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ABSTRACT

Model extraction attacks against neural networks aim at extracting models with-
out white-box access to model internals and training datasets. Unfortunately, most
existing methods demand an excessive number of queries (up to millions) to repro-
duce a functional substitute model, greatly limiting their real-world applicability.
In this work, we propose a query-efficient model extraction attack that effectively
distills knowledge from publicly available data. To this end, we introduce a se-
mantic alignment approach that trains the substitute model without interacting
with the victim model. The proposed approach optimizes the substitute model to
learn a generalizable image encoding pattern based on semantic consistency of
neural networks. We further propose a query generator that enhances the infor-
mation density of generated queries by aggregating public information, thereby
greatly reducing the query cost required for constructing the substitute model.
Extensive experiments demonstrate that our method achieves state-of-the-art per-
formance which improves query-efficiency by as much as 50× with higher accu-
racy. Additionally, our attack demonstrates the capability of bypassing most types
of existing defense mechanisms.

1 INTRODUCTION

The past decade has witnessed tremendous progress made by Deep Neural Networks (DNNs) in
achieving human-level performance in various fields of applications, such as medicine, finance,
and autonomous driving. DNN models carry high commercial values and sensitive information
from the secret training data. Consequently, in many real-world applications, DNN models are
provided as a black box, where only the inputs to and the outputs of the models can be observed.
Unfortunately, recent works (Barbalau et al., 2020; Truong et al., 2021) unveiled that DNN models
are still vulnerable to model extraction attacks even if the adversary can only access the models
in a black-box manner. In such attacks, the adversary can obtain a substitute model that emulates
the functionality of the original victim model solely through querying the black-box model with
unlabeled inputs. Using the substitute model, it is shown that the adversary can infer sensitive
attributes of other users (Zhang et al., 2023), craft tailored adversarial samples aimed at the victim
model (Wang et al., 2022), or even reconstruct the secret training data employed by the victim (Kahla
et al., 2022). However, existing attacks primarily concentrate on enhancing the accuracy or transfer
attack success rate (ASR) of the extracted model, while paying limited attention to query-efficiency
of the model extraction process. An excessively large number of queries are used in these methods
to extract a useful substitute model from the victim, leading to higher attack costs and an increased
likelihood of encountering restrictions from the victim-side defense mechanisms.
Existing model extraction attacks either synthesize queries from completely random inputs or with
the assistance of publicly available data, both demanding an excessive number of queries. On the one
hand, it is obvious that optimizing a generative network to produce queries from random distribution
requires a large query budget to converge (Truong et al., 2021; Kariyappa et al., 2021). On the other
hand, even with the assistance of public datasets, existing attacks are still deemed query-inefficient
due to two main reasons. First, as shown in Figure 1(a), traditional public dataset based attacks
optimize the substitute model only through online interaction with the victim model. Second, most
attacks lack an effective query generation process that constructs information-rich queries from the
public data (Orekondy et al., 2019; Pal et al., 2020; Barbalau et al., 2020). As a result, even the most
query-efficient method (Sanyal et al., 2022) demands over 3M queries to extract a model that can
reach 88% accuracy on CIFAR-10. More details can be found in the appendix.
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Figure 1: A comparison between our proposed attack and conventional model extraction attacks.

In this paper, we propose SEEKER, a query-efficient model extraction framework based on SEmi-
supErvised public Knowledge transfER, as shown in Figure 1(b). To tackle the aforementioned
challenges, we devise an offline stage that pre-trains the substitute model without incurring any
query costs, significantly improving the query-efficiency. Specifically, we design a semantic align-
ment scheme that optimizes generalizable encoding layers without requiring interaction with the
victim model. The scheme is based on an intriguing observation that purely enforcing semantic
self-consistency enables the substitute model to demonstrate similar activation patterns to the victim
model. Moreover, we propose a multi-encoder query generator to efficiently enhance the consistency
between the substitute and the victim models via parallel processing of multiple public data. As a
result, SEEKER elevates the query-efficiency of model extraction to unprecedented levels while pre-
serving high accuracy and ASR when compared to state-of-the-art (SOTA) methods. Experimental
results demonstrate that our attack reduces the query budget by more than 50× for obtaining the
same level of ASR compared with the SOTA methods. SEEKER can also extract a substitute model
with a remarkable accuracy of 93.97% on CIFAR-10, surpassing the performance of the most ac-
curate model stealing approach. Besides, our results indicate that both active and passive defenses
against model extraction attacks may fall short in guaranteeing the security and safety of cloud-based
MLaaS schemes. Our main contributions are summarized as follows.
• Query-free self-supervised training: To the best of our knowledge, our proposed semantic align-

ment scheme is the first self-supervised training procedure for model extraction, which increases
the similarity between the substitute and victim models with zero query cost.

• Query-efficient query generator: We propose a multi-input autoencoder for query generation in
model extraction attacks, which elevates the information density of query inputs through integrat-
ing public knowledge in the latent space.

• Reproducible SOTA results: Our attack significantly reduces the query budget and achieves
higher accuracy and ASR than existing model extraction attacks. The implementation of our
framework will be publicly available.

2 RELATED WORKS

2.1 MODEL EXTRACTION

Model extraction attacks aim at reproducing a victim model without access to the model internals.
Although query-efficiency is a major concern in practical model extraction, many existing works
focus only on simply improving accuracy without considering the query budget limit. For exam-
ple, Black-Box Ripper (Barbalau et al., 2020) requires a large number of queries in the generative
evolutionary strategy to produce a small population of training samples. Meanwhile, some works
(Zhou et al., 2020; Truong et al., 2021) try to generate queries from noise vectors without the help of
public data, and therefore can take millions of queries to reproduce the victim model. Among those
query-efficient model extraction attacks, some works (Orekondy et al., 2019; Yu et al., 2020) as-
sume annotations in public datasets. For example, the adaptive policy of Knockoff Nets (Orekondy
et al., 2019) relies on labels to organize the public data into a hierarchical architecture for its pro-
posed active learning approach. CloudLeak (Yu et al., 2020) adopts a supervised extraction strategy
that requires labels to fine-tune the substitute. Recently, a new model extraction setting is explored,
where the adversary only has access to some unlabeled public datasets. For example, Mosafi et al.
(2019) generate query inputs by linearly merging public data. ActiveThief (Pal et al., 2020) attempts
to select the most informative public data with active learning strategies. DFMS (Sanyal et al., 2022)
crafts queries with a generative adversarial network (GAN), and utilizes the public datasets to assist
the training process of GAN. Unfortunately, such attacks still lack query-efficiency, either due to
inadequate information richness per query or lengthy generator pre-training.

2.2 BLACK-BOX ADVERSARIAL ATTACKS

An important application of model extraction is mounting black-box adversarial attacks. Gener-
ally speaking, we can classify black-box adversarial attacks into three categories: substitute-based,
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Figure 2: The overall framework of the proposed SEEKER. It consists of an offline pre-training
stage and an online querying stage.

transfer-based, and query-based. First, a number of substitute-based attacks have already demon-
strated the effectiveness of using the extracted substitute model as a base for launching black-box ad-
versarial attacks (Papernot et al., 2017; Zhou et al., 2020; Wang et al., 2021). Additionally, transfer-
based attacks assume the adversary can obtain a substitute model trained on the same dataset as
the victim model, and focus on improving the transferability of the adversarial samples synthesized
based on the substitute model (Inkawhich et al.; Wu et al., 2021; Zhang et al., 2022). Therefore,
substitute-based and transfer-based attacks are generally complementary to each other. Finally, there
are also query-based attacks (Li et al., 2019; Bai et al., 2020; Yuan et al., 2021) that directly utilize
queries to construct adversarial samples. Most query-based adversarial attacks design optimization
algorithms, such as gradient estimation methods (Tu et al., 2019; Ilyas et al., 2019), Bayesian op-
timization (Ru et al., 2019) or geometric mechanism (Maho et al., 2021), to construct adversarial
samples. However, when the number of adversarial samples increases, such methods will also con-
sume an impractically large number of queries. Some recent works (Ma et al., 2021; Yuan & He,
2021) incorporate substitute models into query-based approaches and achieve state-of-the-art query-
efficiency among query-based attacks. However, such attacks are still only query-efficient when a
very small number of adversarial samples are needed. Moreover, when query-based methods lose
the connection to the API of the victim, they can no longer craft new adversarial samples.

3 METHOD

3.1 THREAT MODEL

Here, we formalize the threat model of model extraction attacks considered in this work. Given
a victim model V trained on a secret dataset Dsecret, an adversary attempts to extract a substitute
model S that mimics the behavior of V . The adversary can further generate perturbation z for a
clean image c ∈ C based on S so that c + z is misclassified by V . In particular, we note that
the adversary is aimed at attaining high query-efficiency while retaining high accuracy and attack
success rate (ASR). Here, we assume that the adversary can only obtain the output probability of V ,
i.e., the adversary has no access to the training dataset (Dsecret), the hyperparameters and weights
of V . Similar to many previous works in model extraction (Orekondy et al., 2019; Pal et al., 2020;
Barbalau et al., 2020), we make the assumption that the adversary has access to an unlabeled public
dataset Dpub, which is assumed to have a different distribution from Dsecret. Additionally, we
assume that the adversary can prepare the attack in an offline stage and query V in the online stage.

3.2 FRAMEWORK OVERVIEW

As shown in Figure 2, we propose a model extraction framework based on semi-supervised learning.
To reduce the query cost of the model extraction process, we combine a query-free self-supervised
learning scheme (procedures 1 and 2) and a query-efficient supervised approach (procedure 3 and
4). The self-supervised scheme, namely semantic alignment, optimizes the substitute model to
be self-consistent on Dpub, and does not require any query to V . For query-free self-supervised
learning scheme, we develop offline semantic alignment that pre-trains S to learn generalizable
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features before interacting with the V , and online semantic alignment that assists the supervised
approach during the iterative querying process. In the supervised approach, we focus on extracting
more information with fewer queries. To this end, we develop a multi-encoder query generator that
simultaneously processes several queries to synthesize an information-extracting query. Notably,
we are the first to propose an offline stage for model extraction and develop self-supervised learning
approach to pre-train the substitute model. Here, we present a brief outline of our framework, while
the formal details are provided in the appendix. First, in the offline stage, we carry out semantic
alignment procedure as follows.
1. Offline Semantic Alignment: In the offline semantic alignment process, the adversary pre-trains

the substitute model S on the public datasetDpub using our proposed offline semantic consistency
loss explained in the following section.

In the online stage, SEEKER iterates through the following three procedures to train the substitute
model. Here, we take the i-th iteration with the query number of ni as an example.

2. Online Semantic Alignment: In the online semantic alignment process, the adversary first gen-
erates pseudo labels of the unannotated public data, and then calculates the online semantic con-
sistency loss. The pseudo labels are also involved in sampling generator inputs from Dpub.

3. Query Generation: Here, the adversary uses an aggregated query generator to construct a set of
the query inputs {xi,j

query = G(xi,j
pub,1, ...,x

i,j
pub,m)|xi,j

pub,1, ...,x
i,j
pub,m ∈ Dpub, j = 1, ..., ni}.

4. Supervised Train: In the supervised training process, the adversary obtains the i-th query dataset
Qi = {(xi,j

query,y
i,j
query = V (xi,j

query)|j = 1, ..., ni} by querying the victim. Then the adversary
updates the overall query dataset Q =

⋃i
k=1Qk. The adversary calculates the supervised loss

based on Q, and optimizes S with the supervised loss and online semantic consistency loss. After
substitute training, the query generator G is optimized based on S and Qi.

3.3 SEMANTIC ALIGNMENT

We propose a self-supervised scheme for the substitute model to acquire similar features to the vic-
tim model based on the public data. Our approach builds on the assumption that a well-trained victim
model maintains semantic consistency, i.e. outputs similar representations for different images fea-
turing the same object. Leveraging this semantic consistency as an additional prior, we propose a
semantic alignment scheme that also aligns substitute model representations for semantically equiv-
alent data. The semantically equivalent data are constructed by transforming the same public data
with a combination of basic augmentations, such as horizontal flip and color jittering. These aug-
mentations are aimed at simulating diverse environmental scenarios, such as varied camera angles
or lighting conditions. With our approach, the substitute model demonstrates similar encoding pat-
terns to the victim, as shown in Figure 3. We note that the semantic alignment learns generalizable
features exclusively from the unannotated public data and does not require any additional query
budget. Additionally, we have provided a detailed theoretical analysis in our appendix. We devise
different variants of our semantic alignment scheme for both the offline and online model extraction
procedures.

3.3.1 OFFLINE SEMANTIC CONSISTENCY

During the offline semantic alignment process, we employ a Siamese network architecture (He et al.,
2020; Chen & He, 2021) to enhance the semantic consistency of the substitute model. Specifically,
we employ two substitute models that share the same weights to process two sets of semantically
equivalent data, and subsequently align the outputs of the two models. For any unlabeled public data
xpub ∈ Dpub, S is trained with a NT-Xent loss (Chen et al., 2020):

LC = −log sim(S(aug1M(xpub)), S(aug
2
M(xpub))∑

x′
pub∈Dpub,x′

pub ̸=xpub
sim(S(xpub), S(x′

pub))
, (1)

where aug1M(·) and aug2M(·) are medium-level augmentations, and sim(a, b) is a similarity function
measuring the resemblance of a and b. In the offline stage, we replace the fully connected layers of
the substitute model S with a projection head to obtain the latent representations of xpub encoded by
S. Intuitively, the loss function maximizes the similarity between the representations for differently
augmented views of the same data point, while pushing away the the representations of different
data points.
We utilize Grad-CAM to visually demonstrate the impact of our offline semantic alignment scheme,
as illustrated in Figure 3. Here, Grad-CAM produces a heat map for an image, which highlights
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Figure 4: Illustration of the queries
synthesized by the aggregated query
generator.

the crucial regions that a neural network is most activated to make predictions. We observe that
the proposed training scheme enables S to activate in a similar pattern to V only using the public
dataset Dpub, even if Dpub follows a very different distribution (i.e., different classes of images)
from the secret dataset Dsecret. Consequently, we see that adversaries can learn common encoding
patterns from publicly available data, which can be utilized as a-priori knowledge for inferencing
the properties of secret neural networks trained on private data.

3.3.2 ONLINE SEMANTIC CONSISTENCY

Different from the offline stage, the predictions of the substitute model becomes much closer
to the victim model in the online stage. Based on this observation, we propose online seman-
tic alignment that further improves the performance of the substitute model. Concretely, we
first generate substitute output probabilities of weakly augmented public data. As the substitute
model has similar predictions to the victim model, these probabilities can be used as pseudo la-
bels for the public data. Then, we align the substitute outputs of strongly augmented data with
the pseudo labels. Subsequently, we formulate the online semantic consistency loss as LU =
||S(augW(xpub)), S(augS(xpub))||2, where augW(·) is weak augmentation and augS(·) is strong
augmentation.

3.4 AGGREGATED QUERY GENERATOR

To better leverage useful information from the public dataset under a limited number of queries,
we propose an aggregated query generator that fuses multiple input data into a single information-
extracting query. We consider three goals when designing the aggregated query generator: 1) Aggre-
gating: the generator can effectively merge information from multiple public data, 2) Informative:
the generator can produce information-extracting queries that minimize the gap between the substi-
tute and the victim, 3) Stealthy: the synthesized queries maintain the structure of a natural image
instead of collapsing into indistinguishable patterns. To achieve all three goals at the same time, we
propose an aggregation architecture and three loss functions for the query generator.

3.4.1 AGGREGATION ARCHITECTURE

We design a multi-encoder network architecture to encode features from different public data. Con-
cretely, to generate query input xquery, the generator aggregates m input data xpub,1, ...,xpub,m

from the public dataset. We can formulate the query generator G as follows:

xquery = G(xpub,1, ...,xpub,m) = fdec([f
1
enc(xpub,1), ..., f

m
enc(xpub,m)]))⊕ xpub,1, (2)

where f i
enc(·) denotes the i-th encoder, fdec(·) the decoder, [·] the concatenation function, and ⊕

the element-wise addition operator. By applying Equation (2), we project the input data to the latent
space with the respective encoders. Next, the decoder concatenates the representations of the public
data and maps the latent code back to the image space. Finally, we apply a shortcut connection
and add the first input xpub,1 to the output of the decoder. During the aggregation process, the
generator regards xpub,1 as the base image and integrates the knowledge from the other public data
xpub,2, ...,xpub,m into xpub,1. Here, the multi-encoder design aligns with goal 1, and shortcut design
goal 3. We have also included an alternative design of the aggregated architecture in the Appendix.
To sample more diversified public data as generator inputs, we design a sampling method based
on the pseudo labels generated in online semantic alignment training step. In particular, we set the
sampling probability for the i-th class as pi =

−loge(freqi)∑nc
i=j −loge(freqj)

, where freqi denotes the frequency
of the pseudo labels of the i-th class, and nc is the total number of classes.
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3.4.2 LOSS FUNCTIONS

We design the reconstruction loss, the inconsistency loss and the diversity loss to optimize the ag-
gregated query generator.
1) Reconstruction loss: To fully aggregate different input data from the public dataset, we design
the reconstruction loss to measure how well the query reconstructs the input data as:

LR =
1

m

m∑
j=1

αj ||G(xpub,1,xpub,2, ...,xpub,m)− xpub,j ||2, (3)

where αj is a hyperparameter for balancing the stealthiness and information diversity in the gener-
ated query. We set α1 = 1 to preserve the basic appearance of xpub,1 in the generated query, and
0 < α2 = ... = αm ≤ 1 to ensure the generated query encodes information from xpub,j . Our
reconstruction loss is aimed at achieving goal 1 and goal 3 at the same time.
We illustrate the synthesized queries of our aggregated query generator in Figure 4. In each group
of the images, the generator G merges xpub,1, xpub,2, and xpub,3 from Dpub to craft the query
image G(xpub,1,xpub,2,xpub,3). As shown in Figure 4, the crafted query image largely resembles
the original natural image xpub,1 from Dpub, but has regional noises over some pixels that encode
higher dimensional information from xpub,2 and xpub,3. Hence, we conclude that the aggregated
query generator is effective in combining multiple input sources to produce information-rich queries
that have similar visual patterns to natural images.
2) Inconsistency loss: The inconsistency loss can be formulated as:
LI = exp(−LKL(S(G(xpub,1,xpub,2, ...,xpub,m)), V (G(xpub,1,xpub,2, ...,xpub,m)))), (4)

where LKL(·) is the KL divergence. The main objective of the inconsistency loss is to optimize
the aggregated generator such that the generator produces queries upon which the substitute and
the victim models produce different prediction results. We point out that, in the online supervised
learning stage, only those queries that cause S to behave differently from V are constructive in
further training S to be more similar to V .
3) Diversity loss: To craft more diversified query inputs, we introduce the diversity loss that reduces
the similarity between new query inputs for the next iteration and existing query inputs. For the i-th
iteration, the diversity loss can be formulated as

LD = sim(S(xquery), S(G(xi+1
pub,1,x

i+1
pub,2, ...,x

i+1
pub,m))). (5)

To reduce the computational complexity of optimizing over the diversity loss, we construct a dy-
namic diversity setDdiv by selecting the most representative items from existing query inputs. Con-
cretely, we add a query input toDdiv if and only if the cosine distances between this query input and
existing items in Ddiv are all above a threshold Tdiv . The inconsistency loss and diversity loss are
proposed to fulfill goal 2.
The overall loss LGen for training the generator can be formulated as LGen = LR+λILI +λDLD,
where λI and λD are hyperparameters to determine the relative importance of each loss item.

3.5 SUPERVISED TRAINING

Based on the query samples crafted in Section 3.4 and losses derived in Section 3.3.2, the overall loss
for optimizing the substitute model can be formulated asLSub = LS+λULU . Here, LU is the online
semantic consistency loss, LS is the supervised loss defined as LS = LKL(S(xquery),yquery), and
λU is a hyperparameter to balance the loss terms.
To avoid the substitute model being overfitted in every iteration, we combine two simple yet effective
approaches: weighted query sampling and loss-based training termination. First, weighted query
sampling is proposed to balance the importance of old and new query datasets, where queries in the
i-th iteration are assigned with weight w = α−i, where 0 < α < 1. Second, we design a loss-based
termination mechanism to automatically stop the substitute training process. Within each iteration,
substitute training ceases when the average loss does not drop for several consecutive epochs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets and models. We use CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), Tiny ImageNet and
ImageNet (Deng et al., 2009) datasets in our experiments, which are widely adopted by recent model
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Table 1: Accuracy, fidelity, and ASR of different model extraction attacks under a relatively low
query budget. The mean accuracy, fidelity, and ASR along with the standard deviations are provided.

Dsecret Dpub Attack Acc (%) Fid (%) ASR (%)

CIFAR-10
(Victim Acc
= 95.52%)

CIFAR-100

Mosafi et al. 26.19 (±1.32) 26.15 (±1.29) 32.98 (±2.78)
Knockoff Nets 75.66 (±1.07) 76.56 (±1.09) 46.89 (±3.24)

ActiveThief 75.23 (±0.92) 76.41 (±0.93) 45.04 (±3.38)
Black-Box Ripper 10.72 (±1.00) 11.06 (±0.98) 34.91 (±2.58)

DFMS-SL 52.57 (±1.13) 53.34 (±1.13) 45.93 (±2.43)
SEEKER (ours) 88.01 (±0.97) 88.94 (±0.98) 96.43 (±2.69)

Tiny ImageNet

Mosafi et al. 24.47 (± 0.88) 24.55 (±0.89) 30.32 (±2.76)
Knockoff Nets 83.66 (±1.12) 84.28 (±1.08) 50.63 (±3.01)

ActiveThief 84.07 (±1.04) 84.96 (±1.07) 51.80 (±3.38)
Black-Box Ripper 11.06 (±0.92) 11.41 (±1.06) 33.49 (±2.52)

DFMS-SL 54.35 (±0.95) 55.83 (±0.97) 47.93 (±2.79)
SEEKER (ours) 88.93 (±0.94) 89.26 (±0.85) 97.20 (±2.62)

CIFAR-100
(Victim Acc
= 78.72%)

CIFAR-10

Mosafi et al. 2.52 (±0.04) 2.46 (±0.03) 44.16 (±2.98)
Knockoff Nets 54.88 (±0.91) 55.98 (±0.98) 48.67 (±2.86)

ActiveThief 53.28 (±0.96) 54.53 (±0.92) 48.55 (±2.45)
Black-Box Ripper 1.24 (±0.05) 1.58 (±0.05) 53.55 (±2.30)

DFMS-SL 34.51 (±1.28) 37.15 (±1.26) 39.26 (±2.42)
SEEKER (ours) 60.04 (±1.39) 63.81 (±1.42) 87.25 (±2.97)

ImageNet

Mosafi et al. 3.88 (±0.05) 3.91 (±0.07) 44.03 (±2.53)
Knockoff Nets 61.70 (±1.14) 65.94 (±1.17) 71.05 (±3.49)

ActiveThief 62.68 (±1.08) 66.25 (±1.09) 72.50 (±3.70)
Black-Box Ripper 1.33 (±0.03) 1.69 (±0.04) 49.95 (±2.83)

DFMS-SL 37.32 (±1.10) 40.89 (±1.17) 45.41 (±3.08)
SEEKER (ours) 72.23 (±1.01) 75.81 (±1.03) 95.35 (±2.72)

extraction methods (Barbalau et al., 2020; Truong et al., 2021; Sanyal et al., 2022). We use ResNet-
34 (He et al., 2016) as the model architecture of the victim. To evaluate the performance of different
attacks across diverse model architectures, we test four widely-used classical model architectures
for S: ResNet-34 (He et al., 2016), PyramidNet (Han et al., 2017), DenseNet (Huang et al., 2017),
and WRN-28 (Zagoruyko & Komodakis, 2016). In Figure 5, Table 2, Table 3 and Table 4, we use
CIFAR-10 as Dsecret and CIFAR-100 as Dpub.
Evaluation metrics. Following existing methods, we use three metrics to evaluate model extraction
attacks: accuracy (Acc), fidelity (Fid), and attack success rate (ASR). On top of the traditional pre-
diction accuracy metric, we use fidelity (Jagielski et al., 2020) to measure how well the predictions
of the substitute match with that of the victim (including both correct and incorrect predictions).
Given a clean dataset C, fidelity can be formulated as Fid = 1

|C|
∑

c∈C 1(Vl(c) = Sl(c)), where
1(·) denotes the indicator function. Since an important application of model extraction is launching
substitute-based adversarial attacks, we use ASR to measure the success of non-targeted black-box
adversarial attacks, which is formulated as ASR = 1

|CV |
∑

c∈CV
1(Vl(c+z) ̸= Vl(c)), where CV is

the dataset correctly classified by V . To compare query-efficiency of black-box adversarial attacks,
we introduce query-efficiency ratio (QER) that measures the number of successful attacks per query
as QER = 1

nq

∑
c∈CV

1(Vl(c+ z) ̸= Vl(c)), where nq denotes the query number.
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4.2 COMPARISONS WITH MODEL EXTRACTION ATTACKS

To demonstrate the effectiveness of our proposed framework, we compare SEEKER against existing
model extraction attacks.
Query-efficiency. We first compare the query-efficiency between our attack and five SOTA model
extraction attacks, including the attack proposed by Mosafi et al.(Mosafi et al., 2019), Knockoff
Nets (Orekondy et al., 2019), ActiveThief (Pal et al., 2020), Black-Box Ripper (Barbalau et al.,
2020), and DFMS-SL (Sanyal et al., 2022). For ASR comparisons, we use the white-box adversar-
ial attack MI-FGSM (Dong et al., 2018) to perform non-targeted attacks over all model extraction
methods. To ensure fair comparisons, the same set of parameters is employed for MI-FGSM across
all the model extraction attacks in each experimental configuration.
As illustrated in Figure 5, SEEKER achieves a high level of accuracy, fidelity, and ASR with an
extremely small query budget. We point out that our method can reduce the query budget by 5× to
achieve 75.7% accuracy, and by more than 50× to achieve 65.5% ASR when compared to the SOTA
methods. It is noteworthy that Knockoff Nets and ActiveThief only sample query inputs from the
public dataset, thus reaching the optimal extraction performance when the query budget is equal to
the size of the public dataset. In contrast, the performance of our attack continues to rise with further
querying. We further demonstrate the accuracy, fidelity, and ASR of the aforementioned model
extraction attacks under a relatively small query budget of 100K in Table 1. We note that, since
Black-Box Ripper and DFMS-SL require millions of queries in the query generation process, their
performance under small query budgets is relatively poor. On the other hand, although Knockoff
Nets and ActiveThief can obtain a relatively high accuracy with a small number of queries, its attack
success rate can be less satisfactory. In contrast, SEEKER achieves high accuracy, fidelity, and ASR
across different datasets. For example, SEEKER attains 12.35% higher in accuracy and 49.54%
higher in ASR than Knockoff Nets when using CIFAR-10 as Dsecret and CIFAR-100 as Dpub. We
have included more results across different public datasets in the Appendix.
Best achievable accuracy. While our attack achieves remarkable query-efficiency compared to
SOTA model extraction attacks, we note that the best achievable accuracy is an important metric for
evaluating model extraction attacks, especially when the adversary has the capability of querying the
victim model with an unlimited number of queries. Therefore, we perform different model extraction
attacks under a significantly larger query budget to compare their highest attainable accuracy. As
shown in Table 2, SEEKER achieves the highest accuracy amongst the SOTA model extraction
attacks. Notably, our proposed attack attains 93.97% accuracy with a cost of 4M queries, whereas
DFMS-SL requires 20M queries to extract a substitute of 93.96% accuracy.
Model architecture generalization. We further compare the accuracy of different model extraction
attacks using diverse model architectures for the substitute model. As shown in Table 3, SEEKER
exhibits better generalization capability across different substitute model architectures than the other
attacks based on public datasets. The results demonstrate that our approach can effectively extract
a substitute even if the victim and substitute models do not have the same architecture. We also
provide a more detailed analysis regarding model architecture generalization in the appendix.

4.3 COMPARISONS WITH QUERY-BASED ATTACKS
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Figure 6: Query-efficiency comparisons be-
tween our method and query-based adver-
sarial attacks.

We compare query-efficiency of our method against
three query-based adversarial attacks: NES (Ilyas
et al., 2018), Bandits (Ilyas et al., 2019), and Simula-
tor attack (Ma et al., 2021) (SOTA). Figure 6 demon-
strates QER of different black-box adversarial attacks
by attacking 10K clean data from C for reaching sim-
ilar levels of ASR with similar noise levels. Although
the query-based attacks have higher QER for crafting
a small number of adversarial samples, such attacks
are easily outperformed by SEEKER when more than
1,600 samples are required. Furthermore, SEEKER
is 1.9× more query-efficient than Simulator attack
when crafting adversarial 3000 samples, and 3.1× as
crafting 5,000 samples. Lastly, from Figure 6, we
see that adversarial attacks based on substitute mod-
els (e.g., SEEKER) achieve asymptotically higher query-efficiency than query-based attacks when
the number of successful adversarial samples increases. We include more comparisons between
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Table 2: Optimal accu-
racy of different attacks.

Attack Acc (%)

Knockoff Nets 75.66
Black-Box Ripper 90.00

DFMS-SL 93.96
SEEKER (ours) 93.97

Table 3: Accuracy and ASR of different model extraction attacks with
diverse model architectures.

Architecture ResNet-50 PyramidNet DenseNet WRN-28

Metric Acc ASR Acc ASR Acc ASR Acc ASR
(%) (%) (%) (%) (%) (%) (%) (%)

Knockoff Nets 75.66 46.89 77.24 71.43 66.13 46.84 77.82 29.52
SEEKER (ours) 88.01 96.43 87.43 91.10 87.32 84.74 88.56 96.73

black-box adversarial attacks based on our method and query-based adversarial attacks in the ap-
pendix.

4.4 ABLATION STUDIES

Table 4: Ablation experiment for key contributions
in our attack.

Component Acc Fid ASR
(%) (%) (%)

Baseline (Random) 74.30 75.87 46.92
Baseline+Offline Semantic Alignment 85.11 86.26 84.74
Baseline+Online Semantic Alignment 76.45 77.27 46.88
Baseline+Aggregated query generator 84.75 86.23 94.33
SEEKER (ours) 88.01 88.94 96.43

We carefully designed a set of ablation ex-
periments to examine the contributions of
each of the components in our framework.
Table 4 confirms that both semantic consis-
tency based unsupervised training and ag-
gregated query generator contribute to the
overall performance of SEEKER. In partic-
ular, the offline unsupervised training pro-
cedure and our aggregated query generator
contribute to a 10.7% rise in accuracy and a 47.41% rise in ASR, respectively. Overall, the combi-
nation of the proposed techniques improved accuracy by as much as 13.71% and ASR by 49.51%.

4.5 PENETRABILITY AGAINST DEFENSE MECHANISMS

In this section, we evaluate the effectiveness of SEEKER against typical defense mechanisms, in-
cluding active and passive approaches. We also provide a more detailed analysis in the appendix.
Active defenses. Typical active defenses against model extraction include adding perturbations (Sha
et al., 2023), truncating the top-k outputs (Orekondy et al., 2019) and rounding output scores (Tramèr
et al., 2016). Experimental results show that perturbation-based defense, while capable in reducing
the performance of our attack, can also compromise the accuracy of the original victim model. For
example, when Gaussian noise with a mean of 0 and a standard deviation of 0.5 is applied, the
accuracy of our attack is decreased by 19%, accompanied with a significant 32% reduction in the
accuracy of the victim model. For truncation and rounding, we consider an extreme setting where
only the hard label is released by the victim, and show that our method can still achieve 0.92×
of the original accuracy under this setting. Although active defensive approaches can degrade the
performance of our attack by a small degree, we note that altering the prediction scores also limits
the utility of the victim model for honest users, as discussed in (Chandrasekaran et al., 2020).
Passive defenses. Existing passive defenses recognize model extraction attacks by analyzing the
distribution of the query data. As a typical passive defense, PRADA (Juuti et al., 2019) computes
the Shapiro-Wilk test statistic W (D) to measure how the query input distribution deviates from the
normal distribution. If W (D) is below a threshold δ, PRADA determines D is from a model extrac-
tion attack. We set δ = 0.90 in our experiments based on the original paper. Under a query budget of
100K, W (D) for the query input distribution D generated by SEEKER is 0.95, which is well above
the threshold. The experimental results show that the distribution of the queries generated by our at-
tack is only slightly deviated from normal distribution, and is able to circumvent PRADA detection.
We point that the penetrability against distribution-based defense agree with the observation that the
crafted queries mostly follow the distribution of a natural image, as demonstrated in Figure 4.

5 CONCLUSION

In this paper, we propose a query-efficient model extraction framework based on two-stage semi-
supervised public knowledge transfer. Our key insight is that unannotated public datasets can be
of great help to query-efficient model extraction. In particular, public data can be used in both un-
supervised substitute training and informative query generation. By carefully designing the overall
architecture of the framework, we show that SEEKER is able to significantly outperform the SOTA
model extraction techniques in terms of accuracy, ASR, and query-efficiency.
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6 REPRODUCIBILITY STATEMENT

The models and datasets for reproducing our results are introduced in the main manuscript, and more
detailed experimental configurations can be found in the appendix. We point out that the datasets
involved in our experimental evaluation are all publicly accessible. We also provide the code for
SEEKER in our supplementary materials for better reproducibility. Please refer to the README
file under the root directory for the introduction to our directory layout and detailed procedures to
reproduce our results.
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A COMPARISON WITH EXISTING MODEL EXTRACTION ATTACKS

In Table A1, we assess and compare the state-of-the-art model extraction attacks from various as-
pects. First, we observe that model extraction is a technique that is widely applied in model stealing
and adversarial attacks, with some works that simultaneously try to perform both attacks using the
extracted model. Second, in spite of the importance of query-efficiency in launching real-world at-
tacks, we find that many existing methods require an impractically large amount of queries to obtain
a useful substitute model. For instance, in order to reach 88% accuracy on CIFAR-10 (Krizhevsky
et al., 2009), DFMS (Sanyal et al., 2022) needs to consume more than 3M queries, while our pro-
posed method only requires 0.1M queries. Third, also as a way to improve query-efficiency, some
works (Orekondy et al., 2019; Barbalau et al., 2020; Jagielski et al., 2020; Yu et al., 2020; Pal
et al., 2020) seek to utilize public datasets as surrogate information in extracting the victim model.
Nonetheless, many works explore only a small subset of the data points in public datasets due to the
limited number of query budget (Pal et al., 2020; Yu et al., 2020), or assume that the public dataset
is labeled (Orekondy et al., 2019; Yu et al., 2020). Lastly, the lack of open-source code for certain
attack methods can limit their reproducibility.

Table A1: Qualitative comparisons between different model extraction attacks.

Methods Goal Query- Public Open-
efficient dataset source

Papernot et al. (Papernot et al., 2017) Both % No !

Mosafi et al. (Mosafi et al., 2019) Model Stealing %* Unlabeled !

Knockoff Nets-Random (Orekondy et al., 2019) Model Stealing ! Unlabeled !

Knockoff Nets-Adaptive (Orekondy et al., 2019) Model Stealing ! Labeled %

CloudLeak (Yu et al., 2020) Model Stealing ! Labeled %

Black-Box Ripper (Barbalau et al., 2020) Model Stealing % Unlabeled !

Jagielski et al. (Jagielski et al., 2020) Both % Unlabeled %

ActiveThief (Pal et al., 2020) Model Stealing ! Unlabeled !

DaST (Zhou et al., 2020) Adversarial attack % No !

MAZE (Kariyappa et al., 2021) Model Stealing % No %

Wang et al. (Wang et al., 2021) Adversarial attack % No %

Truong et al. (Truong et al., 2021) Model Stealing % No !

DFMS (Data-free) (Sanyal et al., 2022) Model Stealing %* No !

DFMS (Proxy data) (Sanyal et al., 2022) Model Stealing %* Unlabeled !

SEEKER (Ours) Both ! Unlabeled !

* We note that, while Mosafi et al. (Mosafi et al., 2019) and Sanyal et al. (Sanyal et al., 2022) proposed
techniques to reduce the number of queries, the techniques are still not quite query-efficient compared to
other methods.

B DETAILED ALGORITHM

A formalized algorithm of our proposed framework is shown in Algorithm 1. We describe the main
steps as follows:

1. Offline Semantic Alignment: In the offline semantic alignment process, the adversary pre-trains
the substitute model S on the public datasetDpub using our proposed offline semantic consistency
loss (row 1).

In the online stage, SEEKER iterates through the following three procedures to train the substitute
model. Here, we take the i-th iteration as an example.

2. Online Semantic Alignment: In the online semantic alignment process, the adversary first gen-
erates pseudo labels of the unannotated public data (row 2), and then calculates the online seman-
tic consistency loss (row 3). The pseudo labels are also involved in sampling generator inputs
from Dpub (row 6).

3. Query Generation: Here, the adversary uses the aggregated query generator to construct a set
of the query inputs {xquery = G(xpub,1, ...,xpub,m)|xpub,1, ...,xpub,m ∈ Dpub} (row 7).
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Algorithm 1: Detailed Algorithm for SEEKER
Input: Victim V , substitute S, public dataset Dpub, aggregated query generator G, number of

iteration nl and size of iteration ns, input number of the generator m
Output: Extracted substitute S

1 Optimize S on Dpub with offline semantic consistency loss;
2 Generate pseudo labels zw for Dpub;
3 Calculate online semantic consistency loss LU based on Dpub;
4 for i← 1 to nl do
5 for j ← 1 to ns do
6 Sample xpub,1, ...,xpub,m of different pseudo label classes;
7 xj ← G(xpub,1, ...,xpub,m);
8 yj ← V (xj);
9 Qi ← {(xj , yj)|j = 1, ..., ns};

10 Q ← Q∪Qi;
11 repeat
12 for j ← 1 to |Q| do
13 Sample (xj ,yj) from Q according to its weight;
14 Qtrain ← {(xj , yj)|j = 1, ..., ns};
15 Calculate the supervised substitute loss LS based on Qtrain;
16 Update S with LSub = LS + λULU ;
17 until L does not drop for 2 epochs;
18 Update G based on S and Qi;
19 return S

4. Supervised Train: In the Supervised Training process, the adversary obtains the i-th query
dataset Qi = {(xquery,yquery = V (xquery)} by querying the victim (row 8-9). Then the
adversary updates the overall query dataset Q =

⋃i
k=1Qk (row 10). The adversary calculates

the supervised loss based on Q (row 12-15), and optimizes S with the supervised loss and online
semantic consistency loss (row 16). After substitute training, the query generator G is optimized
based on S and Qi (row 18).

C THEORETICAL JUSTIFICATION FOR SEMANTIC ALIGNMENT

The key insight of our semantic alignment approach is that the adversary can optimize a substitute
model S on a public dataset Dpub to learn features that are similar to the victim model V , which is
trained on a secret dataset Dsecret. Without loss of generality, we assume the substitute model S is
composed of an encoding function f and a fully connected layer W . In such a case, our observation
can be reformulated as follows: if f has a low semantic consistency loss and W is trained onDsecret

to evaluate the classification performance of f , S has a low average classification loss on Dsecret.
To prove this observation, we first formally define the notations.
The encoding function of S belongs to F , a class of representation functions f : X → Rd, such that
||f(·)|| ≤ R for some R > 0. We denote the set of all classes in Dpub as C, and each c ∈ C follows
a probability distribution Dc. The supervised classification loss of S on Dsecret can be defined as

Lsup(S) := E(x,c)∈Dsecret
[l (S(x)c − S(x)c′ ̸=c)] , (6)

where l is a standard hinge loss or logistic loss, and S = Wf . When evaluating S, the best W
can be found by fixing f and finetuning W . Therefore, we only denote the supervised loss of f on
Dsecret as:

Lsup(f) = inf
W
Lsup(Wf). (7)

Also, our offline semantic consistency loss can be formalized as

LC = −Ex∈Dpub

[
log

sim(S(aug1M(x)), S(aug2M(x)))∑
x′∈Dpub,x′ ̸=x sim(S(x), S(x′))

]
, (8)
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Table A2: Accuracy, fidelity, and ASR of two aggregation designs.

Encoder Architecture Acc (%) Fid (%) ASR (%)

Different encoders 88.01 88.94 96.43
Base encoder+Merge encoder 88.36 89.73 98.40

The loss term can be simplified as

LC =
1

M

M∑
i=1

l
(
f(xj)

T (f(x+
j )− f(x′

j))
)
, (9)

Here, xj and x+
j are semantically equivalent data constructed by augmentations. With the notations

above, we formalize a proposition as follows.
Proposition 1. For a substitute model S composed of an encoding function f and a fully connected
classification layer W , S has a low average linear classification loss onDsecret if f has a low offline
semantic consistency loss on Dpub.
We use a theorem proposed by Saunshi et al. (Saunshi et al., 2019) (Theorem 4.1) to prove this
proposition. Let S = {xj , x

+
j , x

′
j}Mj=1 be the triplets sampled from Dpub to optimize semantic

consistency loss, f|S =
(
ft(xj), ft(x

+
j ), ft(x

′
j)
)
j∈[M ],t∈[d]

∈ R3dM be the restriction for S for any
f ∈ F , and we have a complexity measure with the following Rademacher average

R(F) = Eσ∈{±1}3dM

[
sup
f∈F

< σ, f|S >

]
. (10)

Let τ = Ec,c′∼ρ2{c = c′}, and we have the following theorem(Saunshi et al., 2019):
Theorem 1. With probability at least 1− τ , for all f ∈ F

Lsup(f̂) ≤
1

(1− τ)
LC(f)−

τ

(1− τ)
+

1

(1− τ)
GenM (11)

where

GenM = O

R
Rs(F )

M
+R2

√
log 1

d

M

 . (12)

Here, we have GenM → 0 as M →∞, and when ρ is uniform and the number of classes |C| → ∞,
we have that 1

(1−τ) → 0,− τ
(1−τ) → 0. Therefore, when the number of sampled training triplets

is large and f has a low offline semantic consistency loss on Dpub, then S has a low average linear
classification loss on Dsecret.

D WEIGHT SHARING OF AGGREGATED ENCODERS

Here, we provide an alternative design of the aggregated architecture. Specifically, we have designed
an architecture that both identifies the difference in the encoding of the base image and ensures the
permutational invariance of the other images. Specifically, we design a base encoder for encoding
the base image and a shared merge encoder to encode the other images. As shown in Table A2, this
design performs slightly better than the design with different encoders for each public data.

E IMPLEMENTATION DETAILS FOR SEEKER

E.1 SUBSTITUTE TRAINING SCHEME

For better reproducibility, we list some details for the substitute training process of our proposed
framework as follows.
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Optimizer: The substitute is optimized with Adam optimizer with a learning rate of 0.0003. Under
a large query budget, we utilize SGD optimizer with a learning rate of 0.1, a decay rate of 0.0005,
and a momentum of 0.9. Additionally, we employ a cosine annealed scheduler to gradually decay
the learning rate over the epochs.
Data augmentation: We apply random crop and random horizontal flip to augment the public
datasets, and apply random horizontal flip to augment the query dataset. For a fair comparison, the
same augmentations are performed for all the other model extraction attacks.

E.2 AGGREGATED QUERY GENERATOR

Network architecture. In the online stage of SEEKER, we propose aggregated query generator
for informative query generation. We adopt the design of SNGAN (Miyato et al., 2018) for the
aggregated query generator and employ spectral normalization to stabilize the training process of
the generator.
Optimization. The aggregated query generator is optimized with Adam optimizer with a learning
rate of 0.001. In each loop, we optimize LGen for 5 epochs, and each epoch is followed by 2 training
epochs of optimizing LD.
Loss functions. We point out that optimizing the inconsistency loss requires querying V every time
G is updated, which however consumes a large query budget. Instead, we only query the victim once
for each public data combination xpub,1,xpub,2, ...,xpub,m in a query iteration, and use the victim
output to optimize the loss in this iteration. As mentioned in the main manuscript, we construct the
diversity datasetDdiv for optimizing the diversity loss of the aggregated query generator. We set the
diversity dataset threshold Tdiv to be 0.6.

E.3 AUGMENTATIONS IN UNSUPERVISED TRAINING

Three levels of augmentations are involved in our proposed semantic alignment scheme: weak and
strong augmentations of online semantic consistency loss, and medium-level augmentation for of-
fline semantic consistency loss. Similar to Fixmatch (Sohn et al., 2020), we adopt a simple com-
bination of random horizontal flip and random vertical flip as weak augmentation and RandAug-
ment (Cubuk et al., 2020) as strong augmentation. Medium-level augmentation is implemented as a
combination of random crop, random horizontal flip, and random color distortion, as suggested by
SimCLR (Chen et al., 2020).

E.4 WHITE-BOX ADVERSARIAL ATTACK

For all the model extraction attacks including the attack proposed by Mosafi et al.(Mosafi et al.,
2019), Knockoff Nets (Orekondy et al., 2019), ActiveThief (Pal et al., 2020), Black-Box Rip-
per (Barbalau et al., 2020), DFMS-SL (Sanyal et al., 2022) and SEEKER, we use MI-FGSM (Dong
et al., 2018) to perturb clean images based on the substitute models. In our experiments, we adopt the
implementation of MI-FGSM from advertorch (Ding et al., 2019). As mentioned in the main manus-
cipt, we employ the same set of parameters for MI-FGSM across all the model extraction attacks in
each experimental configuration for fair comparisons. When attacking the victim model trained on
CIFAR-10, we set the perturbation level ϵ = 8/255, the number of iteration steps nstep = 30. We
note that the victim model trained on CIFAR-100 is more vulnerable to adversarial attacks. There-
fore, we choose a smaller perturbation for the attack, where the perturbation level ϵ = 5/255, the
number of iteration steps nstep = 30.

E.5 COMPUTING INFRASTRUCTURE

In our experiments, we used AMD EPYC 74F3 CPU and NVIDIA A100 Tensor Core GPU. The
experiments were conducted on Ubuntu 18.04. We used Cuda 11.0.3 (NVIDIA et al., 2020), Numpy
1.21.2 (Harris et al., 2020), PyTorch 1.7.1 (Paszke et al., 2019), and Torchvision 0.8.2 (Marcel &
Rodriguez, 2010) to implement our proposed framework.
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Figure A1: Accuracy, fidelity, and ASR comparisons between SEEKER and the state-of-the-art
(SOTA) model extraction attacks under a query budget of 7K.

F IMPLEMENTATION DETAILS FOR EXISTING METHODS

F.1 MODEL EXTRACTION ATTACKS

Here, we provide implementation details of five existing model extraction attacks mentioned above:
the attack proposed by Mosafi et al., Knockoff Nets, ActiveThief, Black-Box Ripper, and DFMS-SL.
1) Mosafi et al. We reproduce the model extraction attack proposed by Mosafi et al.with PyTorch
1.7.1 (Paszke et al., 2019). While Mosafi et al.attack is proposed for the hard-label setting, it can
be easily extended to the soft-label setting. For a fair comparison, we perform their proposed attack
under the soft-label setting, using the KL Divergence loss for substitute training. The original setting
requires 1 million queries for every epoch of substitute training, which largely exceeds the query
budget (100K) in our experimental setting. Therefore, we run the attack for 40 epochs, and each
epoch of the attack consumes 2,500 queries.
2) Knockoff Nets. We adopt the official implementation for Knockoff Nets in our experiments.
In particular, we use the random policy in Knockoff Nets (denoted as Knockoff Nets-Random) for
comparisons, since the adaptive policy assumes a different threat model from ours, and is not open-
source as well.
3) ActiveThief. ActiveThief introduces five strategies for sampling query inputs from the public
dataset: random, uncertainty, DFAL, K-center, and DFAL+K-center. We observe similar perfor-
mance for the five strategies and demonstrate the results of the best-performing strategy in our ex-
periments.
4) Black-Box Ripper. We use the official implementation for Black-Box Ripper for comparison.
The original code uses a great number of queries to generate training samples, and we stop the
querying process when the query number exceeds our query budget.
5) DFMS-SL. While DFMS (Sanyal et al., 2022) can be performed with or without a public dataset,
we choose the former to compare with since it has a similar setting to our method. We also adopt
the soft-label variant of DFMS in the comparisons.

F.2 QUERY-BASED ADVERSARIAL ATTACKS

We compare the QER between SEEKER and three query-based black-box adversarial attacks: NES,
Bandits, and Simulator attack. We calculate the QER of those methods with the open-source imple-
mentation of Ma et al. (Ma et al., 2021), and their detailed configurations are provided as follows.
For each attack, we select a set of parameters that allows the attack to achieve the same level of
ASR and attack strength as our attack. The attack strength is measured by L2 distance between the
original and perturbed images.
1) NES. We use l∞ norm NES attack, where ϵ = 0.12, the sampling variance is 0.01, the minimum
learning rate is 5× 10−5, and the maximum learning rate is 0.05.
2) Bandits. We choose l∞ norm attacks in our experiments, where ϵ = 0.3, the image learning rate
is 0.03, the online learning rate is 1.0, and the exploration rate is 0.3.
3) Simulator Attack. We use the pre-trained models for launching the Simulator attack. We choose
l∞ norm distance for Simulator attack. When attacking the model trained on CIFAR-10, the image
learning rate is 0.004, the online learning rate is 1.0, the exploration rate is 0.3, and ϵ = 0.5. When
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Table A3: Model architecture comparisons. Here, we use CIFAR-10 as Dsecret and CIFAR-100 as
Dpub.

Model ResNeXt MobileNet DenseNet PyramidNet ResNet-34 WRN-28

Acc (%) 71.6 69.9 87.3 87.4 88.0 88.6
ASR (%) 63.5 56.8 84.7 91.1 96.4 96.7

Params (M) 0.68 3.2 1.0 9.9 21.3 36.5
FLOPs (M) 5.37 12.0 364.9 1466.1 1163.5 5252.6

Table A4: The accuracy and ASR of model extraction attacks with CIFAR-10 as Dsecret certain
classes of CIFAR-100 as Dpub.

Attack

CIFAR-100 CIFAR-100 CIFAR-100
(30C) (50C) (Full)

Acc ASR Acc ASR Acc ASR
(%) (%) (%) (%) (%) (%)

Knockoff Nets (Orekondy et al., 2019) 44.4 38.4 48.5 41.5 75.7 46.9
SEEKER (ours) 66.7 80.8 78.8 89.2 88.0 96.4

attacking the model trained on CIFAR-100, the image learning rate is 0.02, the online learning rate
is 1.0, the exploration rate is 0.3, and ϵ = 1.5.

G COMPARISONS UNDER SMALLER QUERY BUDGETS

In Figure 5 of our main manuscript, we provide the accuracy, fidelity, and ASR of the SOTA model
extraction attacks across different query budgets ranging from 500 to 0.5M. To better demonstrate
the query-efficiency of different attacks, we further illustrate the accuracy, fidelity, and ASR of the
attacks across a range of query budgets from 0 to 7K. As shown in Figure A1, SEEKER outperforms
existing attacks by a large margin within 7K queries in terms of accuracy, fidelity, and ASR. We also
point out that the attack proposed by Mosafi et al., Black-box Ripper, and DFMS-SL only attain
limited performance under an extremely small query budget. In contrast, our attack is able to extract
a substitute with an accuracy of 73.3% and an ASR of 72.5% with 7K queries.

H COMPARISONS WITH QUERY-BASED ATTACKS

Figure A2 demonstrates the QER comparisons between our attack and query-based attacks when
using CIFAR-100 as Dsecret. Similar to the results in the main manuscript, we observe that query-
based attacks are more query-efficient than our method only when producing a small number of
adversarial samples. However, the QER of query-based attacks is easily outperformed by our at-
tack when more than 5K adversarial samples are required. Moreover, substitute-based attacks (e.g.
SEEKER) attain asymptotically higher query-efficiency than query-based attacks. For example, the
black-box adversarial attack based on our approach achieves 3× QER over that of Simulator attack
when crafting 15K adversarial samples.

I IMPACT OF SUBSTITUTE MODEL ARCHITECTURES

To evaluate how different substitute model architectures affect the performance of our method, we
test six neural network architectures for the substitute model: ResNeXt, MobileNet, DenseNet,
PyramidNet, ResNet-34, and WRN-28. Here, we use ResNet-34 as the model architecture of the
victim model. As shown in Table A3, model architectures with more parameters and FLOPs tend to
achieve better extraction performance. This observation demonstrates that the performance differ-
ences across model architectures are mainly due to the inherent architectural design of the substitute
neural network model. We note the similarities between the architectures of the substitute model
and the victim model can also have small but observable impacts on extraction performance. For
instance, ResNeXt attains slightly better performance than MobileNet, even though the latter has
more parameters and FLOPs.
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Figure A2: Query efficiency com-
parisons between our method and
query-based attacks with CIFAR-100
as Dsecret and CIFAR-10 as Dpub.
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Figure A3: The accuracy of different model extraction
attacks with CIFAR-10 as Dsecret and randomly sam-
pled subsets of CIFAR-100 as Dpub.

Table A5: Accuracy, fidelity, and ASR of different model extraction attacks with different public
datasets. Here, we use CIFAR-10 as Dsecret.

Dpub Attack Acc (%) Fid (%) ASR (%)

Caltech256 (Training set) Knockoff Nets 50.05 50.75 42.63
SEEKER (ours) 65.71 66.54 78.26

STL10 (Unlabeled set) Knockoff Nets 78.74 79.84 52.36
SEEKER (ours) 88.57 89.89 98.97

J IMPACT OF DIFFERENT PUBLIC DATASETS

To further demonstrate the generalization capability of our attack, we have compared our method
with the best-performing attack, Knockoff Nets, on different public datasets. Here, we use CIFAR-
10 as Dsecret and use the training set of Caltech256 and unlabeled set of STL10 as Dpub. As shown
in Table A5, we have found that our method generalizes significantly better than the state-of-the-art
attack on different datasets.

K IMPACT OF PUBLIC DATASET SIZE

For a certain secret dataset Dsecret, we sample subsets from the public dataset Dpub to analyze how
the size of Dpub impacts the performance of the model extraction attacks. To this end, we design
two experiments according to the sampling strategy of Dpub. In the first experiment, we select
all of the data in certain classes of CIFAR-100 as Dpub. In the second experiment, we randomly
sample subsets of CIFAR-100 as Dpub with equal sampling probabilities for each class. For both
experiments, we use CIFAR-10 as Dsecret to train the victim model.
In the first experiment, we compare the accuracy and ASR between SEEKER and Knockoff Nets
(the best-performing method within 100K query budget) with 30 classes of CIFAR-100, 50 classes
of CIFAR-100, and the full CIFAR-100 dataset as Dpub. As shown in Table A4, our attack can
extract a substitute model more effectively than Knockoff Nets when the adversary can only access
a small number of classes of Dpub. For instance, SEEKER achieves 66.7% accuracy and 80.8%
ASR even if only 30 classes of CIFAR-100 are publicly available, whereas Knockoff Nets only
attains 44.4% accuracy and 38.4% ASR under the same condition.
In the second experiment, we randomly sample 30%, 50%, 70%, and 100% of CIFAR-100 uniformly
across the labels asDpub to perform different model extraction attacks. Here, we note that 30 classes
of CIFAR-100 in the first experiment and randomly sampled 30% subset of CIFAR-100 in the second
experiment are both 30% data from the CIFAR-100 dataset but produced with different sampling
strategies. The results in Figure A3 demonstrate that our method achieves higher accuracy than the
other SOTA attacks across different public dataset sizes. We also point out that the accuracy of our
attack does not drop significantly as the size of Dpub decreases. The results of both experiments
reflect that SEEKER is more effective in leveraging the information in the public datasets.
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Table A6: Ablation experiment for
training dataset during the substitute
training stage

Training dataset Acc Fid ASR
(%) (%) (%)

New queries 83.8 85.2 93.2
All queries 86.9 88.2 95.8

Sampled queries (ours) 88.0 88.9 96.4

Table A7: Ablation experiment for loss-based training
termination

Training condition Acc (%) Fid (%) ASR (%)

Number of epochs
per iteration

20 epochs 82.6 83.8 91.1
40 epochs 86.8 88.2 95.9
60 epochs 87.4 88.8 96.9
80 epochs 81.8 83.0 94.0

100 epochs 82.3 83.5 86.2

Automatic (ours) 88.0 88.9 96.4

L ABLATION STUDIES

We designed a set of ablation experiments to examine to study how much each component in the
framework contribute to the overall results. Our main manuscript introduces the results for augmen-
tation invariant unsupervised training and aggregated query generator. Here, we present the results
for two remedies for preventing substitute overfitting: weighted sampling and loss-based training
termination.
To evaluate the effect of weighted sampling, we compare the accuracy, fidelity, and attack success
rate (ASR) of substitute models trained with different datasets, including complete query dataset,
new query dataset, and weighted sampled dataset. As shown in Table A6, weighted sampling
achieves higher accuracy and ASR than the complete query dataset and new query dataset. For
example, the weighted sampled dataset achieves 1.1% higher accuracy than the complete query
dataset and 3.2% higher ASR than the new query dataset. In the above experiments, we use a weight
factor α = 0.8 for the weighted sampling strategy.
In addition to weighted sampling, we study the contribution of loss-based termination by comparing
the performance of S trained under a manually controlled condition and an automatic condition.
In the manually controlled conditions, we set a fixed number of training epochs (20, 40, 60, 80,
100) for each loop. In the automatic condition, substitute training terminates if the loss value does
not decrease for two consecutive epochs. As shown in Table A7, the substitute model trained with
loss-based termination achieves similar or better accuracy, fidelity, and ASR when compared to the
models trained in the manually controlled condition.
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