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Abstract

Video prediction is a crucial task for intelligent agents such as robots and autonomous
vehicles, since it enables them to anticipate and act early on time-critical incidents. State-
of-the-art video prediction methods typically model the dynamics of a scene jointly and
implicitly, without any explicit decomposition into separate objects. This is challenging
and potentially sub-optimal, as every object in a dynamic scene has their own pattern of
movement, typically somewhat independent of others. In this paper, we investigate the
benefit of explicitly modeling the objects in a dynamic scene separately within the context
of latent-transformer video prediction models. We conduct detailed and carefully-controlled
experiments on both synthetic and real-world datasets; our results show that decomposing a
dynamic scene leads to higher quality predictions compared with models of a similar capacity
that lack such decomposition.

1 Introduction

Video prediction is the task of predicting future frames based on past frames; it has many applications
including autonomous driving (Yang et al., 2024), weather forecasting from satellite images (Ravuri et al.,
2021), and even building general world models (Wang et al., 2024). Predicting future frames is challenging,
since images are high-dimensional and result from the combination of multiple objects’ appearances, dynamics
and mutual interactions. For example, consider the environment observed while driving a car. How this
scene will develop in the immediate future is dependent on all elements in the scene (e.g., cars, pedestrians,
dogs) and their individual pattern of movement, including complex interactions with both static and moving
parts of the scene (e.g., a car stopping at a traffic light or a dog following its owner on a leash). Hence,
the complexity of the frame prediction task rises quickly as more objects with different motions interact
in a scene, and with this, the size and training data required by prediction models. In this article we
experimentally investigate the hypothesis that modelling explicitly the motion of the main objects in a scene
and their interaction allows for better video prediction without need for larger models or additional training
data.

To handle this complexity, one solution is to decompose the scene into parts (Sun et al., 2023; Bei et al.,
2021; Lee et al., 2021; Hsieh et al., 2018). This enables modeling the appearance and dynamics of each
part separately during prediction, thus reducing computational cost and increasing statistical efficiency.
Several works have achieved promising results by such approaches, using different choices of decomposition.
For example, Hsieh et al. (2018) uses DRNet (Denton et al., 2017) to learn a disentangled representation
of appearance and 2D pose, while Bei et al. (2021); Lee et al. (2021) use semantic segmentation models,
and Sun et al. (2023) separates the foreground, motion and background. Wu et al. (2023) uses object-
centric representation learning (Locatello et al., 2020) to separate objects without supervision, and model
the dynamics with a multi-slot transformer.

While those approaches achieve impressive results, they do not focus on measuring the benefit of object
decomposition in a scientifically-controlled way, i.e., keeping confounding factors such as the number of
network parameters, architecture or latent dimensionality constant. Moreover, these works (Gao et al.,
2022; Wang et al., 2022; 2018) did not use the modern large latent-space transformer architectures that now
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yield excellent results on diverse domains of videos (Yan et al., 2021; Wu et al., 2024); they instead used
older, smaller CNN- or RNN-based models.

In this work, we perform a detailed study of the benefits of explicit modeling of separate objects’ motions
during video prediction, using modern latent transformer models. Rather than introducing an entirely new
model, we develop a family of architectures similar to VideoGPT, MOSO and slotformer (Yan et al., 2021;
Sun et al., 2023; Wu et al., 2023), that supports both single-slot (i.e., jointly modeling the whole scene)
and multi-slot (i.e., per-object) representations in a unified framework. This allows us to perform controlled
experiments on the benefits of object decomposition and on strategies for modeling interactions. Specifically,
we adopt a hierarchical approach that explicitly decomposes a dynamic scene into individual objects using
an instance segmentation model, before encoding these into separate latent spaces. Because objects of the
same class will have similar motion patterns, for example different cars or different pedestrians, it is not
efficient to model each object’s dynamics by a separate slot. Therefore, we mitigate the inefficiency of having
separate network parameters per object instance (Villar-Corrales et al., 2023) by sharing parameters across
all instances of each class.

We find that, even with large transformers, object decomposition leads to considerable improvements in
handling complex scenes with multiple interacting objects compared to non-object-centric predictors with
similar parameter counts and latent dimensions.

Our main contributions are as follows:

• We present the first systematic and comprehensive analysis of the benefits of explicit object decom-
position for latent transformer video prediction models.

• To achieve this, we develop a scalable framework for video prediction that supports both the single-
and multi-slot settings.

• We mitigate statistical inefficiencies in object-centric video predictors by sharing weights (and thus
knowledge about object dynamics) across slots within each object class.

2 Related Work

2.1 Recurrent models for video prediction

Early video prediction models were typically based on the combination of Convolutional Neural Networks
(Krizhevsky et al., 2012) and Recurrent Neural Networks, often LSTMs (Shi et al., 2015; Wang et al., 2022;
2018; Chang et al., 2022; Gao et al., 2022; Denton & Fergus, 2018). Lee et al. (2021) proposed a method
to predict future semantic maps, then used those predicted maps to warp the actual future frames from the
past RGB frame. Bei et al. (2021) proposed a similar approach, decomposing the scene with a semantic
map, and using separate pathways to model the dynamics of different semantic classes. Of these, some
methods are deterministic, i.e., make a single most-likely prediction of the future (Shi et al., 2015; Wang
et al., 2018), while others are stochastic, i.e., sample an autoregressive posterior distribution on possible
future frames (Denton & Fergus, 2018; Lee et al., 2021). We focus on the stochastic setting in this work
since the deterministic models tend to predict and converge to the mean of the possible future, as well as
typically producing sharper predictions (Ohayon et al., 2023).

2.2 Transformer models for video prediction

Following their success on text (Vaswani et al., 2017) and images (Dosovitskiy et al., 2021), Transformers
have also been applied to video prediction. A common approach is to first use an encoder network to map
the original video frames into a sequence of lower-dimensional latent vectors. Most models use VQ-VAE
(van den Oord et al., 2017) or VQ-GAN (Esser et al., 2021) as their encoding network due to their high
fidelity reconstruction of original frames, and discrete latent space that enables treating the latents similarly
to text tokens. Yan et al. (2021) proposed the first autoregressive video prediction model based on VQ-GAN
and a decoder transformer to predict future frames; iVideoGPT Wu et al. (2024) improves performance
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further. Gupta et al. (2022) proposed a similar method that uses VQ-VAE and transformer, but trains with
iterative masking to let it gradually capture the motion patterns in a video. Sun et al. (2023) proposed
a pipeline that decomposes the dynamic scene into motion, object and background, then uses a stochastic
transformer to predict future frames in latent space. Our work also uses a latent transformer, but with
an explicit decomposition of the latent space into separate objects, and cross-attention to capture object
interactions.

2.3 Diffusion models for video prediction

The invention of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) and the computationally faster
latent diffusion (Rombach et al., 2022) brought significant improvement on many generative tasks. Latent
diffusion was originally designed to generate high-resolution images, but has now been applied to video
(Blattmann et al., 2023b;a; Brooks et al., 2024). Ho et al. (2022) use a diffusion model to generate long
videos via a joint training paradigm with conditional sampling. Höppe et al. (2022) use a slightly different
training process that instead of adding noise to the entire video, randomly keeps some of the input frames
without noise. Yu et al. (2023) proposed an interesting way of modeling latent vectors in three directions by
slicing 3D feature vectors along different axes. SORA (Brooks et al., 2024) alongside with Veo3 (DeepMind,
2025) is the state-of-the-art video generation model, and can generate extremely realistic videos by using
diffusion with a transformer architecture. It is able to accurately generate complex interactions involving
multiple objects (Liu et al., 2024). However, in order to train these kind of models, it is extremely expensive
in terms of data and computation power.

2.4 Object-centric video prediction

Object-centric representation learning aims to learn decomposed representations of images (Locatello et al.,
2020; Engelcke et al., 2020) or videos (Jiang et al., 2019; Zhou et al., 2022) without supervision. This can
be used to aid video prediction by learning an object-centric predictor (typically a transformer) over the
resulting representations (Kipf et al., 2022; Li et al., 2021; Sajjadi et al., 2022; Singh et al., 2022). Villar-
Corrales et al. (2023) use an attention mechanism to learn the relationship between different objects in the
video sequence and achieved good results on synthetic CLEVRER Yi* et al. (2020) dataset. Schmeckpeper
et al. (2021) use Mask R-CNN (He et al., 2017) to get bounding boxes for each entity in the scene, then
predict the next state of each bounding box from a single frame. Finally, Henderson & Lampert (2020);
Henderson et al. (2021) proposed self-supervised object-centric approaches that predict frames via latent 3D
objects and scene structure from 2D video. Instead of learning the object centric information from the raw
video frames, we use segmentation masks to decompose the objects by using a pre-train segmentation model.

2.5 Cross-attention

Our model uses cross-attention between instances to capture object interactions. Similar ideas have been
used in many other domains, e.g., (Zhu et al., 2022) use pairwise cross-attention to re-identify pedestrians;
Shi et al. (2025) use cross-attention to fuse information from audio and video for emotion recognition; Lee
et al. (2023) use pairwise cross attention on video action recognition; Rombach et al. (2022) uses cross
attention between image features and text embeddings for conditional image generation. In this work, we
use cross-attention to model the potential interaction between each object, and also evaluate the impact of
using cross-attention to handle object interactions in a dynamic scene.

3 Methodology

Let X1:T = ⟨x1, x2, ..., xT ⟩, be a sequence of T RGB frames from a video clip, where xt ∈ Rh×w×3. Our goal
is to learn a probability distribution on M future frames XT +1:T +M , conditioned on the T preceding frames
X1:T .

We hypothesize that predicting future frames is more effective when modeling each object or instance sep-
arately rather than modeling the entire scene at once. Moreover, when objects are decomposed, we aim
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Figure 1: Top: Our proposed multi-object interacting model SCAT. First, the input frames are decomposed
via a segmentation model, then each decomposed sequence passes through class-specific encoder to convert
the 2D frames into latent representations; then, class-specific transformer blocks learn and predict the
dynamics of each instance and its relationships with other instances in latent space; lastly, the predicted
latent representation are decoded via joint decoder to reconstruct the predicted RGB frames. Bottom: The
non-decomposed single-slot variant SiS where the scene is modeled globally and jointly. In SNCAT, the
cross-attention module is replaced with same-capacity feedforward network, please see Figure 2 for more
details.

to measure the degree to which cross-attention enables learning interactions among objects, thus making
prediction more accurate.

To test this hypothesis, we design a family of models that support differing degrees of object decomposition
and interaction within a unified framework. We decompose a scene into individual objects using instance
segmentation models (Reis et al., 2023; Lüddecke & Ecker, 2022). The video prediction models then comprise
an object-aware auto-encoder (OAAE) (Section 3.1), which extracts latent representations for each object,
and a multi-object transformer (Section 3.2) that predicts future latent representations conditioned on pre-
vious ones; the OAAE is used to decode these future latents back into video frames. To test our hypotheses,
we propose three variants of our overall pipeline:

• Single Slot (SiS): Objects are not modeled separately; frames are encoded with a single encoder,
and a standard (not object-centric) transformer network is used to predict future frames; this is
similar to VideoGPT (Yan et al., 2021).

• Stochastic non-Class Attended Transformer (SNCAT): The scene is decomposed into in-
stances; both the encoder and predictor have one slot for each object in the scene, with parameters
shared across instances of the same class, but no interactions among different object slots in the
transformer.

• Stochastic Class Attended Transformer (SCAT): Our full model, which encodes instances
separately, then uses a multi-slot transformer for future prediction, with cross-attention to capture
object interactions.
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The overall pipeline of the fully-interacting decomposed SCAT and single slot SiS models is shown in
Figure 1.

3.1 Object-aware autoencoder

We now discuss the encoder we use for extracting the latent representation of a video, which will be used in
Section 3.2 as a lower-dimensional space for future prediction. We first explain the object-aware autoencoder
(OAAE) as used in the SCAT and SNCAT models, then give a brief explanation of the simpler (non-object-
centric) variant used in SiS.

Instance decomposition. Let x ∈ Rh×w×3 be a frame in an RGB video sequence of width w and height h.
It is decomposed into a set of N instances with corresponding class labels using an off-the-shelf segmentation
model (Reis et al., 2023; Lüddecke & Ecker, 2022). The segmentation returns N non-overlapping binary
masks, each belonging to one of m object classes ck ∈ {1, . . . , m}; we then multiply the input frame by the
respective masks to isolate each object. The kth masked instance is denoted by x̃k for k ∈ {1, 2, . . . , N},
and its class is denoted as ck. Assuming the segmentation is panoptic and covers all pixels of the frame, the
original frame can be reconstructed by recombining all instances of all classes additively as follows:

x =
N∑

k=1
x̃k (1)

Instance embedding. We modify the standard VQ-VAE (van den Oord et al., 2017) model to have a
set of encoders Φ = {ϕ1, ϕ2, ..., ϕm} and a set of embedding code books E = {e1, e2, ..., em}, each associated
with an individual semantic class. Each instance frame x̃k is passed to the corresponding encoder ϕck

and
quantized with eck

to produce a latent vector z̃k:

z̃k = ei
ck

where i = arg min
j

(∥ϕck
(x̃k) − ej

ck
∥2) (2)

The quantized representations are then concatenated into a single vector z =
⊕N

k=1 z̃k that encodes the
complete frame x (where

⊕
denotes concatenation operation).

For convenience, we will use the notation z = Φ(x) to denote the overall encoding operation. This latent
representation z can then be passed to a single joint decoder Ψ to reconstruct the full frame, i.e., x̂ = Ψ(z).
After each up-sampling convolutional layer in the decoder, we incorporate Frequency Complement Modules
(FCM) (Lin et al., 2023) to learn not only from the target frame but also from feature maps between encoder
and decoder.

Loss function. Since our OAAE is a multi-object extended version of the original VQ-VAE (van den
Oord et al., 2017) with some features of FA-VAE (Lin et al., 2023), we also extend the original loss functions
correspondingly. There are 4 losses: feature loss, commitment loss, vector quantisation loss (VQ loss) and
reconstruction loss. Following (Lin et al., 2023), we impose a loss on feature maps, not only on the final
pixels; similar to them we use focal frequency loss (FFL (Jiang et al., 2021)) between the output of encoder
convolution layers and decoder FCM layers:

Lfeature =
m∑

c=1

L−1∑
l=0

FFL(f c
l , gL−l) (3)

where c indexes encoders (recall there is one per class), l indexes over convolutional layers in the cth encoder
and L − l over corresponding FCM layers in the decoder (L is the total number of decoder layers), fl

represents the feature map of the lth encoder layer, and gl that of the lth FCM module in the decoder. The
VQ and commitment losses are similar to the original VQ-VAE, except we compute these for each class c
and instance k, then sum over these:

LV Q =
N∑

k=1
∥sg[ϕck

(x̃k)] − eck
∥2 (4)
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Figure 2: Left: Architecture of the multi-object latent transformer. Right: Detail of spatial and temporal
attention blocks. SCAT’s block structure is as illustrated, SNCAT removes the pathways of cross attention
in both sides of the diagram, and in the right diagram, Multi-Head Cross attention is replaced with same-
capacity feed forward block.

Lcommitment =
N∑

k=1
∥ϕck

(x̃k) − sg[eck
]∥2

2 (5)

where sg is the stop-gradient operator. Finally, the reconstruction loss is composed of pixel-space and
frequency-space terms calculated between the reconstructed and original frames:

Lrecon = − log p(x|Ψ(Φ(x))) + FFL(x, Ψ(Φ(x))) (6)

Putting all four terms together yields the final loss function for training OAAE:

Loaae = Lrecon + αLfeature + LV Q + βLcommitment (7)

where α and β weight the different loss terms. Once the OAAE is trained, we denote the latent representation
for the frame xt at time step t as zt. This provides a structured and disentangled representation, capturing
N instances across m classes.

Variations of the OAAE. In order to measure whether object decomposition helps with prediction, we
also define a non-decomposed version of the VQ-VAE, for use in model SiS. This only takes the original
non-segmented frame as input. It is processed by a single encoder, with the latent size matched to the
total latent size (over all instances) for model SCAT. In terms of losses, Lrecon remains unchanged, LV Q,
Lcommitment and Lfeature will be a modified to a single term without summation since there is now a single
encoder and codebook, and feature maps from just one instance (e.g., the whole frame). For the SNCAT
model variant, the OAAE is identical to the main version for SCAT, only the subsequent transformer stage
is different.

3.2 Prediction Model

Using the OAAE, a video clip X is encoded as a sequence of latent representations Z = ⟨z1, z2, . . . , zT ⟩. To
learn the instance dynamics and its relationship with other instances, we modify the original decoder-only
transformer (Vaswani et al., 2017; Radford et al., 2018) into a slot-per-instance auto-regressive transformer
that has cross-attention between instances, and shares parameters across instances of each class.

Our transformer consists of alternating attention and feed-forward blocks. However, unlike typical 1D
transformers, it includes factored spatial and temporal attention blocks; each of these is applied both for
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self-attention (i.e., each instance independently attending to other locations / time-points of itself), and
cross-attention (i.e., each instance attending to different locations / time-points of all other instances). We
use PreNorm (Xiong et al., 2020) in each transformer block. The output vectors for each instance from
the last transformer layer are concatenated and passed through a linear layer. The output size matches the
number of embeddings in OAAE, allowing the model to predict the probability of possible indices of future
frames.

Because the latent vectors produced by the OAAE are a concatenation of each object instance’s latent
encoding, we can write the sequence of latent encodings in the video for each individual object instance as
Z̃k = ⟨z1

k, z2
k, ..., zT

k ⟩ where k denotes the kth instance.

Spatial and temporal extensions of attention layers. Since an instance latent sequence Z̃k has a
3-dimensional shape t × (h × w) × c, where c represents embedding dimension in OAAE, it encompasses
both temporal and spatial information. Merely flattening the latent vector to form the video sequence in
latent space risks losing crucial spatial details. Hence, inspired by (Sun et al., 2023), all attention layers are
applied in both spatial (h × w) and temporal t dimensions. This ensures the model can capture not only
the temporal relationships within the sequence but also the important spatial information embedded within
each latent representation.

Instance-level self-attention. For each latent instance frame zt
k in the sequence, we first apply learnable

positional embeddings. This embedding is added to the input features prior to self-attention to provide the
model with information about the position of each instance within the sequence. Scaled self-attention is
then applied to each instance sequence separately in order to learn instance-specific dynamics:

SAc(Z̃k) = softmax
(

QkKT
k√

dk

)
Vk (8)

where SA denotes instance-specific self-attention for objects of class c, Qk, KT
k , which T denotes transpose,

and Vk are the key, query and value calculated by a linear function on Z̃k; 1√
dk

is a scaling factor that
prevents excessively large values in the attention score. Following self-attention, we apply a further linear
projection layer.

Instance-level cross-attention. After the self-attention layer that treats each instance separately, we
apply cross-attention between instances to learn the potential relationships and interactions between objects.
In this layer, each instance attend the space/time dimensions of each of the other instances:

CA(Z̃k) =
⊕

i=1...N, i̸=k

softmax
(

QkKi
T

√
dk

)
Vi (9)

Here CA denotes the cross-attention operation between instance k and the remaining instances. The value
Vi and key Ki are derived from Z̃i, while the query originates from Z̃k. The cross-attention layer’s output,
being n − 1 times larger than the input because of concatenation, is reduced to the original size through a
linear layer.

Training and inference. The model outputs probabilities over the codebook indices from OAAE, and
we use cross-entropy loss to minimize the difference between the predicted and actual distributions. During
training, all model variants are trained with teacher forcing on 10-frame clips. Before the forward pass,
10% noise sampled from a standard normal distribution N (0, 1) is added to the input frames. During
inference, autoregressive sampling is used, starting from an initial sequence of conditioning frames, with
softmax temperature treated as a hyperparameter.

Variants of the transformer. We have described the transformer as used in the full model SCAT. In
the non-interacting model SNCAT, cross-attention is simply replaced by a per-object feed-forward network
of similar capacity. The single-slot version SiS has a single, larger latent vector for the whole scene instead
of separate latents for each object, and we also increase the hidden dimensionality of the transformer (in fact
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resulting in considerably more parameters). The number of feed-forward and self-attention layers remains
the same.

4 Experiments

We perform a series of experiments to measure the benefit of separately modeling the dynamics of objects
during video prediction. Our focus is on comparing different model variants in a controlled setting, keeping
model capacity approximately equal but changing whether the latent representation is decomposed over
objects, and whether interactions between objects are modelled if so. In addition, to place our results in
context, we perform a comparative evaluation against other recent video prediction models under similar
conditions.

4.1 Experimental protocol

Each model is given five frames as input, then predicts the following 5–25 frames depending on the dataset.
We use 64 × 64 resolution for all datasets; further details on hyperparameters are in the appendix. The
models (variants of both encoder and predictor) are implemented in PyTorch and trained from scratch on a
single NVIDIA RTX 3090 GPU, reflecting our emphasis on computational efficiency and model scalability;
further implementation details are given in the appendix. To ensure a rigorous comparison that focuses on
the benefit of instance decomposition, we ensure the numbers of parameters in each model are as similar as
possible. Our focus is not on achieving state-of-the-art performance but rather on analyzing the benefits of
explicit object-centric modeling within a balanced and controlled setting. For quantitative evaluation, we
report Peak Signal-to-Noise Ratio (PSNR) (Horé & Ziou, 2010), Structural Similarity (SSIM) (Wang et al.,
2004), and Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018). PSNR measures the
pixel-wise fidelity between images; SSIM evaluates perceptual similarity in terms of luminance, contrast,
and structure; LPIPS uses deep network features to capture perceptual similarity. We focus on LPIPS
scores in this paper, because it is more aligned with human perception while PSNR and SSIM are sensitive
on slight misalignment that leads to poor scores. The results are obtained by sampling with 10 different
temperature values ranging from 0.1 to 1.0 (from low to high stochasticity), using softmax to sample likely
future indices—yielding 11 evaluations in total. For each test video sequence, 25 samples are generated for
the same input, which is standard in stochastic prediction tasks (Denton & Fergus, 2018), and the best one
(in terms of metric score) is selected. After evaluating each model on each dataset, bootstrapping is used
to estimate the spread. We sampled 10000 same-sized evaluation sets with replacement then calculated the
mean and standard deviation of these sets, which are reported in the tables and figures.

4.2 Datasets

We conduct experiments on five different datasets characterized by weak and strong interactions. We define
weak interactions as scenarios where the dynamics of an instance are unaffected by other instances, or
minimally so. In contrast, strong interactions involve instances significantly affecting each other’s dynamics,
such as during collisions. Since our focus is measuring how the interaction between objects are handled by
explicit decomposition and cross-attention, we do not address the problem of background motion in this
paper, therefore none of the dataset we use features moving background.

The first weak interaction dataset we use is the KTH human action dataset (Schuldt et al., 2004). This
includes six action types performed by 25 individuals. Although the primary focus is on the person, there
remains some slight interaction between the person and the background, such as shadows cast by the indi-
vidual on the background. Following MOSO (Sun et al., 2023), we use videos of persons 1-16 for training
and 17-25 for testing. We used (Lüddecke & Ecker, 2022) to segment the person and the background. Each
model is given five frames and required to predict 15 future frames.

The second weak interaction dataset is the Real-Traffic dataset from Ehrhardt et al. (2020). This comprises
video clips taken from a CCTV camera overlooking a highway intersection. The background is static, and
only the cars are moving in the scene; there are up to five cars per clip. The original dataset contains 615
video clips with various lengths, we split the dataset into a more standardized 10 frames per clip with 5,089
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Figure 3: Comparison of different model variants on the Kubric-Real dataset. SCAT successfully predicted
that the blue pot bounced away whereas SNCAT neglected the interaction between other objects and let
the blue pot go through from other objects. The single-slot model SiS fails to capture the appearances well,
yielding indistinct predictions for later frames.

clips for training and 2,181 for validation. During inference, the models are given five frames and required
to predict five future frames. We used YOLOv8 (Reis et al., 2023) to extract each instance. Each car’s
motion is independent of other cars most of the time; however, interactions do occur, such as when a car
stops before the intersection, causing other cars behind it to slow down. For quantitative evaluation, we
therefore identify a subset of video clips from the test set with the strongest interactions. We calculate the
distances between centroids of different cars, and select clips where the distance between any pair of cars is
less than 25% of the image size; this yields a test set of 807 clips.

For strong interactions, we used Kubric (Greff et al., 2022) to generate a series of synthetic datasets inspired
by CLEVRER (Yi* et al., 2020) but exhibiting stronger interactions and more visual complexity. Full details
on the dataset generation (and corresponding code) are included in the appendix. Specifically, CLEVR-2
contains scenes with two spheres with random velocity sampled such that they will collide; CLEVR-3 scenes
are similar but include another sphere that does not interact with the first two. Kubric-Real uses a realistic
background and replaces the basic geometric objects with 3D-scanned objects—bottles and pots, since these
exhibit interesting dynamics due to their cylindrical shapes.

4.3 Internal and External Evaluation

As we mentioned previously in the experimental protocol, that the best performing sample is selected from
25 samples. Here we first analyze how this selection process will impact the prediction performance. Both
qualitative and quantitative results indicates the best-case predictions are closer to the ground truth com-
pared to the average or worst cases. As illustrated in Figure 4 and Figure 9, the predicted object trajectories
in the best-case sample are more accurately aligned with the ground truth, whereas in the worst-case sam-
ple, the object positions deviate substantially. However, this does not mean the prediction quality is poor,
but indicates that the object trajectories are not close to the ground truth which is expected in stochastic
sampling.

We now compare our model variants, to evaluate the benefit of explicit object-centric modeling in a controlled
setting. Table 1 shows quantitative results on the two weak-interaction datasets. For KTH, the models are
given five frames and required to predict 15 frames and for Real-Traffic, they are required to predict five
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Figure 4: LPIPS metrics of worst, average and best cases of the sample shown in Figure 9; Note that the
Standard deviation presented in this figure is obtained without using bootstrapping technique

frames. In both datasets the SCAT model performs better than the two other variants (SNCAT & SiS). First,
modeling the scene separately by segmenting it at the instance level (SNCAT) leads to predictions comparable
to modeling the whole scene at once (Single-slot model), while using a much smaller model (25M vs. 48M
parameters on KTH, 27M vs. 286M parameters on Real-Traffic). In KTH, we see negligible decrease
compared to SiS model, whereas in Real-Traffic a slight improvement has been made due to this dataset
having more instances and stronger interaction between instance compared to KTH. Second, adding cross-
attention to the model to handle potential interactions between instances (SCAT) leads to an improvement
in performance across all metrics. Since KTH features a single instance with negligible interaction, the
performance improvement is subtle on each metric: SSIM (+0.003), PSNR (+0.05) and LPIPS (-0.03). On
Real-Traffic, which has more instances and higher interactions, consistent improvements are observed in all
metrics (PSNR: +0.78, SSIM: +0.01, LPIPS: -0.007). These results confirm the computational advantage of
both the decomposition and cross-attention components of the approach. From Figure 5, we can see that in
Real-Traffic dataset, improvements are also shown in every time step of the prediction. In KTH dataset,
since the interaction level is negligible, the improvement is not obvious.

7 9 11 13 15 17 19

0.1

0.15

Time Steps

LPIPS±Std

SCAT SNCAT SiS

6 7 8 9

2

3 ·10−2

Time Steps

LPIPS±Std

SCAT SNCAT SiS

Figure 5: Mean and Std of LPIPS metric for KTH(left) and Real-Traffic(right) datasets

Table 1: Quantitative results on KTH and Real-Traffic datasets
KTH Real-Traffic

PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms

Single-Slot 26.49±0.22 0.786±0.005 0.100±0.003 48M 29.63±0.12 0.939±0.001 0.023±0.0005 286M
SNCAT 26.36±0.17 0.785±0.005 0.101±0.003 25M 30.02±0.12 0.946±0.001 0.018±0.0004 27M
SCAT 26.54±0.18 0.789±0.004 0.097±0.003 23M 30.41±0.12 0.949±0.001 0.016±0.0004 28M
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Figure 6: Mean and Std of LPIPS metric for CLEVR-2(left), CLEVR-3(middle) and Kubric-
Real(right) datasets

Table 2: Quantitative results on CLEVR-2, CLEVR-3, and Kubric-Real datasets
CLEVR-2 CLEVR-3 Kubric-Real

PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms

Single-Slot 31.70±0.14 0.925±0.001 0.048±0.001 105M 31.25±0.11 0.911±0.001 0.057±0.001 186M 24.14±0.17 0.748±0.004 0.146±0.002 287M
SNCAT 29.72±0.10 0.908±0.001 0.093±0.002 25M 29.55±0.01 0.898±0.002 0.087±0.002 26M 24.18±0.18 0.759±0.004 0.139±0.003 38M
SCAT 31.11±0.12 0.919±0.001 0.047±0.001 25M 34.42±0.14 0.947±0.001 0.022±0.001 26M 25.13±0.19 0.789±0.004 0.108±0.003 40M

Table 2 provides quantitative results on the strong-interaction datasets. On CLEVR-2, the SCAT model
(PSNR: 31.11) performs similarly to the single-slot model (PSNR: 31.70) but outperforms it on LPIPS
(0.047 vs. 0.048). In contrast, SNCAT performs worse than the single-slot model both on CLEVR-2 and
CLEVR-3 datasets, this is due to the lack of cross-attention to model interactions between objects which
lead to deformations of the spheres when collision happens. In CLEVR-2, where only two spheres colliding,
SiS model can handle this simple interaction. However in CLEVR-3, where one sphere is added but not
interacted with the original two, SiS model starts to struggle but SCAT performs best by a large margin.
This also shows that SCAT’s efficiency of modeling multiple objects’ motion without the need of big sized
model. In Kubric-Real, SNCAT preserves object shapes better than the single-slot model, which struggles
with deformation after collision. SCAT outperforms both models in LPIPS (0.108 vs. 0.146 for the single-slot
model) and SSIM (0.789 vs. 0.748 for the single-slot model), emphasizing the importance of cross-attention
in more realistic and complex interaction scenes. Also, From Figure 6 we can see that due to the strong
interactions, removing cross-attention makes SNCAT unable to beat the single slot model. In contrast,
SCAT performed better than other two variants because of interaction handling with cross-attention. On
Kubric-Real, note that towards the end of the prediction time frame, the prediction accuracy of SCAT and
SNCAT starts to improve again. This is due to the fact that the moving object has either stopped moving
or left the scene entirely. These results confirm our hypothesis that instance segmentation is important
for video prediction and that cross-attention is an effective way to encode strong interactions. Moreover,
without cross-attention, instance separation on its own is sufficient to achieve similar or better performance
compared to the baseline single-slot model on complex scenes (Real-traffic, Kubric-Real) having more
than two instances, with only a fraction of the parameters.

In addition to the model’s prediction performance, we also measure the FLOPs of a single forward pass of
our proposed variants to evaluate their computational efficiency, which shown in Figure 7. It shows both
SCAT’s and SNCAT’s encoder FLOPs are slightly higher compared to SiS’s encoder, this is expected because
the variants with decomposition have individual encoder for an object class where single-slot encoder only
have a single encoder. However, the total FLOPs of decomposed variants are smaller than the one without
decomposition across different datasets even when the segmentation model is involved. This suggests the
decomposed variants are more computationally efficient than non-decomposed variant.

Since SNCAT and SCAT variants depend entirely on the performance of instance segmentation model, we
simulate under- and over-segmentation of an instance segmentation model with image processing techniques
such as erosion and dilation. Figure 8 shows that with the increase of the kernel size, performance of
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Figure 7: FLOPs (GMac) of a single forward pass comparison across different model variants. Note: Y-axis
uses log-scale
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Figure 8: Impact of over- and under-segmentation on SCAT performance simulated via dilation and erosion
operations on Kubric-Real dataset. We evaluated the samples generated by using argmax on logits to isolate
the effect of dilation and erosion from stochasticity.

SCAT is decreased. This suggest that when the segmentation model’s performance is poor the proposed
pipeline’s performance will also decrease accordingly. It is worth noting that although both over- and under-
segmentation has negative impact on the prediction quality of SCAT, we can see when the objects are
over-segmented (dilation), it tends to have smaller effect compared to under-segmentation. This is likely
because over-segmentation still provides full information about an object. More generally, SCAT is still
performs better or similar to SiS when the kernel sizes of dilation and erosion is relatively small (9 for
dilation and 7 for erosion). The implication is that even the segmentation model makes small errors, explicit
models like SCAT will still outperform single slot models.

Although the main focus of our work is on measuring the benefit of object-centric video modeling in a
controlled setting, we also compare our method with other similar methods to better contextualize those
results. Our model is designed to be small yet efficient, demonstrating high performance without the need
for large-scale resources. In contrast, many existing models rely on significantly larger architectures and
large-scale datasets to achieve similar results, which can be resource-intensive and less practical. To ensure
a fair and balanced evaluation, we therefore adjusted each method’s hyperparameters to match our model’s
size (i.e., number of weights), providing a level playing field for comparison. We compare against VideoGPT
(Yan et al., 2021), which uses a similar architecture, and the CNN-based SimVP (Gao et al., 2022) for
a comprehensive evaluation. Prediction performance on KTH, Real-Traffic and Kubric-Real are
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Figure 9: Qualitative results of worst and best cases of 25 samples generated by SCAT on Kubric-Real
dataset when the temperature equals to 0.7 (best among all temperatures)
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Figure 10: Qualitative results from our full model and baselines on KTH (left), Real-Traffic (middle) and
Kubric-real (right).
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Figure 11: Mean and Std of LPIPS metric for KTH(left), Real-Traffic(middle) and Kubric-Real(right)
datasets, where x-axis and y-axis denotes time-step and mean±std, respectively.

presented in Table 3 and Figure 11. The SCAT model outperforms or is competitive with other models across
all three datasets, with a smaller model size, confirming the effectiveness of instance-level segmentation and
cross-attention. On the simpler KTH dataset, SCAT achieves same SSIM compared to VideoGPT (0.789
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Table 3: Quantitative results on KTH, Real-Traffic and Kubric-Real datasets
KTH Real-Traffic Kubric-Real

PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms PSNR↑ SSIM↑ LPIPS↓ Num-Prms

SVG 15.93±0.23 0.614±0.008 0.161±0.004 23M 25.64±0.11 0.900±0.002 0.095±0.0024 31M 16.52±0.13 0.611±0.006 0.699±0.009 41M
VideoGPT 24.44±0.18 0.789±0.004 0.087±0.002 41M 29.13±0.10 0.927±0.001 0.023±0.0006 55M 23.62±0.17 0.700±0.005 0.155±0.003 67M
SimVP 25.17±0.22 0.812±0.005 0.130±0.004 32M 30.16±0.11 0.949±0.001 0.018±0.0004 32M 22.21±0.15 0.710±0.005 0.213±0.003 59M
SCAT 26.54±0.18 0.789±0.004 0.097±0.003 23M 30.41±0.12 0.949±0.001 0.016±0.0004 28M 25.13±0.19 0.789±0.004 0.108±0.003 40M

Table 4: Comparison of FLOPs (GMac) of a single pass, Peak gRAM (GB) and Latency (s) of finish
predicting set of frames (15 for KTH, 5 for Real-Traffic, 25 for Kubric-Real)

Dataset SVG VideoGPT SimVP SCAT
FLOPs Peak gRAM Latency FLOPs Peak gRAM Latency FLOPs Peak gRAM Latency FLOPs Peak gRAM Latency

KTH 28.92 0.46 0.31 34.96 1.27 15.03 10.5 0.80 0.04 73.1 + (46.6) 0.68 + (0.98) 0.61 + (0.36)
Real-Traffic 1.22 0.50 0.14 35.10 1.46 6.29 10.5 0.57 0.01 291.1 + (344.1) 1.05 + (1.19) 1.33 + (1.94)
Kubric-Real 48.09 0.55 0.49 35.21 1.64 26.23 24.2 1.49 0.12 322.5 + (0.0) 1.25 + (0.0) 4.06 + (0.0)

vs 0.789) and slightly lower LPIPS than VideoGPT (0.087 vs 0.097), but lower quality according to PSNR
(26.54 vs 24.44). Moreover, from Figure 10 we can see that only SCAT maintained human posture throughout
the prediction. On Real-Traffic, SCAT achieved best performance in PSNR metric, with PSNR of 30.41,
which is higher than VideoGPT (29.13) and SimVP(30.16). Moreover, SCAT also performs best under
the perceptually robust LPIPS metric (0.016), outperforming both VideoGPT (0.023) and SimVP (0.018),
indicating better perceptual quality. Also, from Figure 10 we can see that when t=9 and t=10, SCAT
maintained the distance between two cars and kept them separate while the other models merged the two
cars. Finally, on Kubric-Real, where strong interactions and realistic objects are present, our model leads
by a large margin on every metric. This further demonstrates that the proposed model achieves larger
improvements on scenes with more instances and strong interactions. In Figure 10, SimVP, VideoGPT
and SVG all failed to predict the collision between two objects, while SCAT predicted this accurately and
maintained the object shape.

Following internal experiments, we also compare the proposed method in terms of computational efficiency
against the baselines. We compare FLOPs of a single forward pass, peak GPU memory usage in inference
time and the total time spent to finish predicting the required number of frames for a dataset. From Table
4 we can see that in all datasets, SCAT’s FLOPs are the highest among other baselines, and it is scaled up
further with the addition of segmentation models. This is an expected limitation of our model that as the
number of classes and instances increases, the cross-attention module will be operated between each instance
pairs, leading to high computational cost. It is still worth noting that all of the experiments conducted in this
paper used relatively limited computation power (single NVIDIA RTX 3090 GPU), therefore this approach
can be scaled to devices having more computation power to potentially scale up the inference latency.

5 Conclusion

In this paper, we investigated and analyzed the benefits of explicit object-centric decomposition in video
prediction. We presented a flexible video prediction pipeline based on an object-aware VQ-VAE and multi-
object Transformer, that operates on separate objects extracted via panoptic segmentation; we also defined
variants that lack object-decomposition and support for interactions to measure the impact of these design
choices in a controlled manner. We evaluated the proposed models on five datasets, finding that when a
dynamic scene is explicitly decomposed and encoded into a structured latent vector, prediction quality is
better than an equal-capacity model without decomposition, and that this improvement is larger for scenes
that involve strong interactions between objects. This confirms that using both object decomposition and
cross-attention to handle interactions improves the overall prediction quality when strong interactions occur
in a dynamic scene.
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6 Limitations

Our model has three inherent limitations. First, object decomposition is entirely reliant on the performance of
instance segmentation models, this is evident in Figure 8 that the proposed model’s performance is decreased
when the kernel sizes to simulate over- and under-segmentation became bigger. Second, our experiments
throughout the paper focused solely on static camera settings, and additional experiments would be required
to evaluate the robustness of the approach to scenarios with moving cameras. Third, the encoder encodes
predefined object classes. For example, pots and bottles in Kubric, cars in Real-traffic and spheres in CLEVR
datasets. Based on this predefined latent space, the transformer will also learn to predict the dynamics of
the given latent space during training. Because each object in a video is first segmented and the instances
which belong to the predefined classes are selected to process, if there are novel object classes outside the
scope of the predefined classes, then the novel objects are automatically categorized to the background
slot. Therefore, this novel object’s motion is learned and predicted implicitly. For example in Kubric-Real,
the model is trained to predict the motions of pots and bottles, and if we initialize a new object with
different characteristics than pre-defined object-class (i.e., a box), its motion is learned in the background
slot implicitly.
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Appendix

A Implementation Details

Specific implementation details of both Object Aware Auto-Encoder (OAAE), Stochastic Class-
Attended Transformer (SCAT) and their variants are given in Tables 5 and 6. We ensured that the non-
decomposed version was fairly compared to the decomposed version by adjusting the embedding dimensions
accordingly. Specifically, the embedding dimension in the non-decomposed version was set to be N times
larger than the embedding dimension of a single instance in the decomposed setting, where N represents the
total number of instances. For example, in the Kubric-Real dataset, there are three classes: background,
bottles, and pots. The background class is assigned one slot, the bottles class is assigned two slots, and the
pots class is assigned two slots, totalling five instances. Thus, if each instance in the decomposed version
has an embedding dimension of 128, then in the non-decomposed version, the embedding dimension is set
to 640 (128 times 5 instances).

KTH Real-Traffic CLEVR-2 CLEVR-3 Kubric-Real

OAAE Non-Decom OAAE Non-Decom OAAE Non-Decom OAAE Non-Decom OAAE Non-Decom

In Channels 1 3 3 3 3
Num Instance 2 1 5 1 3 1 4 1 5 1
Num Classes 2 1 2 1 2 1 2 1 3 1
Embed Dim/Instance 128 256 128 640 128 384 128 512 128 640
Num Embeddings 5120 5120 5120 5120 5120
Conv Hidden Dims 128, 256 128, 256 128, 256 128, 256 128, 256
Num Residual Layers 6 6 6 6 6
Batch Size 8 8 8 8 8
Learning Rate 10−4 10−4 10−4 10−4 10−4

Table 5: Hyper-parameters of OAAE on KTH, Real-Traffic, CLEVR-2, CLEVR-3 and Kubric-Real
Datasets

B Dataset Details

B.1 Decomposition

For KTH, we use CLIPSeg with the prompt ’person’ and ’background’ to decompose the frames. For
Real-Traffic, we use YOLOv8 to be our instance segmentor. For Kubric-generated datasets, because the
instance segmentation map is available with the generation, we directly use these to extract the instances.

B.2 Synthetic Datasets Generation

We use Kubric to generate CLEVR-2, CLEVR-3 and Kubric-Real. The generation parameters are given
in Table 7. All three datasets use a colliding position range of [−1, 1] and a fixed, static camera looking
at (0, 0). The summoning radius is set to 5 for CLEVR datasets and 8 for Kubric-Real, with minimum
summoning distances of 2 for CLEVR and 4 for Kubric-Real. CLEVR datasets feature object friction values
of 0.4 for metal spheres and 0.8 for rubber spheres, while Kubric-Real has a uniform friction of 1.0. This
higher friction in Kubric-Real necessitates a larger maximum initial velocity of 7, compared to 5 in the
CLEVR datasets. The number of objects also increases from 2 in CLEVR-2 to 3 in CLEVR-3, and 4 in
Kubric-Real. More details are given in table 7.

C Additional Qualitative Results
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KTH Real-Traffic CLEVR-2 CLEVR-3 Kubric-Real

SCAT SNCAT SiS SCAT SNCAT SiS SCAT SNCAT SiS SCAT SNCAT SiS SCAT SNCAT SiS

Num Instance 2 1 5 1 3 1 4 1 5 1
Num Classes 2 1 2 1 2 1 2 1 3 1
VQVAE Dim 128 256 128 640 128 384 128 512 128 640
Embed Dim/Instance 256 512 256 1280 256 768 256 1024 256 1280
Num Attention Head 16 16 16 16 16
FF expanding Factor 2 2 2 2 2
Depth 4 4 4 4 4
Drop Out 0.3 0.3 0.3 0.3 0.3
Batch Size 1 1 1 1 1
Learning Rate 10−4 10−4 10−4 10−4 10−4

LR Scheduler Cosine Cosine Cosine Cosine Cosine
Warm-up Steps 10000 10000 10000 10000 10000

Table 6: HyperParameters of SCAT and its variants on KTH, Real-Traffic, CLEVR-2, CLEVR-3 and
Kubric-Real Datasets

CLEVR-2 CLEVR-3 Kubric-Real

Colliding Position Range (x, y) [(-1, 1),(-1, 1)] [(-1, 1),(-1, 1)] [(-1, 1),(-1, 1)]
Radius for Summoning Objects 5 5 8
Min Distance When Summoning 2 2 4
Max Initial Velocity 5 5 7
Ground Friction 0.3 0.3 0.3
Object Friction 0.4,0.8 0.4,0.8 1.0
Num Objects 2 3 4
Num Object Class 1 1 2
Camera Position Fixed Static Fixed Static Fixed Static
Camera Looks At (x, y, z) (0, 0, 0) (0, 0, 0) (0, 0, 0)

Table 7: Parameters for Generating CLEVR-2, CLEVR-3 and Kubric-Real Datasets
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Figure 12: Kubric-Real Example 1
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Figure 13: Kubric-Real Example 2
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Figure 14: Kubric-Real Example 3
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Figure 15: Kubric-Real Example 4
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Figure 16: Kubric-Real Example 5
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Figure 17: Real-Traffic Example 1
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Figure 18: Real-Traffic Example 2
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Figure 19: Real-Traffic Example 3
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Figure 20: Real-Traffic Example 4
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Figure 21: CLEVR-3 Example 1
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Figure 22: CLEVR-3 Example 2
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Figure 23: CLEVR-3 Example 3
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Figure 24: CLEVR-3 Example 4
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Figure 25: KTH Example 1
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Figure 26: KTH Example 2
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Figure 27: KTH Example 3
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Figure 28: KTH Example 4
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Figure 29: KTH Example 5
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