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ABSTRACT

In this paper, we propose a novel approach to boost the robustness of code genera-
tion models by curricular adversarial training driven by hierarchical reinforcement
learning. Existing code generation systems are prone to breaks by adversarial per-
turbations, so we propose a two-tiered approach in which a high-level curriculum
policy is used to adaptivelyChange complexity of adversarial challenges dynami-
cally while a low-level perturbation policy will be used to generate specific input
modifications. The high-level policy goes from simple to sophisticated pertur-
bation based on model performance, which will ensure the gradient of adapting
without overwhelming the generator too much.

1 INTRODUCTION

The rapid advancement of large language models has revolutionized automated code generation,
enabling systems that can produce functional code from natural language specifications (Li et al.,
2022). However, these models often exhibit fragility when faced with adversarial inputs, such as
slightly modified prompts or syntactically perturbed examples (Bielik & Vechev, 2020). While
existing approaches focus primarily on improving the accuracy of code generation under ideal con-
ditions, the robustness of these systems against realistic perturbations remains an understudied chal-
lenge (Shin & Nam, 2021).

Adversarial training has emerged as a promising technique to enhance model resilience in various
domains, including computer vision and natural language processing (Kurakin et al., 2016). In code
generation, however, applying adversarial training presents unique challenges due to the structured
nature of programming languages and the diverse types of potential perturbations—ranging from
simple syntax errors to complex logical inconsistencies (Zhou et al., 2022). Traditional adversar-
ial training methods often rely on static perturbation strategies, which may not adequately prepare
models for the wide spectrum of adversarial scenarios encountered in real-world programming tasks
(Zhang et al., 2020).

We overcome such shortcomings with the introduction of a hierarchical reinforcement learning
(HRL) framework for orchestrating curricular adversarial training for to code generation. The high-
level policy manages a dynamic curriculum of perturbation complexity, while the low-level policy
generates specific adversarial examples tailored to the current curriculum stage (Pateria et al., 2021).
This approach in principle differs from existing work in three ways. (1) instead of subsuming per-
turbation program into the model as in the past, we intentionally make the perturbation difficult de-
pending on the model’s progress of learning, thus avoiding the instability that was caused by sudden
exposure to complex adversaries; (2) instead of encompassing a mixture of perturbation generation
directly into the model, and as a result, a hierarchical structure is used to separate the management
of curriculum from the perturbation generation process, allowing for more flexible adaptation; and
(3) instead of indirectly measuring the model’s robustness with the utility helper, the robustness is
measured directly into the

The proposed method has a number of advantages over existing techniques. First, the curricular
approach prevents overwhelming the model with overly challenging perturbations early in training,
a common pitfall of conventional adversarial training (Wang et al., 2021). Second, the hierarchy
makes it correlated or possible to efficiently search through the perturbation space because the
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high-level policy t can strategically direct the low-level policy to the remaining most informative
adversarial examples. Third, the framework maintains compatibility with existing code generation
architectures, requiring only minimal modifications to incorporate the adversarial training compo-
nents (Dehaerne et al., 2022).

Our main contributions are: (1) a novel HRL framework for curricular adversarial training for code
generation; (2) a dynamic curriculum for perturbations, which is shifted automatically according
to the model’s learning; (3) comprehensive evaluation metrics to measure the robustness to various
types of perturbations; and (4) empirical validation showing that the robustness can be significantly
improved under no sacrifice of the generation quality.

The rest of this paper is organized as follows: Section 2 works related to code generation and
adversarial training is reviewed. Section 3 is background on hierarchical reinforcement learning and
its application to adversarial situations. Section 4 outlines how we propose to design and implement
the framework including the curriculum design and the hierarchical policy architecture. Section 5
presents experimental results of our method to baseline methods. Section 6 presents on implications
and future research directions, and is followed by conclusions in Section 7.

2 RELATED WORK

2.1 ADVERSARIAL TRAINING FOR CODE GENERATION

Recent studies have explored adversarial training techniques to improve the robustness of code gen-
eration models. Bielik & Vechev (2020) demonstrated that adversarial training can enhance model
resilience by 0-7% depending on architecture, though their approach used static perturbation strate-
gies. The work of Zhou et al. (2022) extended this to code summarization tasks, revealing that
models remain vulnerable to carefully crafted adversarial examples.

2.2 CURRICULUM LEARNING IN ROBUSTNESS ENHANCEMENT

Curriculum learning has emerged as a powerful paradigm for gradually increasing task difficulty
during training. Song (2024) showed how curriculum strategies can improve robustness in rein-
forcement learning settings, though their approach didn’t address hierarchical decision-making. The
concept was further developed by Reddi et al. (2023), who proposed automatic curriculum tuning
for adversarial training. However, these methods have been targeted at continuous control problems
and not at a discrete sequence generation problem such as code production.

2.3 HIERARCHICAL APPROACHES TO ADVERSARIAL ROBUSTNESS

Hierarchical reinforcement learning has shown promise in managing complex adversarial scenar-
ios. Li et al. (2025b) demonstrated its effectiveness in autonomous systems, combining adversarial
training with curriculum learning for tactical decision-making. Their framework served as inspi-
ration for our two-tiered policy architecture but did not address the unique challenges for discrete
output spaces in the code generation. Similarly, Hore et al. (2025) developed an HRL approach
for network packet generation, though their focus was on evasion attacks rather than robustness
enhancement.

2.4 REINFORCEMENT LEARNING FOR CODE GENERATION

Several works have applied reinforcement learning to improve code generation quality. Le et al.
(2022) used RL to fine-tune pretrained models with task-specific rewards, while Li et al. (2025a)
employed adversarial RL to generate challenging negative examples.

The proposed method is more advanced than previous methods with three important aspects: (1) A
new hierarchical policy structure, which separates the curriculum management process from pertur-
bation generation, (2) A dynamic mechanism for adjusting the difficulty level guided by continuous
performance monitoring, and (3) A code-specific robustness measure, which considers the consis-
tency between multiple adversarial variants. Unlike Bielik & Vechev (2020) and Zhou et al. (2022),
our framework automatically adapts perturbation strategies rather than relying on predefined attacks.
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Compared to Song (2024) and Reddi et al. (2023), we address the discrete nature of code generation
through specialized policy architectures. The hierarchical approach differs from Le et al. (2022)
and Li et al. (2025a) by explicitly modeling the curriculum progression and enabling more stable
robustness improvements.

3 BACKGROUND ON HIERARCHICAL REINFORCEMENT LEARNING AND
ADVERSARIAL TRAINING FOR CODE

To first provide a basis for the framework proposed here, we first provide a review of key concepts
in hierarchical reinforcement learning (HRL) and adversarial training as applied to code generation
tasks.

3.1 HIERARCHICAL REINFORCEMENT LEARNING FOUNDATIONS

Hierarchical reinforcement learning decomposes complex tasks into manageable subtasks through
temporal abstraction (Pateria et al., 2021). The options framework (Sutton et al., 1999) provides
a formal basis for such hierarchical decomposition, where high-level options represent temporally
extended courses of action.

The mathematical formulation involves two policy levels:

πh(st) → ot (1)

πl(ot, st) → at (2)

where πh is the high-level policy selecting options ot based on state st, and πl is the low-level policy
executing actions at conditioned on both the current option and state.

3.2 ADVERSARIAL TRAINING IN CODE GENERATION

Adversarial training for code generation models involves exposing the model to carefully crafted
input perturbations during training (Jia & Liang, 2017). Unlike continuous domains e.g. computer
vision, code perturbations have to keep syntactic validity while having meaningful challenges. Some
common perturbation strategies are:

– Variable renaming and identifier substitution

– Control flow modifications

– Type system violations

– API misuse patterns

The adversarial training objective can be expressed as:

min
θ

E(x,y)∼D[max
δ∈∆

L(fθ(x+ δ), y)] (3)

where fθ represents the code generation model, D is the data distribution, ∆ defines valid perturba-
tions, and L is the loss function.

3.3 COMBINING HRL WITH ADVERSARIAL TRAINING

The combination of HRL and adversarial training forms an efficient approach to the improvement
of robustness in a systematic manner. The hierarchical structure provides for:

1. Strategic management of the curriculum in the high

2. Specialized perturbation generation on the low level

3. Synergy between coordinate adaptation of both components

This combination addresses key limitations of flat adversarial training approaches, particularly their
tendency to either under-challenge or overwhelm the model during training (Ilahi et al., 2021).
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The theoretical foundations presented herein are directly linked with proposed framework in which
hierarchical policies are each responsible for the progression of adversarial challenges and the gen-
eration of specific perturbations.

4 HIERARCHICAL CURRICULUM ADVERSARIAL TRAINING FOR ROBUST
CODE GENERATION

The proposed framework presents a systematic scheme to increase robust code generation and hier-
archical reinforcement learning based adversarial training schemes.

Figure 1: Hierarchical Adversarial Training Framework for Robust Code Generation. The high-
level policy manages curriculum progression while the low-level policy generates stage-appropriate
perturbations.

4.1 APPLYING HIERARCHICAL REINFORCEMENT LEARNING TO ADVERSARIAL
CURRICULUM CONTROL

The high-level policy πhigh operates on an extended timescale, making curriculum pro-
gression decisions based on the generator’s current robustness performance. The state
space of her policy contains three main value variables: the generator’s correctness score
ct, robustnessscorertandcurrentstageofcurriculumst.Theactionspaceisdiscretecurriculumactionadjustments : ahigh

t ∈
{increase,maintain, decrease}(4)

The policy’s transition function updates the curriculum stage according to:

st+1 = st + η · I(ahigh
t = increase)− η · I(ahigh

t = decrease) (5)

where η controls the step size of curriculum progression. The high-level reward function combines
both immediate and long-term robustness improvements:

Rhigh
t = λ1 · (rt − rt−1) + λ2 · E[rt+1:t+k|st] (6)

This dual-component reward will mean that the curriculum policy considers both the current per-
formance improvements and also future robust learning anticipated, when making progression deci-
sions.

4.2 GENERATING CURRICULUM-AWARE ADVERSARIAL PERTURBATIONS

The low-level policy πlow receives the current curriculum stage st from the high-level policy and
generates corresponding perturbations. The perturbation space is parameterized by transformation
probabilities that are dependent upon the stage:

pperturb = σ(w · st + b) (7)

where σ denotes the sigmoid function, and w, b are learnable parameters. For a given input code
sequence x = (x1, ..., xn), the policy applies transformations according to:

x̃i =

{
fperturb(xi) with probability pperturb

xi otherwise
(8)

The transformation function fperturb implements stage-appropriate modifications:
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– Early stages: Simple token substitutions and deletions

– Intermediate stages: Control flow alterations

– Advanced stages: Semantic-preserving logic changes

The low-level policy’s reward combines perturbation effectiveness and validity:

Rlow
t = α · I(f(x̃) ̸= f(x)) + (1− α) · valid(x̃) (9)

where valid(x̃) measures syntactic and semantic validity of the perturbed code.

4.3 DEFINING AND CALCULATING ADAPTIVE REWARDS FOR ROBUSTNESS-CORRECTNESS
TRADEOFF

The generator’s training objective combines correctness and robustness through a composite reward
function:

Rgen
t = β · correct(yt) + (1− β) · robust(yt, {x̃(k)

t }) (10)

The correctness component evaluates functional accuracy against test cases:

correct(yt) =
1

N

N∑
i=1

I(pass(yt, testi)) (11)

The robustness component measures output consistency across K perturbed variants:

robust(yt, {x̃(k)
t }) = 1− 1

K

K∑
k=1

dist(f(xt), f(x̃
(k)
t )) (12)

where dist computes normalized edit distance between code outputs. The adaptive weighting pa-
rameter β dynamically adjusts based on curriculum stage:

β = clip(0.5 + γ · st, 0.2, 0.8) (13)

This formulation ensures greater emphasis on correctness during early training while gradually in-
creasing robustness focus as the curriculum advances.

4.4 CO-EVOLUTION PROCESS OF GENERATOR AND ADVERSARIES

The framework implements an alternating optimization procedure between generator training and
adversary updates. During generator phases, we minimize:

Lgen = −E[Rgen
t ] + λreg · KL(pθ||ppretrain) (14)

where the KL term prevents deviation from the pretrained model’s capabilities. During adversary
phases, we jointly optimize both policies:

Ladv = −E[Rhigh
t +Rlow

t ] + λent · H(π) (15)

The entropy regularization term H encourages exploration of novel perturbation strategies. The
complete training alternates between these phases with synchronized curriculum progression.

4.5 INTEGRATING THE FRAMEWORK WITH PRETRAINED MODELS

The hierarchical adversarial training components incorporate with existing code generation archi-
tectures in the following three modification points:

1. Input preprocessing: Applies πlow perturbations before feeding to generator

2. Reward computation: Modifies existing training objectives to include robustness terms

3. Gradient updates- Alternates between optimization for generator and adversary

The integration does not change the original model’s architecture and decoding procedures, but adds
the capabilities of robustness.
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5 EXPERIMENTAL EVALUATION

To obtain evidence of effectiveness of the proposed hierarchical curriculum adversarial training
framework, we conducted extensive experiments comparing the performances of the hierarchical
curriculum adversarial training framework with baseline methods on many code generation tasks.

5.1 EXPERIMENTAL SETUP

Datasets and Tasks

We evaluated our approach on three established code generation benchmarks:

– HumanEval (Chen et al., 2021) - A collection of 164 hand-written programming problems with
test cases

– APPS (Hendrycks et al., 2021) - A dataset of 10,000 coding competition problems

– MBPP (Austin et al., 2021) - 974 crowd-sourced Python programming tasks

Baseline Methods

We compared against four representative approaches:

1. Standard Fine-Tuning (SFT) - Conventional supervised fine-tuning without adversarial training
(Lu et al., 2021)

2. Static Adversarial Training (SAT) - Adversarial training with fixed perturbation strategies (Du
et al., 2023)

3. Curriculum Adversarial Training (CAT) - Non-hierarchical curriculum-based adversarial train-
ing (Zhan et al., 2021)

4. Flat RL Adversarial Training (FRAT) - Reinforcement learning-based adversarial training
without hierarchy (Bai et al., 2019)

Implementation Details

All methods used CodeGen-6B (Nijkamp et al., 2022) as the base model. For our hierarchical
approach, we implemented:

– High level policy: 2 layer Lstm, 768 hidden units

– Transformer encoder (low-level policy). 6 layers

– Curriculum stages: 10 discrete levels that range from perturbations in syntax to perturbations in
logic

– Training Alternating updates with 5:1 generator:adversary ratio

Evaluation Metrics

We employed four complementary metrics:

1. Correctness (Pass@k) - Functional accuracy on unperturbed inputs

2. Robustness Score (RS) - Consistency across perturbed variants (Equation 12)

3. Adversarial Success Rate (ASR) - Rate of successful attacks on generated code

4. Training Stability (TS) - Variance in loss across training batches

5.2 MAIN RESULTS

Table 1 presents the comparative performance across all methods on the HumanEval dataset. Our hi-
erarchical approach achieves superior robustness while maintaining competitive correctness scores.

The results demonstrate that our method achieves the highest robustness score (0.73) and lowest
adversarial success rate (0.32) while preserving generation quality (Pass@1 44.9).
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Table 1: Performance comparison on HumanEval dataset

Method Pass@1 Pass@5 RS (↑) ASR (↓) TS (↓)

SFT 45.2 62.7 0.38 0.71 0.12
SAT 43.8 60.3 0.52 0.58 0.18
CAT 44.5 61.9 0.61 0.49 0.15
FRAT 42.1 59.4 0.65 0.45 0.23
Ours 44.9 62.1 0.73 0.32 0.09

Figure 2: Learning curves showing progressive improvement in robustness while maintaining cor-
rectness as the curriculum advances through different perturbation levels.

5.3 ABLATION STUDIES

To understand the contribution of each component, we conducted ablation tests by removing key
elements of our framework:

The results of the ablation show that all the parts are contributing to the end result of the performance.

5.4 PERTURBATION ANALYSIS

The perturbation analysis shows that our framework manages to implement the intended curricular
progression:

– Stages 1-3: Dominated by token-level perturbations (85%)

Stage 4 to 6: Balanced combination of syntax changed and controlled changes in the flow

– Stages 7-10: Primarily semantic and logical modifications (72%)

This automatic progression is consistent with the learning trajectory of the model, and those chal-
lenges are provided at correct intervals of training.

5.5 CROSS-DATASET GENERALIZATION

To evaluate generalization, we tested models trained on HumanEval on the MBPP dataset:

The results show that our way of doing things preserves its robustness advantages, when transferred
to unseen problems, which points to the existence of transfers in learned resilience between different
coding tasks.

7
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Table 2: Ablation study results

Variant RS ASR Pass@1

Full Model 0.73 0.32 44.9
w/o High-Level Policy 0.61 0.47 43.2
w/o Curriculum 0.58 0.52 44.1
w/o Robustness Reward 0.49 0.59 45.3
w/o Hierarchy 0.65 0.45 42.1

Figure 3: Distribution of perturbation types across curriculum stages. The area chart reveals how the
framework automatically shifts focus from syntactic to semantic perturbations as training progresses.

6 DISCUSSION AND FUTURE WORK

6.1 LIMITATIONS OF THE CURRICULAR ADVERSARIAL TRAINING SYSTEM

While our hierarchical approach shows serious improvement of robustness, there are some limita-
tions that deserve a discussion: First, the current framework requires careful tuning of the curriculum
progression parameters, particularly the step size η in Equation 5. Too aggressive progressions can
lead to destabilism of training or too conservative steps can unduly delay the adaptation process.
Second, the perturbation space defined by the low-level policy currently focuses on discrete code
transformations, potentially overlooking more subtle adversarial patterns that emerge in continuous
embedding spaces (Yefet et al., 2020). Third, the computational overhead of maintaining and train-
ing two policy networks, while warranted due to the increase in performance, remains non-trivial
compared to standard fine-tuning approaches.

The hierarchical structure, while effective to manage curriculum progression, brings additional com-
plexity to make sense of the model’s decision-making process.
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Table 3: Cross-dataset generalization results

Method Pass@1 RS ASR

SFT 48.3 0.35 0.69
SAT 46.7 0.49 0.55
Ours 47.9 0.68 0.35

6.2 POTENTIAL APPLICATION SCENARIOS OF HIERARCHICAL CURRICULAR ADVERSARIAL
TRAINING

Beyond enhancing base robustness, our framework paves the way for a number of promising di-
rections. In educational settings, the curriculum policy could be adapted to create personalized
learning trajectories for programming students, automatically adjusting challenge levels based on
learner performance (Phung et al., 2023).

For security-sensitive applications, the hierarchical adversarial training paradigm could be an impor-
tant improvement to code analysis applications as it can make them more resilient to obfuscated or
malicious applications. Static analysis tools often fail when analyzing adversarially modified code
(Yefet et al., 2020), and our approach could help harden these systems.

For industrial deployment situations, the curriculum mechanism might be expanded to facilitate
continuous adaptation, where the system occasionally re-evaluates the model robustness and adjusts
the adversarial training attacks regimen accordingly.

6.3 ETHICAL CONSIDERATIONS IN ADVERSARIAL TRAINING FOR CODE GENERATION

The creation of powerful code generation systems using adversarial training raises a number of
ethical questions that empower careful consideration. First, the same techniques used to improve
model robustness could potentially be repurposed to create more sophisticated adversarial attacks
against other AI systems (Verma, 2019).

Second, the increased robustness could give a misleading sense of security among end-users, so it
may overestimate the reliability of the system in a safety-related application.

The perturbation strategies should also avoid reinforcing harmful stereotypes that sometimes emerge
in code generation, such as biased variable naming or culturally insensitive comments (Park et al.,
2025).

Future work should overcome these limitations while enquiring about more general applications of
the framework.

7 CONCLUSION

The hierarchical adversarial training for curriculum-based reinforcement learning proposes a well-
structured approach to improving code generation model robustness.

8 THE USE OF LLM

We use LLM polish writing based on our original paper.
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