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Abstract

2D concept art generation for 3D scenes is a crucial yet challenging task in computer graph-
ics, as creating natural intuitive environments still demands extensive manual effort in
concept design. While generative AI has simplified 2D concept design via text-to-image
synthesis, it struggles with complex multi-instance scenes and offers limited support for
structured terrain layout. In this paper, we propose a Training-free Triplet Tuning for
Sketch-to-Scene (T3-S2S) generation after reviewing the entire cross-attention mechanism.
This scheme revitalizes the ControlNet model for detailed multi-instance generation via
three key modules: Prompt Balance ensures keyword representation and minimizes the
risk of missing critical instances; Characteristic Priority emphasizes sketch-based fea-
tures by highlighting TopK indices in feature channels; and Dense Tuning refines contour
details within instance-related regions of the attention map. Leveraging the controllability
of T3-S2S, we also introduce a feature-sharing strategy with dual prompt sets to generate
layer-aware isometric and terrain-view representations for the terrain layout. Experiments
show that our sketch-to-scene workflow consistently produces multi-instance 2D scenes with
details aligned with input prompts.

1 Introduction

Scene generation plays a significant role in visual content creation across various domains, including video
gaming, animation, filmmaking, and virtual/augmented reality. Traditional methods heavily rely on manual
efforts, which require designers to transform initial sketches into detailed multi-instance scene concept art
through numerous iterations. Recently, technological innovations such as Stable Diffusion (Rombach et al.,
2022; Podell et al., 2023) equipped with ControlNet (Zhang et al., 2023b) and integrated with advanced text-
to-image technologies (Kim et al., 2023), have streamlined this process. These advancements have notably
decreased the workload for designers by automating the conversion of simple sketches into complex scenes.
While these technologies perform well with common scenes involving typical instances, they struggle with
generating complex multi-instance scenes and often miss fine details. For the terrain layout, designers still
manually interpret concept art and build terrain by dragging grids with preset tools.

Alternatively, sketch-based synthesis can adopt multi-instance strategies by incorporating instance layouts
via bounding boxes to guide the generation of multiple elements. While effective, most existing methods Yang
et al. (2023); Li et al. (2023); Liu et al. (2023); Sun et al. (2024); Wang et al. (2024); Zhou et al. (2024) are
training-based and require adaptation for sketches, relying on large datasets often restricted by copyright in
gaming, animation, and film. In contrast, training-free approaches Xie et al. (2023); Chen et al. (2024); Feng
et al. (2022); Kim et al. (2023) leverage attention maps to exploit inherent model capabilities, offering flexible
adaptability and low cost for new tasks. Building on this, we retain ControlNet’s sketch-following ability
with a training-free tuning mechanism requiring no additional data. Through a theoretical cross-attention
analysis, we find that imbalanced prompt energy and value non-prominence undermine the competitiveness
of instances and increase coupling among similar ones, leading to deviation from intended prompts.

In this paper, we introduce a Training-free Triplet Tuning for Sketch-to-Scene (T3-S2S) generation via
three modules. Prompt balance adjusts instance-specific keyword energy to ensure all instances remain com-
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Figure 1: The SDXL-base model (Podell et al., 2023) and ControlNet model (Xinsir, 2023) perform well
with common instances like humans, but they struggle with complex multi-instance scenes involving small
instances and fail to accurately follow users’ prompt.

petitive. Characteristics priority amplifies instance-specific traits using a TopK selection from value matrices
to enhance channel prominence in the feature map. Dense tuning adapted from Kim et al. (2023) strength-
ens instance-related contour details in the attention map of the ControlNet branch. Together, these three
form a unified triplet strategy that generates detailed, multi-instance 2D scenes that closely align with input
prompts and sketches. Based on the controllability, we propose a twin structural concept framework that
uses a dual-branch prompt synthesis with a mask-guided feature-sharing mechanism to generate layer-aware
isometric and terrain-view representations for reconstructing the terrain layout. Experimental evaluations
indicate that our T3-S2S approach boosts the performance of existing text-to-image models, consistently
producing detailed, multi-instance scenes that closely align with the input sketches and input prompts.

The key contributions of our work are summarized as follows:

• We theoretically investigate the underlying cross-attention mechanisms and identify the imbalance of
prompt energy and value non-prominence, leading to deviation from intended prompts.

• The triplet tuning advances controllable concept art generation by balancing token competition, enriching
attention expression, and accentuating each instance’s characteristics.

• Our T3-S2S workflow consistently generates detailed multi-instance 2D images and terrain layout aligned
with input prompts.

2 Related Works

Diffusion Techniques. Recently, diffusion models Ho et al. (2020); Rombach et al. (2022); Podell et al.
(2023); Saharia et al. (2022) have marked a major breakthrough, improving the fidelity and realism in text-
to-image generation, which shows infinite potential for concept art generation. The emergence of diffusion
models has also advanced the development of 3D content generation tools. However, creating high-fidelity
3D scenes from images remains a complex task due to the diversity and intricacy of object shapes and
appearances.

Sketch-to-image Synthesis. While text-to-image models can generate high-fidelity, realistic images, they
struggle to accurately convey complex layouts with text prompts alone. In the field of diffusion-based
generation, notable works include ControlNet Zhang et al. (2023b), Make-a-scene Gafni et al. (2022), and
T2I Adapter Mou et al. (2023) handle various additional visual conditions, including sketches, while methods
like Dense Diffusion Kim et al. (2023), SpaText Avrahami et al. (2023) and MultiDiffusion Bar-Tal et al.
(2023) focus specifically on sketch-based inputs. In particular, Dense Diffusion is a training-free approach
that adjusts the attention map by amplifying sketch-relevant tokens and downplaying less important ones,
allowing the model to better distinguish between instances. ControlNet is a powerful solution for sketch-
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to-scene generation, recognized for its exceptional ability to accurately follow conditions. However, these
models often struggle with complex multi-instance scene generations, particularly when handling unusual or
unique instances, and frequently overlook smaller instances. Recently, Xu et al. (2024) proposed an efficient
pipeline for automatically generating interactive 3D game scenes from users’ natural input sketches using
the SDXL and ControlNet models. However, the approach is also limited by the diversity and multi-instance
representation in the intermediate 2D isometric image generation.
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Figure 2: The SDXL-base Podell et al. (2023)
and ControlNet models Xinsir (2023) struggle
with complex multi-instance scenes based on
sketch images and text prompt, even with im-
proved dense tuning Kim et al. (2023).

Multi-instance Synthesis. Multi-instance synthesis is
closely related to sketch-to-scene generation due to its
controllable layout. Training-free modulations Xie et al.
(2023); Chen et al. (2024); Lian et al. (2023); Feng et al.
(2022) and training-based fine-tuning methods Yang et al.
(2023); Li et al. (2023); Liu et al. (2023); Sun et al.
(2024); Wang et al. (2024); Zhou et al. (2024) tackle
the challenge of diffusion models accurately representing
multiple instances with bounding boxes. For example,
Li et al. (2023) (GLIGEN) used bounding box coordi-
nates as grounding tokens, integrating them into a gated
self-attention mechanism to improve positioning accuracy,
while Liu et al. (2023) employed a latent object detection
model to separate objects, masking conflicting prompts
and enhancing relevant ones. Despite existing methods of
generating images with correct positions, these box-based
approaches struggle with simple sketch inputs and fail
to strictly follow the designer’s sketch. Our work lever-
ages ControlNet’s sketch-following capabilities and inves-
tigates the challenges of synthesizing multiple instances.
We aim to design a training-free tuning mechanism to en-
hance modeling within cross-attention, addressing these
challenges effectively.

3 Controllability Analysis of Cross-attention Mechanism

Problem Statement. ControlNet Zhang et al. (2023a) is adopted alongside SDXL Podell et al. (2023)
as our baseline for concept art generation due to its controllability in sketch-to-image generation. Given
a textual prompt cg = {ci}l

i=0 (l is words number) and a sketch image Cs ∈ Rh×w, the system generates
images via cross-attention mechanism in the UNet Rombach et al. (2022), aligning spatial features with text
embeddings S ∈ Rn×d (encoded from cg):

Fm = AmVm = softmax
(

QmK⊤
m/

√
dm

)
Vm,

where m is layer number, n the number of text tokens, and d the token embedding dimension. Qm ∈ Rbm×dm

comes from fore-features, and Km, Vm ∈ Rn×dm are derived from text embeddings S by linear projections,
where bm is the flattened spatial dimension, and dm is the embedding dimension. As shown in Figure 2,
the system struggles with complex multi-instance natural scenes guided by sketch images and text prompts,
often failing to render all intended objects.

Dense Diffusion Kim et al. (2023) can effectively highlight different instances’ attention values based on the
sketches in the attention map Am ∈ Rbm×n, but directly applying its strategy to ControlNet leads to per-
formance degradation. To adapt it, we make an improved Dense Tuning (DT) (Details in Appendix B):
1) Only add the dense tuning at the “down_block_2" and “mid_block_0" of ControlNet; 2) Only use the
expand function, not use the suppress function in the self-attention. Despite this, the image quality improves,
but instances with small areas, such as “path" and “houses", are easily neglected in the final image, despite
having strong responses in feature maps. This highlights that beyond tuning attention maps alone, there
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(a) Single-word prompts

0 3 6 9 12 15 18 21 24 27
Token Index

25

30

35

40

45

En
er

gy
 (L

2 
No

rm
)

 view

 game

 scene
 plain

 walk
 path

 river  mountain
 houses

 End

(b) Multi-word prompts
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(c) Cosine similarity.

Figure 3: Embedding energy comparison between a global prompt (“Isometric view of game scene, a plain,
walk path, a river, a high mountain, houses.”) and single-word prompts (each keyword separated and embed-
ded individually, higher than that in the group). The energy imbalance can lead to attention competition,
and low-energy small instances (“path" and “houses") are easily forgotten. (c) Cosine similarity between
embeddings of (a) and (b)

remains room to explore controllability within the broader cross-attention process. In particular, the roles
of Km in shaping attention distributions and Vm in contributing to the final feature outputs have received
limited attention.

Imbalance of Prompt Energy. In practice, increasing prompt weights (e.g., “(houses:1.5)” in WebUI)
can enhance the visibility of specific instances in multi-instance generation. To understand the underlying
mechanism, we refer to Henry et al. (2020) to decompose each token embedding from S = [s1, . . . , sn] ∈ Rn×d

as:
si = Ei · ŝi, where Ei = ∥si∥, ∥ŝi∥ = 1,

where, Ei represents the prompt energy (L2 norm), and ŝi denotes the normalized embedding. Since both
keys and values in cross-attention are linear projections of si, their magnitudes are bounded:

∥ki∥ = ∥siWK∥ ≤ Ei · ∥WK∥, ∥vi∥ = ∥siWV ∥ ≤ Ei · ∥WV ∥.

Thus, tokens with lower energy yield weaker keys ki and values vi, diminishing their impact on attention
and feature aggregation.

Considering the prompts in Fig. 2, we analyze the embedding energy within a global prompt and each keyword
embedding separately, as shown in Fig. 3. Global encoding obviously lowers the energy of the individual
tokens, especially the instances like “path” and “houses”, aligns with the observed instance omission in
Fig. 2. The final attention value a of the valid token can be represented as a ≈ Eā, where ā denotes the
mean attention weight, empirically observed as approximately 0.43 across 100 prompt sets. After applying
exponentiation, the ratio between two attention values becomes:

Ratio = eE2ā/eE1ā = e(E2−E1)ā.

Due to exponential weighting, energy differences of {1, 3, 5} result in an attention Ratio disparity of
{1.54, 3.63, 8.58} before the softmax average, and higher-energy tokens easily win the attention competi-
tion. Even if a low-energy token receives high attention via tuning, its contribution remains limited due
to the low magnitude of its value vector vi which weakens the aggregated feature in the product AmVm.
This energy imbalance, which allows dominant tokens to overshadow weaker ones and increases the risk of
instance omission in multi-instance synthesis, underscores the importance of balancing and scaling prompt
energy as an interesting perspective to improve multi-instance scene generation.

Non-prominence of Value Matrices. As a core part of cross-attention, the interaction between attention
maps and value matrices shapes each channel’s characteristics to instance-level patterns such as geometry
and attributes. To maximize expressiveness, each channel should focus on distinct semantics, similar to
SENet’s calibration Hu et al. (2018). The aggregated feature at channel j is:

f j
m = Am · vj

m = {[az,1
m , az,i

m , . . . , az,n
m ] · [v1,j

m , vi,j
m , . . . , vn,j

m ]}bm
z=1.
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Figure 4: Interaction between attention maps and value matrices with
prompts from Fig. 2 using dense tuning. (a) Attention maps highlight
strong sketch relevance. (b/c) Five-channel value-feature pairs reveal
the importance of extrema. Despite feature enhancement improving
instance chances, forgetting still occurs as extrema are not prominent.
Statistics are shown in Fig. 10 and Appendix C.

TopK=1 TopK=2 TopK=3

Figure 5: Generations by ampli-
fying the TopK extrema twice in
the value matrices based on the
pipeline in Fig. 4, where most in-
stances appear, but uniform ampli-
fication also introduces noise.

As shown in Fig. 4(a), dense tuning sharpens attention, allowing each spatial position z to attend to a
single instance via high az,i

m . However, The non-prominence between value values can cause responses to
multiple instances, leading to entangled features. Specifically, the extreme values determine which instances
are activated spatially, consistent with the observations in Fig. 4(b) and (c).

To probe this, we double the TopK values in each channel of the value matrices, as shown in Figure 5. As
K increases, the model initially synthetizes all instances (e.g., at K = 2), but it also introduces excessive
noise (e.g., over-detailed houses). This demonstrates that stronger value prominence improves token com-
petitiveness, but requires a trade-off between instance completeness and visual clarity via controlled value
amplification.

4 Diffusion for Controllable Concept Art Generation

To address the cross-attention challenges discussed in Section 3, we propose a training-free triplet tuning
strategy for controllable concept art generation, as illustrated in Fig. 6. This strategy consists of three
modules: Prompt Balance (PB), Characteristics Priority (CP), and Dense Tuning (DT):
(1) Prompt Balance: This module identifies instance keywords within global text prompts, replaces their
embeddings with corresponding single-word embeddings, and adjusts the energy of these keyword embed-
dings to maintain balance. By balancing the energy of the keyword embeddings, the method enhances the
representation of instances within key and value matrices. This process improves the competitiveness of
instance tokens among all tokens, ensures consistency across instance tokens, and reduces the likelihood of
overlooking rare or unusual instances.
(2) Characteristics Priority: This module selects instance-related tokens and their sketches by identifying
the TopK values for each channel in the value matrices, creating an instance-specific mask. The mask is
then used to scale up the feature map for the corresponding channel. This approach enhances the distinction
of instances within the multi-channel feature space without additional parameters, ensuring that instances’
characteristics are more prominently emphasized.
(3) Dense Tuning: While prompt balance increases the strength of the embedding matrices related to
instances, enhancing their competitiveness in the attention map, the overall strength of the attention map
remains suboptimal. Meanwhile, given that more contour information resides in the ControlNet branch, we
employ dense modulation directly within this branch to augment the attention map for better modulation.
Since attention manipulation has been extensively explored in prior works Hertz et al. (2022); Xie et al.
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Figure 6: Overview of the proposed training-free triplet tuning strategy in the frozen pre-trained latent
diffusion model. (a) The orange parts indicate the proposed module plugged into the ControlNet and U-
Net framework. (b) The left part shows the energy tuning of the prompt balance. (c) The bottom part
indicates the training-free tuning of the characteristics priority. T3-S2S ensures the final generation responds
effectively to both text and sketch inputs.

(2023); Kim et al. (2023); Chen et al. (2024), we only adopt a modified dense tuning scheme from Kim et al.
(2023), detailed in Section 3.

In the subsequent section, we will provide a detailed explanation of two newly designed modules and their
underlying rationales.

4.1 Prompt Balance

As discussed previously, the imbalance of prompt energy influences competition among key and value matrices
related to instances, increasing the risk of missing instances. To mitigate this, we propose a plug-in prompt
balance strategy for the text embeddings that enhances energy uniformity across keywords and scales up
values, as displayed in Figure 6 (b). Specifically, we use an NLP network (e.g., the SpaCy library) to
identify instance keywords from the global text prompts cg = {ci}l

i=0, resulting in reorganized instance
keyword prompts {ci}q, where q is the indices vector of keywords in cg. Then, we encode both the global
text prompts and each instance keyword prompts separately into text embeddings Sg = {si

g} ∈ Rn×d and
{si

w ∈ R1×d}q by a text encoding network. Next, we replace the embedding of keywords in Sg with the
single-word embedding of Sw to form a new combined embedding Sr ∈ Rn×d:

Sr = {si
r} = {si

w}, if y ∈ q, otherwise {si
g}.

Generally, the special “end of text" token (located iend) always has the maximum energy as shown in Fig. 3,
which could be the upper bound for us to scale up the embeddings of the keywords in Sr that all keywords
have balanced energy relative to the “end of text" token embedding, mathematically represented as:

{si
r}q = {(Eiend

r /Ei
r) · si

w}q, where Eiend
r = ∥siend

r ∥ and Ei
r = ∥si

r∥.

Finally, the balanced text embeddings, denoted as Sb, enhance the instance-based token values in the key,
value matrices, and attention map, improving their competitiveness and consistency for more concise and
effective instance representation.

4.2 Characteristics Priority

While balanced text embeddings help equalize instance competition, value matrices still face low prominence.
As discussed in Section 3, enhancing TopK values per channel improves prominence. To balance instance
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completeness and noise clarity, we propose a CP technique that applies localized TopK enhancement to
specific sketch regions for features. Specifically, instead of directly enhancing the TopK values along the n
dimension in the value matrix Vm ∈ Rn×dm , we apply enhancement based on the indices of the TopK values
on the feature map Fm ∈ Rbm×dm (before the residual adding). For each channel in the value matrix Vm,
we find the indices of the TopK values across all valid tokens (between “start" and “end" tokens):

YK = {yj
K}dm

j=0 = TopK(abs(Vm[1 : iend]), K) ∈ RK×dm ,

where K is the number of top values considered. For jth channel f j
m ∈ Rbm in Fm, we check whether each

index i in yj
K belongs to the instance keyword vector q. If it does, the index i corresponds to a specific

instance token i ∈ q. Then the sketch ui
m ∈ Rbm of the instance at the current scale will be summed together

to generate an enhancement mask hj
m for the jth channel:

hj
m =

∑
ui

m, if i ∈ {yj
K and q}.

The whole mask matrices Hm = {hj
m}dm

j=0 ∈ Rbm×dm are used to proportionally scale up the corresponding
values in the feature map Fm by a factor β, obtaining the enhanced feature map F̂m:

F̂m = Fm + β · Hm ⊙ Fm,

where ⊙ denotes element-wise multiplication. This enhancement emphasizes instance tokens in the multi-
channel feature space, improving instance distinction. The CP technique strengthens the attention mecha-
nism by amplifying instance-relevant regions in the feature map, even with small sketches.

4.3 Structural Concept Representations

a plain, walk path, 

a river, a high 
mountain, houses.

Isometric Image

Terrain Image

T3-S2S
Feature Sharing

Isometric view of empty scene

Isometric view of game scene

Dual Concept Art Generation

a plain, walk path, 

a river, a high 
mountain.

Figure 7: Twin-structure framework with dual-
branch prompt synthesis, where a mask-guided
feature-sharing mechanism handles full-sketch
isometric and non-foreground terrain images.

Building on the previous modules, the T3-S2S can pro-
duce detailed, multi-instance scenes that align closely
with input prompts and sketches. To further enhance
scene structure, especially in maintaining terrain consis-
tency while separating foreground objects, we propose a
twin structural concept representations framework. As
depicted in Figure 7, it adopts a dual-branch prompt
synthesis with mask-guided feature-sharing mechanism:
one for the complete isometric image with full sketches
and another for the empty terrain with non-foreground
sketches. The feature maps for the complete isometric
image and the empty terrain are denoted as Fiso(t) and
Fterr(t), respectively, at inference step t. The terrain
branch updates with selective and progressive blending,
defined as:

F̂ter = Fter + M ⊙ γ(t) ·
(
Fiso − Fter

)
, γ(t) = γ0 · ( t

T
)α,

where ⊙ denotes element-wise multiplication, γ0 the initial scaling factor. M is a binary mask derived
from the sketch sub-prompts, with 1 indicating background regions and 0 indicating foreground regions
(e.g., houses, bridges). The dynamic scaling γ(t) ensures that the terrain branch inherits global features
from the isometric branch at the early stages, while allowing independent refinement later, with the mask
M preserving foreground integrity. Together, mask-guided sharing and dynamic scaling enable harmonious
terrain generation and effective foreground-background separation.

5 Experiments

5.1 Implementation Details

Baselines. Our baseline leverages the sketch-processing capabilities of the ControlNet model Zhang et al.
(2023b); Xinsir (2023) with the SDXL-base model Podell et al. (2023), compared with two SDXL-base
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(b) Prompt: Isometric view of game scene, a field with ice and snow, iced hills, winding road, trees, a red house.
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Figure 8: Qualitative comparison with baseline methods. (a) T3-S2S per-
forms well for smaller instances like “houses" and “path" , and unusual
“mountain". (b) T3-S2S performs well with a large number of small in-
stances “trees". Note that the original Dense Diffusion (Kim et al., 2023)
based on SD V1.5 (Rombach et al., 2022), has limited prompt response ca-
pabilities. For a fair comparison, we apply it to the SDXL model.
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Figure 9: Qualitative compar-
ison of different inserted mod-
ules based on the ControlNet
and SDXL model. The quan-
titative results are present in
Table 1.

sketch-oriented approaches: the training-based T2I Adapter Mou et al. (2023) and the training-free Dense
Diffusion Kim et al. (2023). We also further validate PB with Attend-and-Excite Chefer et al. (2023)
(Appendix G), and T3-S2S with T2I adapter (Appendix H).

Setup. In the triplet tuning scheme, the prompt balance module is integrated into the text encoding
process, while the characteristics priority module are incorporated across all cross-attention layers. The
dense tuning module is specifically added to the “down_blocks 2" layers and the “mid_blocks 0" layers
within the ControlNet branch. We set K = 2, α = 5, γ0 = 1 and β = 1. During inference, we use the
default Euler Discrete Scheduler Karras et al. (2022) with 32 steps and a guidance scale of 9 at a resolution
of 1024 × 1024. All experiments are conducted on a single Nvidia Tesla V100 GPU.

Metrics. Given that our current approach involves sketch-based multi-instance scene generation, existing
benchmarks should be adjusted for our evaluation, such as adding sketch inputs for T2I-CompBench (Huang
et al., 2023). Therefore, we design 50 complex sketch scenes, each with more than four sub-prompts, encom-
passing various terrains (plains, mountains, deserts, tundra, cities) and diverse instances (rivers, bridges,
stones, castles). We utilize CLIP-Score (Hessel et al., 2021) for the global prompt and image, and evaluate
the CLIP-Score for each background prompt and instance prompts by cropping the corresponding regions.
Additionally, we conduct a user study to assess different variants of our approach, using a 1-5 rating scale to
evaluate image quality, placement, and prompt-image consistency. Details can be found in Appendix D&F.
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5.2 Main Results

Qualitative Evaluation. Building upon the scene design, we show two representative and complex multi-
instance scene scenarios, each incorporating a diverse array of elements to foster varied interactions. We
evaluate several approaches, with visual comparisons displayed in Figure 8. Due to the specialized nature
of this task, most existing solutions will overlook objects aligned with the prompts. When combined with
the triplet tuning strategy, our T3-S2S method improves the generation performance of existing SDXL
models. For example, Figure 8 (a) showcases the enhanced detail in smaller instances such as “houses" and
“path", and even less common elements like “mountains". Similarly, Figure 8 (b) illustrates the effective
generation of numerous small instances, like “trees". By leveraging the triplet tuning strategy within the
cross-attention mechanism, our approach consistently generates detailed, multi-instance scenes that closely
adhere to the original sketches and texts. Additional game and common scenes are provided in Fig. 14 and
Appendix D&E.

Table 1: Comparison of CLIP-Score across several variants
based on SDXL model, evaluated on whole images, masked
instance regions, and masked background regions. Includes
user study ratings on a scale of 1-5.

Model Global↑ Instances↑ Background↑ User↑
DenseDiff 0.3438 0.2459 0.2543 2.25
T2I-Adaptor 0.3422 0.2405 0.2523 2.17
ControlNet 0.3435 0.2427 0.2531 2.38
+PB 0.3439 0.2472 0.2559 2.62
+DT 0.3430 0.2469 0.2547 3.18
+CP 0.3457 0.2503 0.2565 3.40
+PB+CP 0.3466 0.2552 0.2571 3.55
T3-S2S 0.3491 0.2566 0.2581 3.79

Quantitative Evaluation. We compare
CLIP-Scores for global image, instances, and
background across different variants and the
base ControlNet. A user study is also con-
ducted with a 1-5 rating scale. As shown in Ta-
ble 1, our approach demonstrates better perfor-
mance on the 50 complex multi-instance scenes,
with improved fidelity and precision in align-
ing with text prompts and sketch layouts. The
PB module shows modest improvement, while
the CP and DT modules provide comparable
enhancements. Combining these components
allows our T3-S2S approach to achieve a well-
balanced outcome.

5.3 Ablation Study

Module Comparison. We perform an ablation study (Fig. 9) to evaluate the individual and combined
effects of three modules, as well as the quantitative results in Table 1: (1) DT constrains instance regions
within sketches; (2) PB improves small object visibility (e.g., “houses”) but may introduce noise; (3) CP
sharpens features and suppresses noise. PB+CP addresses most issues, and combining all three (T3-S2S)
yields the best sketch-prompt alignment between generated scene images and their corresponding sketches
and texts, aligning with the quantitative results present in Table 1.

Hyper-parameter Comparison. To validate our hypothesis, we study TopK distribution in Fig. 10. In
Fig. 10, later tokens have lower chances of reaching top values at the first and second extrema, so increasing
their values helps enhance their representations. But at the third and fourth extrema, probabilities even out,
implying only a few tokens are key to defining features. Based on the observation, we validate the effects
of varying K and β on generation quality in Fig. 11. With β = 1, increasing K initially improves results
but eventually adds noise. Fixing K = 2, higher β values yield stable and favorable outcomes. We identify
K = 2, β = 1 as optimal. Detailed TopK distribution analysis is provided in Appendix C.

6 Conclusion

In conclusion, our study on the training-free triplet tuning for sketch-to-scene generation has enhanced the
ability of text-to-image models to process complex, multi-instance scenes. By incorporating prompt balance,
characteristics prominence, and dense tuning, we have effectively addressed issues such as imbalanced prompt
energy and value homogeneity, which previously resulted in the inadequate representation of unusual and
small instances. Our experimental results confirmed that our approach not only preserves the fidelity of input
sketches but also elevates the detail of the generated scenes. This advancement is vital in fields like video
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Figure 10: Histogram of the distribution of extrema in Value matrices. At the first and second extrema,
the probability of later instance tokens is lower than that of earlier tokens, so increasing their values helps
enhance their representations. However, at the third and fourth extremes, the probabilities tend to converge,
implying that only a few tokens are key to defining features.
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Figure 11: Visual comparison of two hyper-parameters K and β suggests that setting K = 2 and β = 1 is
a favorable choice. With β = 1, increasing K initially improves results but eventually adds noise. Fixing
K = 2, higher β values yield stable and favorable outcomes.

gaming, filmmaking, and virtual/augmented reality, where precise and dynamic visual content creation is
crucial. Facilitating more efficient and less labor-intensive generation processes, our model offers a promising
avenue for future developments in automated sketch-to-scene transformations.
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A Discussion and Limitations

While our approach is innovative and enhances multi-instance scene generation, it also has some room to
improve, primarily stemming from the inherent capabilities of the base model. One significant challenge is the
generation of detailed instances, such as textures and finer details. This issue largely arises from the limited
understanding of complex descriptions by the CLIP models. Moreover, the characteristic prominence module
tends to focus on instance tokens while neglecting some descriptive adjectives. Our method struggles with
accurately capturing very large scenes (exceeding 4096 × 4096 pixels) such as expansive game maps, which
often include complex relationships like overlaps and interactions between instances. These complex and
dynamic scenarios require further enhancements and refinements in our approach to effectively represent
and capture such intricate relationships. Additionally, the 3D scene shows that terrain and objects can
be generated as concept art, but improvements are needed in understanding concept art, particularly in
segmentation and depth estimation, which may not be accurately represented in the synthesized data. One
potential remedy is to concurrently generate multiple modalities at the same time, such as RGB, semantic,
depth, material, and object footprint, and fuse these results. Building on our current achievements, we
plan to further explore these areas in future work to improve detailed multi-instance sketch-to-scene 3D
generation.

B Details of Dense Tuning

Dense Diffusion Kim et al. (2023) can effectively highlight different instances’ attention values based on the
sketches in the attention map. However, directly applying its strategy to ControlNet results in performance
degradation. To adapt it, we propose an improved version named Dense Tuning (DT), which includes
two key modifications: 1) Dense tuning is only added to the “down_block_2" and “mid_block_0" layers of
ControlNet, where it has the most significant impact; 2) Only the expand function is used in the self-attention
mechanism, while the suppress function from the original Dense Diffusion is omitted, as it negatively affects
performance in our context. Despite these adjustments improving overall image quality, small-area instances
such as “path" and “houses" are still easily overlooked in the final output, even though they elicit strong
responses in intermediate feature maps.

C Top K Anaylsis

In the module of characteristic prominence, two hyperparameters, K and β, require meticulous tuning. K
determines the indices of extreme values within the value matrices. For our analysis, we save these indices
and construct a histogram, as depicted in Fig. 10. We observe that the probability of later instance tokens
achieving the maximum and second maximum values is comparatively lower than that of earlier tokens.
Thus, increasing the value of later instance tokens will be beneficial for their representations. However, at
the third and fourth extremes, the probabilities tend to converge, indicating that not every token is essential
for defining key characteristics. Increasing values for later instances at this point would introduce additional
noise. Therefore, setting K = 2 is advisable based on the observed trends. For β, which enhances the
characteristics of instances within the feature matrix, an initial increase is beneficial. Nonetheless, there is
a critical threshold beyond which increases in β begin to disrupt the distribution within the value matrices.
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Table 2: Evaluation results on T2I-CompBench. # indicates the method evaluated in the new benchmark,
others from the T2i-CompBench paper.

Color 2D Spatial Numeracy
Model B-VQA↑ UniDet↑ UniDet↑
SDXL 0.5879 0.2133 0.4991
ControlNet# 0.5925 0.2686 0.4639
ControlNet+DT# 0.6154 0.3419 0.5143
T-S2S# 0.6872 0.4256 0.6257

D Visualization of Game Scenes

Using a game scene as an example, we begin each prompt with ‘Isometric view of a game scene’ to generate
controlled synthetic images for game settings. This helps maintain a consistent angle and style, ignoring any
incoherent instance sketches that might appear in real-world scenes, thereby focusing on object placement
and verifying text-image consistency. We generate all 50 complex scenes using hyperparameters identical to
those used in the main results (Fig. 7 in the main paper), shown in Fig. 12 in the main paper and Fig. 15. The
colored sketches are used solely to distinguish between different instances, and the colors used are arbitrary
without class or semantic information. To validate this, we also use grayscale sketches as input, and the
resulting images are nearly identical under the same random seed (two columns pointed by the red arrows
in Fig. 15). Meanwhile, our approach is not limited to game scenes. We also test prompts without the fixed
game scene phrase, resulting in more diverse angles and styles while maintaining the same quality in object
placement and text-image consistency (One row pointed by the green arrows in Fig. 12 in the main paper.

E Visualization of Common Scenes

Qualitative Common Scenes. In the above experiments, we primarily validate the controllability of our
method for multi-instance generation in game scenes. However, this does not imply that our approach is
limited to game scenarios. To further verify its capabilities, we design three sets of diverse scenes: (1) four
common simple scenes; (2) two indoor scenes; and (3) three scenes featuring instances of the same type but
with different color attributes. Without changing any hyperparameters, generations are presented in Fig. 16.
In common scenes, our method effectively mitigates instance overlap under ControlNet control, while in
indoor scenes, it handles varied layouts well. For the challenging task of differentiating attributes within
identical instances, our approach assigns distinct properties accurately. However, for uncommon attributes
like generating a red cat, our method struggles due to limitations inherent in the original SDXL model.

Quantitative T2I-CompBench. We evaluate common scene generation on the large-scale T2I-
CompBench Huang et al. (2023) using Color (B-VQA), 2D Spatial (UniDet), and Numeracy (UniDet)
metrics (Standard: 300 prompts/metric, 10 images/prompt). As our method requires sketch inputs, we
use GPT-4V to generate square sketches (similar to bounding boxes) for all instances, with manually ad-
justed sizes, present in Table 2. Our method improves about 9.5% in the Color metric and 15.7% in the 2D
Spatial metric over the ControlNet baselines. Especially for the Numeracy metric, we ensure that the 100
examples contain 1-3 small instance sketches with a minimal resolution of (ensuring 1 pixel at the minimal
feature level). Compared to the SDXL baseline, ControlNet performs 3.5% drop on the Numeracy metric
featuring small instances, while DenseDiffusion improves 1.4%. Our approach shows noticeable 16.2% gains
over ControlNet for the generation of small instances.

F Metric of User Study

We conduct a user study on 50 scenes, each with 6 variants, generating 100 images per scene. A Gradio-based
evaluation interface is designed, which randomly selects one image from 120 sets to create a sub-evaluation
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system, with images presented anonymously. 23 participants independently rate the images based on the
following scale:

• 5: All instances are accurately placed, and overall image quality is high.

• 4: One instance is missing or misplaced, or All are placed with lower quality.

• 3: Two or three instances are missing or misplaced, or placed with lower quality.

• 2: Three or four instances are missing or misplaced, or placed with lower quality.

• 1: Multiple instances are missing, with low overall quality.

This detailed rating system helps assess both the accuracy of instance placement and the quality of generated
images, whether the generations are aligned with text prompts and sketch layouts.

G Transfer PB to Attend-and-Excite

PB+
Attend

Attend

PB+
Attend

Attend

A cat and a frog.

A cat and a dog.

A cat and a bird.

A bird and a pig.

Figure 12: Visualizations for transferring PB to Attend-and-Excite Chefer et al. (2023). In most cases,
both instances are successfully generated. The frog-leg cat and the bird-wing pig further demonstrate the
effectiveness since they lack the layouts to separate the instances spatially.

To further validate the PB module, we integrated it into the Attend-and-Excite method Chefer et al. (2023),
based on attention tuning using the SD V1.4 model. The results are shown in Figure 12. Despite the
limitations of SD V1.4, the PB module effectively balances embedding strength between the two instances
in scenarios without layout guidance, enhancing their representation. In most cases, both instances are
successfully generated. However, in some cases, the attributes of the two objects become entangled, leading
to artifacts such as a cat with frog legs or a pig with bird wings, due to the lack of spatial separation, which
further demonstrates the effectiveness of the PB module.

H Transfer T3-S2S to T2I-Adapter

To validate the general applicability of our approach beyond the ControlNet model, we apply T3-S2S to
another controllable T2I-Adapter Mou et al. (2023) model. Although the T2I-Adapter performs best with
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Figure 13: Visualizations for transferring T3-S2S to T2I-Adapter Mou et al. (2023). T3-S2S effectively
improves the T2I-Adapter’s alignment with prompts and layouts in complex scenes, demonstrating its control
capabilities across different models.

detailed sketches, we use grayscale sketches for quick validation, which contain less semantic information. We
keep the PB and CP modules unchanged, while the DT module is integrated into the SDXL main channel,
similar to CP, as it can not be placed in a separate branch like in ControlNet. We use the same prompts and
sketches from the main results (Fig. 7 in the main paper) and Appendix D, with all other hyperparameters
unchanged. The results are shown in Figure 13. T3-S2S effectively improves the T2I-Adapter’s alignment
with prompts and layouts in complex scenes, demonstrating its control capabilities across different models.
However, the generation quality still lags behind the ControlNet-based approach, indicating the need for
parameter tuning specific to the T2I-Adapter’s distribution and improved sketch inputs to align with the
T2I-Adapter. Despite these limitations, the results show that T3-S2S has promising generalizability and can
effectively control both ControlNet and T2I-Adapter models.

I Perception Modeling for Structural Assembly

To bridge the transition between twin structural concept representations, i.e., isometric and terrain images,
we follow sketch2scene Xu et al. (2024) as our backend to build 3D game scenes from concept art generations.
Structurally Specified Assembly module constructs full 3D natural scenes by segmenting foreground assets
from isometric images, generating terrain meshes via tomography from terrain images, and applying sketch-
based textures. This supports accurate terrain modeling, rich asset composition, and seamless integration
with standard engines.

Foreground Instances. We extract 2D isometric images of individual objects (e.g., buildings, houses,
trees) from the instance segmentation map via Segment Anything Kirillov et al. (2023), which are later used
for 3D retrieval or conditioning in the 3D generation. Assuming an isometric projection with a 45◦ yaw
angle, we estimate object poses by applying homography warping Hartley & Zisserman (2003) and analyzing
their bounding boxes. The warped instance segmentation provides the object footprint, while the depth
information enables projection into 3D space.

HeightMap Generation. The isometric view offers sufficient coverage to recover both geometry and
appearance from a single terrain image. We reconstruct a watertight terrain mesh from the image using
Depth Anything Yang et al. (2024) for depth estimation, followed by Poisson surface reconstruction. From
the coarse depth, we obtain an isometric view depth map and compute the height as h = dmax − d. The
height is rotated into bird’s-eye view (BEV) via homography warping Hartley & Zisserman (2003) to build
the terrain mesh, and then the color-aligned mesh is segmented via Segment Anything Kirillov et al. (2023)
and Osprey Yuan et al. (2023) into categories (grass, rock, mud, road, etc.). The categories map is used to
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retrieve standard texture tiles to ensure high-res appearance in close-up views. For water regions, we lower
the terrain and insert a water asset to maintain realistic elevation.

Procedural 3D Scene Synthesize. Using semantic and geometric data, we procedurally generate and
render 3D scenes via game engines (e.g., Unity, Unreal). We adopt Unity for its terrain, vegetation, and
animation support. Heightmaps and splatmaps are mapped to Unity terrain. Vegetation is procedurally
placed based on texture semantics (e.g., grass → flowers, rocks). Foreground objects are placed by retrieval
(from Objaverse via CLIP) or generated using 2D-to-3D models Hong et al. (2023); Wei et al. (2024);
hyperhuman (2024), ensuring style consistency with the reference.

3D scene generations following the sketch2scene Xu et al. (2024) are shown in Figs. 17 and 18.
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ControlNet T3-S2SSketch Gray Sketch T3-S2S

Prompt: Isometric view of a game scene, jungle, ruined temple, vines, waterfalls, a big rock.

Prompt: Isometric view of a game scene, dim swamp, murky water, a wooden cabin,  tall grass, a bridge.

Prompt: Isometric view of a game scene, arctic tundra, frozen river, a house, stones, trees.

Prompt: isometric view of game scene, a forest, a lake, a path, stones, a wooden house..

Prompt: Isometric view of a game scene, urban park, a playground, fences, trees.

Prompt: Isometric view of a game scene, volcanic terrain, lava river, rocky cliffs, erupting volcano.

Prompt: Isometric view of a game scene, rocky beach, coastal cliffs, stormy ocean, lighthouse, caves.

Prompt: Isometric view of a game scene, small village, snowy mountains, frozen lake, abandoned 
castle, a path, pine trees.

Remove the phrase “Isometric view of a game scene” from the prompts above, keeping all other 
parameters unchanged, resulting in the following outputs.

Terrain

Figure 14: Example results from a subset of the 50 complex scene compositions tested using hyperparameters
identical to those used in the main results (Fig. 8). (1) Two columns pointed by the blue arrows represent
the structural concept representations using the prefix terrain prompts and isometric prompts under the
same random seed. (2) Two columns pointed by the red arrows represent the generations using colored and
grayscale sketches under the same random seed. (3) One row pointed by the green arrows indicates the
generations without the fixed game scene phrase.
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ControlNet T3-S2SSketch Gray Sketch T3-S2S

Prompt: Isometric view of a scene, beach, sea, cabin, fence.

Prompt: Isometric view of a game scene, a snowy plain, river, houses, pines.

Prompt: Isometric view of a  game scene, desert, cliff, pyramid, palm tree.

Prompt: Isometric view of game scene, city, road, houses, garden.

Prompt: Isometric view of a game scene, countryside, river, bridge, house.

Prompt: isometric view of a game scene, a seaside, a golden beach, a forest with trees, a blue sea, wooden Holiday 
houses, beach umbrellas.

Prompt: Isometric view of game scene, beach, tropical islands, ocean, palm trees.

Prompt: Isometric view of a game scene, Gobi desert, dark clouds, steep cliff, a mountain slope, a road, a broken 
cabin.

Prompt: Isometric view of a game scene, medieval village, cobblestone road, castle, market stalls.

Terrain

Figure 15: Example results from a subset of the 50 complex scene compositions tested using hyperparameters
identical to those used in the main results (Fig. 7). (1) Two columns pointed by the blue arrows represent
the structural concept representations using the prefix terrain prompts and isometric prompts under the
same random seed. (1) Two columns pointed by the red arrows represent the generations using colored and
grayscale sketches under the same random seed.
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Prompt: In a yard, a gray cat, a beige cat, a yellow cat, a black cat, a white cat.

Prompt: In a garden, a red rose, an orange rose, a yellow rose, a pink rose, a blue rose, a walking path, a blue sky.

Prompt: In a restroom, a sink with a cabinet, a water tap, a round mirror, a white toilet, a storage rack, a towel rack.

Prompt: In an indoor scene, a beige ceiling, a black oven, a wooden table, red chairs.

Prompt: In a yard, a black cat, a white cat, a red cat, a blue cat, a green cat.

Prompt: There is a cute monkey on a thick branch who is holding a pink rose. It is on the top of a huge tree, and the 
sky is so wide and blue.

Prompt: A painting of a dog riding a flying bicycle, over a big city with a yellowish full moon in the night sky.

Prompt: A painting of a couple holding a yellow umbrella in a street on a rainy night. The woman is wearing a 
white dress and the man is wearing a blue suit.

Prompt: A realistic photograph of a couple holding a yellow umbrella in a street on a rainy night. The woman is 
wearing a white dress and the man is wearing a blue suit.

ControlNet T3-S2SSketch Gray Sketch T3-S2S

（a)
Common
scenes

（b)
Indoor
scenes

（c)
Multi-color

scenes

Figure 16: Examples of generated scenes across different settings. (a) Common simple scenes demonstrating
effective instance representations under ControlNet control. (b) Indoor scenes showcasing robust handling
of varied instance layouts. (c) Scenes with identical instances but different color attributes illustrate precise
differentiation of properties.
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Prompt: Isometric 

view of game scene, 

a plain, walk path, a 

river, a high 
mountain, houses.

Prompt: Isometric view 

of game scene, a field 

with ice and snow, iced 

hills, winding road, 
trees, a red house.

Figure 17: 3D scene generation results with two examples from Fig. 8. The 3D scene shows that terrain and
objects can be generated as concept art, but improvements are needed in understanding concept art, par-
ticularly in segmentation and depth estimation, which may not be accurately represented in the synthesized
data. Additional 3D scenes are available in the Appendix and the supplementary video materials.
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Prompt: Isometric 
view of a  game 

scene, desert, cliff, 
pyramid, palm tree.

Prompt: Isometric view 
of a game scene, a 
snowy plain, river, 

houses, pines.

Figure 18: 3D scene generation results with two more examples from Fig. 15. The 3D scene shows that
terrain and objects can be generated as concept art, but improvements are needed in understanding concept
art, particularly in segmentation and depth estimation, which may not be accurately represented in the
synthesized data.
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