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Abstract
Knowing the effect of an intervention is criti-
cal for human decision-making, but current ap-
proaches for causal effect estimation rely on man-
ual data collection and structuring, regardless of
the causal assumptions. This increases both the
cost and time-to-completion for studies. We show
how large, diverse observational text data can be
mined with large language models (LLMs) to pro-
duce inexpensive causal effect estimates under
appropriate causal assumptions. We introduce
NATURAL, a novel family of causal effect estima-
tors built with LLMs that operate over datasets of
unstructured text. Our estimators use LLM con-
ditional distributions (over variables of interest,
given the text data) to assist in the computation of
classical estimators of causal effect. We overcome
a number of technical challenges to realize this
idea, such as automating data curation and using
LLMs to impute missing information. We prepare
six (two synthetic and four real) observational
datasets, paired with corresponding ground truth
in the form of randomized trials, which we used to
systematically evaluate each step of our pipeline.
NATURAL estimators demonstrate remarkable
performance, yielding causal effect estimates that
fall within 3 percentage points of their ground
truth counterparts, including on real-world Phase
3/4 clinical trials. Our results suggest that unstruc-
tured text data is a rich source of causal effect in-
formation, and NATURAL is a first step towards
an automated pipeline to tap this resource.

1. Introduction
Estimating the causal effects of interventions is time con-
suming and costly, but the resulting outcomes are precious.
Health agencies around the world often require randomized
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controlled trial (RCT) data to approve medical interventions.
Clinical trials are key contributors to large R&D costs for
drug developers (Mestre-Ferrandiz et al., 2012). Natural
experiments are another source of rich interventional data,
but they may not always exist or have enough data relevant
to a given causal hypothesis (Dunning, 2012).

When treatment randomization is infeasible, observational
data can be used to identify average treatment effects (ATEs)
(Winship and Morgan, 1999), under common assumptions,
e.g., no unobserved confounding. Such data is abundant but
even when the necessary assumptions are satisfied, it must
be structured (i.e., the outcomes, treatments, and relevant
covariates must be defined, recorded, and tabulated) before
it becomes amenable to computational analyses.

Yet, unstructured observational data presents unique oppor-
tunities for cheaper, more accessible, and potentially even
better (Mueller and Pearl, 2023) effect estimation. For ex-
ample, thousands of people living with diabetes choose to
share their experiences with treatments on online patient
forums. Some of their posts contain rich descriptions of
daily lives, the drugs they have been prescribed, the treat-
ment responses and side effects, as well as pre-treatment
information like age and sex. Their posts contain their lived
experiences including evidence of an outcome in an obser-
vational experiment, albeit in an unstructured form. Other
potential sources of rich unstructured, observational data
include newspaper classifieds, police reports, social media,
and clinical reports. Despite being collected for a myriad
of purposes, researchers have often turned to such data to
test hypotheses since: (i) unstructured data does not re-
quire restrictive data collection designs, e.g., measurement
choice, and can admit many different post-hoc analyses;
(ii) the reported outcomes may reflect what matters to sub-
jects better than standard outcome measures; (iii) value may
be recouped from outcomes that would otherwise be lost;
(iv) there may be more unstructured data available on under-
served or marginalized populations. Figure 1 contrasts our
setting with previous works using randomized or structured
observational data.

This work asks a simple question: How can we use large
language models to automate treatment effect estimation
using freely available text data? We introduce NATURAL,
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Figure 1: Compared to experimental and other observational
studies, NATURAL has lower costs and provides greater
diversity in cohort selection, for causal effect estimation.

a family of text-conditioned estimators that addresses this
by performing NATural language analysis to Understand
ReAL effects.

At a high level, the steps required to compute NATURAL
estimators are as follows. Given an observational study
design and a dataset of natural language reports, filter for
reports that are likely to conform to the experimental de-
sign. Then, using a large language model (LLM), extract the
conditional distribution of structured variables of interest
(outcome, treatment, covariates) given the report. Finally,
use the conditionals to compute estimators of the ATE, using
classical strategies such as inverse propensity score weight-
ing and outcome imputation.

NATURAL is a data-driven pipeline. It leverages and relies
on the LLM in a manner that mimics the learning task it
was trained for: providing parametric approximations to
conditional distributions. As in all observational studies,
the validity of NATURAL also depends on prior causal
knowledge about the task. Expert knowledge is required to
define appropriate covariates and confirm that they satisfy
the necessary assumptions for effect estimation. However,
we anticipate that NATURAL estimators could be devel-
oped under other structural assumptions (e.g. instrumental
variables) as well.

The core contributions of our work are:

• We derive NATURAL ATE estimators based on classi-
cal estimators of the ATE, like inverse propensity score
weighting and outcome imputation. NATURAL estima-
tors operate on entirely unstructured data under two novel
data-access assumptions.

• We implemented NATURAL estimators using an LLM-
based pipeline.

• We developed six observational datasets to systematically
evaluate parts of this pipeline: two synthetic datasets con-
structed using marketing data, and four clinical datasets
curated from public (pre-December 2022) migraine and
diabetes subreddits from the Pushshift collection (Baum-
gartner et al., 2020).

• For each dataset, we treated the ATE from a corresponding
real-world completely randomized experiment (CRE) as

ground truth. Remarkably, our predicted ATEs all fell
within 3 percentage points of the ground truth ATEs, a
potential cost savings of many millions of dollars.

1.1. Related Work

The use of natural language data in causal inference
comes in different flavors: i) using text to measure con-
founders (Keith et al., 2020), ii) using text to measure causal
effect outcomes (Feder et al., 2022), or iii) producing inter-
pretable causal features from text (Feder et al., 2022; Ban
et al., 2023), e.g., what words are more likely to explain
the cause of an event. NATURAL distinguishes itself from
these lines of research in two ways: i) NATURAL does not
require any curated task-specific training data (it is zero-
shot), and ii) NATURAL is not interested in how the text
itself, i.e., its words, relate to the causal problem —that is,
we are only leveraging the model’s ability to predict the
distribution of a specified variable conditional on the input
text. We highlight that our work lies distinct from research
at the intersection of text and causality that has studied the
ability of language models to infer latent variables (that are
implied but not explicitly identified in text data) (Pryzant
et al., 2020; Egami et al., 2022). Rather, we require the
precise specification of covariates to condition on – we view
this as being crucial to creating a more direct way for an
end user to verify the validity of information extracted with
our approach. We include an extended discussion of related
work in appendix E.

2. NATURAL estimators of the ATE
We are interested in estimating the causal effect of a treat-
ment relative to either another treatment or no treatment
in a population of interest. More precisely, we consider
treatments t ∈ {0, 1} and the corresponding potential out-
comes Y (1) and Y (0) under each treatment. We wish to
compute the quantity τ := E[Y (1)− Y (0)], often referred
to as Average Treatment Effect (ATE). Sometimes, Y (0)
may correspond to no treatment (control). Throughout this
work, we assume binary treatments and outcomes in the
Neyman-Rubin causal model. We provide a full list of no-
tation in appendix A. Since our work builds upon standard
techniques for causal inference from observational data, we
refer the reader to appendix B for useful background on
these approaches, namely Inverse Propensity score Weight-
ing (IPW) and Outcome Imputation (OI), along with the
standard assumptions they operate under.

Both randomized and observational studies require direct
access to tabulated data (Xi, Ti Yi) for every individual i.
Our NATURAL estimators on the other hand estimate the
ATE from observational, unstructured natural language data
in the form of language reports Ri. In addition to standard
causal assumptions, NATURAL estimators also require i.i.d.
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sample of reports {Ri}ni=1, where Ri is jointly distributed
with unobserved data (Xi, Ti, Yi), and they require access
to the true observational conditional distribution P (X =
x, T = t, Y = y|R = r).

NATURAL Full. Given {Ri}ni=1 and pi(x, t, y) =
P (Xi = x, Ti = t, Yi = y|Ri = r), we can construct
an idealized version of NATURAL, estimated by:

τ̂N-Full =
1

n

n∑
i=1

∑
x,t,y

pi(x, t, y)

[
ty

êN-Full(x)
− (1− t)y

1− êN-Full(x)

]
,

(1)
where êN-Full(x) estimates the propensity score P (T = 1 |
X), and is also approximated from the given conditional.
We provide a derivation for this estimator and formalize the
assumptions under which it is consistent in appendix C.

The estimator τ̂N-Full above relies on enumerating all pos-
sible values of (X,T, Y ), making it computationally ex-
pensive for high-dimensional X . Below, we describe two
hybrid versions of our method which combine sampling of
some variables and computation of conditional probabilities
of others. Derivations and exact forms of these estimators
are deferred to appendix C.

NATURAL IPW. To construct our hybrid estimator, we
augment the data {Ri}ni=1 by sampling from P (X|Ri) in-
dependently for each report Ri. This gives us a dataset
{(Ri, Xi)}ni=1 drawn i.i.d. from P (X,R) by Assump-
tion 4. Then, our hybrid estimator, derived from the form of
IPW, factorizes pi to use samples Xi|Ri and conditionals
P (T = t, Y = y|Ri, Xi).

NATURAL OI. Similarly inspired by the form of the OI es-
timator, we can augment the data {Ri}ni=1 by sampling from
P (X,T |Ri) independently for each report Ri and build a
hybrid estimator with samples (Xi, Ti)|Ri and conditionals
P (Y = y|Ri, Xi, Ti).

NATURAL Monte Carlo. Further in the direction of sam-
pling more variables, we can obtain samples (Xi, Ti, Yi)
from the entire joint conditioned on Ri and compute
a Monte Carlo estimate, τ̂N-MC. The set of samples
{(Xi, Ti, Yi)}ni=1 constitute a tabular dataset which can be
plugged into a standard ATE estimator like IPW or OI, as
described in appendix B. We refer to these sample-only
estimators as N-MC IPW and N-MC OI, respectively.

We hypothesize that LLMs can be prompted to approximate
the samples and conditionals required by NATURAL estima-
tors above for real-world causal effect questions of interest.
Given a study of interest and a dataset of real-world reports
that are potentially relevant to the study, we pass it through
a sequence of filters with increasing detail and strictness:

(i) Initial filter. Inspired by Adiwardana et al. (2020);
Roller et al. (2020), we first use deterministic rules to
filter out uninformative reports.

(ii) Filter by relevance. We prompt an LLM to determine
whether each report contains information relevant to
the study. We remove reports deemed irrelevant.

(iii) Filter by treatment-outcome. We prompt an LLM
to extract only treatment and outcome information,
and retain the posts that are found to contain both.

(iv) Filter known covariates by inclusion criteria. We
are sometimes interested in ATEs over populations
defined by constraints on pre-treatment covariates
Xi known as inclusion criteria. In such cases, we
included a two-step extraction of covariates to enforce
inclusion criteria: extract all covariates possible using
the JSON-mode of GPT-4; retain reports with non-
zero probability of matching the inclusion criteria;
finally prompt an LLM to determine the full set of
covariates, subject to the constraint that they satisfy
the inclusion criteria. Technical conditions to justify
these steps are discussed in more detail in appendix J.

(v) Infer conditionals. Given {Ri, Xi}ni=1 from the pre-
vious steps, we compute the probabilities PLLM(T =
t, Y = y|Ri, Xi) by prompting an LLM. Specifically,
we ask an LLM to answer questions about T, Y given
access to Ri, Xi, and we score every possible answer
T = t, Y = y using the LLM log-probabilities. We
exponentiate and renormalize these scores across the
space of possible realizations to obtain a valid proba-
bility distribution.

We defer further implementation details to appendix D, ex-
act prompts to appendix G, a detailed example to appendix F
and a discussion of the limitations to section 4. Figure 2
summarizes our pipeline.

3. Empirical Evaluation

Table 1: The NATURAL IPW ATE outperforms other ver-
sions of the method as well as trained baselines on synthetic
datasets, as measured by RMSE.

Hillstrom Retail Hero

ATE (%) RMSE ATE (%) RMSE

Uncorrected 1.86 ± 0.67 4.28 0.26 ± 0.30 3.08

N-Full 4.26 ± 0.86 2.02 1.86 ± 1.38 2.08
N-MC OI 6.17 ± 1.61 1.61 4.94 ± 2.17 2.70
N-MC IPW 4.81 ± 0.80 1.51 1.85 ± 2.01 2.49
N-OI 4.58 ± 0.61 1.62 2.99 ± 1.43 1.72
N-IPW 5.23 ± 1.00 1.32 3.83 ± 1.29 1.39

Bag-of-Words 7.57 ± 1.37 2.23 2.61 ± 2.08 2.42
Sentence Encoder 0.00 ± 0.00 6.09 1.97 ± 1.62 2.10

IPW (Structured) 6.38 ± 0.26 0.39 3.09 ± 0.19 0.30
Ground Truth 6.09 (Hillstrom, 2008) - 3.32 (X5, 2019) -

Evaluating an end-to-end pipeline for causal inference from
unstructured real-world text data to ATEs presents chal-
lenges regarding access to data, ground truth ATE and
insightful intermediate metrics. We used two synthetic
datasets where we augmented randomized data to mimic
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Table 2: Using real data, best performing NATURAL estimators fall within 3 percentage points of their corresponding
ground truth clinical trial ATEs.

Tuned Held-out

Semaglutide vs. Tirzepatide Semaglutide vs. Liraglutide Erenumab vs. Topiramate OnabotulinumtoxinA vs. Topiramate

ATE (%) RMSE ATE (%) RMSE ATE (%) RMSE ATE (%) RMSE

Uncorrected −33.56 ± 0.77 43.67 −83.57 ± 0.43 68.87 29.07 ± 0.48 2.87 21.55 ± 1.22 19.49

N-MC OI 5.43 ± 1.01 4.79 −7.71 ± 0.91 7.05 23.91 ± 1.63 4.68 46.21 ± 1.94 5.55
N-MC IPW 5.23 ± 0.93 4.97 −7.43 ± 0.93 7.33 25.29 ± 1.72 3.47 46.23 ± 1.93 5.57
N-OI 4.36 ± 2.05 6.09 −15.90 ± 1.14 1.65 31.21 ± 1.68 3.36 44.91 ± 1.46 4.17
N-IPW 8.83 ± 0.36 1.33 −12.21 ± 1.09 2.72 27.90 ± 0.99 1.06 42.60 ± 2.02 2.58

Ground Truth 10.11 (NCT03987919, Frías et al., 2021) −14.7 (NCT03191396, Capehorn et al., 2020) 28.3 (NCT03828539, Reuter et al., 2022) 41.00 (NCT02191579, Rothrock et al., 2019)

real-world observations, while continuing to have access
to ground truth evaluation. In addition, we study four real
datasets, curated from publicly available Reddit posts from
the Pushshift dataset, as described in appendix D. These six
datasets allowed us to systematically evaluate NATURAL.

Synthetic Datasets. Causal effect estimation is typically
evaluated using synthetic datasets with one or more rela-
tionships between the observed covariates, treatment and
outcome being contrived. We instead synthesized unstruc-
tured observational text data from real randomized tabu-
lar datasets, using an LLM. Specifically, we (i) introduced
confounding bias by sampling datapoints according to an
artificial propensity score, (ii) randomly dropped covariates,
(iii) described covariates, treatment and outcome in shuf-
fled orderings, (iv) simulated realism by sampling a persona
from the the Big Five personality traits (Lim, 2023) for each
datapoint and finally, (v) prompted the LLM to generate a
realistic report describing the provided information in the
style of someone with the given traits (see appendix G for
the full prompt). We used two standard, publicly available
randomized datasets: Hillstrom (Hillstrom, 2008) and Re-
tail Hero (X5, 2019), and plan to open-source scripts to
generate our datasets. Step (i) above is in a similar vein as
Keith et al. (2023), in that our subsampling strategy does
not modify the marginal distribution over covariates and the
ATE remains identifiable from observational data.

Real-world Datasets. To study how our framework may
be deployed to test hypotheses using real data from online
forums; we considered two medical conditions for which
there exist abundant Reddit posts in the Pushshift collection
(Baumgartner et al., 2020), with individuals’ personal expe-
riences: the effect of diabetes medications (e.g. Semaglu-
tide) on weight loss and the tolerability of migraine treat-
ments. For each condition, we picked two clinical trials
which performed a head-to-head comparison of two treat-
ments that we expected to find references to in relevant
subreddits. We limited our data collection to posts that were
written before December 2022 and made publicly available
in the PushShift archives. We curated four datasets for com-
parison between different treatments, each of which has
a ground truth RCT: Semaglutide vs. Tirzepatide (Frías

et al., 2021) and Semaglutide vs. Liraglutide (Capehorn
et al., 2020) for their effect on weight loss and Erenumab
vs. Topiramate (Reuter et al., 2022) and Onabotulinum-
toxinA vs. Topiramate (Rothrock et al., 2019) for their
tolerability. We used the first of these to validate choices
made to implement NATURAL (like filtering, imputations,
prompt specifications) and the other three as held-out test
settings.

We include further details for all our datasets in appendix H.

Results. Next, we investigate several questions about the
performance of NATURAL empirically. We used GPT-
4 Turbo for sampling and LLAMA2-70B for computing
conditional probabilities.

We present our estimated ATE and its RMSE on the syn-
thetic datasets in table 1. Further, we evaluate two trained
baselines, which use a Bag-of-Words model and a sentence
encoder respectively, to train representations of text data
with their labels. Here, for each attribute in the set of co-
variates, treatments, and outcomes, we train a MLP model
with 5-fold cross validation to predict that attribute. We then
use these predicted attributes as a tabular dataset of samples
that can be plugged into any causal inference estimator. We
find that our methods are competitive with or outperform
these baselines, despite not being trained with any labels.
In particular, the sentence encoder baseline collapsed to an
ATE of zero, having learned the constant predictor for the
outcomes in Hillstrom data.

Table 2 compares NATURAL methods to estimate the ATEs
in real-world clinical settings using self-reported data from
the Pushshift collection of Reddit posts. Remarkably, our
predicted ATEs (a) depict the same direction of effect, and
(b) fall within 3 percentage points of their corresponding
ground truth clinical trial ATEs. For both synthetic and
real data experiments, NATURAL IPW outperforms other
versions across datasets, except for the Semaglutide vs. Li-
raglutide setting, where NATURAL OI performed the best.
Both N-MC versions perform similarly on all datasets.

This result is significant. Clinical trials can take on the order
of years and costs in the tens to hundreds of millions of
dollars. Going from the raw language observational data to
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ATE in our framework takes on the order of days and costs
at most a few hundred dollars of compute. For problems
in medicine, economics, sociology, and political science
where randomization is infeasible or expensive, NATURAL
provides a tractable way to leverage observational data to
rank potential experiments prior to conducting them.

We conduct more detailed analysis of NATURAL in ap-
pendix I. In particular, we explore the questions: (i). how
well does NATURAL estimate observational distributions
from self-reported data? (ii). how do different choices in
the NATURAL pipeline effect ATE prediction? and (iii).
how well do different estimates of propensity score balance
covariates? We also visualize the empirical distributions of
covariates imputed by an LLM for different datasets.

4. Conclusion
In this work, we introduced NATURAL, a family of text-
conditioned estimators, to automate treatment effect esti-
mation using free-form text data. We demonstrated NAT-
URAL’s efficacy with six synthetic and real datasets for
systematic evaluation of its pipeline. We exposed the abil-
ity of LLMs to extract meaningful conditional distributions
over structured variables and, when combined with classical
causal estimators, to predict real-world causal effects with
remarkable accuracy. Given this promising performance,
exciting directions for future work include (i) incorporating
automatic prompt tuning methods, (ii) exploring whether
our assumptions can be weakened, (iii) exploring other do-
mains in applied research, e.g., social sciences, (iv) perform-
ing a more extensive evaluation of NATURAL on different
study designs to better understand what type of treatments,
outcomes, and reports show better or worse practical perfor-
mance with NATURAL or (v) deploying the pipeline to test
hypotheses at even larger scales.

NATURAL estimators have numerous use cases with poten-
tially far-reaching impact. As long as patients have access
to treatments and report their experiences, NATURAL can
be used to compare two treatments in new indications or
new populations. Therefore, our pipeline can in principle
support efforts to prioritize trials for repurposed drugs or
supplements in under-served diseases or populations. Fur-
ther, a crucial step after drug approval is post-marketing
surveillance for side effects (positive or negative) that may
not have been measured or may have been too rare to iden-
tify in a smaller trial. NATURAL can leverage the diversity
of available language data to detect these effects. While
our motivations largely stem from the challenges of drug
development, our NATURAL estimators are applicable to
any effect estimation setting for which there exists relevant
natural language data.

Limitations and Broader Impact Statement
In addition to the limitations that NATURAL shares with ev-
ery observational study, i.e., the validity of the practitioner’s
causal assumptions, it comes with an extra dependence on
how well one can approximate the desired conditional dis-
tributions. While more and more capable LLMs are being
continually developed, the extent to which they satisfy NAT-
URAL’s assumptions is nearly impossible to formally test.
Indeed, while pretraining tends to produce calibrated LLM
predictions (Kadavath et al., 2022), post-training techniques
can compromise calibration (OpenAI et al., 2024). There-
fore, we emphasize that NATURAL was not developed to
recommend therapeutics directly to end-users or to directly
inform high-stakes public policies. Instead, we envision
NATURAL as a powerful tool to help us approximate ATEs
at scale and prioritize confirmatory CREs. We strongly rec-
ommend that all predictions made by NATURAL estimators
be validated experimentally before being used to inform
high-stakes decision-making. Apart from its dependence on
LLM capabilities, NATURAL is also limited by the nature
of observational, unstructured natural language data:

• Network Interference. In practice, acquiring i.i.d. reports
can be challenging. For instance, social network users
might talk to each other and influence their treatment
choices. This is a well-known issue in causal inference
and statistical sciences in general. Existing solutions rely
on a known network structure to sample individuals or
correct for their neighbors’ treatments (Cotta et al., 2023;
Leung, 2022; Forastiere et al., 2021).

• Outcome Measurement. Since NATURAL deals with self-
reports, subjects need to be able to report the outcomes
of interest. For example, this cannot be applied if the
outcome is measured with an expensive, inaccessible test.
Therefore, the study design implemented with NATURAL
must account for the accessibility of endpoints to users.

• Reporting Bias. Results might be biased towards individu-
als’ choice of reporting an outcome given their experience
with the treatment. Luckily, outcome missingness is a
widely studied problem in causality research, see e.g.,
how to test (Chen et al., 2023) or how to mitigate (Miao
et al., 2015) it. Note, however, that solutions will often
accumulate assumptions on top of NATURAL and should
always be critically evaluated by practitioners.

• Selection Bias. Selection bias corresponding to which
individuals participate in online forums means the frame-
work is only capable of estimating local ATEs.
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Appendix

A. Notation

R Random variable corresponding to unstructured natural language text from a social media post
(or report).

X Random variable corresponding to features of an individual in a causal inference dataset.

T Random variable corresponding to treatment or intervention assigned to an individual in a causal
inference dataset.

Y Random variable corresponding to outcome observed for an individual in a causal inference
dataset.

x Possible instance of X from its support X .

t Possible instance of T from its support T = {0, 1} (binary treatments).

y Possible instance of Y from its support Y = {0, 1} (binary outcomes).

r Possible instance of R from its support R.

Y (t) Random variable corresponding to potential outcome observed for an individual after receiving
treatment t.

e(X) Propensity score function for binary treatments, equal to P (T = 1|X).

Xi Sampled value of X for individual i.

Ti Sampled value of T for individual i.

Yi Sampled value of Y for individual i.

Ri Sampled report R for individual i.

τ Average treatment effect (ATE) given by E[Y (1)− Y (0)], where the expectation is over some
defined population of individuals.

n Total number of individuals.

n1 Total number of individuals that are assigned treatment T = 1.

n0 Total number of individuals that are assigned treatment T = 0.
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B. Preliminaries
We are interested in estimating the causal effect of a treatment relative to either another treatment or no treatment in a
population of interest. More precisely, we consider treatments t ∈ {0, 1} and the corresponding potential outcomes Y (1)
and Y (0) under each treatment. We wish to compute the quantity τ := E[Y (1) − Y (0)], often referred to as Average
Treatment Effect (ATE). Sometimes, Y (0) may correspond to no treatment (control). Throughout this work, we assume
binary treatments and outcomes in the Neyman-Rubin causal model. We provide a full list of notation in appendix A.

A Completely Randomized Experiment (CRE) with n participants requires no prior causal knowledge. In a CRE, the
treatment assignment vector (T̃i)

n
i=1 is a random permutation of n1 ones and n− n1 zeros sampled independently of the

outcomes. In this case, the difference-in-means 1
n1

∑n
i=1 T̃iYi(1)− 1

n−n1

∑n
i=0(1− T̃i)Yi(0) provides us with an unbiased

estimate of τ .

Despite the indisputable necessity of CREs in high-stakes settings, it is often expensive and/or infeasible to have complete
control over the treatment assignment. Instead, observational data is more readily available. Observational data often
contains spurious correlations between the observed treatment T and the observed outcome Y = TY (1) + (1− T )Y (0)
through a common cause (confounder). Typically, this confounding is formalized as a variable X , which we assume to be
discrete throughout this work, representing covariates associated with each individual. Given i.i.d. samples {(Xi, Ti, Yi)}ni=1

from the target population, standard causal inference techniques can correct for confounding bias and provide consistent
estimates of τ under Assumptions 1 and 2:

Assumption 1 (Strong Ignorability.). The potential outcomes are independent of treatment assignments conditional on
covariates, i.e., (Y (0), Y (1)) ⊥⊥ T |X.

Assumption 2 (Positivity.). For every treatment t and covariate set x, 0 < P (T = t | X = x) < 1.

Following are two classical estimators of the ATE τ from observational data, each of which rely on X satisfying Assump-
tions 1 and 2. We refer the reader to Ding (2023) for further details.

Inverse Propensity score Weighting (IPW). The propensity score is the conditional probability of receiving a treatment
given the observed features, i.e., e(x) = P (T = 1|X = x). The IPW estimator is given by

τ̂IPW =
1

n

n∑
i=1

TiYi

ê(Xi)
− (1− Ti)Yi

1− ê(Xi)
, (2)

where ê(x) is an approximation of P (T = 1 | X = x). When ê(x) is the true propensity score, τ̂IPW is an unbiased estimator
of τ . When ê(x) is estimated as empirical probability, τ̂IPW is consistent.

Outcome Imputation (OI). Outcome Imputation learns a model to impute outcomes from features and treatment and then
marginalizes away the features to estimate τ with

τ̂OI =
1

n

n∑
i=1

τ̂(Xi, 1)− τ̂(Xi, 0), (3)

where τ̂(x, t) approximates P (Y = 1 | X = x, T = t). Note that if τ̂(x, t) is an unbiased estimation of this quantity, τ̂OI is
an unbiased estimator of τ .

10



End-To-End Causal Effect Estimation from Unstructured Natural Language Data

C. NATURAL Derivations
In addition to Assumptions 1 and 2, NATURAL estimators require the following assumptions to guarantee their consistency.

Assumption 3 (Natural language report data.). The target population is described by an observational data-generating
process P (X,T, Y,R) of data (X,T, Y ), which satisfies Assumptions 1 and 2 and is jointly distributed with a random
natural language string R, called a report. We assume access to an i.i.d. sample of reports {Ri}ni=1 from the marginal of
this process.

Assumption 4 (Access to the true observational conditional over (X,T, Y ).). We can either (i) compute the conditional
P (X = x, T = t, Y = y|R = r) of the true data-generating process, or (ii) we can sample from P (X = x|R = r) and
compute P (T = t, Y = y|R = r,X = x).

Intuitively, these assumptions give NATURAL indirect access to (X,T, Y ) through R. They can be weak or strong,
depending on the definition of the reports R. On the one hand, if reports are copies of the observational data, i.e.,
R = (X,T, Y ), then Assumption 4 is trivial to satisfy. On the other hand, if reports are all the constant, empty string, R = ϵ,
then Assumption 4 guarantees that we have full access to the true observational joint density function over (X,T, Y ), which
is a strong assumption. We consider how we might satisfy these assumptions in practice in the next section. Here, we
assume that they hold and develop a series of consistent estimators of the ATE.

NATURAL Full. Given {Ri}ni=1 and P (X = x, T = t, Y = y|R = r), we can construct an idealized version of
NATURAL. Let us start by noting that the law of total expectation gives us

τ = EX,T,Y

[
TY

e(X)
− (1− T )Y

1− e(X)

]
= ER

[
EX,T,Y |R

[
TY

e(X)
− (1− T )Y

1− e(X)

]]
. (4)

A Monte Carlo estimate over reports is given by

τ̂N-Full =
1

n

n∑
i=1

∑
x,t,y

P (X = x, T = t, Y = y|Ri)

[
ty

êN-Full(x)
− (1− t)y

1− êN-Full(x)

]
, (5)

which further approximates êN-Full(x) from the given conditional. We used eq. (8) below.

The estimator τ̂N-Full above relies on enumerating all possible values of (X,T, Y ), making it computationally expensive for
high-dimensional X . Below, we present two hybrid versions of our method which combine sampling of some variables and
computation of conditional probabilities of others.

NATURAL IPW. To construct our hybrid estimator, we augment the data {Ri}ni=1 by sampling from P (X|Ri) indepen-
dently for each report Ri. This gives us a dataset {(Ri, Xi)}ni=1 drawn i.i.d. from P (X,R) by Assumption 4. Then, our
hybrid estimator is derived from the form of IPW as follows:

τ = ER,X

[
ET,Y |R,X

[
TY

e(X)
− (1− T )Y

1− e(X)

]]
, (6)

τ̂N-IPW =
1

n

n∑
i=1

∑
(t,y)∈T ×Y

P (T = t, Y = y|Ri, Xi)

[
ty

êN-IPW(Xi)
− (1− t)y

1− êN-IPW(Xi)

]
. (7)

where êN-IPW(x) is consistently estimated in the following manner:

êN-IPW(x) =

∑n
i=1 P (T = 1|Ri, Xi)I(Xi = x)∑n

i=1 I(Xi = x)

a.s.→ ER,X

[
P (T = 1|R,X)I(X = x)

]
ER,X

[
I(X = x)

] = e(x). (8)

NATURAL OI. Similarly inspired by the OI estimator in equation 3, we have for t ∈ {0, 1},

P (Y = 1 | T = t,X = x) =
ER,X,T

[
P (Y = 1|R,X, T )I(X = x, T = t)

]
ER,X,T

[
I(X = x, T = t)

] (9)

Thus, for our hybrid OI estimator, we augment the data {Ri}ni=1 by sampling from P (X,T |Ri) independently for each
report Ri. This gives us a dataset {(Ri, Xi, Ti)}ni=1 drawn i.i.d. from P (R,X, T ) by Assumption 4. Then, our consistent
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outcome predictor is given by

τ̂N-OI(x, t) =

∑n
i=1 P (Y = 1|Ri, Xi, Ti)I(Xi = x, Ti = t)∑n

i=1 I(Xi = x, Ti = t)
, (10)

and the final estimator is given by:

τ̂N-OI =
1

n

n∑
i=1

τ̂N-OI(Xi, 1)− τ̂N-OI(Xi, 0) (11)

NATURAL Monte Carlo. Further in the direction of sampling more variables, we can obtain samples (Xi, Ti, Yi) from the
entire joint conditioned on Ri and compute a Monte Carlo estimate, τ̂N-MC. The set of samples {(Xi, Ti, Yi)}ni=1 constitute
a tabular dataset which can be plugged into a standard ATE estimator like IPW or OI, as described in appendix B. We refer
to these sample-only estimators as N-MC IPW and N-MC OI, respectively.
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I tried a 
drug and it 
helped! I 
haven’t had a 
single …

I tried a 
drug and it 
helped! I 
haven’t had a 
single …

X2 X3X1 X2 X3X1X2 X3X1
T Y X2 X3X1
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these…
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Which 
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LLM PROMPT

Figure 2: Our pipeline leverages LLMs to curate data that can be plugged into natural language conditioned estimators for
average treatment effects.

D. Implementing NATURAL estimators with Large Language Models
LLMs are trained on vast datasets of real-world data, e.g., (AI@Meta, 2024), which likely contain records of data generated
by processes that are consistent with Assumption 3. Because LLMs can learn well-calibrated conditionals (Kadavath
et al., 2022), our hypothesis is that LLMs can be prompted to approximate the conditionals required by Assumption 4 for
real-world causal effect questions of interest. Our LLM implementation of NATURAL estimators is built on this hypothesis
to try to satisfy Assumptions 3 and 4 (Assumptions 1 and 2 must be guaranteed by a domain expert). We defer exact prompts
to appendix G and a discussion of the limitations to the next section. Figure 2 summarizes our pipeline.

Filtering to match Assumption 3. Our first goal is to produce a dataset of i.i.d. reports Ri that are very likely to be jointly
distributed with the random variables (Xi, Ti, Yi) of a specific observational study of interest. Given a study of interest
and a dataset of real-world reports that are potentially relevant to the study, we pass it through a sequence of filters with
increasing detail and strictness:

(i) Initial filter. Inspired by other work with social media data (Adiwardana et al., 2020; Roller et al., 2020), we first
use deterministic rules to filter out uninformative reports: posts that were removed, are too short, have "bot" in the
author’s name, have no mention of any keyword related to the study, etc.

(ii) Filter by relevance. We prompt an LLM to determine whether each report contains information that would make it
relevant to the study. We remove reports that are deemed irrelevant.

(iii) Filter by treatment-outcome. We ensure that each report pertains specifically to the treatments and outcomes of
interest. We do so by prompting an LLM to extract only treatment and outcome information, and retaining only the
posts that are deemed to both mention one of the treatments in question and also contain outcome information.

(iv) Filter known covariates by inclusion criteria. We are sometimes interested in ATEs over populations defined by
constraints on pre-treatment covariates Xi known as inclusion criteria. In such cases, we included a filter to enforce
inclusion criteria. Managing inclusion criteria is complicated by the fact that many reports Ri contain no information
about covariates that are required to verify inclusion. So, in this filtering step, our goal was to ensure that the final set
of reports have non-zero probability of matching the inclusion criteria. We begin by prompting an LLM to extract the
full set of covariates Xi, following constraints on the possible values each attribute can take, but we allow the LLM to
extract Unknown if it is impossible for the LLM to determine the value of a covariate. We then remove reports, if
any of the non-Unknown covariates are determined to fail their inclusion criteria. We found the JSON-mode made
available for generation by certain LLM APIs like GPT-4 to suffice for this task; however more involved strategies for
constrained generation are also possible (Willard and Louf, 2023; Zheng et al., 2023).

Sampling from and computing conditional probabilities to match Assumption 4. Given a set of reports {Ri}ni=1 that
pass the filtering stage above, our next steps use LLMs to extract the samples and conditionals PLLM(X,T, Y | R), required
to compute NATURAL estimators. For each Ri, we:

(v) Extract covariates, both known and unknown. We run a final covariate extraction by prompting an LLM to
determine the full set of covariates Xi from the report Ri, subject to the constraint that Xi satisfies the inclusion
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criteria. In contrast to (iv), we ask the LLM to guess the values of Unknown covariates. We verified that this second
extraction agreed exactly with the first extraction (iv) on the known covariates (i.e., the ones that were not extracted
as Unknown in the first extraction). We contrast the empirical distributions of these known and unknown/guessed
covariates for our experiments in appendix I.4.

(vi) Infer conditionals. Given {Ri, Xi}ni=1 from the previous steps, we compute the probabilities PLLM(T = t, Y =
y|Ri, Xi) by prompting an LLM. Specifically, we ask an LLM to answer questions about T, Y given access to Ri, Xi,
and we score every possible answer T = t, Y = y using the LLM log-probabilities. We exponentiate and renormalize
these scores across the space of possible realizations to obtain a valid probability distribution.

To manage inclusion criteria, our LLM pipeline requires three additional technical conditions, which we discuss in more
detail in Appendix J: (i) inclusion criteria define a box, i.e., a separate criterion is specified for each covariate dimension,
(ii) the event that the set of Unknown in (iv) satisfy their inclusion criteria is conditionally independent of the report and
the known covariates given the event that the knowns satisfy their criteria, and (iii) the set of known and unknown covariates
is conditionally independent of the treatment and outcome given the report and the covariate values. We used these to avoid
an expensive estimation or a data-wasteful rejection sampling step, but these assumptions are not required in principle by
NATURAL estimators.

Nevertheless, while our empirical results are remarkably consistent with the correctness of our pipeline, we cannot formally
guarantee that it satisfies Assumptions 3 and 4. The final outcome of this pipeline is a dataset {Ri, Xi}ni=1 and a set of
conditionals P (T = t, Y = y|Ri, Xi) that can be plugged into the hybrid NATURAL estimators in section 2 to predict
ATEs. Therefore, we see this as a first implementation of NATURAL estimators, which we anticipate can be improved.
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E. Extended Related Work
Leveraging natural language data (Sridhar and Blei, 2022) to support causal claims is pervasive in applied research (Sridhar
and Getoor, 2019; Egami et al., 2022). Our work falls under the broad umbrella of accelerating the identification of
real-world evidence (RWE) (Schurman, 2019). For instance, in the context of healthcare, RWE supports not only drug
repurposing, but also post-market safety evaluations —its most common application. NATURAL expands the boundaries of
how quickly one can obtain and validate such real-world evidence from observational data (Sheldrick, 2023).

The use of natural language data in causal inference comes in different flavors: i) using text to measure confounders (Keith
et al., 2020), ii) using text to measure causal effect outcomes (Feder et al., 2022), or iii) producing interpretable causal
features from text (Feder et al., 2022; Ban et al., 2023), e.g., what words are more likely to explain the cause of an event.

NATURAL distinguishes itself from these lines of research in two ways: i) NATURAL does not require any curated
task-specific training data (it is zero-shot), and ii) NATURAL is not interested in how the text itself, i.e., its words, relate to
the causal problem —that is, we are only leveraging the model’s ability to predict the distribution of a specified variable
conditional on the input text. We highlight that our work lies distinct from research at the intersection of text and causality
that has studied the ability of language models to infer latent variables (that are implied but not explicitly identified in text
data) (Pryzant et al., 2020; Egami et al., 2022). Rather, we require the precise specification of covariates to condition on –
we view this as being crucial to creating a more direct way for an end user to verify the validity of information extracted
with our approach.

Prior works have also leveraged LLMs in a black-box fashion for causal tasks by querying the model for causal statements.
In the context of causal discovery, users directly ask for the existence of cause-and-effect relationships, e.g.,“Does changing
the age of an abalone causes a change in its length?” (Kıcıman et al., 2023; Naik et al., 2023; Antonucci et al., 2023;
Arsenyan and Shahnazaryan, 2023; Tu et al., 2023; Jiralerspong et al., 2024; Ban et al., 2023). Due to the large amount of
training data, it is possible that the model learns to apply a causal model described in the training data and answer causal
questions with it (Pearl, 2023; Willig et al., 2023). The issue with this approach is i) the user is limited to the causal models
observed in training, ii) the user is not aware of which causal model they are using, and iii) the queries tend to present high
prompt sensitivity (Long et al., 2023).

Finally, we note that a recent work created a benchmark and showed how LLMs struggle to distinguish pairwise correlation
from causation (Jin et al., 2023), while another shows that checking causal relationships in a pairwise manner can lead to
invalid causal graphs (Vashishtha et al., 2023).
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F. Worked Example: Semaglutide vs. Tirzepatide
To make the NATURAL pipeline and its implementation more concrete, we now work through an end-to-end example using
the Semaglutide vs. Tirzepatide dataset. This was the setting used to develop our evaluation setup and tune the pipeline. We
made choices regarding filtering, covariate extraction and defining variables for causal inference, which were then fixed and
used for the test datasets. These considerations are explained below.

Evaluation. Having noticed a large number of posts about the effects of diabetes treatments on weight loss across subreddits
(which have eventually been collected in the Pushshift collection), we used clinicaltrials.gov as a source for
ground truth ATEs that our method could be compared against. Since the available self-reported data we are interested
in rarely represents individuals that may constitute a control group, we limited our search to clinical trials that conducted
a head-to-head comparison of two treatments, and confirmed that each of these treatments was mentioned in a sufficient
number of posts in the data collection. As mentioned in the main paper, we selected Frías et al. (2021) (NCT03987919)
which compares Semaglutide to Tirzepatide and measures a variety of endpoints, including whether or not participants
achieved a target weight loss of 5% or more. Since NATURAL is developed for binary outcomes, we selected this endpoint
and used the reported difference in proportion of participants achieving this target, between the treatment cohorts, as the
ground truth ATE.

LLM-supported implementation.

(i) Initial filter. We found nine subreddits relevant to this problem setting: r/Mounjaro, r/Ozempic, r/fasting, r/intermit-
tentfasting, r/keto, r/loseit, r/Semaglutide, r/SuperMorbidlyObese, r/PlusSize. From each subreddit, we downloaded
all submissions and comments posted upto December 2022 from the Pushshift collection, so as to only use pub-
licly available data. This resulted in a dataset of 577,733 submissions and comments. The initial deterministic,
task-agnostic and rule-based filter removed any submission or comment if its content was not a string, if it had
no score, if the content was "[deleted]" or "[removed]", if it was a comment with fewer than ten space-
separated strings (presumably, words), if the author’s name contained the string "bot", if there were no spaces
in the first 2048 characters, and if less than 50% of all characters were alphabetic. This reduced the dataset
size to 380,276. We then formatted this data into dictionary-like datapoints with fields: subreddit, title,
date created, post/comment, author replies. Comments written by the author as replies to their
own post may contain additional relevant information when combined with with original post and other replies.
We then passed these through a task-dependent string-matching filters. For this dataset, we listed strings used
commonly to refer to the treatments, ["ozempic", "mounjaro", "semaglutide", "tirzepatide",
"wegovy", "rybelsus", "zepbound"], included common misspellings generated with GPT-4 and Perplex-
ity, and filtered out datapoints that did not contain any of these strings. Similarly, we listed keywords relevant to
the outcome of interest, ["kg", "kilo", "lb", "pound", "weigh", "drop", "loss", "lost",
"gain", "hb", "a1c", "hemoglobin", "haemoglobin", "glucose", "sugar"] and filtered
out datapoints that did not contain any of these strings. This filtered dataset now contained 50,654 datapoints.

(ii) Filter by relevance. Next, we wrote a problem setting description and prompted GPT-3.5-Turbo to determine
whether the posts, along with auxiliary information from the formatted dictionaries described above, were relevant
to the described setting. The description and instructions for this particular dataset are shown in prompt 2. We
manually labeled a handful of datapoints as Yes or No and included these as incontext examples to improve the
LLM’s generations. We removed datapoints that were deemed irrelevant, resulting in a "relevant" dataset of 21,229
datapoints.

(iii) Filter by treatment-outcome. To further filter the data to points that refer specifically to the treatments and outcome
of interest, we prompted GPT-3.5-Turbo to extract only information required to ascertain the treatment and outcome,
as shown in prompt 3. Since the outcome for this dataset, achievement of a target weight loss of 5% or more, may be
reported in several ways, we attempted to cover all those possibilities. Specifically, we prompted the LLM to extract
the user’s starting weight, end weight, change in weight and percentage of change in weight. Several combinations of
these attributes allow us to programmatically infer the final outcome. We also extracted the units in which weight
was reported, converting all extractions to be in lbs. We filtered out any datapoint for which the extracted treatment
was not one of the treatments considered for this task or for which it was not possible to infer the outcome using the
above-mentioned extracted information. This finally gave us a natural language dataset of 4619 relevant reports, each
of which contained treatment and outcome information pertaining to the defined problem setting.

(iv) Filter known covariates by inclusion criteria. To fairly evaluate against a real clinical trial, we used the trial design
determined before actually conducting the trial to further filter the dataset. In particular, we noted the inclusion criteria
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enforced in the clinical trial and aimed for a set of reports with non-zero probability of satisfying these criteria. The
criteria for this dataset were: (i). the participant must be diagnosed with type 2 diabetes, (ii). they must already
be on a regime of the treatment called Metformin, and (iii). they must have a BMI of 25 or more. Since different
treatment dosages can have varying effects, we also included (iv). dosage as a criterion for matching here, i.e. 1mg for
Semaglutide and 5mg for Trizepatide, as in the clinical trial. As described in item (iv) and motivated in appendix J, we
extracted all covariates including ones related to the inclusion criteria and removed datapoints that whose extractions
were not Unknown but failed to satisfy the criteria above. This resulted in a dataset of 1265 reports.

(v) Extract known and unknown covariates. Treating these 1265 reports as the final dataset from which to estimate
an ATE, we again used the real trial design as expert guidance for defining covariates, specifically, pre-treatment
information ("baseline characteristics") reported in the study. We defined "age", "sex", "BMI", "start
weight", "start HbA1c"] as the adjustment set for causal inference. We also included the "duration" of
treatment as a covariate since this information is often reported and is likely to influence the outcome. This extraction
step was conditioned on inclusion criteria being satisfied, a description of which was included in the extraction prompt,
as in prompt 5.

(vi) Infer conditionals. We inferred conditional distributions from LLAMA2-70B for different versions of NATURAL,
with the strategy described in item (vi) and LLM imputs of the form shown in prompt 6. Here, "conditioning
on covariates" was implemented by adding questions about the covariates and their sampled answers to the in-
put. For instance, for sex, the question "What is the reported sex of the user?" was followed
by its previously extracted answer (Male or Female). The scoring strategy required enumerated treatments
and outcomes for each input, which were ["Semaglutide like Ozempic or Wegovy or Rybelsus",
"Tirzepatide like Mounjaro or Zepbound"] and ["No", "Yes"], respectively.

Causal inference. Given all the required extractions and conditionals from LLMs, we required discrete covariates to
plug them into our NATURAL estimators. Hence, we converted any continuous covariates into discrete categories. These
categories for each dataset are shown in table 4 for all our datasets. Different choices of discretization led to slightly different
ATE predictions. We found it most helpful to discretize continuous numerical covariates into intervals such that the number
of datapoints were roughly balanced across interval. This avoided covariate strata with too many or too few datapoints
and resulted in ATE predictions from all NATURAL estimators that were sufficiently close to the ground truth. Having
validated on this "tuned" dataset, we adopted the same principle for the other three test datasets. For the final results reported
in table 2, we report ATE mean, standard deviation and root mean squared error over ten trials, each with 80% of the data
sampled randomly without replacement.
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G. LLM Prompts

Prompt 1: Synthetic report generation (Hillstrom)

You are a user who used a website for online purchases in the past one year and want
to share your background and experience with the purchases on social media.

## Attributes
The following are attributes that you have, along with their descriptions.
> {features}

## Personality Traits
The following dictionary describes your personality with levels (High or Low) of the

Big Five personality traits.
> {traits}

## Your Instructions
Write a social media post in first-person, accurately describing the information

provided. Write this post in the tone and style of someone with the given
personality traits, without simply listing them.

Only return the post that you can broadcast on social media and nothing more.

## Post
>
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Prompt 2: Relevance filtering (Weight Loss)

You are an expert researcher looking around reddit for posts/comments describing the
effect of a treatment on weight loss or blood sugar level experienced by the
author.

## Problem Setting
> You are interested in self-reported effects of a treatment on a user who took the

treatment themselves. You want to be able to answer some or all of the following
questions from the text of the post or comment:

1. Which treatment did the user take?
2. What change did they observe in their weight due to this treatment, and during

what duration did they observe this change?
3. What change did they observe in their blood sugar, aka HbA1c levels, due to this

treatment, and during what duration did they observe this change?
4. What are other attributes they report, e.g. age, sex, country of residence,

diabetes diagnosis, other treatments they have tried, or side effects?

## Your Instructions
I will show you a post or comment, and contextual information about it. Based on the

given problem setting and contextual information, you need to judge whether it
is relevant to the problem setting described above or not. Answer Yes if the
post is relevant and No otherwise; nothing else.

Here are a few examples:

{incontext examples}

## Subreddit
> This post was found on the subreddit r/{subreddit}.

## Title
> This post was titled: {title}

## Date Created
> This post was created on {date_created}.

## Post
> {post}

The author also replied with the following in the thread:
> {replies}

Answer Yes if the comment is relevant and No otherwise, and nothing more.
## Your Answer
>
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Prompt 3: Treatment-outcome filtering (Weight Loss)

You are a medical assistant, helping a doctor structure posts about weight loss
treatments found on Reddit. Your task is to use the self-report to interpret
accurate information about the following fields and store them in a JSON
dictionary.

## Your Instructions
I will provide a post along with its subreddit name, title and date of creation. You

must return a valid JSON dictionary containing the following keys along with the
corresponding accurate information:

"start_weight": Numerical value for the user’s starting weight, before starting the
treatment described, sometimes referred to as SW.

"end_weight": Numerical value for the user’s current or final weight, at the end of
the treatment regime, sometimes referred to as CW.

"weight_unit": Units in which weight is reported: "kg" or "lb".
"weight_change": Numerical value for net change in the user’s weight. Use a postive

sign to indicate weight gain and negative sign for weight loss. Leave blank if
it is not possible to infer the change in weight.

"percentage_weight_change": Numerical value for percentage reduction in user’s
weight relative to their start weight. Use a postive sign to indicate weight
gain and negative sign for weight loss. Leave blank if it is not possible to
infer the percentage.

"drug_type": Treatment taken by the user: "Semaglutide", "Tirzepatide" or "Other".
Semaglutide includes Ozempic, Wegovy or Rybelsus. Tirzepatide includes Mounjaro
or Zepbound.

Assign a valid value to each key above. If you can’t find the required information
in the post, assign the value "Unknown". Remember to ONLY return a valid JSON
with ALL of the above keys and their accurate values.

Prompt 4: Covariate extraction (Weight Loss)

As a medical assistant aiding a physician, your role involves examining Reddit posts
discussing weight loss treatments and interpreting self-reported information
accurately. This data needs to be translated into a well-structured JSON
dictionary, with the most suitable option chosen from the choices provided.

## Your Instructions
Assume a user shares a post along with related data. Your job will be to create a

dictionary comprising of the following keys as well as their matching accurate
data:

{covariate descriptions}

Please ensure you fill all the fields and that you choose a valid value for each key
from the provided options. Unfilled fields are not allowed. In instances where
certainty is impossible, make your best educated guess, or provide the "Unknown"
value. Note that your completed task should ONLY yield a JSON containing ALL the
listed keys alongside their accurate values.

Here are a few examples:

{incontext examples}

## Input
{report}

## Output
>
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Prompt 5: Covariate imputation (Weight Loss)

You are a medical assistant tasked with creating a profile of a patient who is
taking a weight loss treatment, and presenting it as a JSON dictionary with
prespecified keys. Fill in suitable values for ALL the keys. You can use
information provided about the patient.

## Your Instructions
A patient has Type 2 Diabetes, is known to have taken Metformin for the last 3

months and has a BMI greater than 25 kg per meter squared.
Dosage for Semaglutide, Ozempic, Wegovy and Rybelsus is 1mg. Dosage for Tirzepatide,

Mounjaro and Zepbound is 5mg.
Create a possible profile for this patient with the following fields and represent

it as dictionary:

{covariate descriptions}

Please ensure you fill all the fields with a valid value. Unfilled fields or values
like "Unknown" are not allowed. Note that your completed task should ONLY yield
a JSON containing ALL the listed keys alongside their accurate values.

Here is an entry that the patient wrote about themselves, which may be useful for
your task.

## Input
{report}

## Output
>

Prompt 6: Conditional distribution inference (Weight Loss)

You are a medical assistant aiding a physician. I am going to ask you a few multiple
choice questions about some posts I just found online. Please, answer
accordingly.

## Your Instructions
I will give you a post about an individual’s experience with a treatment and its

effect on their weight, and a few questions with their correct answers, followed
by additional multiple choice questions and options to choose from. Pick the
right answer.

## Social Media Post
> {report}

## Questions and their correct answers
Q: {question about covariate X1} A: {X1 sample}.
Q: {question about covariate X2} A: {X2 sample}.
..

## Questions
Q: Which treatment did the user take?
Options: a) {t0} b) {t1}
A: {t0}

Q: Did the user lose 5 or more percent of their initial weight?
Options: a) {y0} b) {y1}
A: {y0}
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H. Dataset details
We provide further details about the treatments, outcomes and covariates (along with their discrete categories used in our
experiments) for each dataset in tables 3 and 4.

Table 3: Treatments, outcomes and synthetic confounders (where applicable) for each dataset.

Dataset Treatment Outcome Synthetic confounder

Hillstrom email communication website visit newbie
Retail Hero SMS communication purchase age
Semaglutide vs. Tirzepatide corresponding drug weight loss of 5% or more NA
Semaglutide vs. Liraglutide corresponding drug weight loss of 10% or more NA
Erenumab vs. Topiramate corresponding drug discontinuation due to adverse effects NA
OnabotulinumtoxinA vs. Topiramate corresponding drug discontinuation due to adverse effects NA

Table 4: Covariate descriptions, corresponding discrete categories and inclusion criteria enforced for each dataset. Intervals
for continuous numerical variables were determined from the extracted values such that each discrete category is roughly
balanced in terms of its number of datapoints.

Covariate Description Discrete categories Inclusion criteria

Hillstrom
recency number of months since last purchase [1 − 4, 5 − 8, 9 − 12]

NA

history dollar value of previous purchase [0 − 100, 100 − 200, ..., > 1000]
mens purchase of men’s merchandise [True,False]
womens purchase of women’s merchandise [True,False]
zip_code type of area of residence [Suburban area,Rural area,Urban area]
newbie new customer [True,False]
channel channel used for purchases [Phone,Web,Multichannel]

Retail Hero
avg. purchase avg. purchase value per transaction [1 − 263, 264 − 396, 397 − 611, > 612]

NA
avg. product quantity avg. number of products bought [≤ 7, > 7]
avg. points received avg. number of points received [≤ 5, > 5]
num transactions total number of transactions so far [≤ 8, 9 − 15, 16 − 27, > 28]
age age of user [≤ 45, > 45]

Semaglutide vs. Tirzepatide
age age of user [≤ 45, > 45]

(t2 diabetes==True)
& (7 ≤ start HbA1c ≤ 10.5))

& (metformin==True)
& (bmi ≥ 25)

sex sex of user [Male,Female]
bmi body mass index of user [≤ 28.5, > 28.5]
start HbA1c initial glycated haemoglobin value [≤ 7.5, > 7.5]
start weight initial weight in lbs [≤ 220, > 220]
duration (days) number of days treatment was taken for [≤ 90, > 90]

Semaglutide vs. Liraglutide
age age of user [≤ 45, > 45]

(t2 diabetes==True)
& (7 ≤ start HbA1c ≤ 11))
& (metformin/other==True)

sex sex of user [Male,Female]
bmi body mass index of user [≤ 28.5, > 28.5]
start HbA1c initial glycated haemoglobin value [≤ 7.5, > 7]
start weight initial weight in lbs [≤ 220, > 220]
duration (days) number of days treatment was taken for [≤ 120, > 120]

Erenumab vs. Topiramate
age age of user [≤ 32, > 32]

(18 ≤ age ≤ 65)
& (pregnant==False)

& (baseline MMD ≥ 4)

sex sex of user [Male,Female]
country country of residence [United States,Canada,...]
baseline MMD initial number of monthly migraine days [≤ 6, > 6]
duration (days) number of days treatment was taken for [≤ 30, > 30]

OnabotulinumtoxinA vs. Topiramate
age age of user [≤ 25, > 25]

(18 ≤ age ≤ 65)
& (baseline MMD ≥ 15)

sex sex of user [Male,Female]
country country of residence [United States,Canada,...]
baseline MMD initial number of monthly migraine days [≤ 15, > 15]
duration (days) number of days treatment was taken for [≤ 30, > 30]
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I. Further experimental results
I.1. How well does NATURAL estimate observational distributions from self-reported data?

Our synthetic datasets give us access to the true joint distributions P (X,T, Y ) and true propensity scores P (T = 1|X).
The top row of fig. 3 shows the KL divergence between these distributions and those estimated by NATURAL Full, for
Hillstrom (left) and Retail Hero (right). We find that these KL divergences decrease steadily as the number of reports used in
the estimation increases. The bottom row shows corresponding root-mean-squared error (RMSE) between NATURAL and
the true ATE. This corroborates the insight that as the joint distribution and propensity scores are estimated more accurately,
the predicted ATE gets closer to its true value. In particular, we observe a clear correlation between the quality of estimated
propensity scores and estimated ATEs.
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Figure 3: For Hillstrom (left) and Retail Hero (right), the KL divergence between estimated joint and propensity distributions
and their true counterparts reduces with increasing number of posts (top), as does the RMSE between the NATURAL Full
estimate and true ATE (bottom).

I.2. How do different choices in the NATURAL pipeline effect ATE prediction?

We assess the impact of key choices in our pipeline described in appendix D, by ablating them one-by-one. We investigated
and selected these choices on the Semaglutide vs. Tirzepatide experiment. Appendix I.2 compares the RMSE of predicted
ATEs when data is not filtered according to inclusion criteria and LLM imputations are replaced with samples from an
uniform distribution. It shows that both inclusion-based filtering and imputations from a pretrained LLM are crucial for the
performance of NATURAL. We also compared performance of our method when the conditional probabilities in eq. (7) are
evaluated using models of different scales in appendix I.2, and found that performance improves at larger scales and with
greater quantity of data.

I.3. How well do different estimates of propensity score balance covariates?

−1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00 0.25
Balance across treatment groups

ag
e

sex

bm
i

sta
rt

HbA
1csta

rt
weig

ht
du

rat
ion

da
ys

C
ov

ar
ia

te
s

Uniform
LLAMA2-7B
LLAMA2-13B
LLAMA2-70B

Figure 5: NATURAL propensity scores balance the Semaglu-
tide vs. Tirzepatide covariates better than uniform scores.

A property of accurate propensity score estimates is that
they balance covariates across treatment cohorts (see
(Ding, 2023) for details and proofs), i.e. the average treat-
ment effect on each covariate, corrected using propensity
scores, is close to zero. fig. 5 visualizes this quantity for
different covariates of the Semaglutide vs. Tirzepatide
experiment and shows that propensity scores estimated
using LLAMA conditional distributions balance the co-
variates far better than a uniform distribution does, with
the 70B model consistently estimating the treatment effect
on each covariate as close to zero.

We refer the reader to fig. 6 for visualizations of the
propensity score corrected average treatment effect on
covariates for all test clinical settings. For each setting,
our estimated propensity score balances each covariate, far better than a uniform propensity distribution would.
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Figure 4: Ablation study on Semaglutide vs. Tirzepatide, to tease apart the effect of data filtering and imputation (left) as
well as LLM scale for conditionals (right) on NATURAL performance.

Since covariates may take values at different scales, we computed the standard mean difference (SMD) across cohorts for
each covariate X(i) (Flury and Riedwyl, 1986), given by:

SMD =
X(i)(1)−X(i)(0)√

0.5 ∗ (var(X(i)(1)) + var(X(i)(0)))
, (12)

where X(i)(1) − X(i)(0) estimates the average treatment effect on X(i), using propensity score weighting, and var(·)
denotes sample variance.
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Figure 6: Propensity scores estimated with LLAMA2-70B balance covariates far better than uniform scores do, for the
real clinical settings, Semaglutide vs. Liraglutide (left), Erenumab vs. Topiramate (center), and OnabotulinumtoxinA vs.
Topiramate (right).

I.4. Known and Unknown/Imputed covariates for real data experiments

We refer the reader to figs. 7 to 10 for empirical distributions of covariates extracted by an LLM in its first extraction as well
as those imputed in its second imputataion conditioned on inclusion criteria.
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Figure 7: Distributions of "known" (top) vs "unknown" and imputed (bottom) covariates for Semaglutide vs. Tirzepatide.
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Figure 8: Distributions of "known" (top) vs "unknown" and imputed (bottom) covariates for Semaglutide vs. Liraglutide.

J. Inclusion Criteria conditioned Estimator
We are interested in an ATE conditioned on inclusion criteria denoted I ,

τ(I) = E[Y (1)− Y (0) | X ∈ I]. (13)

Let τ(X,T, Y ) be a function such that

τ(I) = EX,T,Y [τ(X,T, Y ) | X ∈ I]. (14)

For example, if τ(I) can estimated by the IPW estimator,

τ(X,T, Y ) =
TY

e(X)
− (1− T )Y

1− e(X)
,

because the P (T = 1|X = x,X ∈ I) = P (T = 1|X = x). Throughout this section, we operate under Assumptions 3
and 4 and assume that the LLM gives us access to the true data-generating conditionals.
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Figure 9: Distributions of "known" (top) vs "unknown" and imputed (bottom) covariates for Erenumab vs. Topiramate.
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Figure 10: Distributions of "known" (top) vs "unknown" and imputed (bottom) covariates for OnabotulinumtoxinA vs.
Topiramate.

The law of total expectation gives us an estimator that can operate on samples of reports R:

τ(I) = EX,T,Y [τ(X,T, Y ) | X ∈ I]

= ER|X∈I [EX,T,Y [τ(X,T, Y ) | X ∈ I,R]]

=
∑
r

P (R = r|X ∈ I)EX,T,Y [τ(X,T, Y ) | X ∈ I,R]

=
∑
r

P (R = r)
P (X ∈ I|R = r)

P (X ∈ I)
EX,T,Y [τ(X,T, Y ) | X ∈ I,R]

= ER

[
P (X ∈ I|R)

P (X ∈ I)
EX,T,Y [τ(X,T, Y ) | X ∈ I,R]

]
.
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To summarize, we have the identities:

τ(I) = ER|X∈I [EX,T,Y [τ(X,T, Y ) | X ∈ I,R]] (15)

= ER

[
P (X ∈ I|R)

P (X ∈ I)
EX,T,Y [τ(X,T, Y ) | X ∈ I,R]

]
. (16)

It is possible to directly estimate eq. (16) with Monte Carlo samples from P (R) and an approximation of P (X ∈
I|R)/P (X ∈ I) using an LLM, but the latter is computationally very expensive. Alternatively, one can use rejection
sampling to simulate R|X ∈ I by sampling Xi ∼ P (X|Ri) and rejecting Ri if Xi /∈ I . This step could be very wasteful for
precious data. In fact, in our experiments with the Semaglutide vs. Tirzepatide dataset, we found that using GPT-4-Turbo for
sampling Xi ∼ P (X|Ri) resulted in a very peaky distribution with little diversity in the extractions, even after increasing
its temperature argument as much as possible without sacrificing generation quality. As a result, after rejecting Ri if Xi /∈ I ,
we were left with a very small number of reports, that would be infeasible to plug into any estimator. Therefore, we devise a
few assumptions that allow us to estimate eq. (14) without these approaches.

Let X ∈ RD and let us make the following assumption on the inclusion criteria:
Assumption 5 (Inclusion criteria specification). The inclusion criterion I defines a box, i.e., it is specified separately for
each covariate dimension Id, d ∈ {1, . . . , D} and the set of covariates satisfying every inclusion criteria is given by the
product of individual criteria over the covariate dimensions, i.e., {X ∈ I} =

∏D
d=1{Xd ∈ Id} where Xd is the d-th

dimension of X = (Xd)Dd=1.

Recall from appendix D that inclusion-based filtering leaves us with reports whose covariates are either “known” and satisfy
their criteria or Unknown. We also have the value of the known covariates. Let K ∈ {0, 1}D be the binary vector of variables
Kd that indicate whether the covariate Xd is found to be “known” for a random report R. Let XK = (Xd : Kd = 1) be the
vector of length

∑
d K

d holding the values of the known covariates. For ease of notation, define the event that the known
covariates satisfy their criteria and the event that the unknown covariates satisfy their criteria:

{XK ∈ IK} = {Xd ∈ Id,∀d : Kd = 1} (17)

{X1−K ∈ I1−K} = {Xd ∈ Id,∀d : Kd = 0} (18)

Notice that {XK ∈ IK} ∩ {X1−K ∈ I1−K} = {X ∈ I}. Thus, after the filtering steps we have

{Ri,Ki, X
Ki
i }ni=1 (19)

with the guarantee that the knowns satisfy their inclusion criteria, {XKi
i ∈ IKi}. Formally, assuming that the LLM

computes the true conditional distribution of the data-generating process (Assumption 4), this gives us data sampled i.i.d.
from P (R = r,K = k,Xk = xk|XK ∈ IK). Note, that we are assuming the existence of an additional ground-truth
random variable K in the data-generating process that describes whether a covariate is knowable from a report. Here, we
show how to estimate τ(I) from this dataset of filtered reports using importance sampling, under the following assumption:
Assumption 6 (Satisfaction of I by Unknown covariates). Satisfaction of inclusion criteria by unknown covariates is
conditionally independent of the report and the known covariates given satisfaction of inclusion criteria by known covariates,
i.e., for all r, k, xk:

P (R = r,K = k,Xk = xk|XK ∈ IK , X1−K ∈ I1−K) = P (R = r,K = k,Xk = xk|XK ∈ IK) (20)

One can derive the following identity in a similar fashion as eq. (16)

τ(I) = ER,K,XK |XK∈IK

[
P (R,K,XK |X ∈ I)

P (R,K,XK |XK ∈ IK)
EX,T,Y [τ(X,T, Y ) | X ∈ I,R,K,XK ]

]
. (21)

From assumption 6, the fraction above simplifies to 1, leaving us with the following estimator

τ(I) =
1

n

n∑
i=1

EXi,Ti,Yi
[τ(Xi, Ti, Yi) | Xi ∈ I,Ri,Ki, X

Ki
i ], (22)

which can be computed from the information available at the end of filtering. In practice, we do not condition the LLM on
Ki in the final inference step (vi), which amounts to an additional conditional independence assumption:
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Assumption 7 (Conditional independence of knowable covariates). K ⊥⊥ (T, Y ) | (X,R).

Equation (22) above can now be more efficiently estimated by prompting the LLM to extract covariates under the constraints
of the inclusion criteria for each report in our filtered dataset, and then following the remaining steps in the pipeline to an
ATE estimate.
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