
HiLD 2025: 3rd Workshop on High-dimensional Learning Dynamics

What Happens During the Loss Plateau?
Understanding Abrupt Learning in Transformers

Pulkit Gopalani GOPALANI@UMICH.EDU
University of Michigan, Ann Arbor, US

Wei Hu VVH@UMICH.EDU

University of Michigan, Ann Arbor, US

Abstract
Training Transformers on algorithmic tasks frequently demonstrates an intriguing abrupt learning
phenomenon: an extended performance plateau followed by a sudden, sharp improvement. This
work investigates the underlying mechanisms for such dynamics, primarily in shallow Transform-
ers. We reveal that during the plateau, the model often develops an interpretable partial solution
while simultaneously exhibiting a strong repetition bias in their outputs. This output degeneracy
is accompanied by internal representation collapse, where hidden states across different tokens
become nearly parallel. We further identify the slow learning of optimal attention maps as a key
bottleneck. Hidden progress in attention configuration during the plateau precedes the eventual
rapid convergence, and directly intervening on attention significantly alters plateau duration and the
severity of repetition bias and representational collapse. We validate that these identified phenom-
ena—repetition bias and representation collapse—are not artifacts of toy setups but also manifest
in the early pre-training stage of large language models like Pythia and OLMo.

1. Introduction

Training Transformers on mathematical or algorithmic tasks often exhibits an intriguing “abrupt
learning” phenomenon in their training dynamics, where the model’s performance plateaus at a
suboptimal level for an extended period before suddenly and rapidly converging to the optimal so-
lution [2, 31, 38, 40, 47] (Figures 1 and 2). This is often considered an example of the broader
phenomenon of “emergence,” where model capabilities appear to arise discontinuously and unpre-
dictably with increasing amount of parameters, training data, or training steps [42].

The goal of this paper is to uncover universal characteristics and underlying mechanisms that
define these training dynamics that are broadly applicable to a wide range of setups and tasks. We
train small linear-Attention Transformers (1 or 2 layers and 1 attention head per layer) on a suite
of simple algorithmic tasks such as moving-window-sum, permutation, and multi-digit addition,
among others. These tasks have well-defined optimal solutions, allowing us to precisely measure
the model’s progress against a known ground truth. Furthermore, small models allow for tractable
analysis and interpretation of internal model mechanisms.

We identify novel inductive biases that underlie the early plateau period of Transformer training:
the model learns a partial solution while being biased toward degenerate patterns in its outputs and
internal representations (see Figure 1 for an overview). We further study the pivotal role of attention
map learning in driving these phenomena and overcoming the performance plateau. Finally, we

© P. Gopalani & W. Hu.

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

After Sudden Drop in Loss

Before Sudden Drop in Loss

Attention Map

Train/Test Loss and Accuracy

Attention Map

Example Output Sequence

h1
h2 h3…

(hi ∈ ℝd)
h16

Hidden States

Example Output Sequence

10, 10, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13

1, 16, 6, 7, 2, 1, 11, 9, 16,
11, 16, 7, 4, 10, 2, 6h1

h2
h3

(hi ∈ ℝd) h16

h4

…

Hidden States

Figure 1: Abrupt learning and related characteristics. Training a shallow Transformer on algo-
rithmic tasks like moving-window-sum exhibits an abrupt learning curve: performance plateaus for
an extended number of steps, before suddenly and sharply improving to optimum.

demonstrate that key findings from these controlled small-scale studies extend to the pre-training
dynamics of actual Large Language Models (LLMs).

2. Setup

We study the moving-window-sum (MWS) task, that involves computing the sliding-window sum
(modulo p) of a length-n sequence over windows of size 2; i.e.,

x1, x2, . . . , xn, SEP, y1, y2, . . . , yn

yi =

{
x1 i = 1

(xi−1 + xi)mod p i ≥ 2

Here, n = 16, xi ∼ Unif{1, . . . , 16}, p = 17, and SEP = 17 is a separator token. We train a
1-layer, 1-head Transformer with linear Attention on the above task in an online fashion (new batch
of 256 samples from the distribution at every step), using Adam optimizer with a fixed stepsize
10−4 without weight decay. The training loss is the standard next-token-prediction cross-entropy
loss, computed on the full sequence (x1, . . . , xn,SEP, y1, . . . , yn). We measure accuracy over the
output part y1, y2, . . . , yn. Please see Appendix A for implementation details, and Appendix B for
details on measuring attention progress. We study abrupt learning for other algorithmic tasks in
Appendix F, and on multiple model configurations and SGD optimizer in Appendix G.

3. Inductive Biases in the Early Phase of Training

In this section, we characterize several key manifestations of inductive biases in the early phase of
Transformer training.

2

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

0 50 100 150 200 250 300 350 400
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
Lo

ss

Train/Test Loss & Accuracy

Loss
Accuracy
Partial Solution Accuracy

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a)

0 50 100 150 200 250 300 350 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Similarity
Repetition Frequency
Attention Progress Measure

0.1

0.2

0.3

0.4

0.5

0.6

0.7

At
te

nt
io

n
Pr

og
re

ss

Attention Progress and Cosine Similarity

(b)

Figure 2: Abrupt learning dynamics for the MWS task. (a): Train/Test loss and Train/Test Ac-
curacy (note that both train and test data metrics are near-identical in the online training setup, and
thus we only report train metrics); (b): Attention Progress, Repetition Frequency, and Representa-
tion Cosine Similarity between hidden states.

Partial Solution. During the loss plateau, the model often has already learned to implement a
partial solution to the task. This means it correctly predicts a subset of the output tokens, typically
those corresponding to an intuitively simpler part of the problem, while failing on the more complex
parts. For instance, in the MWS task, the model quickly learns to predict the first output token y1
correctly (see Figure 2(a) for the first-token accuracy), as it is simply x1, while the overall loss
remains high and accuracy on subsequent tokens is low. Such partial solutions are observed across
various algorithmic problems (see Table 1 in Appendix F).

Repetition Bias. Concurrent with learning the partial solution, the model’s outputs during the
initial phase of training display a strong repetition bias, which refers to a tendency of the model to
generate repetitive tokens of the form x, x, x, To quantify such repetitions, we simply count the
output tokens that equal the next one: for sequence (y1, y2, . . . , yn), define its repetition frequency
ρ := 1

n−1

∑n−1
i=1 1[yi = yi+1]. We observe that ρ increases rapidly during the early phase of training

from a small initial value (see Figure 2(b)), while the optimal attention map has not been learned.

Representation Collapse. We further study the relation between the hidden representations at
different output positions, and find a strong representation collapse phenomenon—these representa-
tions become nearly parallel in the early phase of training (except for the first output position which
is correctly predicted in the partial solution). We measure the pairwise cosine similarity between
hidden representations hi,hj ∈ Rd at positions i, j in the output sequence, COSi,j :=

⟨hi,hj⟩
∥hi∥∥hj∥

(this quantity is averaged over a random batch of sequences). We find that in the early phase of
training, there is a rapid increase in COSi,j—averaged over all output positions i, j except the first
position, this quantity increases to ≈ 0.95 (Figure 2(b)). Similar to repetitions, representation col-
lapse is not present at initialization and only appears after a few steps of training, in contrast to the
rank collapse phenomenon for deep softmax-attention Transformers at initialization [1]. While we
measure the cosine similarity between hidden states just before the LM (classifier) head in the main
paper, in Figure 29 we show that representation collapse happens in all intermediate layers.

3

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

0 100 200 300 400
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Train/Test Loss

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency

c=10
c=2.5
c=1

Figure 3: Biasing attention map by c > 1. We find that multiplicative biasing the attention map
towards more weight to optimal positions leads to faster convergence, accompanied by less repeti-
tions and average cosine similarity.

4. The Role of Learning Attention

Observe that though the loss dynamics are abrupt, attention progress measure as well as repetitions
and representation collapse are not (Figure 2(b)); that is, even when the loss is barely decreasing
(between steps 50 and 150), attention progress measure notably increases, accompanied by a de-
crease in repetition frequency and representation collapse. We show in Appendix C that in the
residual stream, representation collapse occurs after the attention layer during the early phase of
training. Subsequently, via training-time interventions, we show that learning the attention map
plays a crucial role in shaping the loss plateau as well as repetitions and representation collapse.

Biasing the Attention Map. To study the role of attention map, we slightly modify the training
process starting at different time points in training, biasing it towards (or away from) the optimal
attention map to check if repetitions, representation collapse, and loss plateau are reduced (resp.
amplified). We do the following: at training time, starting at step t0, we multiply the attention map
values for output tokens except the first position at Ω (i.e. optimal attention map positions) by a
constant c > 0; for c > 1, this implies biasing the model towards the final (optimal) attention map,
whereas for 0 < c < 1, this implies biasing the model away from the optimal attention map. We
find that, for c > 1 and various values of t0, such a scaling leads to lower average cosine similarity
between hidden states, lower frequency of repetitions, and faster convergence (Figures 3 and 6).
Whereas, for 0 < c < 1, we find the opposite: the model is in representation collapse state for
a longer time and converges later compared to the non-scaled (c = 1) case, while the repetition
frequency remains large throughout the plateau (Figure 7, Appendix C).

Moreover, we also show that fixing attention map to optimal value at the start of training leads
to essentially no loss plateau or repetitions / representation collapse, while the same does not occur
if we fix MLP / embeddings only to their optimal value (Figure 8, Appendix C). Hence, learning
the optimal attention map has a direct effect on shaping the loss dynamics as well as repetitions and
representation collapse.

4

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Co

sin
e

Si
m

ila
rit

y
Pythia-14m

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

0.9

Pythia-1b

100 101 102 103 104

Pretraining Step

0.4

0.6

0.8

Pythia-1.4b

100 101 102 103 104

Pretraining Step

0.4

0.6

0.8

1.0
Pythia-2.8b

Figure 4: Representation Collapse during Pythia Pretraining. Representation collapse at differ-
ent Pythia pretraining checkpoints; tokens generated via greedy decoding.

5. A Further Look at Repetition Bias

Having observed that Transformer models exhibit a strong repetition bias in the early phase of
training, which co-occurs with the loss plateau, we now take a further look at this repetition bias
and study how it might be affected by the amount of repetitions in the training sequences.

Beyond Repetitions in Consecutive Tokens One hypothesis for the reason behind repetition bias
is that the training data may consist of some repetitions, and the model may pick up these patterns
and amplify them in the early phase of training. We show in Appendix D.1 that on the prefix sum
task with low repetitions in the training data, there are still repetitions in output, albeit of a different
nature than the contiguous repetitions seen for MWS.

Repetitive Sequences Are Easier to Learn Motivated by evidence for repetition bias, we show
in Appendix D.2 that training Transformers on such repetitive sequences leads to no loss plateau,
and that the model can learn (inaccurate) repetitions quite early (after ≈ 10 training steps), verifying
the early-phase repetition bias.

6. Repetition Bias and Representation Collapse in LLMs

Having shown that degenerate patterns of repetition bias and representation collapse are prevalent in
small Transformers trained on algorithmic tasks, we check whether such phenomena occur during
the early pre-training phase of LLMs as well. We show that this is indeed the case, using checkpoints
of open-source LLMs Pythia [5] and OLMo-2 [32] (see Appendix E for results on OLMo-2).

For Pythia models with 14M, 1B, 1.4B, and 2.8B parameters, we find strong representation
collapse in the early training steps in their last layers (Figure 4). Specifically, we use 100 questions
from the test split of the AI2 ARC-Easy dataset [10]. For each question, we generate 8 tokens and
compute the pairwise cosine similarity of the hidden states (see Appendix A for details). Figure 4
shows that at initialization, the average cosine similarity is relatively low (0.4-0.65), but within a
few steps of training for all models, it sharply increases to > 0.9. These results remain similar if
we use random sampling instead of greedy decoding (Figure 30). Further, the outputs for many
prompts in the greedy decoding case are trivial repetitions of the same token, e.g., newline ‘\n’, a
clear manifestation of repetition bias. Hence, repetition bias and representation collapse occur in
the early pre-training phase of LLMs, validating our findings beyond toy settings.

5

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

7. Discussion

We identified repetition bias and representation collapse as key characteristics of the early-phase
inductive biases of Transformer training, which are closely connected to the commonly observed
loss plateau. The questions of why such representation collapse / repetition bias exists during early
time training, why the initial rate of learning attention map is slow for algorithmic tasks, and how it
connects to the intuitive “complexity” of the task are interesting questions for future research. We
discuss related work on abrupt learning, grokking, repetitions etc. in Appendix I.

References

[1] Sotiris Anagnostidis, Luca Biggio, Lorenzo Noci, Antonio Orvieto, Sidak Pal Singh, and
Aurelien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role
of rank collapse. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Processing Systems, 2022. URL https:
//openreview.net/forum?id=FxVH7iToXS.

[2] Boaz Barak, Benjamin L. Edelman, Surbhi Goel, Sham M. Kakade, eran malach, and Cyril
Zhang. Hidden progress in deep learning: SGD learns parities near the computational limit.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=8XWP2ewX-im.

[3] Federico Barbero, Andrea Banino, Steven Kapturowski, Dharshan Kumaran, João G. M.
Araújo, Alex Vitvitskyi, Razvan Pascanu, and Petar Veličković. Transformers need glasses!
information over-squashing in language tasks, 2024. URL https://arxiv.org/abs/
2406.04267.

[4] Nora Belrose, Quintin Pope, Lucia Quirke, Alex Mallen, and Xiaoli Fern. Neural networks
learn statistics of increasing complexity, 2024. URL https://arxiv.org/abs/2402.
04362.

[5] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle
O’Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth,
Edward Raff, et al. Pythia: A suite for analyzing large language models across training and
scaling. In International Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

[6] Enric Boix-Adsera, Etai Littwin, Emmanuel Abbe, Samy Bengio, and Joshua Susskind. Trans-
formers learn through gradual rank increase, 2023. URL https://arxiv.org/abs/
2306.07042.

[7] Angelica Chen, Ravid Shwartz-Ziv, Kyunghyun Cho, Matthew L Leavitt, and Naomi Saphra.
Sudden drops in the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=MO5PiKHELW.

[8] Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-
head softmax attention for in-context learning: Emergence, convergence, and optimality, 2024.
URL https://arxiv.org/abs/2402.19442.

6

https://openreview.net/forum?id=FxVH7iToXS
https://openreview.net/forum?id=FxVH7iToXS
https://openreview.net/forum?id=8XWP2ewX-im
https://openreview.net/forum?id=8XWP2ewX-im
https://arxiv.org/abs/2406.04267
https://arxiv.org/abs/2406.04267
https://arxiv.org/abs/2402.04362
https://arxiv.org/abs/2402.04362
https://arxiv.org/abs/2306.07042
https://arxiv.org/abs/2306.07042
https://openreview.net/forum?id=MO5PiKHELW
https://openreview.net/forum?id=MO5PiKHELW
https://arxiv.org/abs/2402.19442

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

[9] Leshem Choshen, Guy Hacohen, Daphna Weinshall, and Omri Abend. The grammar-learning
trajectories of neural language models, 2022. URL https://arxiv.org/abs/2109.
06096.

[10] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv:1803.05457v1, 2018.

[11] Hugo Cui, Freya Behrens, Florent Krzakala, and Lenka Zdeborová. A phase transition between
positional and semantic learning in a solvable model of dot-product attention, 2024. URL
https://arxiv.org/abs/2402.03902.

[12] Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edelman, eran malach, and Surbhi Goel. The
evolution of statistical induction heads: In-context learning markov chains. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=qaRT6QTIqJ.

[13] Zihao Fu, Wai Lam, Anthony Man-Cho So, and Bei Shi. A theoretical analysis of the repetition
problem in text generation, 2021. URL https://arxiv.org/abs/2012.14660.

[14] Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers
learn in-context? a case study of simple function classes, 2023. URL https://arxiv.
org/abs/2208.01066.

[15] Pulkit Gopalani, Ekdeep Singh Lubana, and Wei Hu. Abrupt learning in transformers: A
case study on matrix completion. In The Thirty-eighth Annual Conference on Neural In-
formation Processing Systems, 2024. URL https://openreview.net/forum?id=
O9RZAEp34l.

[16] Tatsuya Hiraoka and Kentaro Inui. Repetition neurons: How do language models produce
repetitions?, 2025. URL https://arxiv.org/abs/2410.13497.

[17] David T. Hoffmann, Simon Schrodi, Jelena Bratulić, Nadine Behrmann, Volker Fischer, and
Thomas Brox. Eureka-moments in transformers: Multi-step tasks reveal softmax induced
optimization problems, 2024. URL https://arxiv.org/abs/2310.12956.

[18] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration, 2020. URL https://arxiv.org/abs/1904.09751.

[19] Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and
Daniel Murfet. Loss landscape degeneracy drives stagewise development in transformers,
2025. URL https://arxiv.org/abs/2402.02364.

[20] Masato Inoue, Hyeyoung Park, and Masato Okada. On-line learning theory of soft commit-
tee machines with correlated hidden units –steepest gradient descent and natural gradient de-
scent–. Journal of the Physical Society of Japan, 72(4):805–810, April 2003. ISSN 1347-4073.
doi: 10.1143/jpsj.72.805. URL http://dx.doi.org/10.1143/JPSJ.72.805.

7

https://arxiv.org/abs/2109.06096
https://arxiv.org/abs/2109.06096
https://arxiv.org/abs/2402.03902
https://openreview.net/forum?id=qaRT6QTIqJ
https://openreview.net/forum?id=qaRT6QTIqJ
https://arxiv.org/abs/2012.14660
https://arxiv.org/abs/2208.01066
https://arxiv.org/abs/2208.01066
https://openreview.net/forum?id=O9RZAEp34l
https://openreview.net/forum?id=O9RZAEp34l
https://arxiv.org/abs/2410.13497
https://arxiv.org/abs/2310.12956
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2402.02364
http://dx.doi.org/10.1143/JPSJ.72.805

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

[21] Arthur Jacot, François Ged, Berfin Şimşek, Clément Hongler, and Franck Gabriel. Saddle-to-
saddle dynamics in deep linear networks: Small initialization training, symmetry, and sparsity,
2022. URL https://arxiv.org/abs/2106.15933.

[22] Andrej Karpathy. Karpathy/mingpt: A minimal pytorch re-implementation of the openai
gpt (generative pretrained transformer) training, 2022. URL https://github.com/
karpathy/minGPT.

[23] Tanishq Kumar, Blake Bordelon, Samuel J. Gershman, and Cengiz Pehlevan. Grokking as the
transition from lazy to rich training dynamics, 2024. URL https://arxiv.org/abs/
2310.06110.

[24] Nayoung Lee, Kartik Sreenivasan, Jason D. Lee, Kangwook Lee, and Dimitris Papailiopou-
los. Teaching arithmetic to small transformers, 2023. URL https://arxiv.org/abs/
2307.03381.

[25] Alexander C. Li, Yuandong Tian, Beidi Chen, Deepak Pathak, and Xinlei Chen. On the
surprising effectiveness of attention transfer for vision transformers, 2024. URL https:
//arxiv.org/abs/2411.09702.

[26] Huayang Li, Tian Lan, Zihao Fu, Deng Cai, Lemao Liu, Nigel Collier, Taro Watanabe, and
Yixuan Su. Repetition in repetition out: Towards understanding neural text degeneration from
the data perspective. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=WjgCRrOgip.

[27] Ziming Liu, Ouail Kitouni, Niklas Nolte, Eric J. Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning, 2022. URL
https://arxiv.org/abs/2205.10343.

[28] Ekdeep Singh Lubana, Kyogo Kawaguchi, Robert P. Dick, and Hidenori Tanaka. A percola-
tion model of emergence: Analyzing transformers trained on a formal language, 2024. URL
https://arxiv.org/abs/2408.12578.

[29] Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon S. Du, Jason D. Lee, and Wei Hu. Dichotomy
of early and late phase implicit biases can provably induce grokking, 2024. URL https:
//arxiv.org/abs/2311.18817.

[30] William Merrill, Nikolaos Tsilivis, and Aman Shukla. A tale of two circuits: Grokking as
competition of sparse and dense subnetworks, 2023. URL https://arxiv.org/abs/
2303.11873.

[31] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. Progress
measures for grokking via mechanistic interpretability. In The Eleventh International Con-
ference on Learning Representations, 2023. URL https://openreview.net/forum?
id=9XFSbDPmdW.

[32] Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Ak-
shita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk,
Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep

8

https://arxiv.org/abs/2106.15933
https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT
https://arxiv.org/abs/2310.06110
https://arxiv.org/abs/2310.06110
https://arxiv.org/abs/2307.03381
https://arxiv.org/abs/2307.03381
https://arxiv.org/abs/2411.09702
https://arxiv.org/abs/2411.09702
https://openreview.net/forum?id=WjgCRrOgip
https://arxiv.org/abs/2205.10343
https://arxiv.org/abs/2408.12578
https://arxiv.org/abs/2311.18817
https://arxiv.org/abs/2311.18817
https://arxiv.org/abs/2303.11873
https://arxiv.org/abs/2303.11873
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

Dasigi, Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya
Malik, William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal
Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wad-
den, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith,
and Hannaneh Hajishirzi. 2 olmo 2 furious, 2024. URL https://arxiv.org/abs/
2501.00656.

[33] Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra.
Grokking: Generalization beyond overfitting on small algorithmic datasets. arXiv preprint
arXiv:2201.02177, 2022.

[34] Lucas Prieto, Melih Barsbey, Pedro A. M. Mediano, and Tolga Birdal. Grokking at the edge
of numerical stability, 2025. URL https://arxiv.org/abs/2501.04697.

[35] Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task, 2023. URL https://arxiv.org/abs/2312.03002.

[36] Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. A distributional
simplicity bias in the learning dynamics of transformers, 2025. URL https://arxiv.
org/abs/2410.19637.

[37] David Saad and Sara A. Solla. On-line learning in soft committee machines. Phys. Rev. E,
52:4225–4243, Oct 1995. doi: 10.1103/PhysRevE.52.4225. URL https://link.aps.
org/doi/10.1103/PhysRevE.52.4225.

[38] Aaditya K. Singh, Ted Moskovitz, Felix Hill, Stephanie C. Y. Chan, and Andrew M. Saxe.
What needs to go right for an induction head? a mechanistic study of in-context learning
circuits and their formation, 2024. URL https://arxiv.org/abs/2404.07129.

[39] Vikrant Varma, Rohin Shah, Zachary Kenton, János Kramár, and Ramana Kumar. Explain-
ing grokking through circuit efficiency, 2023. URL https://arxiv.org/abs/2309.
02390.

[40] Mingze Wang, Ruoxi Yu, Weinan E, and Lei Wu. How transformers get rich: Approximation
and dynamics analysis, 2025. URL https://arxiv.org/abs/2410.11474.

[41] Weichuan Wang, Zhaoyi Li, Defu Lian, Chen Ma, Linqi Song, and Ying Wei. Mitigating the
language mismatch and repetition issues in llm-based machine translation via model editing,
2024. URL https://arxiv.org/abs/2410.07054.

[42] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language
models. Transactions on Machine Learning Research, 2022. ISSN 2835-8856. URL https:
//openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

[43] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam
Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le

9

https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.00656
https://arxiv.org/abs/2501.04697
https://arxiv.org/abs/2312.03002
https://arxiv.org/abs/2410.19637
https://arxiv.org/abs/2410.19637
https://link.aps.org/doi/10.1103/PhysRevE.52.4225
https://link.aps.org/doi/10.1103/PhysRevE.52.4225
https://arxiv.org/abs/2404.07129
https://arxiv.org/abs/2309.02390
https://arxiv.org/abs/2309.02390
https://arxiv.org/abs/2410.11474
https://arxiv.org/abs/2410.07054
https://openreview.net/forum?id=yzkSU5zdwD
https://openreview.net/forum?id=yzkSU5zdwD

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Hug-
gingface’s transformers: State-of-the-art natural language processing, 2020. URL https:
//arxiv.org/abs/1910.03771.

[44] Jin Xu, Xiaojiang Liu, Jianhao Yan, Deng Cai, Huayang Li, and Jian Li. Learning to break the
loop: Analyzing and mitigating repetitions for neural text generation, 2022. URL https:
//arxiv.org/abs/2206.02369.

[45] Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and
grokking in relu networks for xor cluster data, 2023. URL https://arxiv.org/abs/
2310.02541.

[46] Junchi Yao, Shu Yang, Jianhua Xu, Lijie Hu, Mengdi Li, and Di Wang. Understanding the
repeat curse in large language models from a feature perspective, 2025. URL https://
arxiv.org/abs/2504.14218.

[47] Yedi Zhang, Aaditya K. Singh, Peter E. Latham, and Andrew Saxe. Training dynamics of
in-context learning in linear attention, 2025. URL https://arxiv.org/abs/2501.
16265.

10

https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/2206.02369
https://arxiv.org/abs/2206.02369
https://arxiv.org/abs/2310.02541
https://arxiv.org/abs/2310.02541
https://arxiv.org/abs/2504.14218
https://arxiv.org/abs/2504.14218
https://arxiv.org/abs/2501.16265
https://arxiv.org/abs/2501.16265

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

Appendix A. Detailed Setup and Experimental Details

Model Architecture. We use a 1-layer, 1-head Transformer with causal masking and linear atten-
tion. This simple architecture can already solve the MWS task to perfect accuracy. Formally, for a
sequence of tokens (s1, . . . , sL), the Transformer output is,

TFθ(s1, s2, . . . , sL) = LM ◦ (Id +MLP) ◦ (Id + Attn) ◦ Embed(s1, s2, . . . , sL)

where Embed outputs sum of token and absolute positional embeddings hi ∈ Rd, and Attn denotes
the causal-linear-Attention operation that combines tokens such that output at ith position is,

[Attn(h1, h2, . . . , hL)]i = WO

 i∑
j=1

(h⊤j W
⊤
KWQhi)WV hj

 ; WO,WK ,WQ,WV ∈ Rd×d.

MLP denotes the 2-layer neural net hi 7→ W2(σ(W1hi)) for W2 ∈ Rd×4d,W1 ∈ R4d×d, and σ
the GELU activation. LM is a linear layer that maps the hidden state hi ∈ Rd to logits vi ∈ R|V |

(V denotes the vocabulary for a task; for instance, for MWS task, V = {0, 1, . . . , 17}). Note
that all linear maps above implicitly include a bias term, and we use pre-LayerNorm so that before
Attn, MLP, and LM, a LayerNorm operation is applied to the hidden states hi. For generating
sequences, we use greedy decoding i.e. output token is determined by the maximum logit over the
vocabulary. We use linear attention to avoid vanishing gradient issues from softmax attention being
a contributing factor toward abrupt learning, which was argued in [17]. We also show similar results
on softmax attention, multi-layer / multi-head models, and models with varying d in Appendix G.

Training. The model is trained to minimize the standard next-token-prediction cross-entropy loss
over the full sequence i.e. (x1, . . . , xn,SEP, y1, . . . yn) for the MWS task. We evaluate accuracy
over the output portion of the sequence, i.e., y1, . . . , yn, averaged over these n positions. We use the
Adam optimizer with a constant learning rate 10−4 and no weight decay. The training is conducted
in an online / single-epoch fashion, where a new batch of 256 training samples is drawn from the
data distribution at each training step. Note that in this setup, the training and test losses essentially
coincide. For completeness, we also show similar results on the SGD optimizer in Appendix G.

Causal Linear Attention. Linear attention transformer is obtained simply by removing the soft-
max activation function when computing the attention map, and setting the causal mask to 0 instead
of −∞. We use the existing minGPT implementation [22] (MIT licence) for our experiments, mod-
ifying the code as above and wherever required.

LLM Experiments. We use Pythia [5] / OLMo-2 [32] pretrained models (Apache 2.0 Licence)
hosted on Huggingface Transformers [43] and run them on the ARC-Easy dataset [10] (CC-BY-SA
4.0 Licence). We set the use cache=False in the generate function, and use the hidden state
used for predicting each of the 8 output tokens. For random sampling, we use do sample=True
(using default temperature value), using do sample=False for our greedy decoding results.

Appendix B. Abrupt Learning and Attention Map

Abrupt Learning. Following the training procedure described above will result in a characteristic
abrupt learning curve, where the training/test loss is stuck at some sub-optimal value for a signifi-
cant number of steps, before suddenly and rapidly decreasing to its optimal value (Figure 2(a)). This

11

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

drop in loss is accompanied by a similarly rapid increase in accuracy, indicating that the optimal
solution is learned abruptly.

Attention Map. We analyze the attention map at different points during training. We find that the
attention map shows a sparse, interpretable pattern after the sudden loss drop, while no such pattern
is shown before the sudden drop (Figure 1). For the MWS task, this optimal attention pattern cor-
responds to each output token yi attending only to the input tokens relevant to its computation, i.e.,
attending to x1 for y1, and to xi, xi−1 for yi, i ≥ 2. We further use an Attention Progress Measure
(APM) to record the progress of the attention map toward its optimal pattern during training, defined
as

APM :=

∑
(i,j)∈Ω |Aij |∑
(i,j) |Aij |

,

where Aij denotes the attention score allocated to the jth token when computing output at the ith

position in the sequence, and Ω is the set of position pairs in the optimal attention map. This measure
is defined with absolute values due to our choice of linear attention so that Aij could be positive or
negative. In experiments, we calculate APM averaged over a random batch of sequences.

Figure 2(b) shows that the APM monotonically increases from near 0 to near 0.8 during train-
ing, and its increase is more gradual than the loss/accuracy dynamics. In particular, APM already
increases to a nontrivial value during the loss plateau and before the sudden loss drop.

Appendix C. The Role of Learning Attention

Representation Collapse Occurs After the Attention Layer. We verify whether the attention
layer is responsible for representation collapse during the early phase of training. To this end, we
plot the cosine similarity of the residual stream for output tokens just before and after the attention
layer. Formally, let the residual stream before attention layer (i.e., token + positional embeddings)
be hi ∈ Rd, and the residual stream after attention layer be h′

i ∈ Rd, we measure the norm and
pairwise cosine similarity for hi and h′

i in Figure 5.
We find that in the early phase of training, the cosine similarity between different positions in

the post-attention residual stream representations approaches 1.0 rapidly, which is not the case for
pre-attention. Furthermore, the norm of h′

i grows rapidly in this phase, while the norm of hi remains
near-constant. Hence, in the residual stream, representation collapse occurs after the attention layer
during the early phase of training.

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
ila

rit
y

Train Loss & Cosine Similarity
Cosine Sim. (a)
Cosine Sim. (b)
Train/Test Loss

0 100 200 300 400
Steps

1.0

1.5

2.0

2.5

No
rm

Post Att. Residual Stream Norm

0 100 200 300 400
Steps

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

No
rm

Pre Att. Residual Stream Norm

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Figure 5: Norm and representation collapse dynamics for (a) pre- and (b) post-attention residual
streams for all positions i, j except the first position.

12

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

0 100 200 300 400
Steps

1.25
1.50
1.75
2.00
2.25
2.50
2.75

Lo
ss

Train/Test Loss

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency

t0 = 100
t0 = 75
t0 = 50
t0 = 25
t0 = 0
No bias

Figure 6: Biasing attention map by c = 10 at different t0 during training.

Biasing the Attention Map. We do the following: at training time, starting at step t0, we multiply
the attention map values for output tokens except the first position at Ω (i.e. optimal attention map
positions) by a constant c > 0; for c > 1, this implies biasing the model towards the final (optimal)
attention map, whereas for 0 < c < 1, this implies biasing the model away from the optimal
attention map.

We find that, for c > 1 and various values of t0, such a scaling leads to lower average cosine
similarity between hidden states, lower frequency of repetitions, and faster convergence (Figures 3
and 6). Whereas, for 0 < c < 1, we find the opposite: the model is in representation collapse state
for a longer time and converges later compared to the non-scaled (c = 1) case, while the repetition
frequency remains large throughout the plateau (Figure 7).

For example, for t0 = 0, c = 10, i.e. scaling 10× from the start of training, we find that the
peak cosine similarity attained during training is ≈ 0.6, much smaller than the ≈ 0.95 attained for
c = 1, and further the peak for c = 10 is for negligible duration compared to that for c = 1. Later
values of t0 = 25, 50, 75 show similar results wherein the cosine similarity drops immediately on
the above biasing operation, followed by lower repetition frequency and convergence to optimal
solution (Figure 6).

On the other hand, for t0 = 0, c = 0.2, 0.5, the model takes much longer to converge and is in
representation collapse / large repetition frequency state for much longer. This is in line with our
expectation that lower attention map values for the optimal positions lead to slower learning and
prolonged representation collapse. Hence, learning the optimal attention map has a direct effect on
shaping the loss dynamics as well as repetitions and representation collapse.

Training with Optimal Attention. In this test, we initialize with the optimal attention map by
fixing embeddings, LayerNorm for attention layer and attention layer weights to their final values
at the end of a normal training run, so that at initialization, the correct attention map is already
available to subsequent layers. We re-train the subsequent non-fixed layers starting from random
initialization. Attention map transfer for generalization in ViT has been analyzed in [25].

For the attention layer, we choose the set of parameters to initalize in 2 ways: (a) only Key,
Query (WK ,WQ) weights, and (b) All of Key, Query, Value, Output (WK ,WQ,WV ,WO) weights.
We find that in both of these cases, learning only the subsequent layers (i.e. MLP, LM Head) take
significantly shorter time than training the full model, without any significant representation col-
lapse, repetitions or plateau in loss (Figure 8). Further, between (a) and (b), we find that additionally
having WO,WV layers initialized to optimal values slightly speeds up learning, and average cosine

13

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

0 200 400 600 800 1000
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Train/Test Loss

c=1
c=0.5
c=0.2

0 200 400 600 800 1000
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 200 400 600 800 1000
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency

Figure 7: Biasing attention map by c < 1. We find that biasing the attention map to have lesser
weight at optimal positions leads to slower convergence, and more representation collapse and rep-
etitions.

0 100 200 300 400
Steps

1.5

2.0

2.5

3.0

Lo
ss

Train/Test Loss

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300 400
Steps

0.1

0.2

0.3

0.4

0.5

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency
Emb+(K,Q,O,V)
Emb+(K,Q)
MLP+LM head
Emb+LM head

Figure 8: Different optimal initializations and effect on training. We find that fixing atten-
tion and embedding weights (i.e. attention map) to optimal value, and training other components
leads to faster convergence and lesser representation collapse / repetitions. Similar effect does
not hold for fixing optimal MLP or Embeddings. (K,Q,O, V respectively denote the parameters
WK ,WQ,WO,WV .)

similarity goes up to approx 0.15 instead of ≈ 0.45 when only initializing WK ,WQ weights. This
indicates that WO,WV layers also play a non-trivial role in causing representation collapse. This
result confirms that attention map is a major bottleneck that leads to early representation collapse
and loss plateau.

Optimal MLP or Embeddings Do Not Help. On the other hand, fixing MLP or embeddings
(together with LM head) to their final optimal values and re-training the other components does not
qualitatively change the training dynamics from the full training case, i.e., a significant loss plateau,
repetition bias, and representation collapse still occur (Figure 8). This indicates that there is little
benefit from having the optimal MLP or embeddings at initialization compared to attention map.

14

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

0 100 200 300 400 500
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Train/Test Loss & Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
.

Cosine Sim.
Attention Prog.

0 100 200 300 400 500
Steps

1.2

1.4

1.6

1.8

2.0

2.2

Se
q.

 E
nt

ro
py

Sequence Entropy

Output Entropy
Data Entropy

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

At
te

nt
io

n
Pr

og
re

ss

Attention Progress & Cosine Similarity

Figure 9: Prefix sum task training dynamics. While the usual contiguous repetitions do not occur
for this task, an alternate form of repetition occurs in terms of having only a few distinct tokens in
the output sequence. ‘Sequence entropy’ quantifies this repetition by measuring the entropy of the
empirical distribution of tokens in a sequence, and averaging this entropy over a batch of sequences.

Appendix D. A Further Look at Repetition Bias

D.1. Beyond Repetitions in Consecutive Tokens

One hypothesis for the reason behind repetition bias is that the training data may consist of some
repetitions, and the model may pick up these patterns and amplify them in the early phase of training.
To investigate this, we consider a task with low repetitions in the training data. In particular, we
consider the prefix sum task, where the outputs y1, . . . , yn are defined as yi = (

∑i
j=1 xj)mod p.

Our choice of the input distribution ensures that there is no repetition in consecutive output positions
(i.e., yi ̸= yi+1 for all i). Indeed, training a Transformer on the prefix sum task does not result
in a significant increase in the repetition frequency at any point in training, unlike the MWS task.
Nevertheless, in the early training phase, we still observe that only a few tokens appear repeatedly in
the model output though not contiguously as in the MWS task. Therefore, we consider an alternative
measure of repetitions based on entropy: for an output sequence y1, y2, . . . , yn, we define

SeqEnt(y1, . . . , yn) :=

|V |∑
i=1

pi log(1/pi); pi =
|{yj = vi, j ∈ [n]}|

n

i.e. simply the entropy of the empirical distribution of tokens in the sequence. Intuitively, the
entropy is lower if most probability mass is concentrated at a few tokens, and larger if the tokens are
more uniformly distributed. We find that the model output entropy quickly goes to quite low values
early in training compared to the entropy of ground-truth data (Figure 9), indicating that the model
still has a form of repetition bias. Further, representation collapse still happens in the early phase,
with the average cosine similarity going to 0.8 during the plateau.

Hence, we find that repetition bias might take different forms depending on the task, but still
robustly occurs in the early phase of training.

D.2. Repetitive Sequences Are Easier to Learn

On the other hand, we study what happens when the ground-truth data have a lot of repetitions. We
consider a simple task REPEAT1 of the form x1, x2, . . . , xn,SEP, y1, y2, . . . , yn, where yi = x1 ∀i.
Unlike other tasks, the loss curve for REPEAT1 does not have any noticeable plateau, though the

15

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

0 20 40 60 80 100 120
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss & Accuracy

Train/Test Loss
Train/Test Accuracy

0 20 40 60 80 100 120
Steps

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
. /

 R
ep

ea
t F

re
q.

Cosine Similarity & Repetition Frequency

Cosine Similarity
Repetition Freq. ()
First Token Freq. (1)

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 10: REPEAT1 training dynamics.

accuracy still shows a small plateau period (Figure 10). This observation indicates that such repet-
itive sequences are easier from an optimization perspective and hence likely “preferred” during the
early stage of training. In fact, just one gradient step is sufficient to bring the average representation
cosine similarity to ≈ 0.5.

To further understand the early training phase model output, we define another metric α1

that measures to what extent the model simply outputs the same token for all output positions:
α1 = 1

n

∑n
i=1 1[yi = y1]. Note that this is distinct from accuracy, in that the model might output

the wrong y1, however repeats y1 at y2, . . . , yn. We find that α1 rapidly increases to near perfect
values (> 0.9) in the early phase of training, showing that the model tends to repeat the first token
identically at most positions, even though the output token itself might be incorrect. Hence, repet-
itive sequences appear to be inherently easier for the Transformer to learn, and this is likely the
reason for repetition bias in the early phase of training.

We define 2 variants of the above task, REPEAT2 and REPEAT4 denoting the number of distinct
repetitive blocks in the sequences for those tasks.

REPEAT2 This task is defined as,

yi =

{
x1 1 ≤ i ≤ 8

(x1 + 1)mod 17 9 ≤ i ≤ 16

REPEAT4 This task is defined as

yi =


x1 1 ≤ i ≤ 4

(x1 + 1)mod p 5 ≤ i ≤ 8

(x1 + 2)mod p 9 ≤ i ≤ 12

(x1 + 3)mod p 13 ≤ i ≤ 16

The training dynamics for REPEAT2, REPEAT4 are given in Figures 11(a) and 12(a). We find
that similar to REPEAT1, the training loss does not exhibit any plateau. Moreover, the repetition
frequency ρ and metric α1 increase rapidly to ≈ 1.0 early on in training.

16

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

0 20 40 60 80 100 120
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8
Lo

ss
Train/Test Loss & Accuracy

Train/Test Loss
Train/Test Accuracy

0 20 40 60 80 100 120
Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
. /

 R
ep

ea
t F

re
q.

Cosine Similarity & Repetition Frequency

Cosine Similarity
Repetition Freq. ()
First Token Freq. (1)

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) (b)

Figure 11: REPEAT2 training dynamics. Note that there is no plateau in loss, similar to the
REPEAT1 task. Further, the pairwise cosine similarity for hidden states take a specific form indicat-
ing the blocks of repeated tokens in the output (marked yellow), over which we compute the average
cosine similarity reported in (a).

0 20 40 60 80 100 120
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss & Accuracy

Train/Test Loss
Train/Test Accuracy

0 20 40 60 80 100 120
Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
Si

m
. /

 R
ep

ea
t F

re
q.

Cosine Similarity & Repetition Frequency

Cosine Similarity
Repetition Freq. ()
First Token Freq. (1)

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

(a) (b)

Figure 12: REPEAT4 training dynamics. Similar to REPEAT2, there is no plateau in loss. The
pairwise cosine similarity for hidden states takes a form (marked yellow) indicating the blocks of
repeated tokens in the output, over which we compute the average cosine similarity reported in (a).

Appendix E. OLMo-2 Experiments

Similar representation collapse patterns as Pythia are observed for the OLMo-2 7B model. For its
earliest available training checkpoint (step 150, OLMo-2-1124-7B), the average representation
cosine similarity in the setup from Section 6 is ≈ 0.93; for the next checkpoint at step 600, this
value has already decreased to ≈ 0.43 (similar for both greedy decoding and random sampling
strategies).

17

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

Appendix F. Results for Other Algorithmic Tasks

This section presents results on a suite of algorithmic tasks, verifying the generality of our identified
phenomena.

Table 1: Algorithmic tasks that show abrupt learning and partial solution during plateau

Task Description Partial Solution

Moving Window Sum (MWS) Sum over moving window of 2
elements, copy 1st element

First input element

Prefix Sum (PRE) Compute prefix sum of a given
n–length sequence

First input element

Permutation (PER) Permute an n−length sequence
by given permutation

Incorrect
permutation of
input sequence

Multi-Digit Addition (ADD) Add atmost–n–digit numbers First digit (0 or 1)
i.e. total carry-over
from n digits

Histogram (HIST) Compute counts of each
element in n–length sequence

≈ 100% Repetitive
sequences

Reverse (REV) Reverse n–length input
sequence

Repetitive
sequences1

Copy (COPY) Copy n–length input sequence Repetitive
sequences1

(1The loss plateau is very brief, hence a partial solution like other cases is not applicable.)

18

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

F.1. Multi-Digit Addition

This task involves adding 2 atmost 4–digit numbers; if the numbers are represented as a = a1a2a3a4, b =
b1b2b3b4 and their sum a + b = c = c0c1c2c3cn then the training sequences for ADD are of the
form

a1, a2, a3, a4,+, b1, b2, b3, b4,=, c4, c3, c2, c1, c0

Note that the output sequence is reversed, following the observations from [24]. We find similar
abrupt learning characteristics (Figure 13), partial solution in this case being c0 i.e. total carry-over
from 4 single digit add operations. An interpretable attention map learnt for the output sequence is
shown in Figure 14.

0 500 1000 1500 2000
Steps

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Lo
ss

Train/Test Loss, Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 500 1000 1500 2000
Steps

0.0

0.2

0.4

0.6

0.8

1.0
Co

sin
e

Si
m

. /
 R

ep
et

iti
on

 Fr
eq

.
Cosine Similarity & Repetitions

Repetition Freq.
Cosine Similarity

0 500 1000 1500 2000
Steps

0.3

0.4

0.5

0.6

0.7

At
te

nt
io

n
Pr

og
re

ss

Attention Progress Measure

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 13: Training dynamics for Add task. (left) Train/Test Loss, Accuracy and Partial solution
progress (c0 accuracy); (middle) Repetition frequency and representation collapse; (right) Attention
progress measure.

Figure 14: Attention map for add task, note that the model attends to the relevant digits in the input
numbers, and to somewhat lesser extent to the preceding digits as well (highlighted positions show
entries with larger magnitude).

19

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

F.2. Prefix sum

This task involves computing the cumulative (prefix) sum of an n−length sequence of integers, so
that the training sequences in PRE are of the form (n = 16, SEP = 17),

x1, x2, . . . , xn, SEP, y1, y2, . . . , yn

yi =

 i∑
j=1

xj

 mod 17 ∀i ∈ [n]

Training dynamics for this task are shown in Fig. 15 which show similar abrupt learning behavior
as MWS and partial solution learning for y1. The interpretable attention map learnt for this task is
shown in Figure 16.

0 100 200 300 400 500
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Train/Test Loss & Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

Co
sin

e
Si

m
.

Cosine Sim.
Attention Prog.

0 100 200 300 400 500
Steps

1.2

1.4

1.6

1.8

2.0

2.2

Se
q.

 E
nt

ro
py

Sequence Entropy

Output Entropy
Data Entropy

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

At
te

nt
io

n
Pr

og
re

ss

Attention Progress & Cosine Similarity

Figure 15: Training dynamics for Prefix sum task. (left) Train/Test Loss, Accuracy and Partial
solution progress (y1 accuracy); (middle) Attention progress and representation collapse; (right)
SeqEnt for data and model output sequences.

Figure 16: Attention map for Prefix sum task, that uses the relevant token in the input, as well as
the previous token in the output to track prefix sum (highlighted positions show entries with larger
magnitude).

20

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

F.3. Permutation

This task involves training a 2-layer, 1-head Transformer on permuting a length−n sequence using
the permutation π, which is generated at random and is distinct for each training sequence. Formally,
for a sequence of positive integers (x1, . . . , xn) and a permutation (π1, . . . , πn) over [n], training
sequences for PER, k = 0, 1, 2, . . . are given by

x1, . . . , xn, SEP, π1, . . . , πn, SEP, xπ1 , . . . , xπn

where xi ∼ Unif{17, 18, . . . , 32}, n = 16, SEP = 0. The partial solution in this case is the output
sequence being an permutation of the input sequence x1, . . . , xn i.e., it learns to copy the tokens
correctly, but in wrong order (Figure 17).

0 50 100 150 200 250 300 350 400
Steps

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Lo
ss

Train/Test Loss, Accuracy

Loss
Acc.
Part. Sol. Acc.

0 50 100 150 200 250 300 350 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Similarity & Repetitions
Repetition Freq.
Cosine Similarity

0 50 100 150 200 250 300 350 400
Steps

0.05

0.10

0.15

0.20

0.25

At
te

nt
io

n
Pr

og
re

ss

Attention Progress Measure

Layer 1
Layer 2

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Figure 17: Training dynamics for Permutation task. (left) Train/Test Loss, Accuracy and Par-
tial solution progress; (middle) Repetition frequency and representation collapse; (right) Attention
progress measure. Note that the repetition frequency decreases by step 100, which is followed by
the partial solution.

(a) Layer 1 (b) Layer 2

Figure 18: Attention maps for the 2 layer Transformer used for Permutation task; highlighted po-
sitions show entries with larger magnitude. (a) Attention map in Layer 1 where rows are attention
weights over the input part x1, x2, . . . , xn of the sequence. The highlighted positions are attending
to π1, π2, . . . , πn = 5, 15, 4, 14, 3, 13, 6, 10, 11, 9, 16, 1, 12, 8, 2, 7. for index i ∈ [n].; (b) Attention
map in Layer 2; the rows (output part of the sequence) are attention scores over the part of sequence
to which Layer 1 attention map copies the correctly permuted tokens. This implies that this attention
map simply copies the correct token from the residual stream after Layer 1.

21

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

F.4. Histogram

This task [11] involves computing the counts of elements in the input sequence, and training se-
quences are of the form

x1, x2, . . . , xn, SEP, y1, y2, . . . , yn

yi =
n∑

j=1

1[xj = xi]

where xi ∼ Unif{1, 2, . . . , 12}, n = 16,SEP = 0. We train a 2-layer, 1-head transformer for this
task, with gradient clipping (1.0) to avoid loss spikes (Figure 19). We note that the repetition bias
in this case is quite strong which leads to ≈ 100% repetitions in the early phase of training, and
which we characterize as partial solution for this task. Further we only consider the attention map
from layer 1 Figure 20 since this is the most consistent and clearly interpretable across runs, and
indicates an identity-map-like function.

0 250 500 750 1000 1250 1500
Steps

1.25

1.50

1.75

2.00

2.25

2.50

Lo
ss

Train/Test Loss, Accuracy

Loss
Accuracy

0 250 500 750 1000 1250 1500
Steps

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Similarity & Repetitions

Repetition Freq.
Cosine Similarity

0 250 500 750 1000 1250 1500
Steps

0.1

0.2

0.3

0.4

At
te

nt
io

n
Pr

og
re

ss

Attention Progress Measure

Layer 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Figure 19: Training dynamics for Histogram task. (left) Train/Test Loss and Accuracy; (middle)
Repetition frequency and representation collapse; (right) Attention progress measure. We only
measure attention progress for the 1st layer, since that is the one that consistently and clearly shows
an interpretable pattern (Figure 20).

Figure 20: Attention map in layer 1 for histogram task, where rows for the latter half of the sequence
compute attention weights over the input tokens xi, similar to an identity map (highlighted positions
show entries with larger magnitude).

22

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

F.5. Reverse

This is the task of reversing the input sequence, so that the training sequences for reverse task REV
are given as,

x1, x2, . . . , xn,SEP, xn, xn−1, . . . , x1

for xi ∼ Unif{1, 2, . . . , 16}, n = 16, SEP = 0. The training dynamics are shown in Figure 21(a)
and the interpretable attention map is shown in Figure 21(b).

0 20 40 60 80 100
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss, Accuracy

Loss
Accuracy

0 20 40 60 80 100
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
./C

os
in

e
Si

m
.

Repetition, Cosine Sim. and Attention Prog.

Repetition Freq.
Cosine Similarity
Attention Prog. Measure

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

At
te

nt
io

n
Pr

og
re

ss

(a) (b)

Figure 21: Training dynamics for Reverse task. We see Abrupt Learning, Representation Col-
lapse and Repetitions, though to a lesser extent than MWS task. Note that the plateau is much
shorter compared to MWS, possibly explained by the fact that reversing a sequence is ‘easier’ than
computing the moving window sum.

F.6. Copy

This is the trivial task of copying the input sequence as is, so that the training sequences for copy
task COPY are given as,

x1, x2, . . . , xn,SEP, x1, x2, . . . , xn

for xi ∼ Unif{1, 2, . . . , 16}, n = 16,SEP = 0. The training dynamics are shown in Figure 22(a)
and the interpretable attention map is shown in Figure 22(b).

0 10 20 30 40 50
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss, Accuracy

Loss
Accuracy

0 10 20 30 40 50
Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Re
pe

tit
io

n
Fr

eq
./C

os
in

e
Si

m
.

Repetition, Cosine Sim. and Attention Prog.

Repetition Freq.
Cosine Similarity
Attention Prog.

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

At
te

nt
io

n
Pr

og
re

ss
 M

ea
su

re

(a) (b)

Figure 22: Training dynamics for Copy task. Similar to reverse task, we observe Abrupt Learning,
Representation Collapse and Repetitions for Copy task, but this time to an even lesser extent than
reverse task itself.

23

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

Appendix G. Varying Configurations

We demonstrate below that abrupt learning, representation collapse and repetition bias occur across
model hyperparameter variations for the MWS task (Figures 23 to 27). We also show that training
using SGD instead of Adam also demonstrates similar abrupt learning characteristics (Figure 28).

0 100 200 300
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Loss

0 100 200 300
Steps

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy

0 100 200 300
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency
L = 1
L = 2
L = 4
L = 6

Figure 23: Number of Layers (L). We show that abrupt learning, representation collapse in the
last layer and repetitions occur for multi (2, 4, 6)–layer models as well.

0 50 100 150 200 250 300
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

2-layer model

Layer 1
Layer 2

0 50 100 150 200 250 300
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

4-layer model

Layer 1
Layer 2
Layer 3
Layer 4

0 50 100 150 200 250 300
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

6-layer model

Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6

Figure 24: Extent of Representation collapse at various intermediate layers. Cosine similarity
values showing the extent of representation collapse after each intermediate layer in multi-layer
models. Note that the representation collapse is not so severe in the early layers of multi-layer
models, but the cosine similarity becomes close to 1.0 as we progress to the final layer.

0 100 200 300 400
Steps

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Lo
ss

Loss

0 100 200 300 400
Steps

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 100 200 300 400
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency

H = 1
H = 2
H = 4
H = 8

Figure 25: Number of attention heads (H). We show that abrupt learning with representation
collapse and repetition bias occurs in 1-layer multi-attention head models as well.

24

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

0 500 1000 1500
Steps

1.5

2.0

2.5

Lo
ss

Loss

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity

0 500 1000 1500
Steps

0.0

0.2

0.4

0.6

0.8

Re
pe

tit
io

n
Fr

eq
.

Repetition Frequency
d = 64
d = 128
d = 256
d = 1024

Figure 26: Embedding dimension (d). We show that abrupt learning with representation collapse
and repetition bias occurs in 1-layer 1-head models with different embedding dimension. Note that
the convergence is delayed for models with smaller values of d = 64, 128.

0 200 400 600 800 1000 1200 1400
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss & Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Sim.
Repetition Freq.
Attn. Prog. Measure

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

At
te

nt
io

n
Pr

og
re

ss

Attention Progress and Cosine Similarity

Figure 27: Softmax Attention. For completeness we show that repetition bias and early-phase
representation collapse are not limited to linear transformers but are observed in softmax attention
transformers as well. Note that the loss plateau is longer than that for linear attention.

0 50 100 150 200 250 300
Steps

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Lo
ss

Train/Test Loss & Accuracy

Loss
Accuracy
Partial Sol. Acc.

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
. /

 R
ep

et
iti

on
 Fr

eq
.

Cosine Sim.
Repetition Freq.
Attn. Prog. Measure

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

At
te

nt
io

n
Pr

og
re

ss

Attention Progress and Cosine Similarity

Figure 28: SGD instead of Adam for loss optimization. We show that abrupt learning is not
limited to Adam optimizer, and occurs with SGD (η = 0.1) as well. We chose this value of η since
smaller values typically lead to much longer periods of little decrease in loss, without increase in
accuracy.

25

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

Appendix H. Additional Figures

0 50 100 150 200 250 300 350 400
Steps

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
Si

m
ila

rit
y

Cosine Similarity
Token+Positional Embed
Attn Output
Post-Att Res. Stream
Post-MLP/Pre-LM Res. Stream

Figure 29: Cosine similarity at various points in residual stream for 1-layer, 1-head Transformer
trained on MWS task.

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

Co
sin

e
Si

m
ila

rit
y

Pythia-14m

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

0.9
Pythia-1b

100 101 102 103 104

Pretraining Step

0.4

0.5

0.6

0.7

0.8

0.9

Pythia-1.4b

100 101 102 103 104

Pretraining Step
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pythia-2.8b

Figure 30: Representation collapse at different Pythia pretraining checkpoints; inference with ran-
dom sampling.

Appendix I. Related Work

Abrupt learning has been studied in multiple settings; [2] studied it for parity tasks for multiple
neural net architectures, while [12] studied abrupt learning for a Markov chain task with Transform-
ers. [15] showed that training a BERT model on matrix completion leads to abrupt learning, while
[28] connected abrupt learning for a grammar data setup to graph percolation. For abrupt learning
in in-context learning [14], there has been a line of recent works [8, 35, 38, 40, 47] that proposed
various theoretical and empirical explanations. We aim to understand a unifying reason behind such
observations, in an algorithmic setup for multiple tasks with multi-token output sequences, without
restrictive assumptions on our model or training setup.

Repetition in language models is a well studied problem [13, 16, 18, 26, 41, 44, 46]. However
these works focus not on the early phase of training, but on how repetition may arise in pretrained
models, and how to mitigate such phenomena. [9] remarked that in the early phase of training
language models, the output might contain some word repetitions, but understanding this occurrence
is not the main focus of their work. Rank collapse is a related phenomenon for deep softmax

26

TRANSFORMER LOSS PLATEAU FOR ALGORITHMIC TASKS

transformers at initialization that might hinder training [1]; however, our representation collapse
phenomenon is different in that (i) we use shallow (1 or 2 layers) Transformers instead of deep ones;
(ii) we use linear attention instead of softmax; (iii) our observed representation collapse occurs only
after a few steps of training, not at initialization.

A line of recent work focused on understanding a related phenomenon of grokking [33], which
is abrupt generalization after an extended phase of memorization of training data by the model.
Multiple works have studied grokking from the perspective of circuits [30, 31, 39], representation
learning [27], delay in feature learning [23, 29, 45], and learning syntactic structures for linguistic
data [7]. We focus on abrupt learning in the online training regime where there isn’t a fixed training
set, which is a different phenomenon from grokking. Grokking has also been attributed to the
softmax activation in attention [17, 34], which does not apply to our linear-attention setup.

Saddle-to-saddle dynamics [6, 21] have also been used to explain plateau and sudden drop in
loss during training. However, these results require very small scale of initialization (→ 0) for their
results to hold, which does not hold in our setups.

The interplay of simplicity bias and Transformer learning dynamics has been studied recently
in [4, 36]. In [4] authors show that neural nets learn lower-order moments of data earlier in training,
and that the embedding statistics of Transformer models and token n-gram frequencies are related,
explaining a specific distributional simplicity bias during training. [36] show that Transformer-
based models progressively learn higher-order (‘many-body’) interactions between tokens in the
sequence.

Ideas from statistical physics have also been used towards understanding initial loss plateaus
in neural net training [20, 37]; they work in a 2-layer teacher-student neural net setup, where the
second layer is fixed during training, and use order parameters to study training. They show that
there is a permutation symmetry in the weight vectors of the first layer during the early plateau
stage, and exiting this symmetry state is what leads to drop in loss.

There has also been recent work towards understanding training dynamics of Transformers using
techniques from singular learning theory [19]. The core idea in this approach is to estimate the Local
Learning Coefficient (LLC) during training, and use this quantity to explain degeneracy in the loss
landscape, and consequently the stage-wise training dynamics of Transformers.

Note that we study representation collapse in the early phase of training, which is distinct from
the notion of representation collapse in [3]; they show that for 2 sequences (v1, v2, . . . , vn) and
(v1, v2, . . . , vn, vn), as n grows large, the pretrained model’s hidden state representation for the last
token becomes identical for both sequences (Theorem 4.2, [3]).

27

	Introduction
	Setup
	Inductive Biases in the Early Phase of Training
	The Role of Learning Attention
	A Further Look at Repetition Bias
	Repetition Bias and Representation Collapse in LLMs
	Discussion
	Detailed Setup and Experimental Details
	Abrupt Learning and Attention Map
	The Role of Learning Attention
	A Further Look at Repetition Bias
	Beyond Repetitions in Consecutive Tokens
	Repetitive Sequences Are Easier to Learn

	OLMo-2 Experiments
	Results for Other Algorithmic Tasks
	Multi-Digit Addition
	Prefix sum
	Permutation
	Histogram
	Reverse
	Copy

	Varying Configurations
	Additional Figures
	Related Work

