SimpleQA dataset (Wei et al.l 2024), which provides a reliable benchmark for
evaluating LLM factual accuracy and calibration. Comprising short, fact-seeking queries with clearly defined
correct answers, SimpleQA enables precise measurement of model confidence and alignment with factual
correctness. Its high-quality annotations, verified by multiple independent Al trainers, ensure accuracy and
unambiguity, making it well-suited for calibration assessment. The dataset contains 4326 question-answer
pairs.

FaVIQ (Park et al.l|2022)) We select data points from test subset of the R-set. The dataset initially contains
5877 data points, out of which we focus exclusively on the 2922 data points labeled as “supports,” indicating
that the provided answer is correct. FaVIQ is particularly appropriate for our experiments due to its con-
struction methodology derived from real-world information-seeking questions. This design inherently reduces
strong lexical biases found in other crowdsourced datasets, promoting nuanced semantic understanding.

TriviaQA We use the TriviaQA dataset (Joshi et al.,|2017)), for evaluating open-domain question answering
and factual knowledge retrieval. For our experiments, we select first 1000 question-answer pairs from the
validation split of the rc.web.no_content subset, ensuring a diverse yet controlled evaluation set. By
restricting our selection to the no-content class, we focus on settings where models must rely purely on
prior knowledge without the assistance of retrieved supporting context, isolating intrinsic model calibration
behavior.

3.2 Evaluation Methods

Let our evaluation set be

S= {(Qi,ai)};;l?

where ¢; is the i-th question and a; its ground-truth answer. We compare two prompting regimes:
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Free-generation baseline (N) We prepend each ¢; with a fixed prompt template my and let model
generate a completion answer and the confidence:

YZ(-N)&Z('N) =LLM(7y || @),

(N)

%

where the model’s final answer is y.* ’ and the associated confidence is CZ(»N).
Distractor-augmented setting (D) For each (¢;,a;) we sample three distractors {d;1,d;2,d; 3} and

form the choice list
Ci = Shufﬂe({ai} U {di7j}?:1).

We then feed the model: 5 5
i, et = LLM(rp || ;] C:),

K2

and extract the model’s final answer yED) and record the associated confidence CZ(-D). Prompt templates

7n,7p are provided in Appendix [A] Our distractors were generated using GPT-4o-mini with a carefully
designed prompt to ensure they were factually incorrect yet contextually plausible. Specifically, for each
question—answer pair in the datasets, we used GPT-40-mini to generate three distractors that (i) matched
the expected answer type (e.g., dates for date-based questions), (ii) remained distinct from the correct
answer, and (iii) maintained comparable specificity and context. To further validate plausibility, we manually
inspected over 500 randomly sampled examples from the SimpleQA dataset, confirming that the generated
distractors were consistently plausible and contextually relevant.

Why Elicited Confidence? We measure confidence via elicited self-reports (0-100) because they capture
task-level belief (“How sure are you that your answer is correct?”) rather than token-level fluency artifacts.
Prior work shows that verbalized probabilities can better reflect correctness than raw token likelihoods, which
are sensitive to phrasing and tokenization (Lin et al). In RLHF-tuned systems, elicited confidence has also
been observed to track calibration more reliably than log-probabilities, which can degrade post-alignment
(Tian et al., [2023). This aligns with “linguistic calibration” evidence that making models state their confi-
dence reduces overconfidence and improves user-facing transparency (Mielke et al.l [2022). Elicitation is also
the only uniformly available signal across the nine black-box and open-weight models we evaluate, enabling
apples-to-apples comparison. We do not claim it is the sole or optimal measure: logit-based margins/entropy
and self-consistency (majority-vote variance) are complementary signals. Our findings should therefore be
interpreted in the context of elicited confidence; we add this clarification to promote comparability and to
reflect the literature’s guidance on when verbalized uncertainty is informative.

3.3 Selected LLMs

We select nine representative models, spanning three major families—OpenAIl’s GPT-4 series, Meta’s LLaMA
lineage, and two leading open-weight models (Gemma-2 and Qwen-qwq). We select these models from OpenA]ﬂ
and Groquoucﬂ API services. More details about the selected models and their taxonomy are in Table

GPT-4 Family The GPT-4 family consists of three variants: GPT-40, GPT-4-turbo, and GPT-4o0-mini (a
smaller, assumed to be 8B-parameter model). All three support an extended 128K-token context window and
are instruction-tuned via SF'T followed by RLHF to optimize conversational quality. They differ primarily
in total parameter count—leading to different trade-offs in inference latency and compute cost.

LLaMA Lineage Meta’s LLaMA-3 (Dubey et al., 2024]) series spans three dense checkpoints: an 8B base
with 8K window, an 8B “Instant” assistant-tuned model with 128K window, and a 70B base (8K window).
Each uses Grouped-Query Attention (GQA) (Ainslie et al.) for efficient long-context processing; all these
variant undergoes SFT and RLHF. In contrast, LLaMA—4—Scout—17bE| adopts a 16-expert MoE transformer
which supports up to 10M tokens, and is fine-tuned with both SFT and RLHF for reasoning.

Thttps://openai.com
?https://groq.com
Shttps://ai.meta.com/blog/llama-4-multimodal-intelligence/
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Table 1: Taxonomy of selected LLMs showing differences in training and fine-tuning approaches, where FT
(fine-tuning) and IT (instruct-tuning).

Model (Params / Architecture Dataset Type Training Strategy FT IT
Context)
GPT-40 Dense Multi-modal (web  Pre-training + v v
(undisclosed / 128K) text, code, RLHF

images, audio

transcripts)
GPT-40-mini Dense Multi-modal (web  SFT 4+ RLHF v v
(undisclosed / 128K) text, code,

images)
GPT-4-turbo Dense Multi-modal (web  Pre-training + SFT v v
(undisclosed / 128K) text, code, + RLHF

images)
LLaMA-3.1-8B-Instant Dense (GQA) 15T tokens — Pre-training + SFT v v
(8B / 128K) Public (web, code, + RLHF

multilingual)
LLaMA-3-8B-Instruct Dense (GQA) 15T tokens — Pre-training + SFT v v
(8B / 8K) Public (web, code, + RLHF

multilingual)
LLaMA-3-70B-Instruct Dense (GQA) 15T tokens — Pre-training + SFT v v
(70B / 8K) Public (web, code, + RLHF

multilingual)
LLaMA-4-Scout-17B MOoE (16 experts) 40T tokens — MOoE Pre-training + v v
(17B / 10M) Mixed (text + SFT + RLHF

vision,

multilingual)
Gemma2-9B-it Dense (GQA, 8T tokens — Distillation + SFT 4 4
(9B / 8K) interleaved Public (web, + RLHF

local-global) academic)

Qwen-qwq-32B Dense (GQA) 18T tokens — Pre-training + SFT v v
(32B / 131K) Public

(multilingual; web

text, code,

scientific lit.)

Open-Weight Alternatives Gemma2-9b-it (Team et al. 2024) leverages knowledge-distillation pre-
training on 8T tokens—with interleaved local-global and group-query attention—followed by instruction
fine-tuning (SFT 4 Direct Preference Optimization (DPO) (Rafailov et al.| 2023)) within 8K-token context.
By contrast, Quen-qwq-32b (Hui et al., [2024; Yang et al., 2024)) is a 32B-parameter dense model (64 layers,
Rotary Positional Embedding (RoPE) (Su et all [2024), SwiGLU (Dauphin et al.; 2017))) pre-trained on 18T
multilingual tokens without RLHF.

The GPT-4 family and LLaMA-3 series are dense models trained on massive multimodal or text-only corpora,
each undergoing both SFT and RLHF before instruct-tuning. In contrast, LLaMA-4-Scout employs a 16-
expert MoE design over mixed vision-text data, while Gemma2-9b-it and Qwen-qwq-32b explore distillation-
based and pure SF'T regimes, respectively. Despite these varied strategies, all nine models receive dedicated
fine-tuning and instruction-tuning to optimize performance and calibration in downstream QA and conver-
sational tasks.

3.4 Evaluation Criteria

Following prior work, we use GPT-4o-mini as an LLM-based judge to classify responses as CORRECT,
INCORRECT, or NOT_ATTEMPTED (Packer et al.l [2023; Wei et al., 2024; |Chhikara et al., [2025]). A response
is CORRECT if it fully captures the gold target’s key information without contradiction, allowing minor varia-
tions in wording, order, or hedging. It is INCORRECT if it contains factual errors, contradictions, or misleading
speculation, even if hedged. NOT_ATTEMPTED applies when a response lacks essential information without in-
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Table 2: Performance metrics of LLMs in the Normal (V) and Distractor (D) settings on the SimpleQA,
FaVIQ, and TriviaQA datasets, including accuracy (correct), NOT_ATTEMPTED (), ECE, and the number of
helped (Dpeiped) and harmed (Dharmeq) instances with their percentages.

Dataset / LLMs ‘ Ncorrect Nna NECE ‘ Dcorre(:t Dna DECE ‘ Dhelped Dharmed
SimpleQA
GPT-40-mini 8.46% 6.80% 0.750 47.43% 0.02% 0.320 1644 (93.78%) 109 (6.22%)
GPT-4-turbo 20.37% 6.17% 0.612 65.40% 0.00% 0.165 1877 (95.86%) 81 (4.14%)
GPT-4o0 35.14% 7.88%  0.450 | 73.42% 0.02% 0.037 | 1569 (91.97%) 137 (8.03%)
LLaMA-3.1-8b-instant ® 5.58% 18.78%  0.799 44.64% 0.12% 0.367 1355 (95.29%) 67 (4.71%)
LLaMA-3-8B-8192 0 4.79%  21.20% 0.810 | 44.01%  0.55%  0.361 | 1382 (95.57%) 62 (4.43%)
LLaMA-3-70b-8192 o0 12.73%  16.46%  0.760 55.81% 0.25% 0.239 1587 (95.09%) 82 (4.91%)
LLaMA-4-scout-17b ® 6.70% 8.76% 0.631 50.30% 0.02% 0.285 1763 (95.40%) 85 (4.60%)
Gemma2-9B-it G 5.48% 33.29%  0.799 45.58% 1.78% 0.367 1143 (94.38%) 68 (5.62%)
Qwen-qwq-32b % 7.59% 3.99% 0.680 51.68%  0.00%  0.253 | 1784 (96.48%) 65 (3.52%)
FavIQ
GPT-40-mini 47.19% 4.08% 0.426 69.73% 0.24% 0.161 722 (85.85%) 119 (14.15%)
GPT-4-turbo 54.76% 5.79% 0.357 80.07% 0.31% 0.062 682 (93.81%) 45 (6.19%)
GPT-40 56.20% 4.83% 0.315 | 81.37% 0.21% 0.036 | 688 (93.73%) 46 (6.27%)
LLaMA-3.1-8b-instant © | 36.27%  6.16%  0.532 | 60.14%  0.31%  0.267 776 (80.83%) 184 (19.17%)
LLaMA-3-8b-8192 0 30.85% 4.81% 0.587 58.53% 0.68% 0.282 892 (86.02%) 145 (13.98%)
LLaMA-3-70b-8192 o0 44.95% 4.79% 0.463 72.85% 0.76% 0.139 715 (91.32%) 68 (8.68%)
LLaMA-4-scout-17b ® 39.05% 3.74% 0.499 67.85% 0.28% 0.218 861 (89.41%) 102 (10.59%)
Gemma2-9b-it & 35.80%  10.42%  0.581 | 58.95%  1.28%  0.300 607 (82.25%) 131 (17.75%)
Quen-qwg-32b % 38.34%  3.62% 0.530 68.54% 0.25% 0.200 850 (92.69%) 67 (7.31%)
TriviaQA

GPT-40-mini 81.13% 0.12% 0.104 | 87.81%  0.00%  0.065 75 (77.32%) 22 (22.68%)
GPT-4-turbo 90.38%  0.36% 0.025 95.43% 0.00% 0.048 43 (84.31%) 8 (15.69%)
GPT-40 89.66% 0.24% 0.071 95.55%  0.00% 0.083 48 (85.71%) 8 (14.29%)
LLaMA-3.1-8b-instant ® | 75.46% 0.31% 0.153 81.35% 0.00% 0.101 119 (67.61%) 57 (32.29%)
LLaMA-3-8b-8192 0 67.41%  0.51%  0.221 | 78.93%  0.00%  0.113 166 (74.11%) 58 (25.89%)
LLaMA-3-70b-8192 0 82.86%  0.30%  0.070 | 91.43%  0.00% 0.026 103 (83.74%) 20 (16.26%)
LLaMA-4-scout-17b & 77.92%  0.40%  0.141 | 86.87%  0.00%  0.079 | 127 (74.71%) = 43 (25.29%)
Gemma2-9b-it G 70.10% 1.41% 0.230 81.55% 0.00% 0.107 150 (75.76%) 48 (24.24%)
Qwen-qwq-32b % 75.03%  0.62%  0.158 | 88.08%  0.00%  0.042 | 133 (86.93%) 20 (13.07%)

troducing errors, including vague or evasive answers. We experiment with using the same LLM for both
prediction and judgment, finding that smaller LLM judges often misclassify responses or hesitate to assign
NOT_ATTEMPTED when no valid answer is generated. Manual inspection confirms these issues, and further
details are provided in the Appendix [B]

3.5 Evaluation Metrics:

To evaluate performance, we measure correctly answered questions for both variations (N and D). For
calibration assessment, we use ECE to quantify the misalignment between a model’s predicted confidence
and actual accuracy. A well-calibrated model produces confidence estimates that closely match its true
correctness, with an ECE of zero indicating perfect calibration. Following (Naeini et all [2015), we compute
ECE using empirical binning (bin size 0.1) to ensure a robust measurement of miscalibration. Additionally,
we define two complementary metrics: Dpeipeq, denoting instances where the model failed under the A setting
but succeeded when distractors were added (N; = 0 and D; = 1); and Dparmed, capturing the reverse—cases
where the model initially answered correctly under A/ but erred when distractors were introduced (N; = 1
and DZ = 0)
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Figure 2: Reliability diagrams (RDs) showing calibration performance in N (e) and D (+) settings on the
SimpleQA dataset. (y-axis: actual accuracy, x-axis: predicted confidence)

4 Experimental Results and Analysis

4.1 Quantifying Baseline Calibration of LLMs

We first quantify each model’s out-of-the-box accuracy (Neorrect), NOT_ATTEMPTED (N,.,), and Ngcg on
three benchmarks: SimpleQA (a deliberately hard, concise factoid task), FaVIQ (moderate difficulty), and
TriviaQA (an easier, QA dataset). Table 2 reports the full metrics.

On the hardest SimpleQA benchmark—where direct “off-the-shelf” generation is inherently complex—even
GPT-40 attains only 35% accuracy (ECE 0.45, NOT_ATTEMPTED ~ 8%). Larger GPT-4 variants have been
pretrained on vastly more tokens (and may even have encountered similar questions), yet their calibration loss
remains on the same order as smaller models. This parity—despite scale and pretraining volume—indicates
persistent overconfidence across sizes on challenging questions.

By contrast, the easy TriviaQA setting reveals the limits of overconfidence: GPT-40’s accuracy rises to 90%
with ECE ~ 0.07 and near-zero NOT_ATTEMPTED, while smaller or open-source models tighten their reliability
curves more markedly. In other words, on simpler, context-rich queries, larger models not only answer
correctly but also exhibit proportionally less overconfidence compared to hard benchmarks. FaVIQ again
falls between these extremes, with both accuracy and ECE interpolating smoothly.

Comparative analysis across families shows that GPT-4 variants consistently occupy the “high accuracy, low
ECE, low NOT_ATTEMPTED” regime on all datasets. Small LLaMA-3 models, in contrast, post single-digit
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accuracy on SimpleQA, ECEs approaching 0.8, and frequent deferrals; scaling them to 70B or adopting to
other open-source alternatives (Gemma2-9b-it, Qwen-qwq-32b) yields only incremental gains.

4.2 Effects of Structured Distractors on Accuracy and Confidence

To quantify effect of adding correct answer alongside three incorrect options, we measure relative accuracy
gain AAcc = (Deorrect — Neorrect ) /Neorreet and ECE compression AECE = Ngcg — Decg- Table [2 reports
counts and percentage of Dhelped VS. Dharmed and NOT_ATTEMPTED (D,,). Figure [2| overlays reliability dia-
grams (RDs) for all the nine models on SimpleQA dataset. RDs for FaVIQ and TriviaQA are in the Appendix
(¢}

Across all models, structured distractors boost accuracy and (for most cases) reduce ECE. On the challenging
SimpleQA benchmark, distractors often halve ECE (up to AECE ~ 0.4) and more than double accuracy for
smaller variants, confirming that explicit options help recalibrate confidence when generation alone is unreli-
able. However, on TriviaQA—the easiest dataset—GPT-40 and GPT-4-turbo (the largest models) exhibit a
slight increase in ECE under D, despite relative accuracy gains of 3-5%. We observe that ECE_,p(GPT-40)
rises from 0.071 to 0.083, and ECEy_,p(GPT-4-turbo) rises from 0.025 to 0.048. This counterintuitive effect
likely stems from confidence inflation: on already-easy examples, the multiple-choice context encourages the
model to assign excessive probability mass to the correct answer, amplifying residual misalignment between
predicted confidence and true correctness.

Smaller models (< 10B) show the largest AAcc on FaVIQ and SimpleQA but also the highest Dparmeq rates
on FaVIQ and TriviaQA, suggesting that limited pretraining makes them more susceptible to distractor-
induced errors. Notably, D,,, drops for all models (to zero on TriviaQA), underlining that no LLM abstains
once explicit options are provided for easier questions.

4.3 Influence of Fine-Tuning Regime and Model Architecture

Our analysis systematically investigates how different fine-tuning strategies and model architectures impact
accuracy and calibration performance, specifically in the context of structured distractors.

First, we observe that effectiveness of RLHF on calibration performance varies significantly across different
model implementations and sizes. While RLHF models such as GPT-4o-mini (assumed 8B parameters)
exhibit superior calibration performance (ECE 0.750 reduced to 0.320 on SimpleQA), smaller-scale RLHF
models like LLaMA-3-8b-8192 and LLaMA-3.1-8b-Instant underperform relative to Qwen-qwq-32B, an SFT-
only model. Specifically, in D setting, Qwen-qwq-32B demonstrates better accuracy (51.68% vs. 44.64% for
LLaMA-3.1 and 44.01% for LLaMA-3-8b on SimpleQA) and calibration (ECE 0.253 vs. 0.367 for LLaMA-3.1
and 0.361 for LLaMA3-8b), highlighting that RLHF alone does not guarantee superior calibration. This
indicates that other factors, such as the volume and diversity of training data, the quality of fine-tuning
data, and overall training strategies, play crucial roles.

Examining within the LLaMA family, LLaMA 3.1-8b-Instruct notably outperforms the earlier LLaMA3-8B
variant across all benchmarks despite identical parameter counts. This improved performance, especially
evident in all three open-domain QA tasks in N setting (e.g. accuracy 75.46% vs. 67.41% in TriviaQA
dataset), stems from enhancements in parametric knowledge, refined instruction tuning, and superior cali-
bration. LLaMA-3.1-8b benefited from training on an extended and more recent dataset (up to December
2023), enabling better retention of long-tail factual knowledge and improved instruction-following capabili-
ties, thereby enhancing robustness and reliability.

Distilled models, notably Gemma2-9b-it, exhibit higher "NOT_ATTEMPTED' rates on all the three datasets
(e.g. 33.29% on SimpleQA) compared to similarly sized models, indicating challenges in effectively utilizing
their compressed knowledge base without external support. Qwen-qwq-32b, despite lacking RLHF fine-
tuning, consistently produces answers with lower "NOT_ATTEMPTED" rates and demonstrates robustness against
distractor-induced errors, as indicated by its lower percentage of harmed instances.

Furthermore, although significantly larger, the MoE-based LLaMA-4-Scout-17b does not outperform
GPT-4o0-mini in accuracy or calibration, underscoring that training volume and quality significantly im-



Published in Transactions on Machine Learning Research (12/2025)

+461  +37 100
+83+ °
+7
75 gpt-4o-mini
4001 4 * -
gpt-4-turbo

50 mmm gpt-40

70
llama3-8b-8192
65 W |lama-3.1-8b-instant
Em lama-4-scout-17b

z +38 9 60 HEE llama3-70b-8192
2300 25 8 g g
< ) H 550
© o ] o
= € < <
o +221 0 s v S
> § > 505
o 9 o
£ 200 - 8 w
5 A7 =25 0 5 [v]
I w s 454
S <
< 109 =50
100 40
+48 +46 +45 -75
+8 +7 35
0 - =9 -100 0 B —
SimpleQA FaviQ TriviaQA SimpleQA FaviQ TriviaQA
Dataset Dataset

Figure 3: Accuracy and calibration shifts with distractors. We show relative accuracy gains (bars) and ECE
changes (points) when distractor options are added. While all models improve in accuracy, calibration effects
vary—Ilarge models benefit most, while smaller or models often remain miscalibrated.

pact performance more than sheer parameter count. However, at a substantially larger scale, LLaMA-3-70b
successfully surpasses GPT-40-mini, highlighting the interplay of extensive parameterization, robust training,
and fine-tuning strategies.

In conclusion, our comprehensive analysis reveals that while RLHF can substantially improve model cali-
bration, it is not universally effective without careful consideration of other critical training factors. Models
leveraging large-scale training datasets, updated fine-tuning approaches, and comprehensive instruction tun-
ing achieve optimal accuracy and calibration. Effective deployment in reliability-sensitive contexts thus
demands a strategic blend of parameterization, extensive pre-training, robust fine-tuning methodologies,
and carefully designed calibration interventions.

4.4 Effect of Model Size within LLM Families

We disentangle parameter count from other factors by comparing the smallest, mid-sized, and largest check-
points released by each provider. In the normal setting (N), accuracy increases monotonically with scale
for both families; however, calibration improves much faster for the OpenAl series. GPT-4o0 already attains
an ECE of 0.450 on SimpleQA. This suggests that RLHF alignment, used uniformly across GPT-4 models,
amplifies the natural size-driven gains in self-assessment that emerge from scaling alone.

Introducing distractor options (D) radically alters the picture. The largest relative accuracy jumps occur in
the smallest models as shown in Figure |3} GPT-4o0-mini rockets from 8.5% to 47.4% accuracy on SimpleQA
(+461%), and LLaMA-3-8b leaps +819% over the same split. In contrast, their flagship counterparts—GPT-40
and LLaMA-70b—gain a more modest +109% and +338%, respectively. Yet these headline boosts do not
translate into equally dramatic calibration improvements. After distractors, GPT-40 compresses its ECE by
92% (to 0.037), whereas GPT-4o-mini still lingers above 0.32. A mirror pattern holds for LLaMA: the 70B
model cuts ECE by 69%, finishing at 0.24, while the 8B base remains mis-calibrated (ECE 0.36) despite its
vast accuracy lift. When we extend this analysis to FaVIQ and TriviaQA, the same ranking by model size
holds but with attenuated returns. On FaVIQ), distractors yield solid—but more moderate—accuracy boosts
across all scales. On TriviaQA, where the baseline performance is already high, relative gains shrink into
the low-teens, indicating only marginal benefit from explicit distractors.

Two key takeaways emerge from our analysis. First, small models acquire factual knowledge more quickly
than they learn to assess their own confidence: adding explicit answer choices boosts accuracy but yields
poorly calibrated probability estimates. Second, increasing model scale primarily improves a model’s ability
to quantify its certainty rather than uncover new knowledge. Consequently, when downstream tasks rely
directly on confidence scores—such as risk-aware planning or answer adjudication—larger models offer more
trustworthy probabilities. In contrast, in settings where latency or compute cost is the main constraint



Published in Transactions on Machine Learning Research (12/2025)

7:48% 20.24%
4.87% %

3.46% %
’ ! ptido

41.61%

4.94%
5.29%

5.29%

13.54% "

llamay3.1
(8b-instant)

qwen-qwq-32b

Number

43.29%

llamay3.1
(8b-instant)

qwen-qwq-32b

(a) Date (b) Number
Person Place
gpt-40 gpt-4o

55.81%

100%

0, 9 60%
4_7102.054 18.16/040%

3.17% 20%
28.72% gptrdo
7% WS 82.50%
13%

9.32%6.34%

49.38%

0,
llamay3.1 (928

(8b-instant)

llamg<4-scout

28.1%

10.54%
%

40%

8.43%
12.18%
10.77%

18.27%
llamay3.1
(8b-instant)

0,
47.31% 46.14% llamg<4-scout

(17b-Y6e-instruct)

59.94%  5034% (17 t6e-instruct)

llama3-70b~8 llama3-70b~8
qwen-qwq-32b qwen-qwq-32b

(c) Person (d) Place

Figure 4: Performance (correct) of LLMs across different question types in both A/ (¢) and D (+) settings.

and some post-hoc temperature scaling is acceptable, smaller models can still deliver adequate confidence
estimates so long as they’re provided with distractors or retrieval-augmented context.

4.5 Performance Across Question Types

The SimpleQA dataset already categorizes 4326 questions into four non-overlapping types—Date (1418),
Number (663), Person (1041), and Place (427)—and we evaluate each model’s accuracy and ECE in both
the free-generation (N) and distractor-augmented (D) settings. To better understand calibration weak-
nesses, we analyze model performance and confidence alignment across these question types (Figure |4)).
Person-based queries are most challenging, likely due to name ambiguities and inherent variability in names,
overlapping roles, and contextual dependencies that require deeper reasoning beyond surface-level pattern
matching. LLMs frequently confuse historical figures with similar names, but providing structured answer
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Table 3: ECE comparison across question types.

Date Number Person Place

N D N D N D N D

GPT-40-mini 0.7r 032 0.73 035 0.76 0.25 0.73 042
GPT-4-turbo 0.62 0.23 0.65 026 062 0.03 052 0.19
GPT-40 0.41 0.05 0.53 0.13 0.51 0.07 0.35 0.04
LLaMA-3.1-8b 0.84 0.37 082 038 080 031 0.73 040
LLaMA-3-8b 0.85 035 0.82 0.36 081 033 073 045
LLaMA-3-70b 0.80 0.22 0.80 0.28 0.76 0.19 0.65 0.33
LLaMA-4-17b 0.68 030 0.65 0.29 0.60 0.24 053 0.35
Gemma2-9b-it 0.80 0.33 0.78 042 084 033 0.76 041
Qwen-qwg-32b 0.68 0.21 0.66 0.25 0.68 0.26 0.66 0.31

mean 0.72 0.26 0.72 0.30 0.71 0.22 0.63 0.32

choices significantly improves accuracy, suggesting that explicit disambiguation helps mitigate uncertainty
in this category. In contrast, place-based queries exhibit relatively strong performance across both settings,
indicating that geographic knowledge is well-represented in pretraining. However, calibration improvements
vary (Table : the person category sees highest relative ECE drop (69%), while place category shows the
lowest (49%). This suggests that structured choices help correct overconfidence in ambiguous queries but
offer limited calibration gains when models already retrieve knowledge with high confidence. These results
demonstrate that miscalibration depends on both task framing and knowledge representation, not just model
scale or architecture. While structured reasoning improves confidence alignment in person-based queries,
factual retrieval tasks like place-based questions may require alternative calibration strategies to prevent
persistent overconfidence.

5 Conclusion

Our investigation provides a rigorous empirical foundation for understanding and addressing calibration is-
sues in LLMs. We reveal widespread overconfidence across various model families and sizes, significantly
improved by employing structured distractors—particularly effective for smaller models. However, our find-
ings also highlight counterintuitive outcomes, including degraded calibration in large models on simpler
queries. Moreover, systematic miscalibration across specific query categories underscores the complexity of
the calibration challenge beyond simple accuracy. Consequently, achieving trustworthy AI requires a mul-
tifaceted calibration strategy, integrating robust RLHF, optimized prompt design, and post-hoc calibration
adjustments. The evaluation framework and guidelines proposed herein serve as critical tools for future
research, driving forward the development of LLMs that are not only accurate but reliably calibrated for
safe real-world application.

6 Limitations

Generator/Judge Dependence. Our distractor-augmented setting fixes a single generator and a single
judge (GPT-40-mini) for consistency across models. While this reduces rubric drift and style confounds,
it also risks bias from an “Al-generates/Al-judges” loop. We mitigate subjectivity via type- and format-
matched distractor prompts, overlap and plausibility checks, and human spot-checks by three reviewers with
disagreement resolution. Nevertheless, results should be interpreted as conditional on this (generator, judge)
pair. We release prompts to support replication with alternative generators and judges. Exploring cross-
model distractor sources and independent judges (including human-only adjudication) is important future
work; our present study prioritizes comparability under a fixed setup and does not claim generator/judge
invariance.
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A Custom Prompts

We generate the answers for A setting using the following prompt. The prompt outputs the
answer and confidence for the answer in a json format.

LLM_ RESPONSE_PROMPT = """ You are an intelligent assistant who is given a question. Your role
is to provide accurate, helpful, and well-reasoned responses based on your knowledge and capabilities.

Along with the question, you need to provide a confidence score for your answer. The confidence score should
be a number between 0 and 100, where:

- 0-25 indicates low confidence

- 26-75 indicates moderate confidence

- 76-100 indicates high confidence

Guidelines for providing answers:

1. Be direct and concise in your answer while ensuring completeness. Avoid unnecessary words or tangents.
2. If you are uncertain, provide a lower confidence score.

3. Base your confidence score on:

- The reliability and recency of available information

- Your knowledge of the specific domain

Here are some examples:

Example 1:

Question: What is the capital of France?

Answer: Paris

Confidence score: 91 (High confidence as this is a well-established fact)

Example 2:

Question: Which country has the best healthcare system?

Answer: It depends on the criteria used. Some rankings favor Switzerland, while others favor Sweden or
Singapore.

Confidence score: 25 (There is no definitive answer, and the confidence is low due to the lack of a clear
consensus. )

Example 3:

Question: Which state is between Washington and California?

Answer: Oregon

Confidence score: 87 (Maximum confidence as this is a clear geographic fact)

Example 4:

Question: What was Albert Einstein’s favorite food?

Answer: There is no definitive record of his favorite food, but he reportedly liked pasta.
Confidence score: 25 (There are anecdotal mentions, but no verified records.)

Example 5:

Question: Is Irvine a city in California?

Answer: Yes

Confidence score: 81 (High confidence as this is a verifiable fact)

Example 6:

Question: What is the most popular programming language for Al development?

Answer: Python

Confidence score: 66 (Moderate-high confidence based on current trends, but this can change over time)

Here is a new example. Simply reply with your answer and confidence score.

Question: {question}
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Provide your response in the following JSON format: { "answer': "Your answer here', "confidence_score':
number between 0-100 } """

We generate the answers for D setting using the following prompt. The prompt outputs the
answer and confidence for the answer in a json format.

LLM_ RESPONSE_PROMPT__DISTRACTORS = """ You are an intelligent assistant who is given
a question and a list of options. Your role is to provide accurate, helpful, and well-reasoned answer based
on your knowledge and capabilities and the options provided.

Along with the answer, you need to provide a confidence score for your answer. The confidence score should
be a number between 0 and 100, where:

- 0-25 indicates low confidence

- 26-75 indicates moderate confidence

- 76-100 indicates high confidence

Guidelines for providing answers:

1. Return the answer from the list of options provided only. It is guaranteed that the answer will be one of
the options provided.

2. If you are uncertain, provide a lower confidence score.

3. Base your confidence score on:

- The reliability and recency of available information

- Your knowledge of the specific domain

Here are some examples:

Example 1:

Question: What is the capital of France?

Options: - Paris - London - Rome - Madrid

Answer: Paris

Confidence score: 91 (High confidence as this is a well-established fact)

Example 2:

Question: Which country has the best healthcare system?

Options: - Switzerland - Sweden - Singapore - United States

Answer: It depends on the criteria used. Some rankings favor Switzerland, while others favor Sweden or
Singapore.

Confidence score: 25 (There is no definitive answer, and the confidence is low due to the lack of a clear
consensus. )

Example 3:

Question: Which state is between Washington and California?

Options: - Oregon - Washington - California - Idaho

Answer: Oregon

Confidence score: 87 (Maximum confidence as this is a clear geographic fact)

Example 4:

Question: What was Albert Einstein’s favorite food?

Options: - Pizza - Pasta - Sushi - Tacos

Answer: There is no definitive record of his favorite food, but he reportedly liked pasta.
Confidence score: 25 (There are anecdotal mentions, but no verified records.)

Example 5:

Question: Is Irvine a city in California?

Options: - Yes - No

Answer: Yes

Confidence score: 81 (High confidence as this is a verifiable fact)
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Example 6:

Question: What is the most popular programming language for Al development?

Options: - Python - Java - C++ - JavaScript

Answer: Python

Confidence score: 66 (Moderate-high confidence based on current trends, but this can change over time)

Here is a new example. Simply reply with your answer and confidence score.
Question: {question} Options: {options}

Provide your response in the following JSON format: { "answer": "Your answer here', "confidence_ score':
number between 0-100 } """

To generate the 3 distractors for each question-answer pair, we use the following prompt with few shot
examples.

DISTRACTORS__GENERATION_ PROMPT = """You are an expert synthetic data generator. Your
task is to generate three plausible but incorrect answers to a given question.

Guidelines for generating wrong answers:

1. Each answer should be factually incorrect but plausible within the context

Match the answer type (e.g. if asking for a date, provide wrong dates)

The wrong answers should be clearly distinct from the correct answer and from each other
Maintain a similar level of specificity as the original answer

The answers should be realistic and not obviously wrong

GU N

Example 1:

Question: What is the capital of France?

Answer: Paris

Wrong Answers: - Lyon - Marseille - Bordeaux

Reason: All are major French cities, but incorrect as capital

Example 2:

Question: Who was the first president of the United States?

Answer: George Washington

Wrong Answers: - John Adams - Thomas Jefferson - Benjamin Franklin
Reason: All are founding fathers but not the first president

Example 3:

Question: In what year did World War II end?

Answer: 1945

Wrong Answers: - 1943 - 1944 - 1946

Reason: All are plausible years during or near WWII but not when it ended

Example 4:

Question: Who wrote Romeo and Juliet?

Answer: William Shakespeare

Wrong Answers: - Christopher Marlowe - Ben Jonson - John Webster
Reason: All are prominent Elizabethan playwrights

Example 5:

Question: What is the largest planet in our solar system?
Answer: Jupiter

Wrong Answers: - Saturn - Neptune - Uranus

Reason: All are gas giant planets, but smaller than Jupiter

Please generate three wrong answers that follow these guidelines for the given question.
The answers should be:

- Factually incorrect but plausible

- Match the same answer type (e.g. date, person, number)
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- Clearly distinct from the correct answer and each other
- Similar in specificity /detail level
- Realistic and not obviously wrong

Return only three wrong answers as a list in JSON format with the following requirements:
- Each wrong answer should be a string

- The output should be a single JSON object with key "wrong_answers"

- The value should be an array of exactly 3 wrong answers

- No explanations or additional text should be included

- The answers should maintain consistent formatting with the correct answer

Example format: { "wrong_answers": ['optl", "opt2", "opt3"] }

Question: {question}
Correct Answer: {answer}
Generate three wrong answers:

Table 4: Performance metrics of LLMs on SimpleQA dataset in the Normal (A) and Distractor (D) settings,
including accuracy (correer), non-attempt (w), ECE, and the number of helped (Dheipeq) and harmed (Drarmed)
instances. Here the LLM judge model is same as the prediction model.

LLMs ‘ Nco’rrect Nnone NECE ‘ Deorrect Drnone DECE ‘ Dhelped Dharmed
GPT-40-mini 8.46% 6.80% 0.750 47.43% 0.02% 0.320 1644 (93.78%) 109
GPT-4-turbo 20.99% 7.14% 0.616 65.33% 0.02% 0.165 1821 (95.44%) 87
GPT-4o0 36.75% 8.16% 0.437 73.48% 0% 0.037 1507 (91.22%) 145
LLaMA3.1-8b-instant ® 8.24% 19.58% 0.780 44.94% 0.21% 0.367 1294 (91.45%) 121
LLaMA 3-8B-8192 0 9.27% 24.99% 0.790 45.56% 2.45% 0.355 1251 (90.46%) 132
Gemma2-9B-it & 9.52% 34.49% 0.771 46.58% 1.87% 0.359 1060 (88.70%) 135

B Same LLM judge as Prediction LLM

We employ the same LLM as both the judge and the base model responsible for predicting answers to
the questions. The performance metrics are presented in Table [} Upon manually inspecting instances
from smaller LLMs, we observe that the LLM judge occasionally misclassifies responses and refrains from
assigning NOT_ATTEMPTED to certain data points. This can be seen by comparing N, en. in Tabld2] and [ for
the SimpleQA dataset. To address this issue and ensure consistency, we use GPT-4o-mini as the LLM judge
across all models. We also create reliability diagrams of pipeline where LLM-judge was different and the
graphs are shown in Figure [f

To validate the reliability of GPT-40-mini as an LLM judge, we conducted a small-scale human evalua-
tion. We sampled 100 responses and had three human annotators independently classify them as CORRECT,
INCORRECT, or NOT_ATTEMPTED. The inter-annotator agreement, measured using Cohen’s kappa, was 0.82 for
GPT-4o0-mini, indicating substantial agreement. This comparison allowed us to measure the extent of biases
introduced by automated evaluation and confirm that LLM judges generally aligned with human judgments,
though minor inconsistencies were observed in ambiguous cases.

C Reliability Diagrams of Selected Models on FaVIQ and TriviaQA dataset
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Figure 5: Reliability diagrams (RDs) on SimpleQA dataset showing calibration performance in A/ (o) and
D (+) settings. The numbers on top of bars represent the number of correctly predicted instances (y-axis:
actual accuracy, x-axis: predicted confidence). Here the LLM judge model is same as the prediction model.
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Figure 6: Reliability diagrams (RDs) showing calibration performance in A/ (¢) and D () settings on the
TriviaQA dataset. (y-axis: actual accuracy, x-axis: predicted confidence).
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Figure 7: Reliability diagrams (RDs) showing calibration performance in A/ (¢) and D () settings on the
FaVIQ dataset. (y-axis: actual accuracy, x-axis: predicted confidence)
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