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ABSTRACT

Deep generative models have made significant advances in generating complex
content, yet conditional generation remains a fundamental challenge. Existing
conditional generative adversarial networks often struggle to balance the dual
objectives of assessing authenticity and conditional alignment of input samples
within their conditional discriminators. To address this, we propose a novel dis-
criminator design that integrates three key capabilities: unconditional discrimi-
nation, matching-aware supervision to enhance alignment sensitivity, and adap-
tive weighting to dynamically balance all objectives. Specifically, we introduce
Sum of Naturalness and Alignment (SONA), which employs separate projections
for naturalness (authenticity) and alignment in the final layer with an inductive
bias, supported by dedicated objective functions and an adaptive weighting mech-
anism. Extensive experiments on class-conditional generation tasks show that
SONA achieves superior sample quality and conditional alignment compared to
state-of-the-art methods. Furthermore, we demonstrate its effectiveness in text-to-
image generation, confirming the versatility and robustness of our approach.

1 INTRODUCTION

Deep generative modeling has achieved remarkable progress in synthesizing images (Podell et al.,
2024 [Esser et al.l [2024), audio (Novack et al.| [2024} 2025), and video (Yang et al., 2025} |Polyak’
et al.| [2024; |Kong et al., 2024} Wan et al.,|2025). Nevertheless, generating high-quality samples that
are well-aligned with conditional information, such as class labels or text prompts, remains a central
challenge (Ho & Salimans|, 2021 |Dhariwal & Nichol| [2021}; Liu et al., 2023} |[Zhang et al.,[2024).

Generative adversarial networks (GANs) (Goodfellow et al., [2014) have been instrumental in ad-
vancing conditional generation, with much of the research focusing on the design of conditional dis-
criminators (Kang et al.,|2023al). The task of the conditional discriminator is typically decomposed
into two sub-problems: distinguishing real from generated samples (unconditional discrimination)
and assessing conditional alignment. This decomposition can be naturally motivated by the likeli-
hood factorization of the joint distribution, p(z, y) = p(y|z)p(x), where x is a data sample and y is
a conditioning variable.

Two main approaches have emerged based on this factorization. The classifier-based approach, pio-
neered by AC-GAN (Odena et al., 2017), uses a dual-head discriminator to simultaneously evaluate
sample authenticity and label alignment (Gong et al., 2019;|Hou et al.||2022} Kang et al., 2021). The
projection-based approach, introduced by Miyato & Koyama, (2018)), models the discriminator as a
sum of unconditional discrimination and alignment terms, eliminating the need for auxiliary clas-
sifiers and thereby simplifying the architecture. This simple yet effective design has been widely
adopted in modern conditional GANSs as the de facto standard without major modifications (Brock
et al.,[2019; |[Karras et al.|[2019;|2020b; 2021; Sauer et al.,2022;2023; Huang et al., [2024).

Despite these advances, conditional discriminators still face the fundamental challenge of balancing
the dual objectives of unconditional discrimination and conditional alignment (Reed et al., 2016
Hou et al.l |2022). Classifier-based methods require careful tuning of weighting coefficients to
achieve this balance (Kang et al |[2021). We also suspect that projection-based methods may not
fully exploit the likelihood decomposition for the unconditional discrimination task, as discussed in
Section[3
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Table 1: Three desiderata for our proposed method, SONA.

Capabilities Cogdi?iongl (i) Uncon(.iitional disc. (ii) Matchir}g—aware disc. (iii) Adapti've weighting
discrimination (Secnon (Sectlon (Secuon
Classifier-based v v v
Projection-based v * N/A
SONA (ours) v v v M
(Sectlon (Sectlon (Sectlon

To address this issue, we aim at a discriminator design that incorporates three capabilities, as sum-
marized in Table[l] First, we introduce (i) unconditional discrimination to robustly distinguish real
from fake samples, independent of the condition. Second, we enhance the discriminator’s sensitivity
to conditional alignment by providing additional supervision through mismatched (negative) sam-
ples, resulting in a (ii) matching-aware discriminator (Reed et al |2016; Zhang et al., 2017} Tao
et al., 2023} Kang et al.l [2023b)). Third, we employ an (iii) adaptive weighting mechanism to dy-
namically balance the objectives of conditional, unconditional, and matching-aware discrimination.

Specifically, we introduce Sum of Naturalness and Alignment (SONA), a novel method that simul-
taneously fulfills all the capabilities listed in Table |1} as detailed in Section 4} Our discriminator is
designed with separate projections to independently assess input naturalness (authenticity) and con-
ditional alignment, while incorporating an effective inductive bias to support both tasks efficiently.
To fully leverage this architecture, we propose a set of objective functions for training conditional,
unconditional, and matching-aware discrimination, and validate their effectiveness both theoretically
and empirically in Section[5} Additionally, we introduce a simple yet effective adaptive weighting
mechanism for these three discrimination tasks, enabled by our carefully designed loss functions. In
Section [6] we evaluate SONA on image datasets with class labels, demonstrating that it generates
higher-quality samples with better conditional alignment than state-of-the-art (SoTA) discriminator
conditioning methods. We further extend our experiments to text-to-image generation, showing the
applicability of SONA to more complex conditioning scenarios.

2 PRELIMINARIES

Let pq(x,y) represent the data distribution, where € X is a data sample and y € Y is the
conditional information describing the corresponding = (e.g., a class label or text prompt). Our
objective is to learn the conditional distribution from a finite set of samples drawn from it. For
this purpose, a trainable generator is introduced, denoted as g, inducing the generator distribution,
denoted as py(x|y). In one of the standard GAN setups, the generator is parameterized as a function
that transforms a tractable noise (e.g., a Gaussian noise) to a data sample as gy : Z XY — X, where
6 indicates a set of parameters modeling the generator and z € Z is the noise; thus a sample drawn
from py(-|y) is obtained by z, = gg(z,y) with a noise drawn from a base distribution: z ~ pz.
Hereafter, we use V and J to denote maximization and minimization objectives, respectively.

2.1 GENERATIVE ADVERSARIAL NETWORKS

We review the formulation of GANs and introduce the sliced Wasserstein perspective to present the
concept of optimal projection for unconditional discrimination. The problem setup described above
includes unconditional generation tasks by setting y to null conditioning. In this subsection, we omit
y from the formulations for simplicity.

GANSs. In GANSs, a discriminator, denoted as f : X — R, is introduced, which is expected to
discriminate between the samples drawn from the data and generator distributions with its scalar
outputs. GAN formulates the optimization problem to make the generator distribution closer to the
data distribution by solving a minimax problem:

max Voan(fig),  and min Joan(g; f)- (1)
Here, the variables following the semicolons are held fixed during each optimization step, and we

will omit such variables when the context is clear. The specific forms of Vgan and Jgan depend on
the chosen GAN variant or loss (see Appendix for more details).

Sliced Wasserstein perspective on GANs. Typical discriminators can be represented as f(z) =
(w,h(x)), where b : X — RP, w € SP~1, and (-, -) denotes the Euclidean inner product. [Takida
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et al| (2024) interpreted this formulation as an augmented Sliced Wasserstein approach (Kolouri
et al.} 2019; [Chen et al.,|2022) with a single direction (w). Building on this interpretation, they pro-
pose encouraging optimality in the sliced Wasserstein sense on the normalized projection, resulting
in slicing adversarial networks (SANs): max,, », Vsan(w, h) and min, Jsan(g), where

Vsan(w, h) = Ep ) [(w, sg(h)(@))] = By, (2 [(w, s9(h) (2))] + Voan ((sg(w), k),  (2)
Jsan(g) = —Ep, ) [(w, h(2))], 3)
where sg(+) denotes the stop-gradient operatoﬂ The first two terms in Vsan encourage the direc-
tion w to maximize the sliced Wasserstein distance given by h. Intuitively, the learned direction is

expected to optimally distinguish real and generated samples in the feature space defined by h. See
Appendix for a more detailed explanation of the aforementioned perspective.

2.2 CONDITIONAL GANS

Most conditional GANs employ either classifier-based or projection-based approaches. To illustrate
the core concepts, we briefly review AC-GAN as a representative classifier-based approach, as well
as the projection-based approach. A detailed review of related work is provided in Appendix [Al

In conditional generation settings, the discriminator is modeled as f : X x Y — R, enabling it
to distinguish between the two conditional distributions, pq(x|y) and p4(x|y). For simplicity, we
assume Y is a discrete space in this subsection.

Classifier-based approach. [Odena et al. (2017) introduced AC-GAN, which combines the
original GAN losses (i.e., Vgan and Jgan) With cross-entropy classification losses: Vers =
Bz [log C(x,y)] and Jers = —E, (4,4)[log C(z,y)] to optimize the discriminator and genera-

tor. The auxiliary classifier is typically defined as C(z,y) = softmax, ({ fus(z, y) }yey /), where

fas: X xY - Rand 7 € Rogisa temperature. Notably, under this setup, the maximization loss
Vews is equivalent to the InfoNCE loss (Oord et al., 2018):

eXp(fCIS (;"Cv y)/T)
Epay) exp(fas(@,y)/7)

VCE(fcls) = ]Epd(:x,y) log (4)

To enable the discriminator to predict class labels, fds(az, y) is further parameterized using the dis-
criminator’s deep feature and additional learnable embeddings w, € R as fus(z,y) = (w,, h(z)).

Projection-based approach. Miyato & Koyama| (2018) proposed a simple yet effective discrim-
inator design. Based on the Bayes-rule-based log-likelihood-ratio factorization, they implement
the discriminator as a sum of conditional and unconditional terms: f(x,y) = fi1(z,y) + f2(x) =
(wy, h(z))+1(h(z)), where, by abuse of notation, w, denotes the embedding of y, and ¢ is a learn-
able function. For efficient optimization, the intermediate feature h(x) is shared between f1(z,y)
and fy(z). In practice, 1) is usually parameterized as a linear layer, reducing the discriminator to

where b € R is a learnable bias. This approach does not require any modifications other than the
projection discriminator, such as optimization schemes or objectives. It is widely used in its original
form, and we hereafter refer to the broad class of GANs based on this approach simply as PD-GANSs.

3  MOTIVATION: KEY CAPABILITIES OF CONDITIONAL DISCRIMINATOR

In this section, we raise the desirable capabilities for our discriminator, and discuss whether the ex-
isting classifier- and projection-based approaches satisfy these criteria (see Table[I]for a summary).

3.1 UNCONDITIONAL DISCRIMINATION

We argue that unconditional discriminator learning is essential even in conditional generation tasks,
as existing approaches decompose the role of the conditional discriminator into unconditional dis-

'For any function U : X — R, E,_ (o) [U()] is equivalent to E,,, () [U(g(y, 2))], and is therefore differ-
entiable with respect to g. We adopt the former notation for simplicity throughout this manuscript.
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Figure 1: Comparison of SONA with existing classifier- and projection-based methods for discrim-
inator optimization. Our approach enables independent assessment of sample naturalness and align-
ment, supported by the proposed inductive bias (Section[4.T)) and objectives (Sections .2]and[4.3).

crimination and evaluation of conditional alignment. Classifier-based discriminators inherently sup-
port unconditional discrimination by explicitly employing the unconditional GAN loss (see Sec-
tion @ In contrast, projection-based discriminators, when used with standard GAN losses, may
not provide this capability, as discussed below.

Projection-based discriminators are equipped with both unconditional and conditional projections,
as shown in Equation (3)), and are thus inherently capable of modeling unconditional discrimination.
However, since Equation (5) can be rewritten as (i, h(z)) + b with @, = w, + w € RP, the
generator is optimized by ming Jgan(g; (Wy, h(x)) + b), essentially with a y-dependent projection
wy. This suggests that, even with this parameterization, the objective functions typically used in
PD-GANSs may not fully leverage unconditional discrimination.

3.2 MATCHING-AWARE DISCRIMINATION

We next highlight the importance of enhancing the discriminator’s sensitivity to conditional align-
ment by incorporating negative samples, following the approach of Reed et al.|(2016). Specifically,
to encourage conditional alignment, they proposed using negative samples that are realistic but as-
sociated with incorrect class labels, thereby mismatching the conditional information.

As shown in Equation @), AC-GAN can be interpreted as implicitly utilizing such negative samples
drawn from the product of marginals, i.e., (z,y’) ~ pa(z)pa(y’), in its cross-entropy loss, in addition
to samples from the true joint distribution p4(x,y). This advantage is formalized in Proposition
which implies that the cross-entropy loss induces the discriminator feature to be y-extractable, sensi-
tive to conditional alignment, under the assumption that p4(y) is uniform. This proposition imposes
the uniform assumption on py(y), which holds for well-constructed image datasets (Krizhevsky
et al., [2009; Russakovsky et al.,2015), where each class contains the same number of samples.

Proposition 1 (Log conditional probability maximizes Vcg). Assume pqa(y) is a constant regardless
ofy €Y, eg., auniform distribution. The function f maximizes Vcg if f(x,y) = logpa(y|x) +
rx (x) for an arbitrary functionrx : X — R.

While classifier-based approaches (including but not limited to AC-GAN) employ classification
losses similar or analogous to InfoNCE, projection-based GANs do not incorporate such losses,
resulting in the absence of explicit mechanisms for inducing matching-awareness.

3.3 DESIDERATA OF OUR DISCRIMINATOR

Classifier-based GANs possess the two additional discrimination capabilities outlined in the pre-
vious subsections, while most PD-GANs do not. However, a key advantage of PD-GANSs is that
they avoid introducing additional hyperparameters that require manual tuning, which is beneficial
for practitioners. In contrast, our goal is to propose a novel conditional discriminator that integrates
both unconditional and matching-aware discrimination into the training process, while adaptively
balancing these different objectives. A summary of these comparisons is shown in Table [T}



Under review as a conference paper at ICLR 2026

4 PROPOSED METHOD: SONA

To achieve the desiderata presented in Section [3] we design the discriminator and propose a set
of maximization objective functions for it. We provide theoretical and empirical support for our
method in Section[5] We formalize the training procedure of SONA in Algorithm [T]of Appendix [C|

4.1 DISCRIMINATOR PARAMETRIZATION

Inspired by the projection discriminator (Equation (3))), we design the discriminator to evaluate sam-
ple inputs by summing two scalar terms for (a) the (unconditional) naturalness, i.e., distinguishing
real from fake samples, and (b) the alignment with the conditioning information. To achieve this
compositional modeling, we introduce a feature extractor h : X — RP, shared across both tasks
(here, h is consistent with the notation in Section . The extracted features h(z) are then projected
onto independent directions w € SP~! and wy € SP~1 for each y € Y as follows.

For naturalness, we simply project the feature onto w. For conditional alignment, we incorporate an
inductive bias based on the hypothesis that assessing naturalness and conditional alignment are or-
thogonal tasks. From an optimization perspective, optimizing the generator for alignment should not
interfere with optimizing it for naturalness. To encode this inductive bias, we define the alignment
term using an orthogonal projection: (w,, IT| ,h(x)), where IT| ,h(x) = h(z) — (w, h(x))w.

Thus, our discriminator is parameterized as the sum of these two terms
fly) = (wh(x) +  (wy,Ih(z) (6)
——— —_————
ng (x): Naturalness fé;A (z, y): conditional Alignment
where ®n = {w,h}, Pao = {w,wy, h}. In this formulation, we expect w to be responsible for
distinguishing the naturalness of input samples (as in Section[4.2)), while w,, focuses on conditional

alignment (as in Section 4.3). Here, we can optionally add a bias b € R to the naturalness term,
which can also be absorbed into h. Please also refer to Figure|l|for an illustration of our strategy.

4.2 UNCONDITIONAL LEARNING

To address the first desideratum in Table [T we formulate a minimax problem that encourages the
naturalness term in Equation (6) to distinguish between real and generated samples independently
of y (see Proposition [2]in Section[5.1). We employ SAN objective functions to learn the optimal w
for unconditional discrimination, specifically using Equations (2)) and (3) as the minimax objectives:

r%ax VSAN (w, h), and Hgil'l jSAN (g) (7)

Note that only the parameters associated with the naturalness term fy in Equation (6) are included;
®4 \ &N = {wy}, which is used only for conditional alignment, is not involved. This optimization
ensures that w focuses on determining whether an input sample originates from the data or the gen-
erator, as intended. We denote Vsan(w, 1) as Vsan(®n) in Equation for a unified formulation.

4.3 LEARNING CONDITIONAL ALIGNMENT

Next, we develop w,-based learning for the conditional alignment, building on the w-based uncon-
ditional learning described in Section[4.2] Specifically, we introduce additional objective terms to
enable our discriminator to perform conditional discrimination and to be aware of the mismatch, the
latter corresponding to the second desideratum in Table

To achieve this, we incorporate the Bradley—Terry (BT) model (Bradley & Terryl, [1952] reviewed in
Appendix B.3)), which is widely recognized for its efficiency in modeling pairwise comparisons and
has recently been applied in reinforcement learning from human feedback (Rafailov et al.l [2023).
For each pair of samples, we denote the preferred sample as the “winning” sample z,, and the
less preferred as the “losing” sample z,, response for condition y. The model defines the prob-
ability that z,, is preferred over x, given y using an evaluation function f : X XY — R as

Pr(x,, is preferred over z4|y) = o(f(xw,y) — f(x¢,y)), where o(-) denotes the sigmoid function.
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Following standard practice, we optimize our discriminator f by maximizing the following likeli-
hood:

VBT - Ewwwe,y[loga(f(wwa y) - f(xf? y))] (8)

In our framework, samples drawn from the true joint distribution pqy(z, y) are always designated as
the winning samples x,,, since this distribution represents the target. For the losing samples x,, we
consider two distinct distributions, resulting in two additional objectives, as follows.

BT-c loss for conditional discrimination. The first losing distribution is the generator distribution.
From Equation (8), the corresponding BT loss is

Verc(£8,) = Epaw)pa(an v)ps (201108 0 (2 @) (Tw) + [, (@, y) = [l (@) = f5, (26, y))]-
9

This BT loss compares real and generated samples conditioned on a given y, thereby measuring
conditional dissimilarity. The sum of the first two terms corresponds to f(z,,,y), while the latter
two correspond to f(xz¢,y). Notably, since the objective her is to learn conditional alignment, the
parameters @, are optimized only through the alignment term ng, while the naturalness term ng
is frozen by applying the stop-gradient operator solely to the naturalness term. Under optimality
assumptions, including those related to Equation (9), Equation @) can be interpreted as a specific
divergence between pa(|y) and py(z]y), up to constant, as shown in Proposition [3|of Section[5.1]

BT-M loss for matching-aware discrimination. The second losing distribution, chosen to address
the second desideratum, is the marginal data distribution, which ignores the given condition y.
This helps the discriminator identify samples that do not satisfy the specified condition, even if they
are real samples. The corresponding BT loss is

VB M(f@A) Eps(w)pa(@aly)pa(ar) 108 U(fsg(qm)(xw) + f@A(xw; y) — fﬁlg(%)(w) - fQA (ze,))]-
(10)

This BT loss compares data samples aligned with the condition y against negative samples drawn
from the marginal distribution, analogous to a matching loss. As shown in Proposition [ of Sec-
tion[5.1] maximizing Equation (T0) with respect to the discriminator yields the log gap between the
conditional and unconditional probabilities, log p4(z|y) — log pa(x), which is useful for enhancing
conditional alignment (Ho & Salimans, [2021} |Chen et al.,|2025b).

Minimization optimization for conditional alignment. Finally, we introduce a minimization ob-
jective for generator optimization with respect to conditional alignment. By swapping the data and
generator distributions in Equation (9), we obtain a minimization loss analogous to that used in
relativistic pairing GAN (Jolicoeur-Martineau, [2018):

Ts1-c(9) = —Epy(y)p, (2g)pa(waly) 108 0 (fiy (Tsa(g) + [, (Tg, Y) — fan (xa) — f5, (2a,9))];
(11

Here, a slight modification is added: as in Equations (9) and (I0), the stop-gradient operator is
applied only in the naturalness term (note that the third term does not include g), ensuring that
minimization occurs orthogonally to the direction represented by w (see the orthogonal operator in
Equation (€)). This approach allows the loss to specifically enhance the conditional alignment of
generated samples along w,,, while authenticity is enforced by Jsan using the direction responsible
for unconditional discrimination. Therefore, minimizing Jsan and Jpt.c does not cause interfer-
ence, enabling each objective to address its respective aspect independently.

4.4 OVERALL OBJECTIVE FUNCTION WITH ADAPTIVE WEIGHTING

We have introduced the maximization and minimization objective terms in Sections.2and[4.3] The
overall objective for training our GAN is summarized as follows:

oax Vsan(®n) 4+ Verc(fa,) + Veru(fa,), and m;H JIsan(g) + Te1c(9). (12)

To ensure adaptive balance among the maximization objective terms Vsan, Vrc, and Vg1, We
introduce learnable scalar parameters. Specifically, we first adopt Vgan from |Goodfellow et al.
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(2014) to construct Vsan, which is formulated with log o(-) (see Appendix . We then replace
log o(t) in each of Vsan, Ver.c, and Vgt with logo(s - t)/s, where s € Ry is learnable. To
prevent these coefficients from diverging, we constrain them such that s, + Sar.c + Shry = 1.
This approach makes the adaptive weighting possible by incorporating the current situation during
training (see Appendix for details), thereby satisfying the third desideratum in Table ]

Adaptive weighting has been investigated in general multi-task learning (Kendall et al.,[2018)). How-
ever, these approaches are not specifically designed for GAN training, so they may not be suitable for
our purpose. In particular, we hypothesize that the unbounded nature of the coefficients in these ap-
proaches can be harmful to GAN training, as GANs are highly sensitive to the learning rate (Heusel
et al.l2017). This hypothesis motivates the development of our adaptive weighting mechanism. To
empirically validate our hypothesis and demonstrate the effectiveness of our method, we compare it
with the approach proposed by |Kendall et al.| (2018)), using the same experimental setup described
in Section [6.3] Our method achieves an FID of 5.6540.25 and an IS of 9.51+0.05, which are
significantly better than the baseline results of FID 16.62+4.04 and IS 7.88+0.80.

5 ANALYSIS OF SONA

5.1 THEORETICAL GROUNDING FOR OUR MAXIMIZATION OBJECTIVES

In this subsection, we present propositions to demonstrate the validity of the objective terms intro-
duced in Sectionf.2]and Section[#-3] Proofs are provided in the Appendix.

First, the following proposition, which is a restatement of Theorem 5.3 in [Takida et al.| (2024),
establishes that optimizing the generator and discriminator using the minimax objective functions
from Section [4.2]enables unconditional GAN learning.

Proposition 2 (Informal; Unconditional discrimination by Vsan). Let the unconditional discrimi-
nator (the naturalness term) be fN(z) = (w,h(z)) withw € RP~Yand h : X — RP. Under
suitable regularity conditions for h, the objective Jsan(g; @, h) is minimized only if g minimizes a
certain distance between pq(x) and py(x), where @ = arg max,, Vsan(w, h) for a given h.

Next, we analyze the BT-based objective functions introduced in Section@ BT-cC loss Vgr1.c com-
pares samples from the dataset and the generator with specific conditioning. Under certain optimal
conditions, this loss can represent the conditional dissimilarity between conditional distributions, as
demonstrated in Proposition 3]

Proposition 3 (Conditional discrimiantion by Vgr.c). Let the discriminator be f(x,y) = fN(x) +
fA(x,y), where fN(x) = (w,h(z)) withw € SP~L, h: X 5 RP, beR and f* : X xY — R.
Assume that the generator achieves py(x) = pq(x), and w and h maximize Vsan for given pq and
pg. If f* maximizes Equation , then it is minimized if and only if pa(z|y) = py(x|y) fory € Y.

EBT—C = Epd(y)Pd(ww|y)pg(ﬂie|y) [IOg O'(fN(xw) =+ fA(va y) - fN(xe> - fA(xea y))] (13)

Here, Equation (I3)) corresponds to the RHS of Equation (9) with generalized terms. We note that
in our method, the conditional alignment term (f* in this proposition) shares h and w with the
naturalness term, a constraint not considered in this proposition. However, since minimizing Vsan
enforces only one-dimensional constraint on h given w, we expect f£A to have sufficient capacity
even conditioned on Vsan-minimization. Thus, this proposition still offers valuable insights.

Finally, BT-M loss using samples from the marginal data distribution, Vpr.\, can be interpreted as
a contrastive loss comparing positive and negative data samples. Specifically, Vg1 is equivalent to
an InfoNCE loss with a single negative sample per positive sample in its denominator. The following
proposition shows that this objective encourages the conditional discriminator to learn the log gap
between conditional and unconditional probabilities, up to an arbitrary function independent of x:

Proposition 4 (Log gap probability maximizes Vgr.y). The function f maximizes Vgt if f (z,y) =
log pa(z|y) — log pa(z) + ry (y) for an arbitrary functionry : Y — R.

Although Proposition [ superficially resembles Proposition [I]in Section [3.2] there are two key dif-
ferences. First, Proposition [4] does not require the uniform assumption on py4(y), allowing it to be
applied to broader settings, such as datasets with biased class distributions or text-caption—image
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Figure 2: Empirical study on MoG using Wasserstein-2 distance (W2), Conditional Wasserstein-2
distance (cW2), and the number of failure cases (NF). See Section @ and Appendix [F.1|for details.
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datasets. Second, the extra term in the maximizer of Proposition ] is independent of z, unlike in
Section [3.2] This means that the maximizer captures the score gap between the conditional and
unconditional probabilities, which helps to emphasize conditional alignment.

5.2 EMPIRICAL VALIDATION OF OUR METHOD

To empirically evaluate the effectiveness of our proposed method, we conduct experiments on a two-
dimensional mixture of Gaussians (MoG) dataset, which enables both visualization and accurate
measurement of generative performance. The experimental details are provided in Appendix [FI]

We train three models on the MoG dataset, varying the number of Gaussians (i.e., classes), denoted
as V: (1) SONA, (2) SONA without the matching loss Vgt.\, and (3) PD-GAN. To quantitatively
assess generative performance, we use three metrics: (a) Wasserstein-2 distance (Wa (pa (), py(z)),

denoted as W2), (b) conditional Wasserstein-2 distance (4 ZnN:1 Wa(pa(x|yn), pg(x|yn)), denoted
as cW2), and (c) the number of failure cases (NF'). A failure is counted if there exists n € [IN] such
that Wo (pa(x|yn), pg(x|yn)) > €, where € is set to the standard deviation of the Gaussians.

As shown in Figure 2] using five different random seeds, generators trained with SONA demon-
strate robust performance, consistently outperforming the baselines when N > 30. Notably, SONA
achieves zero NF, while the other two methods increasingly fail as N grows. Qualitative results for
N = 36 are visualized in Figure E[, where PD-GAN fails to cover all modes. In contrast, SONA
without the matching loss produces overlapping samples between classes, indicating difficulty in
distinguishing between them. This underscores the importance of making the discriminator match-
ing-aware to better utilize conditional information (the second desideratum).

6 EXPERIMENTS

6.1 BENCHMARK ON CLASS-CONDITIONAL GENERATION TASKS

We conduct class-conditional image generation experiments on CIFAR10 (Krizhevsky et al.,|2009),
TinyImageNet (Le & Yang) 2015), and ImageNet (Deng et al., [2009), using the StudioGAN repos-
itory (Kang et al., 2023a a well-established benchmark for these tasks. As baselines, we select
two state-of-the-art (SoTA) classifier-based methods, ReACGAN (Kang et al., |2021)) and Contra-
GAN (Kang & Park,2020), as well as PD-GANSs, which is among the most widely used approaches.
For evaluation, we use Frechét Inception Distance (FID) (Heusel et al., [2017)), Inception Score
(IS) (Salimans et al., 2016), Density & Coverage (Naeem et al., 2020), intra FID (Miyato & Koyama,
2018}, iFID) that is the average of class-wise FID.

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN
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Table 2: CIFAR10

Table 3: TinyImageNet.

Method FID | ISt Method FID | ISt Dens 1 Cover 1 iFID |
BigGAN backbone ContraGAN  23.6641.59 12.4740.45 0.624+0.05 0.46+0.03 162.69+2.69
ContraGAN  4.744-0.05  9.7940.03 ReACGAN 18.99+4098 15.3740.68 0.7040.03 0.54+0.02 130.77+1.22
ReACGAN  4.4940.10 9.8440.00 PD-GAN 20.77+1.53 14.29+1.11 0.7040.05 0.584+0.02 111.07+3.43
PD-GAN  4.604+0.05 9.87+0.06 SONA 16.33+0.62 16.60+035 0.74+0.02 0.59+0.01 108.7540.60
SONA 4.24+0.07 10.054-0.03 Apply DiffAug

StyleGAN?2 backbone ContraGAN  11.86+0.32 16.01+0.29 0.7840.02 0.63+0.01 142.0741.02
ReACGAN  3.3940.03 10.3340.03 ReACGAN  9.93+0.34 20.254+0.07 0.88+0.01 0.69+0.00 107.31+1.22
PD-GAN 4.0640.19  10.094-0.05 PD-GAN 13.09£1.00 16.57+0.34 0.784+0.02 0.70+0.02 95.62+2.27
SONA 3.38+0.14 10.45+0.08 SONA 7.76+0.29 23.00+0.10 0.99+0.01 0.79+0.00 82.23+0.48

We first train SONA on CIFAR10, and report the results in Table We evaluate both Big-
GAN (Brock et al., 2019) and StyleGAN2 (Karras et al., 2020b) backbones. The results show
that SONA consistently achieves the best performance across all metrics.

Next, we scale up the empirical evaluation by increasing both the image resolution (64 x64) and the
number of classes (200) using TinyImageNet. As shown in Table 8] SONA outperforms the other
SoTA models on all metrics. Notably, SONA also benefits from DiffAug (Zhao et al.,, [2020), a
leading data augmentation technique, achieving the best overall scores.

Finally, we evaluate SONA on the Ima- Table 4: ImageNet.

geNet dataset at a resolution of 128x128.
We use the BigGAN backbone, as it is the
only architecture among single-stage gen-

Method FID |
Batch size = 256

IST Dens?T Cover? iFID| Top-1/5acct

: oAl : ContraGAN 31.73 2393 057 028 169.65 0.02/0.09
eration p}pellnes capable of producing rea ROACGAN 1873 5129 085 046 13183 0207048
sonable images on the dataset. We com-  pp.gan 2976 27.17 045 035 11907 024/048
pare performance under two batch size set- SOl\jA 213(%17 8333 079 059 7433 0.62/0.87

: - Batch size = 20
tl'ngs (,256 and 2048), Wlth, results summa- ReACGAN 844 103.07 1.04 071 87.77 0.51/0.82
rized in Table E} Accordlng to the table, PD-GAN 885 96.11 0.95 0.81 52,65  0.63/0.83
SONA 614 14014 1.03 082 4845 0.80/0.93

SONA outperforms other methods on all
metrics except Density. Additionally, we
compute Top-1 and Top-5 classification accuracies for the 1,000 ImageNet classes using an Incep-
tion V3 network, following |[Kang et al.| (2023a). The results indicate that images generated by
SONA align best with the conditioning class among all baselines.

Table 5-A: Text-to-image generation tasks on CUB and COCO.

CUB (Wah et al.,[2011) COCO (Lin et al.,{2014)

FID| CLIPScoret FID| CLIP Score 1
11.76 0.3310 5.30 0.3639
10.20 0.3342 4.70 0.3677

Method

GALIP (original; concat)
GALIP + SONA

Table 5-B: Text-to-image generation task under zero-shot setting on COCO. GALIP and GALIP +
SONA are trained on CC12M, while the other baselines are trained on larger-scale datasets.

Method Type Param size (B) Data size (M) zFID3ox | CLIP Score 1 Speed (sec)
LDM (Rombach et al.}[2022) Diffusion 1.45 400 12.63 - 3.7
GLIDE (Nichol et al.|2022) Diffusion 5 250 12.24 - 15.0
DALL-E 2 (Ramesh et al.||2022) Diffusion 6.5 250 10.39 - -
Imagen (Saharia et al.|[2022) Diffusion 79 860 7.27 - 9.1
InstaFlow (Liu et al.|[2024) Flow 0.9 - 13.10 - 0.09
StyleGAN-T (Sauer et al.}[2023) ~ GAN 1.02 250 13.9 - 0.10
GALIP (original; concat) GAN 0.24+0.08 12 13.78 0.3306 0.04
GALIP + SONA GAN 0.24+0.08 12 12.43 0.3411 0.04

6.2 BENCHMARK ON TEXT-CONDITIONAL GENERATION TASKS

We demonstrate the applicability of SONA to text-to-image generation tasks. Our experiments are
based on GALIP (Tao et al., 2023)), which we verified to be reproducible using the official reposi-
toryﬂ The GALIP discriminator consists of frozen pre-trained CLIP encoders and learnable mod-
ules. Text conditioning is performed by concatenating image features and text embeddings from the

*https://github.com/tobran/GALIP
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CLIP encoder, followed by processing with a shallow network. We apply SONA to the discriminator
in a straightforward manner, using the frozen CLIP text embedding for w, without modification. To
assess the effectiveness of the proposed method, we train both the original GALIP and the SONA-
based GALIP on CUB 2011), coco 2014), and CC12M
[2021)), respectively. For models trained on CC12M, we report zero-shot performances on COCO.
As shown in Table [5-A] and Table [5-B] SONA achieves improved FID scores while maintaining
comparable text alignment to the original GALIP on three standard image datasets at 256 x256 res-
olution. We suspect that our method reduces interference between the assessment of naturalness
and alignment, even with fixed w,. Adopting learnable w,, for further improvement in CLIP score
is left for future work. For reference, we also include other text-to-image models, not limited to
GAN:gs, in Table Although these models differ in dataset scale and a direct comparison is not
strictly fair because GALIP is trained on the smallest dataset, the table indicates that SONA applied
to GALIP achieves competitive generation performance with the fastest inference speed among the
listed models.

Table 6: Ablation study using CIFAR10
6.3 ABLATION STUDY

Adaptive Orthogonal Matching

We evaluate the contribution of each pro- weighting s proj. in Eq. (6) loss Var 110 ¥ ISt
posed component in SONA by training % 7512014 9.0840.07
models on CIFAR10 using the PyTorch of- v v 6.2940.08 9.14:40.04
ficial codebasd’| provided by [Brock et al. v v 602+028 9541082
, I ed n T v v v 5654025 9512005
(2019). Results are summarized in Ta- v v 7.09+1.17 9.52+40.07

ble |6} Orthogonal modeling in fg (z,y)
improves the generation performance in FID, while the BT-M loss Vgt does in IS. By adopting
both, SONA achieves better generation performance in terms of both FID and IS. In contrast, we
can also see that the adaptive scaling coefficients introduced in Section [#.4] work.

6.4 DISCUSSION ON COMPUTATIONAL TIME . . . . .
Table A: Training efficiency (iteration/min).

We report the computational efficiency of each base-

line in Tabl%t based on the experiments described Method  CIFARI0 TimyIN ImageNet
in Section _PD-GAN demonstrates the high- ContraGAN 36036 129.87  80.70
est training efficiency, attributable to its simple de- ReACGAN 32215 10723  78.84
sign. Nevertheless, SONA achieves comparable ef- PD-GAN 44280 19576 10191

ficiency to PD-GAN and surpasses other state-of-the- SONA 4109 16913 3016

art classifier-based methods. Additionally, we illus-

trate the training convergence behavior on ImageNet 10
(with a batch size of 2048) in Section[6.1] as shown in
Figure[A] We observe that SONA attains FID scores
similar to PD-GAN for approximately the first three
days, after which SONA exhibits a clear improve- A, e 7o o (bes) | 60
ment, achieving lower FID scores. This performance T Reom |
gain justifies the additional computational overhead =
of SONA compared to PD-GAN.

140

120

JRoRs 100
=

""" o D sona 80
e

"/" —+— FID - RACGAN
o - FID-PD-GAN

FID
Inception Score

Training time (day)
Figure A: Behavior of training convergence:
FID () and IS (1) as a function of training
time (in days).

7 CONCLUSION

In this paper, we introduced SONA, a novel discriminator framework for conditional GANS that effi-
ciently evaluates both sample naturalness (authenticity) and conditional alignment, while adaptively
balancing unconditional, conditional, and matching-aware discrimination objectives. Experiments
on image datasets demonstrate that generators trained with our method produce higher-quality sam-
ples that are more accurately aligned with the given labels compared to state-of-the-art methods.
Additionally, we showed that SONA is applicable to text-to-image generation scenarios.

*nttps://github.com/ajbrock/BigGAN-PyTorch
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ETHICS STATEMENT

Because our work involves training AI models that can generate synthetic content, there are inherent
risks of producing harmful or inappropriate outputs, such as deepfake images, graphic violence,
offensive material, or content that may infringe on copyright. To mitigate these risks, it is essential
to implement robust content filtering and moderation measures to prevent the creation of unethical,
harmful, or infringing media.

REPRODUCIBILITY STATEMENT

All experiments described in Section [6] were implemented using open-source repositories, which
we confirm are reproducible by rerunning them. The datasets employed in this study are publicly
available via their official sources. Detailed implementation procedures are provided in Appendix[F
Additionally, we provide codes as supplementary material and outline our training procedure in
Algorithm[I} To further enhance reproducibility, we will release our source code upon acceptance
of this paper. The proofs of our theoretical claims can be found in Appendix.

LLM USAGE

Large Language Models (LLMs) were used for academic proofreading and assistance in writing the
abstract. They also supported coding tasks, including debugging, resolving errors, and visualizing
results. All research ideas and theoretical contributions were developed solely by the authors.
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A RELATED WORKS

The first (class-)conditional GAN was introduced by Mirza & Osindero| (2014), who incorporated
class information by concatenating the input with the corresponding class embedding. This straight-
forward approach has been widely adopted in subsequent works (Reed et al., |2016; |[Zhang et al.,
2017; Tao et al.l 2023} Kang et al., [2023b). For conditional discriminators, it has been shown to
be more effective to concatenate class information with intermediate discriminator features rather
than directly with the input (Reed et al.||2016), a strategy now used in several modern text-to-image
GANs (Tao et al., 2023} |[Kang et al., 2023Db)).

The projection-based approach, introduced by Miyato & Koyama (PD-GAN; 2018)), has proven
effective for both generation quality and conditional alignment, despite its simplicity. Like the
concatenation-based approach, it requires only minor modifications to the discriminator’s final pro-
jection layer and no further architectural changes, facilitating scalability and extensibility. While the
concatenation method is similar to the projection-based approach—especially when using the deep-
est discriminator features—the projection-based method has been empirically shown to be more
effective in class-conditional settings due to its well-designed inductive bias based on probabilistic
modeling. This approach is now widely used in conditional generation tasks (Brock et al., 2019
Karras et al., 2019} [2020b; 2021} Sauer et al.l 2022; 2023; Huang et al., [2024)) and has been ex-
tended to more challenging scenarios, such as text-to-image generation (Sauer et al., [2023)), where
the set of possible text prompts is not finite.

As a more explicit approach to enforcing conditional alignment, (Odena et al.| (2017)) proposed the
auxiliary classifier GAN (AC-GAN), which adds a classifier to the discriminator to predict class
labels of generated images. AC-GAN combines the standard GAN loss with a cross-entropy classi-
fication loss. However, AC-GANs have been observed to suffer from limited diversity in generated
samples (Shu et al., 2017), a limitation attributed to the absence of a negative conditional entropy
term in the objective (Shu et al.l 2017; |Gong et al} [2019). Later works addressed this by applying
the classification loss to both real and generated samples (Gong et al.,[2019; Hou et al.| [2022)). |Kang
et al.|(2021) identified instability in AC-GAN training due to unbounded discriminator features and
poor early-stage classification, and proposed ReACGAN to address these issues. Separately, [Kang
& Park|(2020) introduced ContraGAN, which incorporates data-to-data relations in addition to data-
to-class relations (Equation (@)).

As shown in our experiments (Section and recent benchmarks (Kang et al.| |2023a), ReACGAN
achieves SoTA performance on widely used class-image datasets among conditional discrimina-
tor methods, including projection-based approaches. However, to our knowledge, this approach
has not been extended beyond class-conditional settings, such as text-to-image tasks, likely due
to greater implementation complexity and higher computational cost compared to projection-based
and concatenation-based methods. Moreover, extending Y beyond a finite discrete set (e.g., to text
prompts) in this approach is generally non-trivial. Specifically, the classification loss adopted in this
approach is equivalent to the InfoNCE loss (Equation (@), which considers all plausible negative
labels 3" ~ pq4(y’) for each training sample y ~ pqy(y|z). Therefore, extending Y beyond a finite
discrete set (e.g., to text prompts) in this approach is generally non-trivial. In contrast, while BT-C
and BT-M losses in SONA can also be interpreted as variants of the InfoNCE loss, as discussed
around Proposition [4] they use only a single negative sample x’ drawn from py(z’) per training
sample = drawn from pq(x|y). This has two main advantages: First, this loss is easily applicable to
general conditioning cases, including text-to-image, because sampling a single negative sample is
feasible. Second, this property of our losses greatly reduces computational complexity, as reported
in Table [Al

For text-to-image GANSs, which are more challenging than class-conditional generation tasks, both
concatenation-based and projection-based approaches have recently been adopted. [Kang et al.
(2023b) and |Tao et al.| (2023) employed the concatenation-based approach, injecting frozen CLIP-
encoded text embeddings into deep discriminator features. In contrast, Sauer et al.| (2023)) adopted
the projection-based approach, modeling text-conditional projections by applying a learnable affine
transformation to frozen CLIP text embeddings. In addition to discriminator design, these works
introduced additional losses to improve text-conditional alignment. Notably, a matching loss uses
negative pairs of images and text prompts as fake samples (Kang et al.,[2023b; Tao et al.,[2023)), anal-
ogous to our loss Vpt.y. Furthermore, all three works employed a CLIP-guidance loss, which maxi-
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mizes the cosine similarity between CLIP embeddings of the text condition and generated images. A
similar technique using an ImageNet classifier was applied to class-conditional GANs (Sauer et al.,
2022).

B SUPPLEMENT FOR PRELIMINARY CONCEPTS

We review three key concepts, GAN, SAN, and Bradly—Terry model, which are background of our
method.

B.1 GAN

GAN. |Goodfellow et al.|(2014) originally formulated GANS as a two-player game between a gen-
erator and a discriminator. The generator aims to produce realistic samples that can fool the discrim-
inator, while the discriminator seeks to distinguish real samples from the data distribution and fake
samples generated by the generator, outputting a scalar value. Based on this framework, two variants
of GAN minimax objectives were proposed. The first, known as the saturating GAN objective, is
defined as:

Voric-Gan (f) = Ep,(2)[log(o (f (2)))] + Ep, (2 [log(1 — o (f()))] (14)

jS-GAN(Q) = Epg(m) [IOg(l - U(f(.’l?)))], (15)

The second variant, referred to as the non-saturating GAN objective, shares the same maximization
objective but uses a different minimization objective:

Ins-Gan(g) = —Ep (o) [log(a(f(x)))] (16)

It is well established that the global minimum of Js5 and Jns, when f maximizes Vogig, is achieved
if and only if pg = py.

The maximization objective can be equivalently rewritten as:

Voria-Gan(f) = Epy () [l0g(o(f ()] + Ep, 2) [log(1 — o(f(2)))] a7
= Epy(@) [log(a (£ (2)))] + Ep, () [log(o (= f (2)))], (18)
which consists solely of logo(-) terms. We use this maximization objective for Vsan, which is

applied to our unconditional discrimination.

Relativistic GAN. Jolicoeur-Martineau| (2018)) introduced a relativistic variant of GANSs, also for-
mulated as a minimax problem but based on a relativistic discriminator. The original relativistic
GAN, now known as relativistic pairing GAN (RpGAN)), is defined using LogSigmoid as:

VLs-reGAN(f) = Epy(ag)p, (a,) [l0g o (f (xa) — f(24))] 19)
JLs-reGaN(9) = —Ep (z0)p, (z,) 108 0 (f(24) — f(24))]- (20)

Our BT-C loss, Vgr.c, can be interpreted as a conditional counterpart to Equation (I9). Accordingly,
we define our minimization loss for conditional alignment, Jgt.c, as the conditional counterpart to

Equation (20).
B.2 FROM SLICED WASSERSTEIN TO SAN

Sliced Wasserstein. Sliced Wasserstein (SW) was introduced as a variant of the Wasserstein dis-
tance and has been further developed, resulting in important extensions such as generalized SW
(GSW) (Kolouri et al.| [2019) and augmented SW (ASW) (Chen et al.| 2022). SW leverages a key
property of the Wasserstein distance: it admits a closed-form solution when the data space is one-
dimensional. The closed-form expression for the Wasserstein distance between one-dimensional
distributions with measures p and v is given by

W, (1) = ( / B ) - F;1<p>) , @)
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where - 1(-) denotes the quantile function of the probability measure ;. The main idea of SW
is to exploit this closed-form by projecting higher-dimensional probability distributions onto one-
dimensional spaces using the Radon transform over a set of directions, defined as

RI(E,w) = / I(2)3(€ — (&, w))d, 22)

where the higher-dimensional space is projected onto a one-dimensional space with direction w €
SP—1, Specifically, SW is defined as

1/p
SW(p,v) = </ . Wg(RIM(-,w),RL,(.,w))dw> . (23)
wesP—1

This decomposition of the higher-dimensional space into a collection of one-dimensional spaces
makes SW much more computationally tractable than the original Wasserstein distance.

Variants of SW. [Kolouri et al.|(2019) introduced the generalized sliced Wasserstein (GSW) distance
by extending the standard Radon transform to the generalized Radon transform (GRT), defined as

GI(t.w) = / I(2)8(¢ — glz,w))d, (24)

where g is a defining function that satisfies certain conditions (H1-H4 in Kolouri et al.|(2019))). The
GRT includes the standard Radon transform as a special case. By replacing the Radon transform in
the definition of SW with the GRT, the GSW is formulated as

1/p
GSW,,(u,v) = (/ . Wg(g[u(-7w),glu(.7w))dw> ) (25)
wespP -1

This formulation is simple and enables a broad class of transformations for projecting data samples
onto one-dimensional spaces. Building on this generalization, proposed the aug-
mented sliced Wasserstein (ASW) distance. The ASW is also based on an extension of the Radon
transform, specifically the spatial Radon transform, which is defined as

SMI(E,w) = / I(2)3(€ — (w, h(z)))dz, (26)

where £ is any injective function. The ASW is then defined as

1/p
aswyu) = ([ WS 0. S s @)
wesSb-1

Although ASW is a valid distance for distributions, it, as well as SW and GSW, requires dense
sampling of w on the high-dimensional hypersphere for accurate approximation. To address this
computational complexity, the maximum sliced Wasserstein (max-SW) distance was proposed. For
example, max-ASW is defined by selecting a single direction that best distinguishes the target prob-
ability distributions in the projected one-dimensional space, rather than integrating over all possible
directions:

max—ASWZ(,u,y): max W,(S8"I,(-,w),S8"I,(-,w)). (28)

wesSP -1
ASW is guaranteed to be a distance as long as the function h is injective.

SAN. [Takida et al.|(2024) formulated SANs by modifying the discriminator optimization in both
the architecture and objective function. The core idea is to design the discriminator to approximately
evaluate the max-ASW with only minor modifications. To bridge the gap between GAN optimiza-
tion and max-ASW evaluation, they propose imposing three key conditions on the discriminator
f(x) = {(w, h(x)): (i) direction optimality for w, (ii) injectivity for h, and (iii) separability for h.
Direction optimality is motivated by the selection of a single direction w in Equation (28)), while in-
jectivity is necessary to ensure that the discriminator defines a valid distance. A detailed explanation
of the third condition, separability, is provided in Appendix [E-1]
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B.3 BRADLEY-TERRY FRAMEWORK

The Bradley-Terry framework (Bradley & Terryl [1952) provides a general method for assigning
scores to a set of items based on pairwise comparisons. Since its introduction, it has been widely ap-
plied to various machine learning problems, particularly in reward modeling using human preference
annotations.

The core idea is to model the log-odds that item z,, is preferred over x; as the difference between

their scores. Specifically, the preference scoring function, denoted as f. is learned to represent the
log-odds difference between items x,, and x; as follows:

Pr(x,, is preferred over z¢|y) = o (f (2w, y) — f(xe,y)). (29)

Hereafter, we refer to z,, and xy as the winning and losing samples, following the convention in

reinforcement learning from human feedback (RLHF). The function f is learned by maximizing the
following objective:

Ver = Eu, 2, llog o (F(s) — F(20))], G0
When preferences are conditioned on additional information y, the objective becomes
VT = Exw@by[bgo(f(xw? y) - f(xl’ y))]’ D

which is equivalent to Equation (8).

In our setup, we use the discriminator f as the scoring function. In typical problem setups, a dataset
of paired samples with preference labels is available. However, in our case, such a dataset is not
provided in the required format. Instead, we construct pairs of winning and losing samples in two
distinct ways under reasonable assumptions. First, we assume that a sample randomly selected
from the dataset is always preferred over a generated sample. Under this assumption, the joint
distribution of winning and losing samples is defined as p(x., z¢,y) = pa(y)pa(@w|y)py(zely),
resulting in Vp1.c. Second, we assume that a sample from a subset of the dataset associated with a
given condition is always preferred over a data sample selected without regard to the condition. In
this case, the joint distribution is represented as p(, ¢, y) = pa(y)pa(Tw|y)pa(xe), resulting in
VBT-m-
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C ALGORITHM

Please refer to Algorithm [I]for the pseudo code describing GAN training with SONA. Note that, in
the application to GALIP (Section [6.2)), we use frozen CLIP text embeddings to model w,, which
does not involve the optimization of w in Algorithm [T

Algorithm 1 GAN Training with SONA

Input: Data distribution pg,,; latent distribution pz; generator parameters ; discriminator
parameters ® = (w,w,,), where 1) models h as hy; parameters for learnable weighting
(8saN, 3BT.c, 5BT-M); batch size N; learning rates (1, 1), N, » 1y 15 ); total iterations T°; update
ratio [.
fort=1,2,...,T do
fori=1,2,...,1do
Obtain weight coefficient sets by
(SsANs SBT-c, SBT-w) = Normalize o Softplus(8san, 5BT-c, SBT-m)
Sample minibatch {(Zqata,n; Yn) fne[n] fTOM Phaa
Sample latent variables {z;, },e[n from pz
Generate synthetic samples Zgen n, = go(2n, Yn) for n € [N]
Create negative samples Tneg n, = Tdata,x(n) USing a random permutation 7
Compute VsaN, VeT-c, and Very With {(Zdata,n, Tneg,n» Tgen,ns Yn) fne[N]
Update w < w + 1,V (Vsan + Va1-c + VBTM)
Update 1 < v + 1y, Vo (Vsan + Verc + Vem)
Update 5 <= 5 4 1, Vs(Vsan + Verc + VBTM)
Update Wy = Wy + Nw, wa (VBT—C + VBT»M)
end for
Sample minibatch {(Zgata,n; Yn) }ne[n) frOM paaa
Sample latent variables {zy, }nen from pz(2)
Generate synthetic samples xgenm, = go(2n,yn) forn € [N]
Compute Jsan and Jr.c With {(Zagata,ns Zgen,ns Yn) Fne[n]
Update 0 < 0 — noVo(Tsan + Verc)
end for

D ANALYSIS OF EXISTING APPROACHES

D.1 ProprosITION[]

We introduce the following lemma, which is taken from the proof of Zhang et al.| (2023, Proposi-
tion 1).

Lemma 5. The function f maximizes Vcr lff(:c, y) = log pa(z|y)+rx (x) for an arbitrary function
rxy : X — R

PropOSItlonI (Log conditional probability maximizes VCE) Assume pd(y) is a constant regardless

ofy € Y, e.g., a uniform distribution. The function f maximizes Vcg lff( y) = logpa(ylx) +
rx (x) for an arbitrary functionrx : X — R.

Proof. By Lemma the maximizer f can be written as

f(z,y) = logpa(zly) + 'y (2), (32)

where 7’y : X — R is an arbitrary function. By Bayes’ theorem, we have

log pa(|y) = log pa(yl|z) + log pa(x) — log pa(y) (33)

= log pa(ylz) —log pa(z) + C, (34)

where C' denotes the constant log pg(y), since pq(y) is assumed to be constant. Substituting Equa-
tion (34) into Equation completes the proof. O
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E ANALYSIS OF SONA

E.1 FORMAL STATEMENT OF PROPOSITION[2]

We formally state Proposition [2]in this section.

First, we introduce two key assumptions required for this proposition. To do so, we present the
concept of separability from [Takida et al.| (2024), which is used to formulate assumptions on the
function A in the discriminator. This property is important for ensuring that the discriminator induces
a meaningful distance between target distributions.

The definition of separability relies on the spatial Radon Transform (Chen et al.| 2022, SRT), defined
as follows:

Definition 1. (Spatial Radon Transform) Given a measurable injective function 4 : X — R” and a
function U : X — R, the spatial Radon transform of U is

S"U(w) = [ U@ - w,hia))da, G5)
X
where ¢ € R and w € SP~! parameterize the hypersurfaces {x € X | (w, h(x)) = &£}.

The SRT generalizes the Radon Transform using an injective function. If U is a probability density,
the SRT corresponds to applying the standard Radon transform to the pushforward of U by h. In
this case, intuitively, the SRT projects h(z) onto a scalar along direction w with the probability. One
of its crucial properties is that, for two probability densities p and ¢, if S"p(¢,w) = Shq(&,w) is
satisfied for all £ € R and w € SP~!, then p = ¢ holds due to the injectivity of h. Thus, an injective
h preserves information about the equality of target distributions. This leads to our first assumption:

Assumption A. We assume that h : X — RP is injective.

Using the SRT, we define separability as follows:

Definition 2. (Separable) Given probability densities p and g on X, and h : X — R, let
w € SP71, and let F»*(-) denote the cumulative distribution function of S"p(-,w). If w* =
argmax,, E, ) [(w, h(2))] = Eqz) [(w, h(x))] satisfies F»<" (€) < Fh" (¢) forall £ € R, then h
is separable for p and q.

Intuitively, separability ensures that the optimal transport map in the one-dimensional space induced
by the SRT from S"p(-,w*) to S"q(-,w*) is aligned in the same direction for all samples. This sug-
gests that h can bring p and ¢ closer, at least along the optimal direction w*, which also maximizes
Vsan(w, h) for a given h. Thus, we make our second assumption:

Assumption B. We assume that h : X — RP is separable for py(z) and py(x).

With these assumptions, we can now formally state Proposition 2]

Proposition 2 (Formal; Unconditional discrimination by Vsan). Let the discriminator be f(x) =
(w, h(z)) withw € RP~Yand h : X — RP. Suppose Assumptions@and@hold, and let & =
arg max,, Vsan(w, h) for a given h. Then, the objective Jsan(g; @, h) is minimized if and only if g
minimizes the following functional mean divergence between pq(x) and py(x), given by

FM* (pa; pg) = [|Epy(a) [1(2)] = Ep, ) [(2)]]] (36)
which is a valid distance under these assumptions.

The proof of Proposition [2]is provided in[Takida et al.|(2024).

E.2 PROPOSITION[3]

We introduce a lemma, which is a restatement of a portion of claims made in Theorem 3.1 of
Jolicoeur-Martineau| (2020).

Lemma 6. Let v : R — R be a concave function such that v(0) = C, v is differentiable at 0,
v'(0) # 0, sup,(v(t)) > 0, and argsup,(v(t)) > 0. Let p and q be probability distributions with
support X. Then, sup; Ep, ) [v(f(x) — f(2'))] is a divergence, up to C.
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Proposition [3| (Conditional learning by Vgr.c). Let the discriminator be f(z,y) = fN(z) +
fA(z,y), where fN(z) = (w,h(z)) withw € SP™L, h: X - RP,be R and fA: X xY = R
Assume that the generator achieves p,(x) = pq(x), and w and h maximize Vsan for given pq and
pg- If f maximizes Equation , then it is minimized if and only if pa(z|y) = pg(x|y) fory € Y.

LT-c = Epy(y)pa(zalp)py (wely) 108 0 ([N (@) + fA(@w, y) — N (@0) — fA(@e,y)))-

Proof. Given p,(x) = pqy(x) and the optimality of fN for the specified p, and py, it follows that
fN(z) = Cforall z € X, where C € R is a constant. Substituting this into Equation @, we obtain:

Latc(wy: ) = Epymtes iny ey 1080 ((C + £ @) = (C + f(@r1))]

= Epd(y)Pd(wwly)pg(we\y) {loga(fA(xw, y) — fA(afév y))} . (37

Since log o () satisfies the conditions of Lemma@, applying this lemma to Vgr.c and Vg.c estab-
lishes the claim.

Note on the assumption of distribution

matching. In Proposition 3] we assume

pg(x) = pa(x) for theoretical develop- — 10°7 § 0.7
ment, which we acknowledge is a rather | ¥ T eeeseesses " tos
strong conditiqn. We empirically .v.erify - esesresaerrseyaet 053
that the effectiveness of the conditional A o o —— FID- SONA 043
alignment term in SONA does not de- & et et R
pend on this assumption being satisfied in ) —— Topr-sona [033
practice. To demonstrate this, we plot the “:l:;;‘u__ T oo 02"
FID score and Top-1 accuracy with respect 10t SNBSSy, 5¥s89ses [ 0.1
to training steps for ImageNet (batch size 00
2048) in Section @ This figure shows 0 5 S0 75 100 135 150 15 200

that conditional alignment improves from Training step / 103

the beginning, even when there is still

a deviation between py(x) and pg(z) in o )
terms of FID, as observed in ReACGAN Figure B: FID (J, an indicator of generation perfor-
and PD-GAN. mance) and Top-1 accuracy (7, an indicator of condi-

tional alignment) as a function of training iteration.

E.3 PROPOSITION]

We introduce a lemma (presented in the

proof of (2025 Lemma 1) in the discrete case), which will come in handy for the proof of
Proposition 4|

Lemma 7. Consider minimizing Viypnce over all possible functions f:XxY SR

_ep(f(.y) | )
exp(f, ) + exp(F( 1))

meoNCE(f) = Epy(z,y)pa(a) |108

VinfoNcE 1S maximized lff(ac, y) = log pa(y|x) + ry (y) for an arbitrary functionry : Y — R.

Proof. This proof is essentially a modification of the proof of (2025 Lemma 1) to our
case. Let gz 4,y and q‘{o’mhy be probability mass functions over {0, 1} given by

q (0) = pa(wo, y)pa(z1) _ pa(ylwo)
Loy pa(z0, ¥)pa(z1) + pa(w1,y)pa(®o)  pa(ylzo) + palyle:)
and
qg]j . y( ): eXp(f(l‘o, ))

exp(f(zo,y)) + exp(f(z1,y))
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Then, we have

- 1 . ~
VInfoNCE(f) = §(Epd(zo.,y)pd(1?1) [IOg ino,zl,y(o)] + Em(zl,y)m(ﬂﬂo) [IOg qgmwl,y(l)])

= E%(pd(:vo,y)pa(wl)%—pa(wl7y)pd(afu)) [920,21,4(0) log qajcco,xuy(o) + Gag,21,y(1) log qo{o,xhy(l)]

= ]E%(pd(mmy)pd(xl)"rpd(l‘l73/)17(1(150)) [_H(qwo,l'l Y qio,xl,y)]?

where H (q, qf ) =Eq[—log qf ] is the cross entropy, which is minimized when qf~ = q. Since qf =q
holds when f(z,y) = log pa(y|z) + ry (y) for a function ry, we have proven the assertion. O

PropositionE(Log gap probability maximizes Vgt.\). The function f maximizes Vgr.y if f (z,y) =
log pa(z|y) — log pa(z) + ry (y) for an arbitrary functionry : Y — R.

Proof. The objective V1. is reformulated as

Vet () = Epypa(wn n)paan 108 0 (F (@, y) — Flae,y))] (39)

exp(f (zw, y))
Ty 1 (z 10g ~ ~ (40)
Pl I T exp(F(wwn v)) + exp(F(ae,y)
Equation (]@[) is now equivalent to Visonce. Therefore, the claim has been proven as a direct conse-
quence of Lemma 7]and Bayes’ theorem: log pa(y|z) = log pa(z|y) — log pa(z) + logpa(y). O

=E

Note that, from the proof of Lemma[7] we can also prove the “only if”” statement up to some pg-null
sets.

E.4 INSIGHT INTO ADAPTIVE WEIGHTING
We provide insight into the adaptivity of our proposed weighting scheme, which employs learnable
scalar parameters s, Sa1.c» and s3p.,, by simplifying the maximization objectives.

Recall that the maximization objectives Vsan, Ver.c, and Vgry can be expressed with logo
(LogSigmoid) in the following form:

Vis = Ep, ettty log o (fi(z) = fa(2"))] (41)
Specifically, Vpr.c is recovered by setting fi = fo = f, p = pa(-|y), and ¢ = Pg(-|y) in Equa-
tion , while Vp.y is obtained by setting f1 = fo = f, p = pa(‘|y), and ¢ = pq.

Recall also that we adopt Vorig-gan proposed in |Goodfellow et al| (2014) (see Equation @) in
Appendix to define Vsan, which is specifically formulated as:

Vsan = By [log (5, (2))] + Ep, () log o (— fg, ()] 42)
= Epy(@[log o({w, h(z)) = (=))] + Ep, (@) [log o(—=b — {w, h(x)))], 43)
where Vsan includes two terms involving logo(-), each recovered by setting (p, g, f1, fg) =
(pa, pa; (w, h), —b) and (p, q, f1, f2) = (pg,pg, —b, {w, hY) in Equation , respectively.
As proposed in Section[4.4] we replace log o (t) with log o(s - t) /s in Equation (1)), yielding:

1 - -
Vis.e = Epwptainativ L log o (s(fi(x) - fz(év’)))] (44)
For simplicity, we consider a single update step for s and a one-sample approximation of the expec-

tation (for Voris-gan, We stochastically compute either the first or second term in Equation @) per
iteration). This leads to:

Vis.o = - logo(s(fi (@) = R@), @s)
—
Af
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where z ~ p and 2’ ~ ¢. The derivative of f)Ls,s with respect to s is:

Mis,s 0 [1 .
_ 1 SAf B =
=3 (exp(sAf) " log J(SAf)) 47)

For 0 < s < 1 (from the constraint on s), this derivative 8)~/LS,S /Os has the following properties:

(P1) For fixed 0 < s < 1 and any A f.itis monotonically increasing with respect to A f.

(P2) For fixed A f > 0, it is monotonically decreasing with respect to s.

To illustrate these properties, consider the two-term case:
1 ~ 1 -
S—loga(slAfl) + S—logo’(SQAfg) (48)
1 2

In this setup, (P1) imp~lies that ~When 0 < s;1 = sy < 1, the coefficient corresponding to the
larger error between A f; and A f yields a larger gradient, meaning the larger error is prioritized by

increasing its coefficient. (P2) implies that when A f; = Afy > 0, the smaller of s; and s has a
larger gradient, leading to s; = s5 if this equality persists during optimization.

Kendall et al| (2018) proposed an adaptive weighting scheme that introduces a scalar parameter
to represent uncertainty. Although this method shares some similarities with ours, their method
balances multiple terms using (learnable) unbounded coefficients, which can diverge as training
progresses. This unbounded growth is undesirable in our case, as GAN training stability is generally
sensitive to the learning rate.

F EXPERIMENTAL DETAILS

F.1 MoG EXPERIMENTS IN SECTION[3.2]

We empirically evaluate our proposed method in a two-dimensional space X = R2. The target
mixture of Gaussians (MoG) in X consists of N isotropic Gaussian components, each with variance
0.03% and means evenly distributed on a circle of radius 0.75. The generator is modeled with a
10-dimensional latent space Z, where the base distribution p(z) is standard normal.

Both the generator and discriminator use simple fully connected (FC) architectures, following pre-
vious work (Mescheder et al., 2017; [Nagarajan & Kolter, 2017; Sinha et al., [2020; Takida et al.,
2024). Specifically, each network consists of three hidden FC layers with 50 units per layer. The
generator uses ReLU activations, while the discriminator uses Leaky ReLU, which facilitates the
discriminator’s injectivity (Takida et al.l [2024). The last linear layer in the discriminator corre-
sponds to w and w for SONA and PD-GAN, respectively. For class conditioning in the generator,
we use four-dimensional learnable class embeddings concatenated with the input noise z. For the
discriminator, we use additional class-dependent embeddings: w, for PD-GAN and w, for SONA.
In SONA, both the linear projection and the embeddings in the discriminator are normalized to
ensure w, wy, € S?07L.

For training, we use a batch size of 256 and the Adam optimizer (Kingma & Bal 2015) with
(B1,P2) = (0.0,0.9) and learning rates of 0.0001 for both the generator and discriminator. The
update ratio is set to 1, meaning the discriminator is updated once per iteration. Models are trained
for 15,000 iterations, and the checkpoint with the lowest W2 value is selected as the best model.

Wasserstein-2 distances for W2, cW2, and NF are computed using the POT toolboxE] (Flamary et al.|
20215 2024) with 10,000 samples per distribution.

Shttps://github.com/PythonOT/POT
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Figure 4: CIFAR10: (Left) Generated samples by SONA with BigGAN. (Right) Generated samples
by SONA with StyleGAN-2.

F.2 CLASS CONDITIONAL GENERATION TASKS IN SECTION[6.]]

F.2.1 EXPERIMENTAL SETUP

We base our experiments on the benchmarking repository provided by PyTorch-StudioGAN
2023a). For hyperparameters such as learning rate and batch size, we strictly follow the default
configuration provided for PD-GAN.

To ensure fair comparisons, we conduct all experiments ourselves and report the resulting scores in
the tables. All models are trained on CIFAR10 and TinyImageNet three times with different random
seeds; we report the mean and standard deviation of the scores in Tables[2]and[3] For ImageNet, due
to the high computational cost (each training run requires 8 and 40 H100-days for batch sizes of 256
and 2048, respectively), we report results from a single run.

For baselines, we select two representative classifier-based methods, ContraGAN and ACGAN, and
one projection-based method, PD-GAN. Since our primary objective is to compare SONA with
other state-of-the-art discriminator conditioning methods, we do not include additional data aug-
mentation (Karras et al.}[2020a} [Zhao et al.| 2020) or discriminator regularization techniques
et al.l [2020; [Zhao et al., 2021; [Tseng et al., [202T)), as these are orthogonal to our approach. To
demonstrate that our method can be combined with such techniques, we also compare SONA and
the baselines using the DiffAug data augmentation method 2020), and confirm that the
performance of SONA can be further improved, as shown in Table 3]

F.2.2 COMPUTATIONAL COMPLEXITY

Table 7: Training effici iterati in).
We report the computational efficiency of each able raining efficiency (iteration/min)

baseline in Table [/ PD-GAN achieves the -

. .. . . . Method CIFAR10 TinyIN ImageNet
h}ghest training efficiency Que to its simple de- ContaGAN 36036 1987 8070
sign. However, SONA attains comparable effi- ReACGAN ~ 322.15 10723  78.84
ciency to PD-GAN and outperforms other state- PD-GAN 44280 19576  101.91

X SONA 41095 169.13  90.16
of-the-art classifier-based methods.

F.3 TEXT-TO-IMAGE GENERATION TASKS IN SECTION[6.2]
F.3.1 EXPERIMENTAL SETUP

We base our experiments on the benchmarking repository provided by [Kang et al (20234d). For
hyperparameters such as learning rate and batch size, we strictly follow the default configuration.
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Figure 6: ImageNet: Generated samples by SONA trained with batch size of 2048.

F.3.2 CONVERTING GALIP DISCRIMINATOR WITH SONA

Discriminator architecture. We briefly review the discriminator architecture proposed by
(2023)), which serves as our base architecture. The GALIP discriminator consists of a frozen
CLIP-ViT and a learnable module called Mate-D. Mate-D is designed to effectively utilize deep fea-
tures extracted from both images and text using CLIP. Specifically, Mate-D comprises a CLIP Fea-
ture Extractor (CLIP-FE) and a quality assessor (QA). The CLIP-FE aggregates multi-layer features
from CLIP-ViT using a sequence of extraction blocks, each containing convolutional and ReLU
layers, to progressively refine visual representations. The final extracted features are concatenated
with replicated sentence vectors obtained by feeding text prompts (y) into the CLIP text encoder.
These concatenated features are then evaluated by the QA, which predicts conditional likelihood
using additional shallow convolutional layers to assess image quality. The dimensionality of the
final extracted features, corresponding to h(z) in our formulation, and the sentence vector, denoted
as e(y), are 512 and 512 x 7 x 7, respectively. The QA converts e(y) € R%12 to E(y) € R312X7x7
by replicating the 512-dimensional vector 49 times to enable concatenation.

Applying SONA to this discriminator requires only modifications to the QA. We add a single train-
able 512 x 7 x 7-dimensional parameter to model w. For w,, we directly use the extended text
embeddings E(y). Notably, even though w, is frozen in this setup, SONA achieves improved
generation performance and comparable text alignment. We also experimented with modeling w,
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this bird has agray  a small, mostly the bird has a this is a medium this small brown a small bird with a a bird with narrow this bird has a
almost reflective bright yellow bird striped back thatis  sized bird covered bird has a grey longer black features, athinand  speckled belly and
back and wings with a grey head grey, white breast with a mixture of belly, with a brown straight bill, a light long beak, yellow breast with a short
with a white belly and black and and black crown. grey, tan and white  stripe near its eye. grey under belly, under belly, a black  pointy bill.
and intelligent eyes.  white striped wings. feathers, black legs and dark grey wing  spot on the breast,

and black at the tip and tail feathers. and gray mottling

of its beak on the top of the

body.

Figure 7: CUB: Generated samples by SONA.

A giraffe walking Abeach with a man riding a two people in Two people walking A train station with A white plate The teddy bear

around in the yard people relaxing on skateboard downa  costume pose fora  on asnow covered  people walking topped with looks like it is going

near a fence. it near some sidewalk next to a photo slope holding around and a train bananas and to drink the beer.
buildings. rail. stopped. pancakes.

Figure 8: COCO: Generated samples by SONA.

using learnable modules, such as a learnable affine layer or a shallow FC network applied to e(y) to
produce a 512 x 7 x 7-dimensional feature. However, these approaches degraded performance, par-
ticularly in text alignment. We suspect that applying such learnable operators to CLIP features may
cause information loss and prevent full utilization of the pre-trained representations without careful
design. Designing suitable modules for w, based on CLIP features remains an open direction for
future work.

Training objective. GALIP incorporates additional objective terms and techniques into both the
discriminator and generator losses to enhance text alignment.

For the discriminator, the fake distribution (i.e., the generator distribution in standard GANS) is aug-
mented with a mixture distribution that combines the generator distribution and a mismatched data
distribution, formed by incorrect image-text pairs in equal proportion. To further stabilize adver-
sarial training, a matching-aware gradient penalty (MAGP) is applied to both the extracted CLIP
features and their corresponding text features. For the generator, a CLIP-based cosine similarity
loss is added to encourage both image quality and text alignment. The overall objective functions
are given by

Voarp(f) = Ep,(zy,y) min(0, =1 + f(zq,))] + l]Epg(a;g)[lfnilﬂ(@, —1— f(zg,y))] (49)

2
1 .

4 3B [0, 1 — f(z,9)] + MMAGP (50)

TaaLip(9) = —Ep, 2y 1)) [ (29, )] = AoEop, @, [y)pa(w) [Scrip (24, )], 1)

where Scrp denotes the CLIP-based cosine similarity.

For a fair comparison, we partially follow the original loss by adding MAGP to the discriminator loss
and including the same CLIP-based similarity loss in the generator objective. For the remaining loss
terms, SONA provides direct counterparts, which replace the original objectives. We use exactly
the same values of A\; and \,.

G GENERATED SAMPLES
Generated samples by SONA trained in Section [f]can be found in Figures [ to[0]
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Asmiling statue to A beautiful home A picture of a Agirl riding a An abandoned An old solitary A city street
be found in the with a large yard. person and a dog bicycle on the coast. submerged city in Japanese temple, covered in a light
Pavilion. playing in the park. the future, unreal autumn leaves, film of snow.

engine. Japanese painting.

Figure 9: GALIP models trained on CC12M: (Top) Generated samples by GALIP (concat). (Bot-
tom) Generated samples by GALIP with SONA. Text prompts are from the COCO dataset.

H LIMITATIONS AND FUTURE WORKS

Method. Our method is, in principle, applicable to a wide range of conditional generation tasks.
However, efficiently modeling conditional projections wy, is still challenging when Y is not a finite
discrete set (e.g., when Y consists of plausible text captions or is continuous). In our text-to-image
experiments (Section [6.2)), we use frozen embeddings from a pre-trained CLIP encoder, which may
limit the discriminator’s representational power for conditional alignment. Developing effective
approaches for modeling conditional projections that generalize to arbitrary types of Y remains an
open problem.

Theoretical Analysis. In Proposition [3] we assume the discriminator is globally optimal. While
this assumption is common in the literature (Goodfellow et all, 2014} Johnson & Zhang], 2019}, [Gao|
et all}, 2019} [Fan et al, 2022} [Li et al, 2018} |Chu et al.l [2020), it rarely holds in practical GAN
optimization. Extending the theoretical analysis to more relaxed and realistic conditions on the
discriminator is an important direction for future work.

Experiments. We evaluated our approach on standard benchmarks with images up to 256 x256
resolution, addressing both class- and text-conditional generation tasks. Expanding to a wider range
of conditioning modalities (e.g., segmentation maps, image style) and larger-scale settings (e.g.,
512x512 or higher, progressive learning setups (Sauer et al., [2022))), as well as extending beyond
image generation to domains such as video and audio generation, are important directions for future
research.

Future Works beyond GANs. Our scope is discriminators, which are beneficial general genera-
tive models beyond GANSs, including diffusion models. One of the most active areas in this line is
diffusion distillation into one-step or few-step generative models. Adversarial Diffusion Distillation
ADD) is a pioneering paper of this direction, in which adversarial loss based on
a discriminator is used altogether with the usual distillation loss, enhancing the distillation perfor-
mance significantly. ADD is a backbone framework used for training SDXL Turbo, a well-known
high-quality text-to-image model. Besides ADD, some work also employs adversarial training to
enable the generation of high-quality samples with one step (Kang et al, 2024} [Lin et all, 2025}
Chen et al} 2025a). According to this literature, improving discriminators can potentially lead to
improved diffusion-based generative models. While it is an interesting trial to apply SONA to such
distillation methods, it represents a substantial topic for future investigation.
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