

# 000 001 002 003 004 005 SONA: LEARNING CONDITIONAL, UNCONDITIONAL, 006 AND MATCHING-AWARE DISCRIMINATOR 007 008 009

010 **Anonymous authors**  
011 Paper under double-blind review  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026

## ABSTRACT

027 Deep generative models have made significant advances in generating complex  
028 content, yet conditional generation remains a fundamental challenge. Existing  
029 conditional generative adversarial networks often struggle to balance the dual  
030 objectives of assessing authenticity and conditional alignment of input samples  
031 within their conditional discriminators. To address this, we propose a novel  
032 discriminator design that integrates three key capabilities: unconditional discrimi-  
033 nation, matching-aware supervision to enhance alignment sensitivity, and adaptive  
034 weighting to dynamically balance all objectives. Specifically, we introduce  
035 Sum of Naturalness and Alignment (SONA), which employs separate projections  
036 for naturalness (authenticity) and alignment in the final layer with an inductive  
037 bias, supported by dedicated objective functions and an adaptive weighting mech-  
038 anism. Extensive experiments on class-conditional generation tasks show that  
039 SONA achieves superior sample quality and conditional alignment compared to  
040 state-of-the-art methods. Furthermore, we demonstrate its effectiveness in text-to-  
041 image generation, confirming the versatility and robustness of our approach.  
042  
043

## 1 INTRODUCTION

044 Deep generative modeling has achieved remarkable progress in synthesizing images (Podell et al.,  
045 2024; Esser et al., 2024), audio (Novack et al., 2024; 2025), and video (Yang et al., 2025; Polyak  
046 et al., 2024; Kong et al., 2024; Wan et al., 2025). Nevertheless, generating high-quality samples that  
047 are well-aligned with conditional information, such as class labels or text prompts, remains a central  
048 challenge (Ho & Salimans, 2021; Dhariwal & Nichol, 2021; Liu et al., 2023; Zhang et al., 2024).  
049

050 Generative adversarial networks (GANs) (Goodfellow et al., 2014) have been instrumental in advanc-  
051 ing conditional generation, with much of the research focusing on the design of conditional dis-  
052 criminator (Kang et al., 2023a). The task of the conditional discriminator is typically decomposed  
053 into two sub-problems: distinguishing real from generated samples (unconditional discrimination)  
054 and assessing conditional alignment. This decomposition can be naturally motivated by the likeli-  
055 hood factorization of the joint distribution,  $p(x, y) = p(y|x)p(x)$ , where  $x$  is a data sample and  $y$  is  
056 a conditioning variable.  
057

058 Two main approaches have emerged based on this factorization. The **classifier-based** approach, pio-  
059 neered by AC-GAN (Odena et al., 2017), uses a dual-head discriminator to simultaneously evaluate  
060 sample authenticity and label alignment (Gong et al., 2019; Hou et al., 2022; Kang et al., 2021). The  
061 **projection-based** approach, introduced by Miyato & Koyama (2018), models the discriminator as a  
062 sum of unconditional discrimination and alignment terms, eliminating the need for auxiliary clas-  
063 sifiers and thereby simplifying the architecture. This simple yet effective design has been widely  
064 adopted in modern conditional GANs as the de facto standard without major modifications (Brock  
065 et al., 2019; Karras et al., 2019; 2020b; 2021; Sauer et al., 2022; 2023; Huang et al., 2024).  
066

067 Despite these advances, conditional discriminators still face the fundamental challenge of balancing  
068 the dual objectives of unconditional discrimination and conditional alignment (Reed et al., 2016;  
069 Hou et al., 2022). Classifier-based methods require careful tuning of weighting coefficients to  
070 achieve this balance (Kang et al., 2021). We also suspect that projection-based methods may not  
071 fully exploit the likelihood decomposition for the unconditional discrimination task, as discussed in  
072 Section 3.  
073

054  
055  
056  
057  
058  
059  
060  
Table 1: Three desiderata for our proposed method, SONA.

| Capabilities     | Conditional discrimination | (i) Unconditional disc.<br>(Section 3.1) | (ii) Matching-aware disc.<br>(Section 3.2) | (iii) Adaptive weighting<br>(Section 3.3) |
|------------------|----------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|
| Classifier-based | ✓                          | ✓                                        | ✓                                          |                                           |
| Projection-based | ✓                          | *                                        |                                            | N/A                                       |
| SONA (ours)      | ✓                          | ✓<br>(Section 4.2)                       | ✓<br>(Section 4.3)                         | ✓<br>(Section 4.4)                        |

061 To address this issue, we aim at a discriminator design that incorporates three capabilities, as summarized in Table 1. First, we introduce *(i) unconditional discrimination* to robustly distinguish real  
062 from fake samples, independent of the condition. Second, we enhance the discriminator’s sensitivity  
063 to conditional alignment by providing additional supervision through mismatched (negative) sam-  
064 ples, resulting in a *(ii) matching-aware discriminator* (Reed et al., 2016; Zhang et al., 2017; Tao  
065 et al., 2023; Kang et al., 2023b). Third, we employ an *(iii) adaptive weighting* mechanism to dy-  
066 namically balance the objectives of conditional, unconditional, and matching-aware discrimination.  
067

068 Specifically, we introduce Sum of Naturalness and Alignment (SONA), a novel method that sim-  
069 taneously fulfills all the capabilities listed in Table 1, as detailed in Section 4. Our discriminator is  
070 designed with separate projections to independently assess input naturalness (authenticity) and con-  
071 ditional alignment, while incorporating an effective inductive bias to support both tasks efficiently.  
072 To fully leverage this architecture, we propose a set of objective functions for training conditional,  
073 unconditional, and matching-aware discrimination, and validate their effectiveness both theoretically  
074 and empirically in Section 5. Additionally, we introduce a simple yet effective adaptive weighting  
075 mechanism for these three discrimination tasks, enabled by our carefully designed loss functions. In  
076 Section 6, we evaluate SONA on image datasets with class labels, demonstrating that it generates  
077 higher-quality samples with better conditional alignment than state-of-the-art (SoTA) discriminator  
078 conditioning methods. We further extend our experiments to text-to-image generation, showing the  
079 applicability of SONA to more complex conditioning scenarios.

## 080 2 PRELIMINARIES

082 Let  $p_d(x, y)$  represent the data distribution, where  $x \in X$  is a data sample and  $y \in Y$  is the  
083 conditional information describing the corresponding  $x$  (e.g., a class label or text prompt). Our  
084 objective is to learn the conditional distribution from a finite set of samples drawn from it. For  
085 this purpose, a trainable generator is introduced, denoted as  $g$ , inducing the generator distribution,  
086 denoted as  $p_g(x|y)$ . In one of the standard GAN setups, the generator is parameterized as a function  
087 that transforms a tractable noise (e.g., a Gaussian noise) to a data sample as  $g_\theta : Z \times Y \rightarrow X$ , where  
088  $\theta$  indicates a set of parameters modeling the generator and  $z \in Z$  is the noise; thus a sample drawn  
089 from  $p_g(\cdot|y)$  is obtained by  $x_g = g_\theta(z, y)$  with a noise drawn from a base distribution:  $z \sim p_Z$ .  
090 Hereafter, we use  $\mathcal{V}$  and  $\mathcal{J}$  to denote maximization and minimization objectives, respectively.

### 091 2.1 GENERATIVE ADVERSARIAL NETWORKS

093 We review the formulation of GANs and introduce the sliced Wasserstein perspective to present the  
094 concept of optimal projection for unconditional discrimination. The problem setup described above  
095 includes unconditional generation tasks by setting  $y$  to null conditioning. In this subsection, we omit  
096  $y$  from the formulations for simplicity.

097 **GANs.** In GANs, a discriminator, denoted as  $f : X \rightarrow \mathbb{R}$ , is introduced, which is expected to  
098 discriminate between the samples drawn from the data and generator distributions with its scalar  
099 outputs. GAN formulates the optimization problem to make the generator distribution closer to the  
100 data distribution by solving a minimax problem:

$$102 \quad \max_f \mathcal{V}_{\text{GAN}}(f; g), \quad \text{and} \quad \min_g \mathcal{J}_{\text{GAN}}(g; f). \quad (1)$$

103 Here, the variables following the semicolons are held fixed during each optimization step, and we  
104 will omit such variables when the context is clear. The specific forms of  $\mathcal{V}_{\text{GAN}}$  and  $\mathcal{J}_{\text{GAN}}$  depend on  
105 the chosen GAN variant or loss (see Appendix B.1 for more details).

107 **Sliced Wasserstein perspective on GANs.** Typical discriminators can be represented as  $f(x) =$   
108  $\langle \omega, h(x) \rangle$ , where  $h : X \rightarrow \mathbb{R}^D$ ,  $\omega \in \mathbb{S}^{D-1}$ , and  $\langle \cdot, \cdot \rangle$  denotes the Euclidean inner product. Takida

108 et al. (2024) interpreted this formulation as an augmented Sliced Wasserstein approach (Kolouri  
 109 et al., 2019; Chen et al., 2022) with a single direction ( $\omega$ ). Building on this interpretation, they pro-  
 110 pose encouraging optimality in the sliced Wasserstein sense on the normalized projection, resulting  
 111 in slicing adversarial networks (SANs):  $\max_{\omega, h} \mathcal{V}_{\text{SAN}}(\omega, h)$  and  $\min_g \mathcal{J}_{\text{SAN}}(g)$ , where

$$\mathcal{V}_{\text{SAN}}(\omega, h) = \mathbb{E}_{p_d(x)}[\langle \omega, \text{sg}(h)(x) \rangle] - \mathbb{E}_{p_g(x)}[\langle \omega, \text{sg}(h)(x) \rangle] + \mathcal{V}_{\text{GAN}}(\langle \text{sg}(\omega), h \rangle), \quad (2)$$

$$\mathcal{J}_{\text{SAN}}(g) = -\mathbb{E}_{p_g(x)}[\langle \omega, h(x) \rangle], \quad (3)$$

115 where  $\text{sg}(\cdot)$  denotes the stop-gradient operator<sup>1</sup>. The first two terms in  $\mathcal{V}_{\text{SAN}}$  encourage the direc-  
 116 tion  $\omega$  to maximize the sliced Wasserstein distance given by  $h$ . Intuitively, the learned direction is  
 117 expected to optimally distinguish real and generated samples in the feature space defined by  $h$ . See  
 118 [Appendix B.2 for a more detailed explanation of the aforementioned perspective](#).

## 120 2.2 CONDITIONAL GANs

122 Most conditional GANs employ either classifier-based or projection-based approaches. To illustrate  
 123 the core concepts, we briefly review AC-GAN as a representative classifier-based approach, as well  
 124 as the projection-based approach. A detailed review of related work is provided in Appendix A.

125 In conditional generation settings, the discriminator is modeled as  $f : X \times Y \rightarrow \mathbb{R}$ , enabling it  
 126 to distinguish between the two conditional distributions,  $p_d(x|y)$  and  $p_g(x|y)$ . For simplicity, we  
 127 assume  $Y$  is a discrete space in this subsection.

128 **Classifier-based approach.** Odena et al. (2017) introduced AC-GAN, which combines the  
 129 original GAN losses (i.e.,  $\mathcal{V}_{\text{GAN}}$  and  $\mathcal{J}_{\text{GAN}}$ ) with cross-entropy classification losses:  $\mathcal{V}_{\text{CLS}} =$   
 130  $\mathbb{E}_{p_d(x,y)}[\log C(x,y)]$  and  $\mathcal{J}_{\text{CLS}} = -\mathbb{E}_{p_g(x,y)}[\log C(x,y)]$  to optimize the discriminator and genera-  
 131 tor. The auxiliary classifier is typically defined as  $C(x,y) = \text{softmax}_y(\{\tilde{f}_{\text{cls}}(x,y)\}_{y \in Y}/\tau)$ , where  
 132  $\tilde{f}_{\text{cls}} : X \times Y \rightarrow \mathbb{R}$  and  $\tau \in \mathbb{R}_{>0}$  is a temperature. Notably, under this setup, the maximization loss  
 133  $\mathcal{V}_{\text{CLS}}$  is equivalent to the InfoNCE loss (Oord et al., 2018):

$$\mathcal{V}_{\text{CE}}(\tilde{f}_{\text{cls}}) = \mathbb{E}_{p_d(x,y)} \left[ \log \frac{\exp(\tilde{f}_{\text{cls}}(x,y)/\tau)}{\mathbb{E}_{p_d(y')} \exp(\tilde{f}_{\text{cls}}(x,y')/\tau)} \right]. \quad (4)$$

138 To enable the discriminator to predict class labels,  $\tilde{f}_{\text{cls}}(x,y)$  is further parameterized using the dis-  
 139 criminator’s deep feature and additional learnable embeddings  $w_y \in \mathbb{R}^D$  as  $\tilde{f}_{\text{cls}}(x,y) = \langle w_y, h(x) \rangle$ .

140 **Projection-based approach.** Miyato & Koyama (2018) proposed a simple yet effective discrim-  
 141 inator design. Based on the Bayes-rule-based log-likelihood-ratio factorization, they implement  
 142 the discriminator as a sum of conditional and unconditional terms:  $f(x,y) = f_1(x,y) + f_2(x) =$   
 143  $\langle w_y, h(x) \rangle + \psi(h(x))$ , where, by abuse of notation,  $w_y$  denotes the embedding of  $y$ , and  $\psi$  is a learn-  
 144 able function. For efficient optimization, the intermediate feature  $h(x)$  is shared between  $f_1(x,y)$   
 145 and  $f_2(x)$ . In practice,  $\psi$  is usually parameterized as a linear layer, reducing the discriminator to

$$f(x,y) = \langle w_y, h(x) \rangle + \langle w, h(x) \rangle + b, \quad (5)$$

147 where  $b \in \mathbb{R}$  is a learnable bias. This approach does not require any modifications other than the  
 148 projection discriminator, such as optimization schemes or objectives. It is widely used in its original  
 149 form, and we hereafter refer to the broad class of GANs based on this approach simply as PD-GANs.

## 151 3 MOTIVATION: KEY CAPABILITIES OF CONDITIONAL DISCRIMINATOR

154 In this section, we raise the desirable capabilities for our discriminator, and discuss whether the ex-  
 155 isting classifier- and projection-based approaches satisfy these criteria (see Table 1 for a summary).

### 157 3.1 UNCONDITIONAL DISCRIMINATION

158 We argue that unconditional discriminator learning is essential even in conditional generation tasks,  
 159 as existing approaches decompose the role of the conditional discriminator into unconditional dis-

161 <sup>1</sup>For any function  $U : X \rightarrow \mathbb{R}$ ,  $\mathbb{E}_{p_g(x)}[U(x)]$  is equivalent to  $\mathbb{E}_{p_Z(z)}[U(g(y,z))]$ , and is therefore differ-  
 162 entiable with respect to  $g$ . We adopt the former notation for simplicity throughout this manuscript.

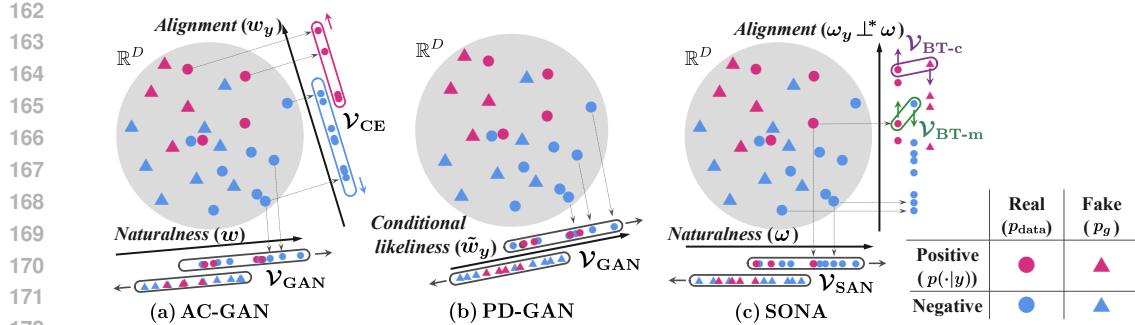


Figure 1: Comparison of SONA with existing classifier- and projection-based methods for discriminator optimization. Our approach enables independent assessment of sample naturalness and alignment, supported by the proposed inductive bias (Section 4.1) and objectives (Sections 4.2 and 4.3).

crimination and evaluation of conditional alignment. Classifier-based discriminators inherently support unconditional discrimination by explicitly employing the unconditional GAN loss (see Section 2.2). In contrast, projection-based discriminators, when used with standard GAN losses, may not provide this capability, as discussed below.

Projection-based discriminators are equipped with both unconditional and conditional projections, as shown in Equation (5), and are thus inherently capable of modeling unconditional discrimination. However, since Equation (5) can be rewritten as  $\langle \tilde{w}_y, h(x) \rangle + b$  with  $\tilde{w}_y = w_y + w \in \mathbb{R}^D$ , the generator is optimized by  $\min_g \mathcal{J}_{\text{GAN}}(g; \langle \tilde{w}_y, h(x) \rangle + b)$ , essentially with a  $y$ -dependent projection  $\tilde{w}_y$ . This suggests that, even with this parameterization, the objective functions typically used in PD-GANs may not fully leverage unconditional discrimination.

### 3.2 MATCHING-AWARE DISCRIMINATION

We next highlight the importance of enhancing the discriminator’s sensitivity to conditional alignment by incorporating negative samples, following the approach of Reed et al. (2016). Specifically, to encourage conditional alignment, they proposed using negative samples that are realistic but associated with incorrect class labels, thereby mismatching the conditional information.

As shown in Equation (4), AC-GAN can be interpreted as implicitly utilizing such negative samples drawn from the product of marginals, i.e.,  $(x, y') \sim p_d(x)p_d(y')$ , in its cross-entropy loss, in addition to samples from the true joint distribution  $p_d(x, y)$ . This advantage is formalized in Proposition 1, which implies that the cross-entropy loss induces the discriminator feature to be  $y$ -extractable, sensitive to conditional alignment, under the assumption that  $p_d(y)$  is uniform. This proposition imposes the uniform assumption on  $p_d(y)$ , which holds for well-constructed image datasets (Krizhevsky et al., 2009; Russakovsky et al., 2015), where each class contains the same number of samples.

**Proposition 1** (Log conditional probability maximizes  $\mathcal{V}_{\text{CE}}$ ). *Assume  $p_d(y)$  is a constant regardless of  $y \in Y$ , e.g., a uniform distribution. The function  $\tilde{f}$  maximizes  $\mathcal{V}_{\text{CE}}$  if  $\tilde{f}(x, y) = \log p_d(y|x) + r_X(x)$  for an arbitrary function  $r_X : X \rightarrow \mathbb{R}$ .*

While classifier-based approaches (including but not limited to AC-GAN) employ classification losses similar or analogous to InfoNCE, projection-based GANs do not incorporate such losses, resulting in the absence of explicit mechanisms for inducing matching-awareness.

### 3.3 DESIDERATA OF OUR DISCRIMINATOR

Classifier-based GANs possess the two additional discrimination capabilities outlined in the previous subsections, while most PD-GANs do not. However, a key advantage of PD-GANs is that they avoid introducing additional hyperparameters that require manual tuning, which is beneficial for practitioners. In contrast, our goal is to propose a novel conditional discriminator that integrates both unconditional and matching-aware discrimination into the training process, while adaptively balancing these different objectives. A summary of these comparisons is shown in Table 1.

216 

## 4 PROPOSED METHOD: SONA

217

218 To achieve the desiderata presented in Section 3, we design the discriminator and propose a set  
219 of maximization objective functions for it. We provide theoretical and empirical support for our  
220 method in Section 5. We formalize the training procedure of SONA in Algorithm 1 of Appendix C.  
221

222 

### 4.1 DISCRIMINATOR PARAMETRIZATION

223

224 Inspired by the projection discriminator (Equation (5)), we design the discriminator to evaluate sam-  
225 ple inputs by summing two scalar terms for (a) the (unconditional) naturalness, i.e., distinguishing  
226 real from fake samples, and (b) the alignment with the conditioning information. To achieve this  
227 compositional modeling, we introduce a feature extractor  $h : X \rightarrow \mathbb{R}^D$ , shared across both tasks  
228 (here,  $h$  is consistent with the notation in Section 2). The extracted features  $h(x)$  are then projected  
229 onto independent directions  $\omega \in \mathbb{S}^{D-1}$  and  $\omega_y \in \mathbb{S}^{D-1}$  for each  $y \in Y$  as follows.  
230

231 For naturalness, we simply project the feature onto  $\omega$ . For conditional alignment, we incorporate an  
232 inductive bias based on the hypothesis that assessing naturalness and conditional alignment are or-  
233 thogonal tasks. From an optimization perspective, optimizing the generator for alignment should not  
234 interfere with optimizing it for naturalness. To encode this inductive bias, we define the alignment  
235 term using an orthogonal projection:  $\langle \omega_y, \Pi_{\perp\omega} h(x) \rangle$ , where  $\Pi_{\perp\omega} h(x) = h(x) - \langle \omega, h(x) \rangle \omega$ .  
236

237 Thus, our discriminator is parameterized as the sum of these two terms  
238

239
$$f(x, y) = \underbrace{\langle \omega, h(x) \rangle}_{f_{\Phi_N}^N(x): \text{Naturalness}} + \underbrace{\langle \omega_y, \Pi_{\perp\omega} h(x) \rangle}_{f_{\Phi_A}^A(x, y): \text{conditional Alignment}}, \quad (6)$$

240 where  $\Phi_N = \{\omega, h\}$ ,  $\Phi_A = \{\omega, \omega_y, h\}$ . In this formulation, we expect  $\omega$  to be responsible for  
241 distinguishing the naturalness of input samples (as in Section 4.2), while  $\omega_y$  focuses on conditional  
242 alignment (as in Section 4.3). Here, we can optionally add a bias  $b \in \mathbb{R}$  to the naturalness term,  
243 which can also be absorbed into  $h$ . Please also refer to Figure 1 for an illustration of our strategy.  
244

245 

### 4.2 UNCONDITIONAL LEARNING

246

247 To address **the first desideratum** in Table 1, we formulate a minimax problem that encourages the  
248 naturalness term in Equation (6) to distinguish between real and generated samples independently  
249 of  $y$  (see Proposition 2 in Section 5.1). We employ SAN objective functions to learn the optimal  $\omega$   
250 for unconditional discrimination, specifically using Equations (2) and (3) as the minimax objectives:  
251

252
$$\max_{\Phi_N} \mathcal{V}_{\text{SAN}}(\omega, h), \quad \text{and} \quad \min_g \mathcal{J}_{\text{SAN}}(g). \quad (7)$$

253 Note that only the parameters associated with the naturalness term  $f_N$  in Equation (6) are included;  
254  $\Phi_A \setminus \Phi_N = \{\omega_y\}$ , which is used only for conditional alignment, is not involved. This optimization  
255 ensures that  $\omega$  focuses on determining whether an input sample originates from the data or the gen-  
256 erator, as intended. We denote  $\mathcal{V}_{\text{SAN}}(\omega, h)$  as  $\mathcal{V}_{\text{SAN}}(\Phi_N)$  in Equation (12) for a unified formulation.  
257

258 

### 4.3 LEARNING CONDITIONAL ALIGNMENT

259

260 Next, we develop  $\omega_y$ -based learning for the conditional alignment, building on the  $\omega$ -based un-  
261 conditional learning described in Section 4.2. Specifically, we introduce additional objective terms to  
262 enable our discriminator to perform conditional discrimination and to be aware of the mismatch, the  
263 latter corresponding to **the second desideratum** in Table 1.  
264

265 To achieve this, we incorporate the Bradley–Terry (BT) model (Bradley & Terry, 1952, [reviewed in](#)  
266 [Appendix B.3](#)), which is widely recognized for its efficiency in modeling pairwise comparisons and  
267 has recently been applied in reinforcement learning from human feedback (Rafailov et al., 2023).  
268 For each pair of samples, we denote the preferred sample as the “winning” sample  $x_w$  and the  
269 less preferred as the “losing” sample  $x_\ell$ , response for condition  $y$ . The model defines the prob-  
270 ability that  $x_w$  is preferred over  $x_\ell$  given  $y$  using an evaluation function  $\tilde{f} : X \times Y \rightarrow \mathbb{R}$  as  
 $\Pr(x_w \text{ is preferred over } x_\ell | y) = \sigma(\tilde{f}(x_w, y) - \tilde{f}(x_\ell, y))$ , where  $\sigma(\cdot)$  denotes the sigmoid function.  
271

270 Following standard practice, we optimize our discriminator  $f$  by maximizing the following likelihood:  
 271

$$273 \quad \mathcal{V}_{\text{BT}} = \mathbb{E}_{x_w, x_\ell, y} [\log \sigma(f(x_w, y) - f(x_\ell, y))]. \quad (8)$$

274 In our framework, samples drawn from the true joint distribution  $p_d(x, y)$  are always designated as  
 275 the winning samples  $x_w$ , since this distribution represents the target. For the losing samples  $x_\ell$ , we  
 276 consider two distinct distributions, resulting in two additional objectives, as follows.

277 **BT-C loss for conditional discrimination.** The first losing distribution is the generator distribution.  
 278 From Equation (8), the corresponding BT loss is

$$280 \quad \mathcal{V}_{\text{BT-C}}(f_{\Phi_A}^A) = \mathbb{E}_{p_d(y)p_d(x_w|y)p_g(x_\ell|y)} [\log \sigma(f_{\text{sg}(\Phi_N)}^N(x_w) + f_{\Phi_A}^A(x_w, y) - f_{\text{sg}(\Phi_N)}^N(x_\ell) - f_{\Phi_A}^A(x_\ell, y))]. \quad (9)$$

282 This BT loss compares real and generated samples conditioned on a given  $y$ , thereby measuring  
 283 conditional dissimilarity. The sum of the first two terms corresponds to  $f(x_w, y)$ , while the latter  
 284 two correspond to  $f(x_\ell, y)$ . Notably, since the objective here is to learn conditional alignment, the  
 285 parameters  $\Phi_A$  are optimized only through the alignment term  $f_{\Phi_A}^A$ , while the naturalness term  $f_{\Phi_N}^N$   
 286 is frozen by applying the stop-gradient operator solely to the naturalness term. Under optimality  
 287 assumptions, including those related to Equation (9), Equation (9) can be interpreted as a specific  
 288 divergence between  $p_d(x|y)$  and  $p_g(x|y)$ , up to constant, as shown in Proposition 3 of Section 5.1.

289 **BT-M loss for matching-aware discrimination.** The second losing distribution, chosen to address  
 290 **the second desideratum**, is the marginal data distribution, which ignores the given condition  $y$ .  
 291 This helps the discriminator identify samples that do not satisfy the specified condition, even if they  
 292 are real samples. The corresponding BT loss is

$$294 \quad \mathcal{V}_{\text{BT-M}}(f_{\Phi_A}^A) = \mathbb{E}_{p_d(y)p_d(x_w|y)p_d(x_\ell)} [\log \sigma(f_{\text{sg}(\Phi_N)}^N(x_w) + f_{\Phi_A}^A(x_w, y) - f_{\text{sg}(\Phi_N)}^N(x_\ell) - f_{\Phi_A}^A(x_\ell, y))]. \quad (10)$$

296 This BT loss compares data samples aligned with the condition  $y$  against negative samples drawn  
 297 from the marginal distribution, analogous to a **matching** loss. As shown in Proposition 4 of Sec-  
 298 tion 5.1, maximizing Equation (10) with respect to the discriminator yields the log gap between the  
 299 conditional and unconditional probabilities,  $\log p_d(x|y) - \log p_d(x)$ , which is useful for enhancing  
 300 conditional alignment (Ho & Salimans, 2021; Chen et al., 2025b).

301 **Minimization optimization for conditional alignment.** Finally, we introduce a minimization ob-  
 302 jective for generator optimization with respect to conditional alignment. By swapping the data and  
 303 generator distributions in Equation (9), we obtain a minimization loss analogous to that used in  
 304 relativistic pairing GAN (Jolicoeur-Martineau, 2018):

$$306 \quad \mathcal{J}_{\text{BT-C}}(g) = -\mathbb{E}_{p_d(y)p_g(x_g)p_d(x_d|y)} [\log \sigma(f_{\Phi_N}^N(x_{\text{sg}(g)}) + f_{\Phi_A}^A(x_g, y) - f_{\Phi_N}^N(x_d) - f_{\Phi_A}^A(x_d, y))], \quad (11)$$

308 Here, a slight modification is added: as in Equations (9) and (10), the stop-gradient operator is  
 309 applied only in the naturalness term (note that the third term does not include  $g$ ), ensuring that  
 310 minimization occurs orthogonally to the direction represented by  $\omega$  (see the orthogonal operator in  
 311 Equation (6)). This approach allows the loss to specifically enhance the conditional alignment of  
 312 generated samples along  $\omega_y$ , while authenticity is enforced by  $\mathcal{J}_{\text{SAN}}$  using the direction responsible  
 313 for unconditional discrimination. Therefore, minimizing  $\mathcal{J}_{\text{SAN}}$  and  $\mathcal{J}_{\text{BT-C}}$  does not cause interfer-  
 314 ence, enabling each objective to address its respective aspect independently.

#### 316 4.4 OVERALL OBJECTIVE FUNCTION WITH ADAPTIVE WEIGHTING

318 We have introduced the maximization and minimization objective terms in Sections 4.2 and 4.3. The  
 319 overall objective for training our GAN is summarized as follows:

$$320 \quad \max_{\Phi_N \cup \Phi_A} \mathcal{V}_{\text{SAN}}(\Phi_N) + \mathcal{V}_{\text{BT-C}}(f_{\Phi_A}^A) + \mathcal{V}_{\text{BT-M}}(f_{\Phi_A}^A), \text{ and } \min_g \mathcal{J}_{\text{SAN}}(g) + \mathcal{J}_{\text{BT-C}}(g). \quad (12)$$

322 To ensure adaptive balance among the maximization objective terms  $\mathcal{V}_{\text{SAN}}$ ,  $\mathcal{V}_{\text{BT-C}}$ , and  $\mathcal{V}_{\text{BT-M}}$ , we  
 323 introduce learnable scalar parameters. Specifically, we first adopt  $\mathcal{V}_{\text{GAN}}$  from Goodfellow et al.

(2014) to construct  $\mathcal{V}_{\text{SAN}}$ , which is formulated with  $\log \sigma(\cdot)$  (see Appendix B.1). We then replace  $\log \sigma(t)$  in each of  $\mathcal{V}_{\text{SAN}}$ ,  $\mathcal{V}_{\text{BT-C}}$ , and  $\mathcal{V}_{\text{BT-M}}$  with  $\log \sigma(s \cdot t)/s$ , where  $s \in \mathbb{R}_{>0}$  is learnable. To prevent these coefficients from diverging, we constrain them such that  $s_{\text{SAN}}^2 + s_{\text{BT-C}}^2 + s_{\text{BT-M}}^2 = 1$ . This approach makes the adaptive weighting possible by incorporating the current situation during training (see Appendix E.4 for details), thereby satisfying **the third desideratum** in Table 1.

Adaptive weighting has been investigated in general multi-task learning (Kendall et al., 2018). However, these approaches are not specifically designed for GAN training, so they may not be suitable for our purpose. In particular, we hypothesize that the unbounded nature of the coefficients in these approaches can be harmful to GAN training, as GANs are highly sensitive to the learning rate (Heusel et al., 2017). This hypothesis motivates the development of our adaptive weighting mechanism. To empirically validate our hypothesis and demonstrate the effectiveness of our method, we compare it with the approach proposed by Kendall et al. (2018), using the same experimental setup described in Section 6.3. Our method achieves an FID of  $5.65 \pm 0.25$  and an IS of  $9.51 \pm 0.05$ , which are significantly better than the baseline results of FID  $16.62 \pm 4.04$  and IS  $7.88 \pm 0.80$ .

## 5 ANALYSIS OF SONA

### 5.1 THEORETICAL GROUNDING FOR OUR MAXIMIZATION OBJECTIVES

In this subsection, we present propositions to demonstrate the validity of the objective terms introduced in Section 4.2 and Section 4.3. Proofs are provided in the Appendix.

First, the following proposition, which is a restatement of Theorem 5.3 in Takida et al. (2024), establishes that optimizing the generator and discriminator using the minimax objective functions from Section 4.2 enables unconditional GAN learning.

**Proposition 2** (Informal; Unconditional discrimination by  $\mathcal{V}_{\text{SAN}}$ ). *Let the unconditional discriminator (the naturalness term) be  $f^N(x) = \langle \omega, h(x) \rangle$  with  $\omega \in \mathbb{R}^{D-1}$  and  $h : X \rightarrow \mathbb{R}^D$ . Under suitable regularity conditions for  $h$ , the objective  $\mathcal{J}_{\text{SAN}}(g; \hat{\omega}, h)$  is minimized only if  $g$  minimizes a certain distance between  $p_d(x)$  and  $p_g(x)$ , where  $\hat{\omega} = \arg \max_{\omega} \mathcal{V}_{\text{SAN}}(\omega, h)$  for a given  $h$ .*

Next, we analyze the BT-based objective functions introduced in Section 4.3. BT-C loss  $\mathcal{V}_{\text{BT-C}}$  compares samples from the dataset and the generator with specific conditioning. Under certain optimal conditions, this loss can represent the conditional dissimilarity between conditional distributions, as demonstrated in Proposition 3.

**Proposition 3** (Conditional discrimination by  $\mathcal{V}_{\text{BT-C}}$ ). *Let the discriminator be  $f(x, y) = f^N(x) + f^A(x, y)$ , where  $f^N(x) = \langle \omega, h(x) \rangle$  with  $\omega \in \mathbb{S}^{D-1}$ ,  $h : X \rightarrow \mathbb{R}^D$ ,  $b \in \mathbb{R}$ , and  $f^A : X \times Y \rightarrow \mathbb{R}$ . Assume that the generator achieves  $p_g(x) = p_d(x)$ , and  $\omega$  and  $h$  maximize  $\mathcal{V}_{\text{SAN}}$  for given  $p_d$  and  $p_g$ . If  $f^A$  maximizes Equation (13), then it is minimized if and only if  $p_d(x|y) = p_g(x|y)$  for  $y \in Y$ .*

$$\mathcal{L}_{\text{BT-C}} = \mathbb{E}_{p_d(y)p_d(x_w|y)p_g(x_\ell|y)} [\log \sigma(f^N(x_w) + f^A(x_w, y) - f^N(x_\ell) - f^A(x_\ell, y))]. \quad (13)$$

Here, Equation (13) corresponds to the RHS of Equation (9) with generalized terms. We note that in our method, the conditional alignment term ( $f^A$  in this proposition) shares  $h$  and  $\omega$  with the naturalness term, a constraint not considered in this proposition. However, since minimizing  $\mathcal{V}_{\text{SAN}}$  enforces only one-dimensional constraint on  $h$  given  $\omega$ , we expect  $f^A_{\Phi^A}$  to have sufficient capacity even conditioned on  $\mathcal{V}_{\text{SAN}}$ -minimization. Thus, this proposition still offers valuable insights.

Finally, BT-M loss using samples from the marginal data distribution,  $\mathcal{V}_{\text{BT-M}}$ , can be interpreted as a contrastive loss comparing positive and negative data samples. Specifically,  $\mathcal{V}_{\text{BT-M}}$  is equivalent to an InfoNCE loss with a single negative sample per positive sample in its denominator. The following proposition shows that this objective encourages the conditional discriminator to learn the log gap between conditional and unconditional probabilities, up to an arbitrary function independent of  $x$ :

**Proposition 4** (Log gap probability maximizes  $\mathcal{V}_{\text{BT-M}}$ ). *The function  $\tilde{f}$  maximizes  $\mathcal{V}_{\text{BT-M}}$  if  $\tilde{f}(x, y) = \log p_d(x|y) - \log p_d(x) + r_Y(y)$  for an arbitrary function  $r_Y : Y \rightarrow \mathbb{R}$ .*

Although Proposition 4 superficially resembles Proposition 1 in Section 3.2, there are two key differences. First, Proposition 4 does not require the uniform assumption on  $p_d(y)$ , allowing it to be applied to broader settings, such as datasets with biased class distributions or text-caption-image

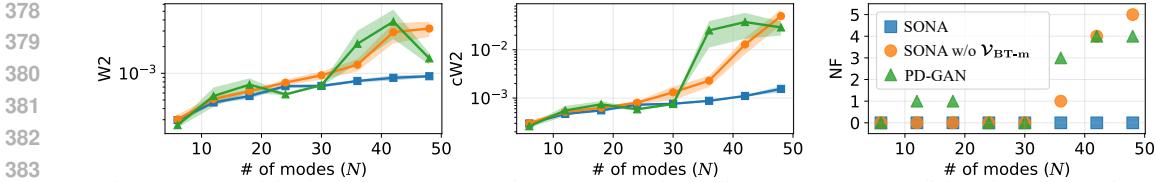


Figure 2: Empirical study on MoG using Wasserstein-2 distance (**W2**), Conditional Wasserstein-2 distance (**cW2**), and the number of failure cases (**NF**). See Section 5.2 and Appendix F.1 for details.

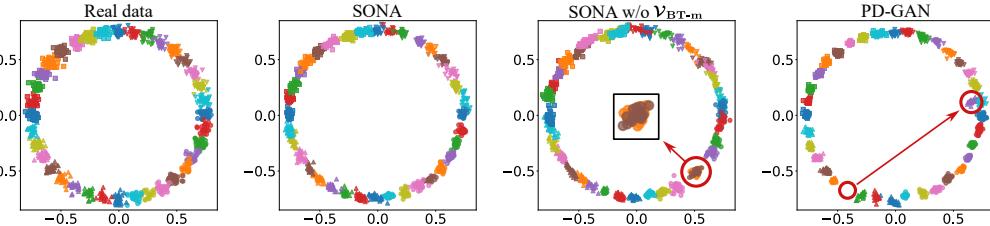


Figure 3: Ground truth samples and generated samples from three baseline models. Different markers and colors represent samples from distinct classes among the  $N = 36$  total classes.

datasets. Second, the extra term in the maximizer of Proposition 4 is independent of  $x$ , unlike in Section 3.2. This means that the maximizer captures the score gap between the conditional and unconditional probabilities, which helps to emphasize conditional alignment.

## 5.2 EMPIRICAL VALIDATION OF OUR METHOD

To empirically evaluate the effectiveness of our proposed method, we conduct experiments on a two-dimensional mixture of Gaussians (MoG) dataset, which enables both visualization and accurate measurement of generative performance. The experimental details are provided in Appendix F.1.

We train three models on the MoG dataset, varying the number of Gaussians (i.e., classes), denoted as  $N$ : (1) SONA, (2) SONA without the **matching** loss  $\mathcal{V}_{BT\text{-}m}$ , and (3) PD-GAN. To quantitatively assess generative performance, we use three metrics: (a) Wasserstein-2 distance ( $W_2(p_d(x), p_g(x))$ , denoted as **W2**), (b) conditional Wasserstein-2 distance ( $\frac{1}{N} \sum_{n=1}^N W_2(p_d(x|y_n), p_g(x|y_n))$ , denoted as **cW2**), and (c) the number of failure cases (**NF**). A failure is counted if there exists  $n \in [N]$  such that  $W_2(p_d(x|y_n), p_g(x|y_n)) > \epsilon$ , where  $\epsilon$  is set to the standard deviation of the Gaussians.

As shown in Figure 2, using five different random seeds, generators trained with SONA demonstrate robust performance, consistently outperforming the baselines when  $N \geq 30$ . Notably, SONA achieves zero **NF**, while the other two methods increasingly fail as  $N$  grows. Qualitative results for  $N = 36$  are visualized in Figure 3, where PD-GAN fails to cover all modes. In contrast, SONA without the **matching** loss produces overlapping samples between classes, indicating difficulty in distinguishing between them. This underscores the importance of making the discriminator **matching**-aware to better utilize conditional information (**the second desideratum**).

## 6 EXPERIMENTS

### 6.1 BENCHMARK ON CLASS-CONDITIONAL GENERATION TASKS

We conduct class-conditional image generation experiments on CIFAR10 (Krizhevsky et al., 2009), TinyImageNet (Le & Yang, 2015), and ImageNet (Deng et al., 2009), using the StudioGAN repository (Kang et al., 2023a)<sup>2</sup>, a well-established benchmark for these tasks. As baselines, we select two state-of-the-art (SoTA) classifier-based methods, ReACGAN (Kang et al., 2021) and ContraGAN (Kang & Park, 2020), as well as PD-GANs, which is among the most widely used approaches. For evaluation, we use Frechét Inception Distance (FID) (Heusel et al., 2017), Inception Score (IS) (Salimans et al., 2016), Density & Coverage (Naeem et al., 2020), intra FID (Miyato & Koyama, 2018, iFID) that is the average of class-wise FID.

<sup>2</sup><https://github.com/POSTECH-CVLab/PyTorch-StudioGAN>

Table 2: CIFAR10

| Method                    | FID ↓            | IS ↑              |
|---------------------------|------------------|-------------------|
| <i>BigGAN backbone</i>    |                  |                   |
| ContraGAN                 | 4.74±0.05        | 9.79±0.03         |
| ReACGAN                   | 4.49±0.10        | 9.84±0.00         |
| PD-GAN                    | 4.60±0.05        | 9.87±0.06         |
| <b>SONA</b>               | <b>4.24±0.07</b> | <b>10.05±0.03</b> |
| <i>StyleGAN2 backbone</i> |                  |                   |
| ReACGAN                   | <b>3.39±0.03</b> | <u>10.33±0.03</u> |
| PD-GAN                    | 4.06±0.19        | 10.09±0.05        |
| <b>SONA</b>               | <b>3.38±0.14</b> | <b>10.45±0.08</b> |

Table 3: TinyImageNet.

| Method               | FID ↓             | IS ↑              | Dens ↑           | Cover ↑          | iFID ↓             |
|----------------------|-------------------|-------------------|------------------|------------------|--------------------|
| ContraGAN            | 23.66±1.59        | 12.47±0.45        | 0.62±0.05        | 0.46±0.03        | 162.69±2.69        |
| ReACGAN              | <b>18.99±0.98</b> | 15.37±0.68        | <u>0.70±0.03</u> | 0.54±0.02        | 130.77±1.22        |
| PD-GAN               | 20.77±1.53        | 14.29±1.11        | 0.70±0.05        | <u>0.58±0.02</u> | 111.07±3.43        |
| <b>SONA</b>          | <b>16.33±0.62</b> | <b>16.60±0.35</b> | <b>0.74±0.02</b> | <b>0.59±0.01</b> | <b>108.75±0.60</b> |
| <i>Apply DiffAug</i> |                   |                   |                  |                  |                    |
| ContraGAN            | 11.86±0.32        | 16.01±0.29        | 0.78±0.02        | 0.63±0.01        | 142.07±1.02        |
| ReACGAN              | <u>9.93±0.34</u>  | <u>20.25±0.07</u> | <u>0.88±0.01</u> | 0.69±0.00        | 107.31±1.22        |
| PD-GAN               | 13.09±1.00        | 16.57±0.34        | 0.78±0.02        | <u>0.70±0.02</u> | <u>95.62±2.27</u>  |
| <b>SONA</b>          | <b>7.76±0.29</b>  | <b>23.00±0.10</b> | <b>0.99±0.01</b> | <b>0.79±0.00</b> | <b>82.23±0.48</b>  |

We first train SONA on CIFAR10, and report the results in Table 2. We evaluate both BigGAN (Brock et al., 2019) and StyleGAN2 (Karras et al., 2020b) backbones. The results show that SONA consistently achieves the best performance across all metrics.

Next, we scale up the empirical evaluation by increasing both the image resolution ( $64 \times 64$ ) and the number of classes (200) using TinyImageNet. As shown in Table 3, SONA outperforms the other SoTA models on all metrics. Notably, SONA also benefits from DiffAug (Zhao et al., 2020), a leading data augmentation technique, achieving the best overall scores.

Finally, we evaluate SONA on the ImageNet dataset at a resolution of  $128 \times 128$ . We use the BigGAN backbone, as it is the only architecture among single-stage generation pipelines capable of producing reasonable images on the dataset. We compare performance under two batch size settings (256 and 2048), with results summarized in Table 4. According to the table, SONA outperforms other methods on all metrics except Density. Additionally, we compute Top-1 and Top-5 classification accuracies for the 1,000 ImageNet classes using an Inception V3 network, following Kang et al. (2023a). The results indicate that images generated by SONA align best with the conditioning class among all baselines.

Table 4: ImageNet.

| Method                   | FID ↓        | IS ↑          | Dens ↑      | Cover ↑     | iFID ↓        | Top-1/5 acc↑       |
|--------------------------|--------------|---------------|-------------|-------------|---------------|--------------------|
| <i>Batch size = 256</i>  |              |               |             |             |               |                    |
| ContraGAN                | 31.73        | 23.93         | 0.57        | 0.28        | 169.65        | 0.02 / 0.09        |
| ReACGAN                  | <b>18.73</b> | <b>51.29</b>  | <b>0.85</b> | <u>0.46</u> | 131.83        | 0.20 / <u>0.48</u> |
| PD-GAN                   | 29.76        | 27.17         | 0.45        | 0.35        | <u>119.07</u> | 0.24 / 0.48        |
| <b>SONA</b>              | <b>13.17</b> | <b>83.33</b>  | <u>0.79</u> | <b>0.59</b> | <b>74.33</b>  | <b>0.62 / 0.87</b> |
| <i>Batch size = 2048</i> |              |               |             |             |               |                    |
| ReACGAN                  | <u>8.44</u>  | <u>103.07</u> | <b>1.04</b> | 0.71        | 87.77         | 0.51 / 0.82        |
| PD-GAN                   | 8.85         | 96.11         | 0.95        | <u>0.81</u> | <u>52.65</u>  | 0.63 / <u>0.83</u> |
| <b>SONA</b>              | <b>6.14</b>  | <b>140.14</b> | <u>1.03</u> | <b>0.82</b> | <b>48.45</b>  | <b>0.80 / 0.93</b> |

Table 5-A: Text-to-image generation tasks on CUB and COCO.

| Method                   | CUB (Wah et al., 2011) |               | COCO (Lin et al., 2014) |               |
|--------------------------|------------------------|---------------|-------------------------|---------------|
|                          | FID ↓                  | CLIP Score ↑  | FID ↓                   | CLIP Score ↑  |
| GALIP (original; concat) | 11.76                  | 0.3310        | 5.30                    | 0.3639        |
| <b>GALIP + SONA</b>      | <b>10.20</b>           | <b>0.3342</b> | <b>4.70</b>             | <b>0.3677</b> |

Table 5-B: Text-to-image generation task under zero-shot setting on COCO. GALIP and GALIP + SONA are trained on CC12M, while the other baselines are trained on larger-scale datasets.

| Method                          | Type      | Param size (B) | Data size (M) | zFID <sub>30k</sub> ↓ | CLIP Score ↑  | Speed (sec) |
|---------------------------------|-----------|----------------|---------------|-----------------------|---------------|-------------|
| LDM (Rombach et al., 2022)      | Diffusion | 1.45           | 400           | 12.63                 | -             | 3.7         |
| GLIDE (Nichol et al., 2022)     | Diffusion | 5              | 250           | 12.24                 | -             | 15.0        |
| DALL-E 2 (Ramesh et al., 2022)  | Diffusion | 6.5            | 250           | 10.39                 | -             | -           |
| Imagen (Saharia et al., 2022)   | Diffusion | 7.9            | 860           | 7.27                  | -             | 9.1         |
| InstaFlow (Liu et al., 2024)    | Flow      | 0.9            | -             | 13.10                 | -             | 0.09        |
| StyleGAN-T (Sauer et al., 2023) | GAN       | 1.02           | 250           | 13.9                  | -             | 0.10        |
| GALIP (original; concat)        | GAN       | 0.24+0.08      | 12            | 13.78                 | 0.3306        | 0.04        |
| <b>GALIP + SONA</b>             | GAN       | 0.24+0.08      | 12            | <b>12.43</b>          | <b>0.3411</b> | 0.04        |

## 6.2 BENCHMARK ON TEXT-CONDITIONAL GENERATION TASKS

We demonstrate the applicability of SONA to text-to-image generation tasks. Our experiments are based on GALIP (Tao et al., 2023), which we verified to be reproducible using the official repository<sup>3</sup>. The GALIP discriminator consists of frozen pre-trained CLIP encoders and learnable modules. Text conditioning is performed by concatenating image features and text embeddings from the

<sup>3</sup><https://github.com/tobran/GALIP>

486 CLIP encoder, followed by processing with a shallow network. We apply SONA to the discriminator  
 487 in a straightforward manner, using the frozen CLIP text embedding for  $\omega_y$  without modification. To  
 488 assess the effectiveness of the proposed method, we train both the original GALIP and the SONA-  
 489 based GALIP on CUB (Wah et al., 2011), COCO (Lin et al., 2014), and CC12M (Changpinyo et al.,  
 490 2021), respectively. For models trained on CC12M, we report zero-shot performances on COCO.  
 491 As shown in Table 5-A and Table 5-B, SONA achieves improved FID scores while maintaining  
 492 comparable text alignment to the original GALIP on three standard image datasets at  $256 \times 256$  res-  
 493 olution. We suspect that our method reduces interference between the assessment of naturalness  
 494 and alignment, even with fixed  $\omega_y$ . Adopting learnable  $\omega_y$  for further improvement in CLIP score  
 495 is left for future work. For reference, we also include other text-to-image models, not limited to  
 496 GANs, in Table 5-B. Although these models differ in dataset scale and a direct comparison is not  
 497 strictly fair because GALIP is trained on the smallest dataset, the table indicates that SONA applied  
 498 to GALIP achieves competitive generation performance with the fastest inference speed among the  
 499 listed models.

### 500 6.3 ABLATION STUDY

502 We evaluate the contribution of each pro-  
 503 posed component in SONA by training  
 504 models on CIFAR10 using the PyTorch of-  
 505 ficial codebase<sup>4</sup> provided by Brock et al.  
 506 (2019). Results are summarized in Ta-  
 507 ble 6. Orthogonal modeling in  $f_{\Phi_A}^A(x, y)$   
 508 improves the generation performance in FID, while the BT-M loss  $\mathcal{V}_{BT-M}$  does in IS. By adopting  
 509 both, SONA achieves better generation performance in terms of both FID and IS. In contrast, we  
 510 can also see that the adaptive scaling coefficients introduced in Section 4.4 work.

### 511 6.4 DISCUSSION ON COMPUTATIONAL TIME

512 We report the computational efficiency of each base-  
 513 line in Table A, based on the experiments described  
 514 in Section 6.1. PD-GAN demonstrates the high-  
 515 est training efficiency, attributable to its simple de-  
 516 sign. Nevertheless, SONA achieves comparable ef-  
 517 ficiency to PD-GAN and surpasses other state-of-the-  
 518 art classifier-based methods. Additionally, we illus-  
 519 trate the training convergence behavior on ImageNet  
 520 (with a batch size of 2048) in Section 6.1, as shown in  
 521 Figure A. We observe that SONA attains FID scores  
 522 similar to PD-GAN for approximately the first three  
 523 days, after which SONA exhibits a clear im-  
 524 provement, achieving lower FID scores. This performance  
 525 gain justifies the additional computational overhead  
 526 of SONA compared to PD-GAN.

## 531 7 CONCLUSION

533 In this paper, we introduced SONA, a novel discriminator framework for conditional GANs that effi-  
 534 ciently evaluates both sample naturalness (authenticity) and conditional alignment, while adaptively  
 535 balancing unconditional, conditional, and matching-aware discrimination objectives. Experiments  
 536 on image datasets demonstrate that generators trained with our method produce higher-quality sam-  
 537 ples that are more accurately aligned with the given labels compared to state-of-the-art methods.  
 538 Additionally, we showed that SONA is applicable to text-to-image generation scenarios.

Table 6: Ablation study using CIFAR10

| Adaptive weighting $s$ | Orthogonal proj. in Eq. (6) | Matching loss $\mathcal{V}_{BT-M}$ | FID $\downarrow$ | IS $\uparrow$   |
|------------------------|-----------------------------|------------------------------------|------------------|-----------------|
| ✓                      |                             |                                    | 7.51 $\pm$ 0.14  | 9.08 $\pm$ 0.07 |
| ✓                      | ✓                           |                                    | 6.29 $\pm$ 0.08  | 9.14 $\pm$ 0.04 |
| ✓                      |                             | ✓                                  | 6.02 $\pm$ 0.28  | 9.54 $\pm$ 0.82 |
| ✓                      | ✓                           | ✓                                  | 5.65 $\pm$ 0.25  | 9.51 $\pm$ 0.05 |
|                        |                             | ✓                                  | 7.09 $\pm$ 1.17  | 9.52 $\pm$ 0.07 |

Table A: Training efficiency (iteration/min).

| Method    | CIFAR10       | TinyIN        | ImageNet      |
|-----------|---------------|---------------|---------------|
| ContraGAN | 360.36        | 129.87        | 80.70         |
| ReACGAN   | 322.15        | 107.23        | 78.84         |
| PD-GAN    | <b>442.80</b> | <b>195.76</b> | <b>101.91</b> |
| SONA      | 410.95        | 169.13        | 90.16         |



Figure A: Behavior of training convergence:  
 FID ( $\downarrow$ ) and IS ( $\uparrow$ ) as a function of training  
 time (in days).

<sup>4</sup><https://github.com/ajbrock/BigGAN-PyTorch>

540 ETHICS STATEMENT  
541

542 Because our work involves training AI models that can generate synthetic content, there are inherent  
543 risks of producing harmful or inappropriate outputs, such as deepfake images, graphic violence,  
544 offensive material, or content that may infringe on copyright. To mitigate these risks, it is essential  
545 to implement robust content filtering and moderation measures to prevent the creation of unethical,  
546 harmful, or infringing media.

548 REPRODUCIBILITY STATEMENT  
549

550 All experiments described in Section 6 were implemented using open-source repositories, which  
551 we confirm are reproducible by rerunning them. The datasets employed in this study are publicly  
552 available via their official sources. Detailed implementation procedures are provided in Appendix F.  
553 Additionally, we provide codes as supplementary material and outline our training procedure in  
554 Algorithm 1. To further enhance reproducibility, we will release our source code upon acceptance  
555 of this paper. The proofs of our theoretical claims can be found in Appendix.

557 LLM USAGE  
558

559 Large Language Models (LLMs) were used for academic proofreading and assistance in writing the  
560 abstract. They also supported coding tasks, including debugging, resolving errors, and visualizing  
561 results. All research ideas and theoretical contributions were developed solely by the authors.

563 REFERENCES  
564

565 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method  
566 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

567 Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural  
568 image synthesis. In *Proc. International Conference on Learning Representation (ICLR)*, 2019.

569 Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12m: Pushing web-  
570 scale image-text pre-training to recognize long-tail visual concepts. In *Proc. IEEE/CVF Conference on  
571 Computer Vision and Pattern Recognition (CVPR)*, 2021.

572 Dar-Yen Chen, Hmrishav Bandyopadhyay, Kai Zou, and Yi-Zhe Song. Nitrofusion: High-fidelity  
573 single-step diffusion through dynamic adversarial training. In *Proc. IEEE/CVF Conference on  
574 Computer Vision and Pattern Recognition (CVPR)*, pp. 7654–7663, 2025a.

575 Huayu Chen, Hang Su, Peize Sun, and Jun Zhu. Toward guidance-free ar visual generation via  
576 condition contrastive alignment. In *Proc. International Conference on Learning Representation  
577 (ICLR)*, 2025b.

578 Xiongjie Chen, Yongxin Yang, and Yunpeng Li. Augmented sliced wasserstein distances. In *Proc.  
579 International Conference on Learning Representation (ICLR)*, 2022.

580 Casey Chu, Kentaro Minami, and Kenji Fukumizu. Smoothness and stability in GANs. In *Proc.  
581 International Conference on Learning Representation (ICLR)*, 2020.

582 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-  
583 archical image database. In *Proc. IEEE Conference on Computer Vision and Pattern Recognition  
584 (CVPR)*, pp. 248–255. Ieee, 2009.

585 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In *Proc.  
586 Advances in Neural Information Processing Systems (NeurIPS)*, volume 34, pp. 8780–8794, 2021.

587 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam  
588 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers  
589 for high-resolution image synthesis. In *Proc. International Conference on Machine Learning  
590 (ICML)*, 2024.

594 Jiaojiao Fan, Qinsheng Zhang, Amirhossein Taghvaei, and Yongxin Chen. Variational wasserstein  
 595 gradient flow. In *Proc. International Conference on Machine Learning (ICML)*, volume 162, pp.  
 596 6185–6215, 2022.

597 Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanis-  
 598 las Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,  
 599 Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,  
 600 Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and  
 601 Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*, 22(78):  
 602 1–8, 2021. URL <http://jmlr.org/papers/v22/20-451.html>.

603 Rémi Flamary, Cédric Vincent-Cuaz, Nicolas Courty, Alexandre Gramfort, Oleksii Kachaeiv, Huy  
 604 Quang Tran, Laurène David, Clément Bonet, Nathan Cassereau, Théo Gnassounou, Eloi Tanguy,  
 605 Julie Delon, Antoine Collas, Sonia Mazelet, Laetitia Chapel, Tanguy Kerdoncuff, Xizheng Yu,  
 606 Matthew Feickert, Paul Krzakala, Tianlin Liu, and Eduardo Fernandes Montesuma. Pot python  
 607 optimal transport (version 0.9.5), 2024. URL <https://github.com/PythonOT/POT>.

608 Yuan Gao, Yuling Jiao, Yang Wang, Yao Wang, Can Yang, and Shunkang Zhang. Deep generative  
 609 learning via variational gradient flow. In *Proc. International Conference on Machine Learning  
 610 (ICML)*, pp. 2093–2101, 2019.

611 Mingming Gong, Yanwu Xu, Chunyuan Li, Kun Zhang, and Kayhan Batmanghelich. Twin auxiliary  
 612 classifiers gan. In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, 2019.

613 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,  
 614 Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In *Proc. Advances in Neural  
 615 Information Processing Systems (NeurIPS)*, pp. 2672–2680, 2014.

616 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.  
 617 GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In *Proc.  
 618 Advances in Neural Information Processing Systems (NeurIPS)*, pp. 6626–6637, 2017.

619 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *NeurIPS 2021 Workshop on  
 620 Deep Generative Models and Downstream Applications*, 2021.

621 Liang Hou, Qi Cao, Huawei Shen, Siyuan Pan, Xiaoshuang Li, and Xueqi Cheng. Conditional gans  
 622 with auxiliary discriminative classifier. In *Proc. International Conference on Machine Learning  
 623 (ICML)*, 2022.

624 Nick Huang, Aaron Gokaslan, Volodymyr Kuleshov, and James Tompkin. The GAN is dead; long  
 625 live the GAN! A modern GAN baseline. In *Proc. Advances in Neural Information Processing  
 626 Systems (NeurIPS)*, 2024.

627 Rie Johnson and Tong Zhang. A framework of composite functional gradient methods for generative  
 628 adversarial models. *IEEE transactions on pattern analysis and machine intelligence*, 43(1):17–  
 629 32, 2019.

630 Alexia Jolicoeur-Martineau. The relativistic discriminator: A key element missing from standard  
 631 gan. *arXiv preprint arXiv:1807.00734*, 2018.

632 Alexia Jolicoeur-Martineau. On relativistic f-divergences. In *Proc. International Conference on  
 633 Machine Learning (ICML)*, 2020.

634 Minguk Kang and Jaesik Park. Contragan: Contrastive learning for conditional image generation.  
 635 In *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, pp. 21357–21369, 2020.

636 Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park. Rebooting ACGAN: Auxiliary clas-  
 637 sifier GANs with stable training. In *Proc. Advances in Neural Information Processing Systems  
 638 (NeurIPS)*, pp. 23505–23518, 2021.

639 Minguk Kang, Joonghyuk Shin, and Jaesik Park. Studiogan: a taxonomy and benchmark of gans  
 640 for image synthesis. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(12):  
 641 15725–15742, 2023a.

648 Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung  
 649 Park. Scaling up gans for text-to-image synthesis. In *Proc. IEEE/CVF Conference on Computer*  
 650 *Vision and Pattern Recognition (CVPR)*, pp. 10124–10134, 2023b.

651

652 Minguk Kang, Richard Zhang, Connnelly Barnes, Sylvain Paris, Suha Kwak, Jaesik Park, Eli Shecht-  
 653 man, Jun-Yan Zhu, and Taesung Park. Distilling diffusion models into conditional gans. In *Proc.*  
 654 *European Conference on Computer Vision (ECCV)*, pp. 428–447, 2024.

655 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative ad-  
 656 versarial networks. In *Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition*  
 657 (*CVPR*), pp. 4401–4410, 2019.

658

659 Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Train-  
 660 ing generative adversarial networks with limited data. In *Proc. Advances in Neural Information*  
 661 *Processing Systems (NeurIPS)*, 2020a.

662 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-  
 663 ing and improving the image quality of stylegan. In *Proc. IEEE/CVF Conference on Computer*  
 664 *Vision and Pattern Recognition (CVPR)*, pp. 8110–8119, 2020b.

665

666 Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and  
 667 Timo Aila. Alias-free generative adversarial networks. In *Proc. Advances in Neural Information*  
 668 *Processing Systems (NeurIPS)*, 2021.

669 Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses  
 670 for scene geometry and semantics. In *Proc. IEEE Conference on Computer Vision and Pattern*  
 671 *Recognition (CVPR)*, pp. 7482–7491, 2018.

672

673 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proc. Interna-  
 674 tional Conference on Learning Representation (ICLR)*, 2015.

675

676 Soheil Kolouri, Kimia Nadjahi, Umut Simsekli, Roland Badeau, and Gustavo Rohde. General-  
 677 ized sliced Wasserstein distances. In *Proc. Advances in Neural Information Processing Systems*  
 678 (*NeurIPS*), volume 32, 2019.

679 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,  
 680 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative  
 681 models. *arXiv preprint arXiv:2412.03603*, 2024.

682

683 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.  
 684 2009.

685 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

686

687 Jerry Li, Aleksander Madry, John Peebles, and Ludwig Schmidt. On the limitations of first-order  
 688 approximation in gan dynamics. In *Proc. International Conference on Machine Learning (ICML)*,  
 689 pp. 3005–3013, 2018.

690

691 Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, and Lu Jiang. Diffusion adver-  
 692 sarial post-training for one-step video generation. In *Proc. International Conference on Machine*  
 693 *Learning (ICML)*, 2025.

694

695 Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr  
 696 Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Proc. European*  
 697 *Conference on Computer Vision (ECCV)*, 2014.

698

699 Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, et al. Instaflow: One step is enough for high-  
 700 quality diffusion-based text-to-image generation. In *Proc. International Conference on Learning*  
 701 *Representation (ICLR)*, 2024.

Zhaoyan Liu, Noël Vouitsis, Satya Krishna Gorti, Jimmy Ba, and Gabriel Loaiza-Ganem. Tr0n:  
 Translator networks for 0-shot plug-and-play conditional generation. 2023.

702 Lars Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In *Proc. Advances*  
 703 *in Neural Information Processing Systems (NeurIPS)*, volume 30, 2017.

704

705 Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. *arXiv preprint*  
 706 *arXiv:1411.1784*, 2014.

707

708 Takeru Miyato and Masanori Koyama. cgans with projection discriminator. In *Proc. International*  
 709 *Conference on Learning Representation (ICLR)*, 2018.

710

711 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable  
 712 fidelity and diversity metrics for generative models. In *Proc. International Conference on*  
 713 *Machine Learning (ICML)*, 2020.

714

715 Vaishnav Nagarajan and J Zico Kolter. Gradient descent GAN optimization is locally stable. In  
 716 *Proc. Advances in Neural Information Processing Systems (NeurIPS)*, volume 30, 2017.

717

718 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,  
 719 Ilya Sutskever, and Mark Chen. GLIDE: Towards photorealistic image generation and editing with  
 720 text-guided diffusion models. In *Proc. International Conference on Machine Learning (ICML)*,  
 721 2022.

722

723 Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J Bryan. Ditto: Diffusion  
 724 inference-time t-optimization for music generation. In *Proc. International Conference on*  
 725 *Machine Learning (ICML)*, 2024.

726

727 Zachary Novack, Ge Zhu, Jonah Casebeer, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J  
 728 Bryan. Presto! distilling steps and layers for accelerating music generation. In *Proc. International*  
 729 *Conference on Learning Representation (ICLR)*, 2025.

730

731 Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary  
 732 classifier gans. In *Proc. International Conference on Machine Learning (ICML)*, pp. 2642–  
 733 2651, 2017.

734

735 Kazusato Oko, Licong Lin, Yuhang Cai, and Song Mei. A statistical theory of contrastive pre-  
 736 training and multimodal generative ai. *arXiv preprint arXiv:2501.04641*, 2025.

737

738 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-  
 739 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

740

741 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe  
 742 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image  
 743 synthesis. In *Proc. International Conference on Learning Representation (ICLR)*, 2024.

744

745 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv  
 746 Vyas, Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media founda-  
 747 tion models. *arXiv preprint arXiv:2410.13720*, 2024.

748

749 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea  
 750 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Proc.*  
 751 *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.

752

753 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-  
 754 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.

755

756 Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.  
 757 Generative adversarial text to image synthesis. In *Proc. International Conference on Machine*  
 758 *Learning (ICML)*, 2016.

759

760 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 761 resolution image synthesis with latent diffusion models. In *Proc. IEEE/CVF Conference on Com-*  
 762 *puter Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, 2022.

763

764 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng  
 765 Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual  
 766 recognition challenge. *International journal of computer vision*, 115:211–252, 2015.

756 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar  
 757 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic  
 758 text-to-image diffusion models with deep language understanding. In *Proc. Advances in Neural*  
 759 *Information Processing Systems (NeurIPS)*, pp. 36479–36494, 2022.

760 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.  
 761 Improved techniques for training GANs. In *Proc. Advances in Neural Information Processing*  
 762 *Systems (NeurIPS)*, volume 29, 2016.

763 Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse  
 764 datasets. In *ACM SIGGRAPH 2022 conference proceedings*, pp. 1–10, 2022.

765 Axel Sauer, Tero Karras, Samuli Laine, Andreas Geiger, and Timo Aila. Stylegan-t: Unlocking the  
 766 power of gans for fast large-scale text-to-image synthesis. In *Proc. International Conference on*  
 767 *Machine Learning (ICML)*, 2023.

768 Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-  
 769 tillation. In *Proc. European Conference on Computer Vision (ECCV)*, pp. 87–103, 2024.

770 Rui Shu, Hung Bui, and Stefano Ermon. AC-GAN learns a biased distribution. In *NIPS Workshop*  
 771 *on Bayesian Deep Learning*, 2017.

772 Samarth Sinha, Anirudh Goyal, Colin Raffel, and Augustus Odena. Top-k training of GANs: Im-  
 773 proving generators by making critics less critical. In *Proc. Advances in Neural Information Pro-*  
 774 *cessing Systems (NeurIPS)*, 2020.

775 Yuhta Takida, Masaaki Imaizumi, Takashi Shibuya, Chieh-Hsin Lai, Toshimitsu Uesaka, Naoki  
 776 Murata, and Yuki Mitsufuji. San: Inducing metrizability of gan with discriminative normalized  
 777 linear layer. In *Proc. International Conference on Learning Representation (ICLR)*, 2024.

778 Ming Tao, Bing-Kun Bao, Hao Tang, and Changsheng Xu. GALIP: Generative adversarial clips  
 779 for text-to-image synthesis. In *Proc. IEEE/CVF Conference on Computer Vision and Pattern*  
 780 *Recognition (CVPR)*, pp. 14214–14223, 2023.

781 Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang, and Weilong Yang. Regularizing generative  
 782 adversarial networks under limited data. In *Proc. IEEE/CVF Conference on Computer Vision and*  
 783 *Pattern Recognition (CVPR)*, 2021.

784 C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011  
 785 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.

786 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,  
 787 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative  
 788 models. *arXiv preprint arXiv:2503.20314*, 2025.

789 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,  
 790 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion mod-  
 791 els with an expert transformer. In *Proc. International Conference on Learning Representation*  
 792 *(ICLR)*, 2025.

793 Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, and Dim-  
 794 itris N Metaxas. StackGAN: Text to photo-realistic image synthesis with stacked generative ad-  
 795 versarial networks. In *Proc. IEEE International Conference on Computer Vision (ICCV)*, pp.  
 796 5907–5915, 2017.

797 Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. Consistency regularization for  
 798 generative adversarial networks. In *Proc. International Conference on Learning Representation*  
 799 *(ICLR)*, 2020.

800 Yifei Zhang, Mengfei Xia, Yujun Shen, Jiapeng Zhu, Ceyuan Yang, Kecheng Zheng, Lianghua  
 801 Huang, Yu Liu, and Fan Cheng. Exploring guided sampling of conditional gans. In *Proc. Euro-*  
 802 *pean Conference on Computer Vision (ECCV)*, 2024.

810 Yuhui Zhang, Yuichiro Wada, Hiroki Waida, Kaito Goto, Yusaku Hino, and Takafumi Kanamori.  
811 Deep clustering with a constraint for topological invariance based on symmetric infonce. *Neural*  
812 *computation*, 35(7):1288–1339, 2023.

813  
814 Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song Han. Differentiable augmentation  
815 for data-efficient gan training. In *Proc. Advances in Neural Information Processing Systems*  
816 (*NeurIPS*), 2020.

817 Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang, Augustus Odena, and Han Zhang. Im-  
818 proved consistency regularization for gans. In *Proc. AAAI Conference on Artificial Intelligence*  
819 (*AAAI*), 2021.

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 

## A RELATED WORKS

865  
 866  
 867 The first (class-)conditional GAN was introduced by Mirza & Osindero (2014), who incorporated  
 868 class information by concatenating the input with the corresponding class embedding. This straight-  
 869 forward approach has been widely adopted in subsequent works (Reed et al., 2016; Zhang et al.,  
 870 2017; Tao et al., 2023; Kang et al., 2023b). For conditional discriminators, it has been shown to  
 871 be more effective to concatenate class information with intermediate discriminator features rather  
 872 than directly with the input (Reed et al., 2016), a strategy now used in several modern text-to-image  
 873 GANs (Tao et al., 2023; Kang et al., 2023b).

874 The projection-based approach, introduced by Miyato & Koyama (PD-GAN; 2018), has proven  
 875 effective for both generation quality and conditional alignment, despite its simplicity. Like the  
 876 concatenation-based approach, it requires only minor modifications to the discriminator’s final pro-  
 877 jection layer and no further architectural changes, facilitating scalability and extensibility. While the  
 878 concatenation method is similar to the projection-based approach—especially when using the deepest  
 879 discriminator features—the projection-based method has been empirically shown to be more  
 880 effective in class-conditional settings due to its well-designed inductive bias based on probabilistic  
 881 modeling. This approach is now widely used in conditional generation tasks (Brock et al., 2019;  
 882 Karras et al., 2019; 2020b; 2021; Sauer et al., 2022; 2023; Huang et al., 2024) and has been ex-  
 883 tended to more challenging scenarios, such as text-to-image generation (Sauer et al., 2023), where  
 884 the set of possible text prompts is not finite.

885 As a more explicit approach to enforcing conditional alignment, Odena et al. (2017) proposed the  
 886 auxiliary classifier GAN (AC-GAN), which adds a classifier to the discriminator to predict class  
 887 labels of generated images. AC-GAN combines the standard GAN loss with a cross-entropy classi-  
 888 fication loss. However, AC-GANs have been observed to suffer from limited diversity in generated  
 889 samples (Shu et al., 2017), a limitation attributed to the absence of a negative conditional entropy  
 890 term in the objective (Shu et al., 2017; Gong et al., 2019). Later works addressed this by applying  
 891 the classification loss to both real and generated samples (Gong et al., 2019; Hou et al., 2022). Kang  
 892 et al. (2021) identified instability in AC-GAN training due to unbounded discriminator features and  
 893 poor early-stage classification, and proposed ReACGAN to address these issues. Separately, Kang  
 894 & Park (2020) introduced ContraGAN, which incorporates data-to-data relations in addition to data-  
 895 to-class relations (Equation (4)).

896 As shown in our experiments (Section 6.1) and recent benchmarks (Kang et al., 2023a), ReACGAN  
 897 achieves SoTA performance on widely used class-image datasets among conditional discrimina-  
 898 tor methods, including projection-based approaches. However, to our knowledge, this approach  
 899 has not been extended beyond class-conditional settings, such as text-to-image tasks, likely due  
 900 to greater implementation complexity and higher computational cost compared to projection-based  
 901 and concatenation-based methods. Moreover, extending  $Y$  beyond a finite discrete set (e.g., to text  
 902 prompts) in this approach is generally non-trivial. Specifically, the classification loss adopted in this  
 903 approach is equivalent to the InfoNCE loss (Equation (4)), which considers all plausible negative  
 904 labels  $y' \sim p_d(y')$  for each training sample  $y \sim p_d(y|x)$ . Therefore, extending  $Y$  beyond a finite  
 905 discrete set (e.g., to text prompts) in this approach is generally non-trivial. In contrast, while BT-C  
 906 and BT-M losses in SONA can also be interpreted as variants of the InfoNCE loss, as discussed  
 907 around Proposition 4, they use only a single negative sample  $x'$  drawn from  $p_d(x')$  per training  
 908 sample  $x$  drawn from  $p_d(x|y)$ . This has two main advantages: First, this loss is easily applicable to  
 909 general conditioning cases, including text-to-image, because sampling a single negative sample is  
 910 feasible. Second, this property of our losses greatly reduces computational complexity, as reported  
 911 in Table A.

912 For text-to-image GANs, which are more challenging than class-conditional generation tasks, both  
 913 concatenation-based and projection-based approaches have recently been adopted. Kang et al.  
 914 (2023b) and Tao et al. (2023) employed the concatenation-based approach, injecting frozen CLIP-  
 915 encoded text embeddings into deep discriminator features. In contrast, Sauer et al. (2023) adopted  
 916 the projection-based approach, modeling text-conditional projections by applying a learnable affine  
 917 transformation to frozen CLIP text embeddings. In addition to discriminator design, these works  
 918 introduced additional losses to improve text-conditional alignment. Notably, a matching loss uses  
 919 negative pairs of images and text prompts as fake samples (Kang et al., 2023b; Tao et al., 2023), anal-  
 920 ogous to our loss  $\mathcal{V}_{BT\text{-}M}$ . Furthermore, all three works employed a CLIP-guidance loss, which maxi-

918 mizes the cosine similarity between CLIP embeddings of the text condition and generated images. A  
 919 similar technique using an ImageNet classifier was applied to class-conditional GANs (Sauer et al.,  
 920 2022).

## 922 B SUPPLEMENT FOR PRELIMINARY CONCEPTS

925 We review three key concepts, GAN, SAN, and Bradley–Terry model, which are background of our  
 926 method.

### 928 B.1 GAN

929 **GAN.** Goodfellow et al. (2014) originally formulated GANs as a two-player game between a generator and a discriminator. The generator aims to produce realistic samples that can fool the discriminator, while the discriminator seeks to distinguish real samples from the data distribution and fake samples generated by the generator, outputting a scalar value. Based on this framework, two variants  
 930 of GAN minimax objectives were proposed. The first, known as the saturating GAN objective, is  
 931 defined as:

$$936 \mathcal{V}_{\text{ORIG-GAN}}(f) = \mathbb{E}_{p_d(x)}[\log(\sigma(f(x)))] + \mathbb{E}_{p_g(x)}[\log(1 - \sigma(f(x)))] \quad (14)$$

$$937 \mathcal{J}_{\text{S-GAN}}(g) = \mathbb{E}_{p_g(x)}[\log(1 - \sigma(f(x)))] \quad (15)$$

938 The second variant, referred to as the non-saturating GAN objective, shares the same maximization  
 939 objective but uses a different minimization objective:

$$941 \mathcal{J}_{\text{NS-GAN}}(g) = -\mathbb{E}_{p_g(x)}[\log(\sigma(f(x)))] \quad (16)$$

943 It is well established that the global minimum of  $\mathcal{J}_{\text{S}}$  and  $\mathcal{J}_{\text{NS}}$ , when  $f$  maximizes  $\mathcal{V}_{\text{ORIG}}$ , is achieved  
 944 if and only if  $p_g = p_d$ .

945 The maximization objective can be equivalently rewritten as:

$$947 \mathcal{V}_{\text{ORIG-GAN}}(f) = \mathbb{E}_{p_d(x)}[\log(\sigma(f(x)))] + \mathbb{E}_{p_g(x)}[\log(1 - \sigma(f(x)))] \quad (17)$$

$$948 = \mathbb{E}_{p_d(x)}[\log(\sigma(f(x)))] + \mathbb{E}_{p_g(x)}[\log(\sigma(-f(x)))] \quad (18)$$

949 which consists solely of  $\log \sigma(\cdot)$  terms. We use this maximization objective for  $\mathcal{V}_{\text{SAN}}$ , which is  
 950 applied to our unconditional discrimination.

952 **Relativistic GAN.** Jolicoeur-Martineau (2018) introduced a relativistic variant of GANs, also formulated as a minimax problem but based on a relativistic discriminator. The original relativistic  
 953 GAN, now known as relativistic pairing GAN (RpGAN), is defined using LogSigmoid as:

$$955 \mathcal{V}_{\text{LS-RPGAN}}(f) = \mathbb{E}_{p_d(x_d)p_g(x_g)}[\log \sigma(f(x_d) - f(x_g))] \quad (19)$$

$$957 \mathcal{J}_{\text{LS-RPGAN}}(g) = -\mathbb{E}_{p_d(x_d)p_g(x_g)}[\log \sigma(f(x_g) - f(x_d))] \quad (20)$$

958 Our BT-C loss,  $\mathcal{V}_{\text{BT-C}}$ , can be interpreted as a conditional counterpart to Equation (19). Accordingly,  
 959 we define our minimization loss for conditional alignment,  $\mathcal{J}_{\text{BT-C}}$ , as the conditional counterpart to  
 960 Equation (20).

### 962 B.2 FROM SLICED WASSERSTEIN TO SAN

964 **Sliced Wasserstein.** Sliced Wasserstein (SW) was introduced as a variant of the Wasserstein distance  
 965 and has been further developed, resulting in important extensions such as generalized SW  
 966 (GSW) (Kolouri et al., 2019) and augmented SW (ASW) (Chen et al., 2022). SW leverages a key  
 967 property of the Wasserstein distance: it admits a closed-form solution when the data space is one-  
 968 dimensional. The closed-form expression for the Wasserstein distance between one-dimensional  
 969 distributions with measures  $\mu$  and  $\nu$  is given by

$$970 \mathbf{W}_p(\mu, \nu) = \left( \int_0^1 |F_{\mu}^{-1}(\rho) - F_{\nu}^{-1}(\rho)| \right), \quad (21)$$

972 where  $F_\mu^{-1}(\cdot)$  denotes the quantile function of the probability measure  $\mu$ . The main idea of SW  
 973 is to exploit this closed-form by projecting higher-dimensional probability distributions onto one-  
 974 dimensional spaces using the Radon transform over a set of directions, defined as  
 975

$$976 \quad \mathcal{R}I(\xi, \omega) = \int I(x)\delta(\xi - \langle x, \omega \rangle)dx, \quad (22)$$

978 where the higher-dimensional space is projected onto a one-dimensional space with direction  $\omega \in$   
 979  $\mathbb{S}^{D-1}$ . Specifically, SW is defined as  
 980

$$981 \quad \text{SW}_p(\mu, \nu) = \left( \int_{\omega \in \mathbb{S}^{D-1}} \mathbb{W}_p^p(\mathcal{R}I_\mu(\cdot, \omega), \mathcal{R}I_\nu(\cdot, \omega))d\omega \right)^{1/p}. \quad (23)$$

984 This decomposition of the higher-dimensional space into a collection of one-dimensional spaces  
 985 makes SW much more computationally tractable than the original Wasserstein distance.  
 986

**987 Variants of SW.** Kolouri et al. (2019) introduced the generalized sliced Wasserstein (GSW) distance  
 988 by extending the standard Radon transform to the generalized Radon transform (GRT), defined as  
 989

$$990 \quad \mathcal{GI}(\xi, \omega) = \int I(x)\delta(\xi - g(x, \omega))dx, \quad (24)$$

991 where  $g$  is a defining function that satisfies certain conditions (**H1-H4** in Kolouri et al. (2019)). The  
 992 GRT includes the standard Radon transform as a special case. By replacing the Radon transform in  
 993 the definition of SW with the GRT, the GSW is formulated as  
 994

$$995 \quad \text{GSW}_p(\mu, \nu) = \left( \int_{\omega \in \mathbb{S}^{D-1}} \mathbb{W}_p^p(\mathcal{GI}_\mu(\cdot, \omega), \mathcal{GI}_\nu(\cdot, \omega))d\omega \right)^{1/p}. \quad (25)$$

998 This formulation is simple and enables a broad class of transformations for projecting data samples  
 999 onto one-dimensional spaces. Building on this generalization, Chen et al. (2022) proposed the aug-  
 1000 mented sliced Wasserstein (ASW) distance. The ASW is also based on an extension of the Radon  
 1001 transform, specifically the spatial Radon transform, which is defined as  
 1002

$$1003 \quad \mathcal{S}^h I(\xi, \omega) = \int I(x)\delta(\xi - \langle \omega, h(x) \rangle)dx, \quad (26)$$

1004 where  $h$  is any injective function. The ASW is then defined as  
 1005

$$1007 \quad \text{ASW}_p(\mu, \nu) = \left( \int_{\omega \in \mathbb{S}^{D-1}} \mathbb{W}_p^p(\mathcal{S}^h I_\mu(\cdot, \omega), \mathcal{S}^h I_\nu(\cdot, \omega))d\omega \right)^{1/p}. \quad (27)$$

1009 Although ASW is a valid distance for distributions, it, as well as SW and GSW, requires dense  
 1010 sampling of  $\omega$  on the high-dimensional hypersphere for accurate approximation. To address this  
 1011 computational complexity, the maximum sliced Wasserstein (max-SW) distance was proposed. For  
 1012 example, max-ASW is defined by selecting a single direction that best distinguishes the target prob-  
 1013 ability distributions in the projected one-dimensional space, rather than integrating over all possible  
 1014 directions:  
 1015

$$1016 \quad \text{max-ASW}_p^h(\mu, \nu) = \max_{\omega \in \mathbb{S}^{D-1}} \mathbb{W}_p(\mathcal{S}^h I_\mu(\cdot, \omega), \mathcal{S}^h I_\nu(\cdot, \omega)). \quad (28)$$

1017 ASW is guaranteed to be a distance as long as the function  $h$  is injective.  
 1018

**1019 SAN.** Takida et al. (2024) formulated SANs by modifying the discriminator optimization in both  
 1020 the architecture and objective function. The core idea is to design the discriminator to approximately  
 1021 evaluate the max-ASW with only minor modifications. To bridge the gap between GAN optimiza-  
 1022 tion and max-ASW evaluation, they propose imposing three key conditions on the discriminator  
 1023  $f(x) = \langle \omega, h(x) \rangle$ : (i) direction optimality for  $\omega$ , (ii) injectivity for  $h$ , and (iii) separability for  $h$ .  
 1024 Direction optimality is motivated by the selection of a single direction  $\omega$  in Equation (28), while in-  
 1025 jectivity is necessary to ensure that the discriminator defines a valid distance. A detailed explanation  
 of the third condition, separability, is provided in Appendix E.1.

1026  
1027

## B.3 BRADLEY–TERRY FRAMEWORK

1028  
1029  
1030  
1031

The Bradley–Terry framework (Bradley & Terry, 1952) provides a general method for assigning scores to a set of items based on pairwise comparisons. Since its introduction, it has been widely applied to various machine learning problems, particularly in reward modeling using human preference annotations.

1032  
1033  
1034  
1035

The core idea is to model the log-odds that item  $x_w$  is preferred over  $x_\ell$  as the difference between their scores. Specifically, the preference scoring function, denoted as  $\tilde{f}$ , is learned to represent the log-odds difference between items  $x_w$  and  $x_\ell$  as follows:

1036  
1037  
1038  
1039  
1040

$$\Pr(x_w \text{ is preferred over } x_\ell | y) = \sigma(\tilde{f}(x_w, y) - \tilde{f}(x_\ell, y)). \quad (29)$$

Hereafter, we refer to  $x_w$  and  $x_\ell$  as the winning and losing samples, following the convention in reinforcement learning from human feedback (RLHF). The function  $\tilde{f}$  is learned by maximizing the following objective:

1041  
1042  
1043

$$\mathcal{V}_{\text{BT}} = \mathbb{E}_{x_w, x_\ell} [\log \sigma(\tilde{f}(x_w) - \tilde{f}(x_\ell))], \quad (30)$$

When preferences are conditioned on additional information  $y$ , the objective becomes

1044  
1045  
1046

$$\mathcal{V}_{\text{BT}} = \mathbb{E}_{x_w, x_\ell, y} [\log \sigma(\tilde{f}(x_w, y) - \tilde{f}(x_\ell, y))], \quad (31)$$

which is equivalent to Equation (8).

1047  
1048  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079

In our setup, we use the discriminator  $f$  as the scoring function. In typical problem setups, a dataset of paired samples with preference labels is available. However, in our case, such a dataset is not provided in the required format. Instead, we construct pairs of winning and losing samples in two distinct ways under reasonable assumptions. First, we assume that a sample randomly selected from the dataset is always preferred over a generated sample. Under this assumption, the joint distribution of winning and losing samples is defined as  $p(x_w, x_\ell, y) = p_d(y)p_d(x_w|y)p_g(x_\ell|y)$ , resulting in  $\mathcal{V}_{\text{BT-C}}$ . Second, we assume that a sample from a subset of the dataset associated with a given condition is always preferred over a data sample selected without regard to the condition. In this case, the joint distribution is represented as  $p(x_w, x_\ell, y) = p_d(y)p_d(x_w|y)p_d(x_\ell)$ , resulting in  $\mathcal{V}_{\text{BT-M}}$ .

1080 C ALGORITHM  
1081

1082 Please refer to Algorithm 1 for the pseudo code describing GAN training with SONA. Note that, in  
1083 the application to GALIP (Section 6.2), we use frozen CLIP text embeddings to model  $\omega_y$ , which  
1084 does not involve the optimization of  $\omega$  in Algorithm 1.  
1085

1086 **Algorithm 1** GAN Training with SONA  
1087

1088 **Input:** Data distribution  $p_{\text{data}}$ ; latent distribution  $p_Z$ ; generator parameters  $\theta$ ; discriminator  
1089 parameters  $\Phi = (\omega, \omega_y, \psi)$ , where  $\psi$  models  $h$  as  $h_\psi$ ; parameters for learnable weighting  
1090 ( $\tilde{s}_{\text{SAN}}, \tilde{s}_{\text{BT-C}}, \tilde{s}_{\text{BT-M}}$ ); batch size  $N$ ; learning rates ( $\eta_\theta, \eta_\omega, \eta_{\omega_y}, \eta_\psi, \eta_{\tilde{s}}$ ); total iterations  $T$ ; update  
1091 ratio  $I$ .  
1092 **for**  $t = 1, 2, \dots, T$  **do**  
1093   **for**  $i = 1, 2, \dots, I$  **do**  
1094     Obtain weight coefficient sets by  
1095      $(s_{\text{SAN}}, s_{\text{BT-C}}, s_{\text{BT-M}}) = \text{Normalize} \circ \text{Softplus}(\tilde{s}_{\text{SAN}}, \tilde{s}_{\text{BT-C}}, \tilde{s}_{\text{BT-M}})$   
1096     Sample minibatch  $\{(x_{\text{data},n}, y_n)\}_{n \in [N]}$  from  $p_{\text{data}}$   
1097     Sample latent variables  $\{z_n\}_{n \in [N]}$  from  $p_Z$   
1098     Generate synthetic samples  $x_{\text{gen},n} = g_\theta(z_n, y_n)$  for  $n \in [N]$   
1099     Create negative samples  $x_{\text{neg},n} = x_{\text{data},\pi(n)}$  using a random permutation  $\pi$   
1100     Compute  $\mathcal{V}_{\text{SAN}}$ ,  $\mathcal{V}_{\text{BT-C}}$ , and  $\mathcal{V}_{\text{BT-M}}$  with  $\{(x_{\text{data},n}, x_{\text{neg},n}, x_{\text{gen},n}, y_n)\}_{n \in [N]}$   
1101     Update  $\omega \leftarrow \omega + \eta_\omega \nabla_\omega (\mathcal{V}_{\text{SAN}} + \mathcal{V}_{\text{BT-C}} + \mathcal{V}_{\text{BT-M}})$   
1102     Update  $\psi \leftarrow \psi + \eta_\psi \nabla_\psi (\mathcal{V}_{\text{SAN}} + \mathcal{V}_{\text{BT-C}} + \mathcal{V}_{\text{BT-M}})$   
1103     Update  $\tilde{s} \leftarrow \tilde{s} + \eta_{\tilde{s}} \nabla_{\tilde{s}} (\mathcal{V}_{\text{SAN}} + \mathcal{V}_{\text{BT-C}} + \mathcal{V}_{\text{BT-M}})$   
1104     Update  $\omega_y \leftarrow \omega_y + \eta_{\omega_y} \nabla_{\omega_y} (\mathcal{V}_{\text{BT-C}} + \mathcal{V}_{\text{BT-M}})$   
1105   **end for**  
1106   Sample minibatch  $\{(x_{\text{data},n}, y_n)\}_{n \in [N]}$  from  $p_{\text{data}}$   
1107   Sample latent variables  $\{z_n\}_{n \in [N]}$  from  $p_Z(z)$   
1108   Generate synthetic samples  $x_{\text{gen},n} = g_\theta(z_n, y_n)$  for  $n \in [N]$   
1109   Compute  $\mathcal{J}_{\text{SAN}}$  and  $\mathcal{J}_{\text{BT-C}}$  with  $\{(x_{\text{data},n}, x_{\text{gen},n}, y_n)\}_{n \in [N]}$   
1110   Update  $\theta \leftarrow \theta - \eta_\theta \nabla_\theta (\mathcal{J}_{\text{SAN}} + \mathcal{V}_{\text{BT-C}})$   
1111   **end for**

1112 D ANALYSIS OF EXISTING APPROACHES  
11131114 D.1 PROPOSITION 1  
1115

1116 We introduce the following lemma, which is taken from the proof of Zhang et al. (2023, Proposition  
1117 1).  
1118

1119 **Lemma 5.** *The function  $\tilde{f}$  maximizes  $\mathcal{V}_{\text{CE}}$  if  $\tilde{f}(x, y) = \log p_d(x|y) + r_X(x)$  for an arbitrary function  
1120  $r_X : X \rightarrow \mathbb{R}$ .*  
1121

1122 **Proposition 1** (Log conditional probability maximizes  $\mathcal{V}_{\text{CE}}$ ). *Assume  $p_d(y)$  is a constant regardless  
1123 of  $y \in Y$ , e.g., a uniform distribution. The function  $\tilde{f}$  maximizes  $\mathcal{V}_{\text{CE}}$  if  $\tilde{f}(x, y) = \log p_d(y|x) +$   
1124  $r_X(x)$  for an arbitrary function  $r_X : X \rightarrow \mathbb{R}$ .*  
1125

1126 *Proof.* By Lemma 5, the maximizer  $\tilde{f}$  can be written as  
1127

$$\tilde{f}(x, y) = \log p_d(x|y) + r'_X(x), \quad (32)$$

1128 where  $r'_X : X \rightarrow \mathbb{R}$  is an arbitrary function. By Bayes’ theorem, we have  
1129

$$\log p_d(x|y) = \log p_d(y|x) + \log p_d(x) - \log p_d(y) \quad (33)$$

$$= \log p_d(y|x) - \log p_d(x) + C, \quad (34)$$

1130 where  $C$  denotes the constant  $\log p_d(y)$ , since  $p_d(y)$  is assumed to be constant. Substituting Equation  
1131 (34) into Equation (32) completes the proof.  $\square$   
1132

1134 **E ANALYSIS OF SONA**  
 1135

1136 **E.1 FORMAL STATEMENT OF PROPOSITION 2**  
 1137

1138 We formally state Proposition 2 in this section.

1139 First, we introduce two key assumptions required for this proposition. To do so, we present the  
 1140 concept of separability from Takida et al. (2024), which is used to formulate assumptions on the  
 1141 function  $h$  in the discriminator. This property is important for ensuring that the discriminator induces  
 1142 a meaningful distance between target distributions.

1143 The definition of separability relies on the spatial Radon Transform (Chen et al., 2022, SRT), defined  
 1144 as follows:

1145 **Definition 1.** (Spatial Radon Transform) Given a measurable injective function  $h : X \rightarrow \mathbb{R}^D$  and a  
 1146 function  $U : X \rightarrow \mathbb{R}$ , the spatial Radon transform of  $U$  is

$$1148 \quad \mathcal{S}^h U(\cdot, \omega) = \int_X U(x) \delta(\xi - \langle \omega, h(x) \rangle) dx, \quad (35)$$

1149 where  $\xi \in \mathbb{R}$  and  $\omega \in \mathbb{S}^{D-1}$  parameterize the hypersurfaces  $\{x \in X \mid \langle \omega, h(x) \rangle = \xi\}$ .

1150 The SRT generalizes the Radon Transform using an injective function. If  $U$  is a probability density,  
 1151 the SRT corresponds to applying the standard Radon transform to the pushforward of  $U$  by  $h$ . In  
 1152 this case, intuitively, the SRT projects  $h(x)$  onto a scalar along direction  $\omega$  with the probability. One  
 1153 of its crucial properties is that, for two probability densities  $p$  and  $q$ , if  $\mathcal{S}^h p(\xi, \omega) = \mathcal{S}^h q(\xi, \omega)$  is  
 1154 satisfied for all  $\xi \in \mathbb{R}$  and  $\omega \in \mathbb{S}^{D-1}$ , then  $p = q$  holds due to the injectivity of  $h$ . Thus, an injective  
 1155  $h$  preserves information about the equality of target distributions. This leads to our first assumption:

1156 **Assumption A.** *We assume that  $h : X \rightarrow \mathbb{R}^D$  is injective.*

1157 Using the SRT, we define separability as follows:

1158 **Definition 2.** (Separable) Given probability densities  $p$  and  $q$  on  $X$ , and  $h : X \rightarrow \mathbb{R}^D$ , let  
 1159  $\omega \in \mathbb{S}^{D-1}$ , and let  $F_p^{h, \omega}(\cdot)$  denote the cumulative distribution function of  $\mathcal{S}^h p(\cdot, \omega)$ . If  $\omega^* =$   
 1160  $\arg \max_{\omega} \mathbb{E}_{p(x)}[\langle \omega, h(x) \rangle] - \mathbb{E}_{q(x)}[\langle \omega, h(x) \rangle]$  satisfies  $F_p^{h, \omega^*}(\xi) \leq F_q^{h, \omega^*}(\xi)$  for all  $\xi \in \mathbb{R}$ , then  $h$   
 1161 is **separable** for  $p$  and  $q$ .

1162 Intuitively, separability ensures that the optimal transport map in the one-dimensional space induced  
 1163 by the SRT from  $\mathcal{S}^h p(\cdot, \omega^*)$  to  $\mathcal{S}^h q(\cdot, \omega^*)$  is aligned in the same direction for all samples. This sug-  
 1164 gests that  $h$  can bring  $p$  and  $q$  closer, at least along the optimal direction  $\omega^*$ , which also maximizes  
 1165  $\mathcal{V}_{\text{SAN}}(\omega, h)$  for a given  $h$ . Thus, we make our second assumption:

1166 **Assumption B.** *We assume that  $h : X \rightarrow \mathbb{R}^D$  is separable for  $p_d(x)$  and  $p_g(x)$ .*

1167 With these assumptions, we can now formally state Proposition 2.

1168 **Proposition 2** (Formal; Unconditional discrimination by  $\mathcal{V}_{\text{SAN}}$ ). *Let the discriminator be  $f(x) =$   
 1169  $\langle \omega, h(x) \rangle$  with  $\omega \in \mathbb{R}^{D-1}$  and  $h : X \rightarrow \mathbb{R}^D$ . Suppose Assumptions A and B hold, and let  $\hat{\omega} =$   
 1170  $\arg \max_{\omega} \mathcal{V}_{\text{SAN}}(\omega, h)$  for a given  $h$ . Then, the objective  $\mathcal{J}_{\text{SAN}}(g; \hat{\omega}, h)$  is minimized if and only if  $g$   
 1171 minimizes the following functional mean divergence between  $p_d(x)$  and  $p_g(x)$ , given by*

$$1172 \quad \text{FM}^*(p_d, p_g) = \left\| \mathbb{E}_{p_d(x)}[h(x)] - \mathbb{E}_{p_g(x)}[h(x)] \right\|_2, \quad (36)$$

1173 which is a valid distance under these assumptions.

1174 The proof of Proposition 2 is provided in Takida et al. (2024).

1175 **E.2 PROPOSITION 3**

1176 We introduce a lemma, which is a restatement of a portion of claims made in Theorem 3.1 of  
 1177 Jolicoeur-Martineau (2020).

1178 **Lemma 6.** *Let  $v : \mathbb{R} \rightarrow \mathbb{R}$  be a concave function such that  $v(0) = C$ ,  $v$  is differentiable at 0,  
 1179  $v'(0) \neq 0$ ,  $\sup_t(v(t)) > 0$ , and  $\arg \sup_t(v(t)) > 0$ . Let  $p$  and  $q$  be probability distributions with  
 1180 support  $X$ . Then,  $\sup_f \mathbb{E}_{p(x)q(x')}[v(f(x) - f(x'))]$  is a divergence, up to  $C$ .*

1188  
1189 **Proposition 3** (Conditional learning by  $\mathcal{V}_{\text{BT-C}}$ ). *Let the discriminator be  $f(x, y) = f^N(x) + f^A(x, y)$ , where  $f^N(x) = \langle \omega, h(x) \rangle$  with  $\omega \in \mathbb{S}^{D-1}$ ,  $h : X \rightarrow \mathbb{R}^D$ ,  $b \in \mathbb{R}$ , and  $f^A : X \times Y \rightarrow \mathbb{R}$ . Assume that the generator achieves  $p_g(x) = p_d(x)$ , and  $\omega$  and  $h$  maximize  $\mathcal{V}_{\text{SAN}}$  for given  $p_d$  and  $p_g$ . If  $f^A$  maximizes Equation (13), then it is minimized if and only if  $p_d(x|y) = p_g(x|y)$  for  $y \in Y$ .*

1193  $\mathcal{L}_{\text{BT-C}} = \mathbb{E}_{p_d(y)p_d(x_w|y)p_g(x_\ell|y)} [\log \sigma(f^N(x_w) + f^A(x_w, y) - f^N(x_\ell) - f^A(x_\ell, y))]$ .  
1194

1195 *Proof.* Given  $p_g(x) = p_d(x)$  and the optimality of  $f^N$  for the specified  $p_g$  and  $p_d$ , it follows that  
1196  $f^N(x) = C$  for all  $x \in X$ , where  $C \in \mathbb{R}$  is a constant. Substituting this into Equation (9), we obtain:  
1197

$$\begin{aligned} 1198 \mathcal{L}_{\text{BT-C}}(\omega_y, h) &= \mathbb{E}_{p_d(y)p_d(x_w|y)p_g(x_\ell|y)} [\log \sigma((C + f^A(x_w, y)) - (C + f^A(x_\ell, y)))] \\ 1199 &= \mathbb{E}_{p_d(y)p_d(x_w|y)p_g(x_\ell|y)} [\log \sigma(f^A(x_w, y) - f^A(x_\ell, y))]. \end{aligned} \quad (37)$$

1202 Since  $\log \sigma(\cdot)$  satisfies the conditions of Lemma 6, applying this lemma to  $\mathcal{V}_{\text{BT-C}}$  and  $\mathcal{V}_{\text{BT-C}}$  estab-  
1203 lishes the claim.  $\square$   
1204

### 1205 Note on the assumption of distribution 1206 matching.

1207 In Proposition 3, we assume  
1208  $p_g(x) = p_d(x)$  for theoretical develop-  
1209 ment, which we acknowledge is a rather  
1210 strong condition. We empirically verify  
1211 that the effectiveness of the conditional  
1212 alignment term in SONA does not de-  
1213 pend on this assumption being satisfied in  
1214 practice. To demonstrate this, we plot the  
1215 FID score and Top-1 accuracy with respect  
1216 to training steps for ImageNet (batch size  
2048) in Section 6.1. This figure shows  
1217 that conditional alignment improves from  
1218 the beginning, even when there is still  
1219 a deviation between  $p_g(x)$  and  $p_d(x)$  in  
1220 terms of FID, as observed in ReACGAN  
1221 and PD-GAN.

### 1222 E.3 PROPOSITION 4

1224 We introduce a lemma (presented in the  
1225 proof of Oko et al. (2025, Lemma 1) in the discrete case), which will come in handy for the proof of  
1226 Proposition 4.

1227 **Lemma 7.** *Consider minimizing  $\mathcal{V}_{\text{InfoNCE}}$  over all possible functions  $\tilde{f} : X \times Y \rightarrow \mathbb{R}$ .*

$$1229 \mathcal{V}_{\text{InfoNCE}}(\tilde{f}) = \mathbb{E}_{p_d(x, y)p_d(x')} \left[ \log \frac{\exp(\tilde{f}(x, y))}{\exp(\tilde{f}(x, y)) + \exp(\tilde{f}(x', y))} \right]. \quad (38)$$

1232  $\mathcal{V}_{\text{InfoNCE}}$  is maximized if  $\tilde{f}(x, y) = \log p_d(y|x) + r_Y(y)$  for an arbitrary function  $r_Y : Y \rightarrow \mathbb{R}$ .  
1233

1234 *Proof.* This proof is essentially a modification of the proof of Oko et al. (2025, Lemma 1) to our  
1235 case. Let  $q_{x_0, x_1, y}$  and  $q_{x_0, x_1, y}^{\tilde{f}}$  be probability mass functions over  $\{0, 1\}$  given by  
1236

$$1237 q_{x_0, x_1, y}(0) = \frac{p_d(x_0, y)p_d(x_1)}{p_d(x_0, y)p_d(x_1) + p_d(x_1, y)p_d(x_0)} = \frac{p_d(y|x_0)}{p_d(y|x_0) + p_d(y|x_1)}$$

1239 and

$$1241 q_{x_0, x_1, y}^{\tilde{f}}(0) = \frac{\exp(\tilde{f}(x_0, y))}{\exp(\tilde{f}(x_0, y)) + \exp(\tilde{f}(x_1, y))}.$$

1242 Then, we have  
 1243

$$\begin{aligned}
 1244 \quad \mathcal{V}_{\text{InfoNCE}}(\tilde{f}) &= \frac{1}{2}(\mathbb{E}_{p_d(x_0, y)p_d(x_1)}[\log q_{x_0, x_1, y}^{\tilde{f}}(0)] + \mathbb{E}_{p_d(x_1, y)p_d(x_0)}[\log q_{x_0, x_1, y}^{\tilde{f}}(1)]) \\
 1245 &= \mathbb{E}_{\frac{1}{2}(p_d(x_0, y)p_d(x_1) + p_d(x_1, y)p_d(x_0))}[q_{x_0, x_1, y}^{\tilde{f}}(0) \log q_{x_0, x_1, y}^{\tilde{f}}(0) + q_{x_0, x_1, y}^{\tilde{f}}(1) \log q_{x_0, x_1, y}^{\tilde{f}}(1)] \\
 1246 &= \mathbb{E}_{\frac{1}{2}(p_d(x_0, y)p_d(x_1) + p_d(x_1, y)p_d(x_0))}[-H(q_{x_0, x_1, y}, q_{x_0, x_1, y}^{\tilde{f}})],
 \end{aligned}$$

1247 where  $H(q, q^{\tilde{f}}) = \mathbb{E}_q[-\log q^{\tilde{f}}]$  is the cross entropy, which is minimized when  $q^{\tilde{f}} = q$ . Since  $q^{\tilde{f}} = q$   
 1248 holds when  $\tilde{f}(x, y) = \log p_d(y|x) + r_Y(y)$  for a function  $r_Y$ , we have proven the assertion.  $\square$   
 1249

1250 **Proposition 4** (Log gap probability maximizes  $\mathcal{V}_{\text{BT-M}}$ ). *The function  $\tilde{f}$  maximizes  $\mathcal{V}_{\text{BT-M}}$  if  $\tilde{f}(x, y) =$   
 1251  $\log p_d(x|y) - \log p_d(x) + r_Y(y)$  for an arbitrary function  $r_Y : Y \rightarrow \mathbb{R}$ .*

1252 *Proof.* The objective  $\mathcal{V}_{\text{BT-M}}$  is reformulated as  
 1253

$$\mathcal{V}_{\text{BT-M}}(\tilde{f}) = \mathbb{E}_{p_d(y)p_d(x_w|y)p_d(x_\ell)}[\log \sigma(\tilde{f}(x_w, y) - \tilde{f}(x_\ell, y))] \quad (39)$$

$$= \mathbb{E}_{p_d(x_w, y)p_d(x_\ell)} \left[ \log \frac{\exp(\tilde{f}(x_w, y))}{\exp(\tilde{f}(x_w, y)) + \exp(\tilde{f}(x_\ell, y))} \right] \quad (40)$$

1254 Equation (40) is now equivalent to  $\mathcal{V}_{\text{InfoNCE}}$ . Therefore, the claim has been proven as a direct conse-  
 1255 quence of Lemma 7 and Bayes' theorem:  $\log p_d(y|x) = \log p_d(x|y) - \log p_d(x) + \log p_d(y)$ .  $\square$   
 1256

1257 Note that, from the proof of Lemma 7, we can also prove the “only if” statement up to some  $p_d$ -null  
 1258 sets.  
 1259

#### 1260 E.4 INSIGHT INTO ADAPTIVE WEIGHTING

1261 We provide insight into the adaptivity of our proposed weighting scheme, which employs learnable  
 1262 scalar parameters  $s_{\text{SAN}}^2$ ,  $s_{\text{BT-C}}^2$ , and  $s_{\text{BT-M}}^2$ , by simplifying the maximization objectives.  
 1263

1264 Recall that the maximization objectives  $\mathcal{V}_{\text{SAN}}$ ,  $\mathcal{V}_{\text{BT-C}}$ , and  $\mathcal{V}_{\text{BT-M}}$  can be expressed with  $\log \sigma$   
 1265 (`LogSigmoid`) in the following form:  
 1266

$$\mathcal{V}_{\text{LS}} = \mathbb{E}_{p_d(y)p(x|y)q(x'|y)}[\log \sigma(\tilde{f}_1(x) - \tilde{f}_2(x'))] \quad (41)$$

1267 Specifically,  $\mathcal{V}_{\text{BT-C}}$  is recovered by setting  $\tilde{f}_1 = \tilde{f}_2 = f$ ,  $p = p_d(\cdot|y)$ , and  $q = p_g(\cdot|y)$  in Equa-  
 1268 tion (41), while  $\mathcal{V}_{\text{BT-M}}$  is obtained by setting  $\tilde{f}_1 = \tilde{f}_2 = f$ ,  $p = p_d(\cdot|y)$ , and  $q = p_d$ .  
 1269

1270 Recall also that we adopt  $\mathcal{V}_{\text{ORIG-GAN}}$  proposed in Goodfellow et al. (2014) (see Equation (18) in  
 1271 Appendix B.1) to define  $\mathcal{V}_{\text{SAN}}$ , which is specifically formulated as:  
 1272

$$\mathcal{V}_{\text{SAN}} = \mathbb{E}_{p_d(x)}[\log \sigma(f_{\Phi_N}^N(x))] + \mathbb{E}_{p_g(x)}[\log \sigma(-f_{\Phi_N}^N(x))] \quad (42)$$

$$= \mathbb{E}_{p_d(x)}[\log \sigma(\langle \omega, h(x) \rangle - (-b))] + \mathbb{E}_{p_g(x)}[\log \sigma(-b - \langle \omega, h(x) \rangle)], \quad (43)$$

1273 where  $\mathcal{V}_{\text{SAN}}$  includes two terms involving  $\log \sigma(\cdot)$ , each recovered by setting  $(p, q, \tilde{f}_1, \tilde{f}_2) =$   
 1274  $(p_d, p_d, \langle \omega, h \rangle, -b)$  and  $(p, q, \tilde{f}_1, \tilde{f}_2) = (p_g, p_g, -b, \langle \omega, h \rangle)$  in Equation (41), respectively.  
 1275

1276 As proposed in Section 4.4, we replace  $\log \sigma(t)$  with  $\log \sigma(s \cdot t)/s$  in Equation (41), yielding:  
 1277

$$\mathcal{V}_{\text{LS}, s} = \mathbb{E}_{p_d(y)p(x|y)q(x'|y)} \left[ \frac{1}{s} \log \sigma(s(\tilde{f}_1(x) - \tilde{f}_2(x'))) \right] \quad (44)$$

1278 For simplicity, we consider a single update step for  $s$  and a one-sample approximation of the expec-  
 1279 tation (for  $\mathcal{V}_{\text{ORIG-GAN}}$ , we stochastically compute either the first or second term in Equation (43) per  
 1280 iteration). This leads to:  
 1281

$$\tilde{\mathcal{V}}_{\text{LS}, s} = \frac{1}{s} \log \sigma(s(\underbrace{\tilde{f}_1(x) - \tilde{f}_2(x')}_{{\Delta \tilde{f}}})) \quad (45)$$

1296 where  $x \sim p$  and  $x' \sim q$ . The derivative of  $\tilde{\mathcal{V}}_{\text{LS},s}$  with respect to  $s$  is:  
 1297

$$\frac{\partial \tilde{\mathcal{V}}_{\text{LS},s}}{\partial s} = \frac{\partial}{\partial s} \left[ \frac{1}{s} \log \sigma(s\Delta\tilde{f}) \right] \quad (46)$$

$$= \frac{1}{s^2} \left( \frac{s\Delta\tilde{f}}{\exp(s\Delta\tilde{f}) + 1} - \log \sigma(s\Delta\tilde{f}) \right) \quad (47)$$

1304 For  $0 < s < 1$  (from the constraint on  $s$ ), this derivative  $\partial\tilde{\mathcal{V}}_{\text{LS},s}/\partial s$  has the following properties:  
 1305

1306 (P1) For fixed  $0 < s < 1$  and any  $\Delta\tilde{f}$ , it is monotonically increasing with respect to  $\Delta\tilde{f}$ .  
 1307

1308 (P2) For fixed  $\Delta\tilde{f} \geq 0$ , it is monotonically decreasing with respect to  $s$ .  
 1309

1310 To illustrate these properties, consider the two-term case:  
 1311

$$\frac{1}{s_1} \log \sigma(s_1\Delta\tilde{f}_1) + \frac{1}{s_2} \log \sigma(s_2\Delta\tilde{f}_2) \quad (48)$$

1314 In this setup, (P1) implies that when  $0 < s_1 = s_2 < 1$ , the coefficient corresponding to the  
 1315 larger error between  $\Delta\tilde{f}_1$  and  $\Delta\tilde{f}_2$  yields a larger gradient, meaning the larger error is prioritized by  
 1316 increasing its coefficient. (P2) implies that when  $\Delta\tilde{f}_1 = \Delta\tilde{f}_2 \geq 0$ , the smaller of  $s_1$  and  $s_2$  has a  
 1317 larger gradient, leading to  $s_1 = s_2$  if this equality persists during optimization.  
 1318

1319 Kendall et al. (2018) proposed an adaptive weighting scheme that introduces a scalar parameter  
 1320 to represent uncertainty. Although this method shares some similarities with ours, their method  
 1321 balances multiple terms using (learnable) unbounded coefficients, which can diverge as training  
 1322 progresses. This unbounded growth is undesirable in our case, as GAN training stability is generally  
 1323 sensitive to the learning rate.  
 1324

## F EXPERIMENTAL DETAILS

### F.1 MoG EXPERIMENTS IN SECTION 5.2

1329 We empirically evaluate our proposed method in a two-dimensional space  $X = \mathbb{R}^2$ . The target  
 1330 mixture of Gaussians (MoG) in  $X$  consists of  $N$  isotropic Gaussian components, each with variance  
 1331  $0.03^2$  and means evenly distributed on a circle of radius 0.75. The generator is modeled with a  
 1332 10-dimensional latent space  $Z$ , where the base distribution  $p(z)$  is standard normal.  
 1333

1334 Both the generator and discriminator use simple fully connected (FC) architectures, following pre-  
 1335 vious work (Mescheder et al., 2017; Nagarajan & Kolter, 2017; Sinha et al., 2020; Takida et al.,  
 1336 2024). Specifically, each network consists of three hidden FC layers with 50 units per layer. The  
 1337 generator uses ReLU activations, while the discriminator uses Leaky ReLU, which facilitates the  
 1338 discriminator's injectivity (Takida et al., 2024). The last linear layer in the discriminator corre-  
 1339 sponds to  $\omega$  and  $w$  for SONA and PD-GAN, respectively. For class conditioning in the generator,  
 1340 we use four-dimensional learnable class embeddings concatenated with the input noise  $z$ . For the  
 1341 discriminator, we use additional class-dependent embeddings:  $w_y$  for PD-GAN and  $\omega_y$  for SONA.  
 1342 In SONA, both the linear projection and the embeddings in the discriminator are normalized to  
 1343 ensure  $\omega, \omega_y \in \mathbb{S}^{50-1}$ .  
 1344

1345 For training, we use a batch size of 256 and the Adam optimizer (Kingma & Ba, 2015) with  
 1346  $(\beta_1, \beta_2) = (0.0, 0.9)$  and learning rates of 0.0001 for both the generator and discriminator. The  
 1347 update ratio is set to 1, meaning the discriminator is updated once per iteration. Models are trained  
 1348 for 15,000 iterations, and the checkpoint with the lowest **W2** value is selected as the best model.  
 1349

1350 Wasserstein-2 distances for **W2**, **cW2**, and **NF** are computed using the POT toolbox<sup>5</sup> (Flamary et al.,  
 1351 2021; 2024) with 10,000 samples per distribution.

<sup>5</sup><https://github.com/PythonOT/POT>

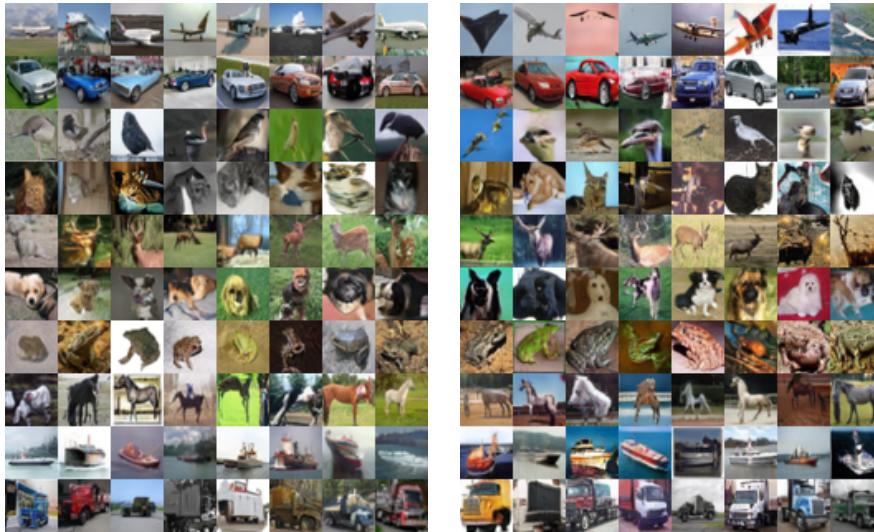


Figure 4: CIFAR10: (Left) Generated samples by SONA with BigGAN. (Right) Generated samples by SONA with StyleGAN-2.

## F.2 CLASS CONDITIONAL GENERATION TASKS IN SECTION 6.1

### F.2.1 EXPERIMENTAL SETUP

We base our experiments on the benchmarking repository provided by PyTorch-StudioGAN (Kang et al., 2023a). For hyperparameters such as learning rate and batch size, we strictly follow the default configuration provided for PD-GAN.

To ensure fair comparisons, we conduct all experiments ourselves and report the resulting scores in the tables. All models are trained on CIFAR10 and TinyImageNet three times with different random seeds; we report the mean and standard deviation of the scores in Tables 2 and 3. For ImageNet, due to the high computational cost (each training run requires 8 and 40 H100-days for batch sizes of 256 and 2048, respectively), we report results from a single run.

For baselines, we select two representative classifier-based methods, ContraGAN and ACGAN, and one projection-based method, PD-GAN. Since our primary objective is to compare SONA with other state-of-the-art discriminator conditioning methods, we do not include additional data augmentation (Karras et al., 2020a; Zhao et al., 2020) or discriminator regularization techniques (Zhang et al., 2020; Zhao et al., 2021; Tseng et al., 2021), as these are orthogonal to our approach. To demonstrate that our method can be combined with such techniques, we also compare SONA and the baselines using the DiffAug data augmentation method (Zhao et al., 2020), and confirm that the performance of SONA can be further improved, as shown in Table 3.

### F.2.2 COMPUTATIONAL COMPLEXITY

We report the computational efficiency of each baseline in Table 7. PD-GAN achieves the highest training efficiency due to its simple design. However, SONA attains comparable efficiency to PD-GAN and outperforms other state-of-the-art classifier-based methods.

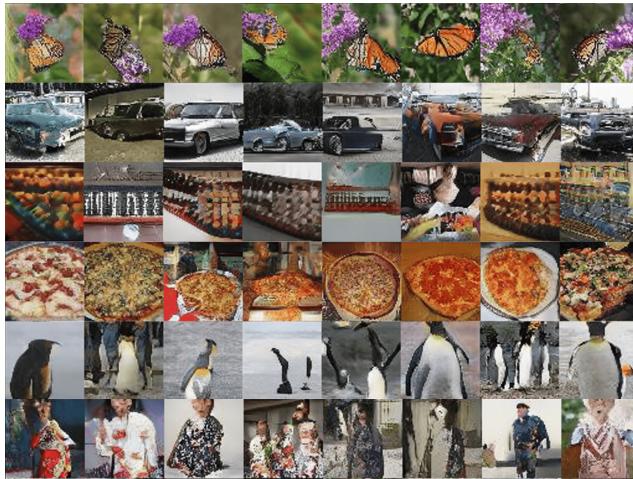
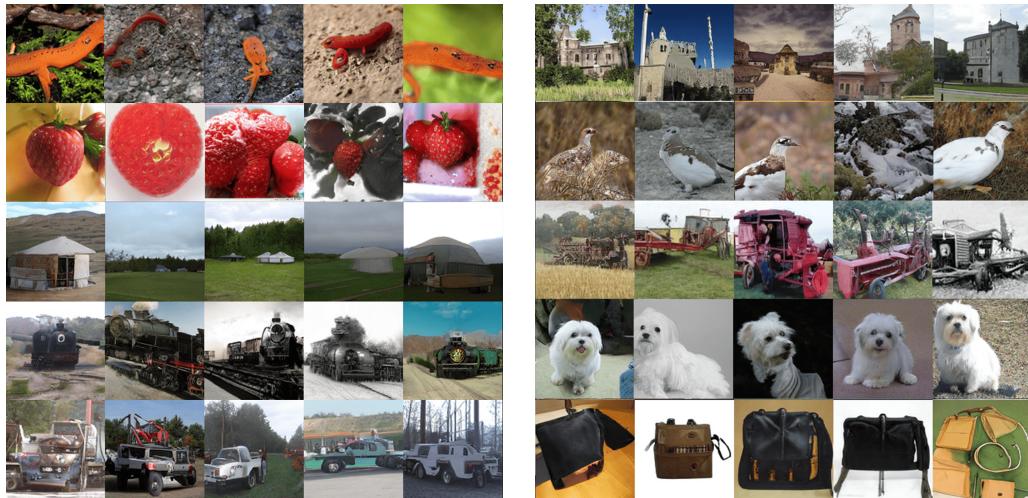
Table 7: Training efficiency (iteration/min).

| Method    | CIFAR10       | TinyIN        | ImageNet      |
|-----------|---------------|---------------|---------------|
| ContraGAN | 360.36        | 129.87        | 80.70         |
| ReACGAN   | 322.15        | 107.23        | 78.84         |
| PD-GAN    | <b>442.80</b> | <b>195.76</b> | <b>101.91</b> |
| SONA      | 410.95        | 169.13        | 90.16         |

## F.3 TEXT-TO-IMAGE GENERATION TASKS IN SECTION 6.2

### F.3.1 EXPERIMENTAL SETUP

We base our experiments on the benchmarking repository provided by Kang et al. (2023a). For hyperparameters such as learning rate and batch size, we strictly follow the default configuration.

1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
Figure 5: TinyImageNet: Generated samples by SONA applied with DiffAug.1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
Figure 6: ImageNet: Generated samples by SONA trained with batch size of 2048.

## F.3.2 CONVERTING GALIP DISCRIMINATOR WITH SONA

**Discriminator architecture.** We briefly review the discriminator architecture proposed by Tao et al. (2023), which serves as our base architecture. The GALIP discriminator consists of a frozen CLIP-ViT and a learnable module called Mate-D. Mate-D is designed to effectively utilize deep features extracted from both images and text using CLIP. Specifically, Mate-D comprises a CLIP Feature Extractor (CLIP-FE) and a quality assessor (QA). The CLIP-FE aggregates multi-layer features from CLIP-ViT using a sequence of extraction blocks, each containing convolutional and ReLU layers, to progressively refine visual representations. The final extracted features are concatenated with replicated sentence vectors obtained by feeding text prompts ( $y$ ) into the CLIP text encoder. These concatenated features are then evaluated by the QA, which predicts conditional likelihood using additional shallow convolutional layers to assess image quality. The dimensionality of the final extracted features, corresponding to  $h(x)$  in our formulation, and the sentence vector, denoted as  $e(y)$ , are 512 and  $512 \times 7 \times 7$ , respectively. The QA converts  $e(y) \in \mathbb{R}^{512}$  to  $E(y) \in \mathbb{R}^{512 \times 7 \times 7}$  by replicating the 512-dimensional vector 49 times to enable concatenation.

Applying SONA to this discriminator requires only modifications to the QA. We add a single trainable  $512 \times 7 \times 7$ -dimensional parameter to model  $\omega$ . For  $\omega_y$ , we directly use the extended text embeddings  $E(y)$ . Notably, even though  $\omega_y$  is frozen in this setup, SONA achieves improved generation performance and comparable text alignment. We also experimented with modeling  $\omega_y$



Figure 7: CUB: Generated samples by SONA.



Figure 8: COCO: Generated samples by SONA.

1479 using learnable modules, such as a learnable affine layer or a shallow FC network applied to  $e(y)$  to  
1480 produce a  $512 \times 7 \times 7$ -dimensional feature. However, these approaches degraded performance, par-  
1481 ticularly in text alignment. We suspect that applying such learnable operators to CLIP features may  
1482 cause information loss and prevent full utilization of the pre-trained representations without careful  
1483 design. Designing suitable modules for  $\omega_y$  based on CLIP features remains an open direction for  
1484 future work.

1485  
1486 **Training objective.** GALIP incorporates additional objective terms and techniques into both the  
1487 discriminator and generator losses to enhance text alignment.

1488 For the discriminator, the fake distribution (i.e., the generator distribution in standard GANs) is aug-  
1489 mented with a mixture distribution that combines the generator distribution and a mismatched data  
1490 distribution, formed by incorrect image-text pairs in equal proportion. To further stabilize adver-  
1491 sarial training, a matching-aware gradient penalty (MAGP) is applied to both the extracted CLIP  
1492 features and their corresponding text features. For the generator, a CLIP-based cosine similarity  
1493 loss is added to encourage both image quality and text alignment. The overall objective functions  
1494 are given by

$$\mathcal{V}_{\text{GALIP}}(f) = \mathbb{E}_{p_d(x_d, y)}[\min(0, -1 + f(x_d, y))] + \frac{1}{2}\mathbb{E}_{p_g(x_g)}[\min(0, -1 - f(x_g, y))] \quad (49)$$

$$+ \frac{1}{2}\mathbb{E}_{p_d(x_d)p_d(y)}[\min(0, -1 - f(x_d, y))] + \lambda_1 \text{MAGP} \quad (50)$$

$$\mathcal{J}_{\text{GALIP}}(g) = -\mathbb{E}_{p_g(x_g|y)p_d(y)}[f(x_g, y)] - \lambda_2 \mathbb{E}_{p_g(x_g|y)p_d(y)}[S_{\text{CLIP}}(x_g, y)], \quad (51)$$

1502 where  $S_{\text{CLIP}}$  denotes the CLIP-based cosine similarity.

1503 For a fair comparison, we partially follow the original loss by adding MAGP to the discriminator loss  
1504 and including the same CLIP-based similarity loss in the generator objective. For the remaining loss  
1505 terms, SONA provides direct counterparts, which replace the original objectives. We use exactly  
1506 the same values of  $\lambda_1$  and  $\lambda_2$ .

## G GENERATED SAMPLES

1508  
1509 Generated samples by SONA trained in Section 6 can be found in Figures 4 to 9.  
1510  
1511

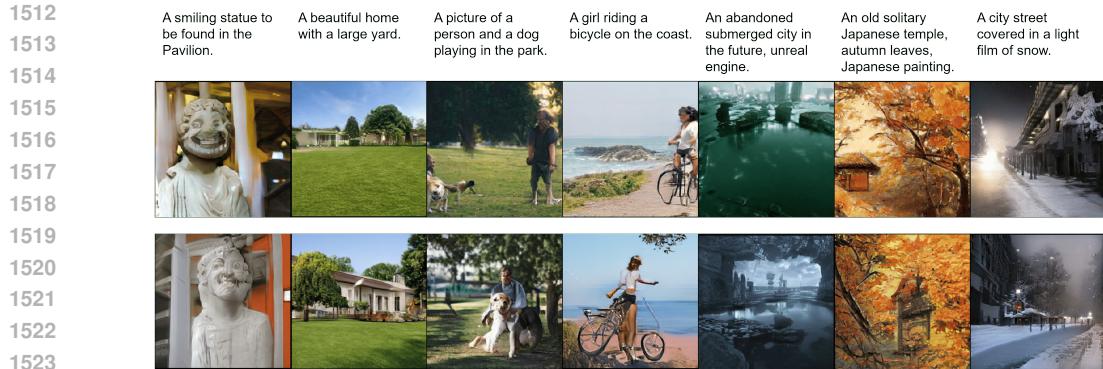


Figure 9: [GALIP models trained on CC12M](#): (Top) Generated samples by GALIP (concat). (Bottom) Generated samples by GALIP with SONA. Text prompts are from the COCO dataset.

## H LIMITATIONS AND FUTURE WORKS

**Method.** Our method is, in principle, applicable to a wide range of conditional generation tasks. However, efficiently modeling conditional projections  $\omega_y$  is still challenging when  $Y$  is not a finite discrete set (e.g., when  $Y$  consists of plausible text captions or is continuous). In our text-to-image experiments (Section 6.2), we use frozen embeddings from a pre-trained CLIP encoder, which may limit the discriminator’s representational power for conditional alignment. Developing effective approaches for modeling conditional projections that generalize to arbitrary types of  $Y$  remains an open problem.

**Theoretical Analysis.** In Proposition 3, we assume the discriminator is globally optimal. While this assumption is common in the literature (Goodfellow et al., 2014; Johnson & Zhang, 2019; Gao et al., 2019; Fan et al., 2022; Li et al., 2018; Chu et al., 2020), it rarely holds in practical GAN optimization. Extending the theoretical analysis to more relaxed and realistic conditions on the discriminator is an important direction for future work.

**Experiments.** We evaluated our approach on standard benchmarks with images up to  $256 \times 256$  resolution, addressing both class- and text-conditional generation tasks. Expanding to a wider range of conditioning modalities (e.g., segmentation maps, image style) and larger-scale settings (e.g.,  $512 \times 512$  or higher, progressive learning setups (Sauer et al., 2022)), as well as extending beyond image generation to domains such as video and audio generation, are important directions for future research.

**Future Works beyond GANs.** Our scope is discriminators, which are beneficial general generative models beyond GANs, including diffusion models. One of the most active areas in this line is diffusion distillation into one-step or few-step generative models. Adversarial Diffusion Distillation (Sauer et al., 2024, ADD) is a pioneering paper of this direction, in which adversarial loss based on a discriminator is used altogether with the usual distillation loss, enhancing the distillation performance significantly. ADD is a backbone framework used for training SDXL Turbo, a well-known high-quality text-to-image model. Besides ADD, some work also employs adversarial training to enable the generation of high-quality samples with one step (Kang et al., 2024; Lin et al., 2025; Chen et al., 2025a). According to this literature, improving discriminators can potentially lead to improved diffusion-based generative models. While it is an interesting trial to apply SONA to such distillation methods, it represents a substantial topic for future investigation.