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Abstract

Several accounts of human cognition posit that our intelligence is rooted in our ability to
form abstract composable concepts, ground them in our environment, and reason over these
grounded entities. This trifecta of human thought has remained elusive in modern intelligent
machines. In this work, we investigate whether slot representations extracted from visual
scenes serve as appropriate compositional abstractions for grounding and reasoning. We
present the Neural Slot Interpreter (NSI), which learns to ground object semantics in slots.
At the core of NSI is a nested schema that uses simple syntax rules to organize the object
semantics of a scene into object-centric schema primitives. Then, the NSI metric learns to
ground primitives into slots through a structured contrastive learning objective that reasons
over the intermodal alignment. Experiments with a bi-modal object-property and scene
retrieval task demonstrate the grounding efficacy and interpretability of correspondences
learned by NSI. From a scene representation standpoint, we find that emergent NSI slots
that move beyond the image grid by binding to spatial objects facilitate improved visual
grounding compared to conventional bounding-box-based approaches. From a data efficiency
standpoint, we empirically validate that NSI learns more generalizable representations from
a fixed amount of annotation data than the traditional approach. We also show that the
grounded slots surpass unsupervised slots in real-world object discovery and scale with
scene complexity. Finally, we investigate the downstream efficacy of the grounded slots.
Vision Transformers trained on grounding-aware NSI tokenizers using as few as ten tokens
outperform patch-based tokens on challenging few-shot classification tasks.

1 Introduction

Humans possess a repertoire of strong structural biases, a kind of abstract knowledge that enables us to per-
ceive and rapidly adapt to our environments (Griffiths et al., 2010). Compositionality is one such structural
prior that helps us systematically reason about complex stimuli as a whole by recursively reasoning about its
parts (Zuberbühler, 2019; Lake & Baroni, 2023). We decompose broad motor skills into finer dexterous finger
movements, sentences into words and phrases, and speech into phonemes. In the visual world, the concept
of “objectness” serves as a natural compositional prior, enabling us to decompose novel scenes into familiar
objects and reason about their properties (Lake et al., 2016). We also have the uncanny ability to connect
real-world entities and concepts to these abstract object-like symbols in our heads, canonically referred to
as the grounding problem (Harnad, 1990; Greff et al., 2020). For instance, human infants, while looking at a
zebra for the first time, might excitedly conclude that it is, in fact, “a striped horse.” If grounded object-like
representations are fundamental to human-like compositional generalization, how do we instill these inductive
biases into neural network representations?

Unsupervised object-centric autoencoder models (Burgess et al., 2019; Greff et al., 2019; 2020; Locatello
et al., 2020; Engelcke et al., 2019; 2021; Singh et al., 2021; Chang et al., 2023b; Seitzer et al., 2023; Kori
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et al., 2024a) have become increasingly adept at learning object-centric representations called slots from
raw visual stimuli. Further work has demonstrated that learned slots can be flexibly composed together for
tasks like scene composition, causal induction, learning intuitive physics, dynamics simulation, and control
(Dedhia et al., 2023; Jiang et al., 2023; Wu et al., 2023a;b; Chang et al., 2023a; Jabri et al., 2023). While
object slots hold promise as a compositional building block for machines that mimic human abstraction and
generalization, a key challenge emerges. Unlike humans, these learned slots lack grounding in real-world
concepts. For example, a slot representation of an object like “apple” could refer to the fruit, the company,
or a generic round artifact. Without grounding, a slot-based system cannot disambiguate these meanings
effectively (Haugeland, 1985) and is fundamentally limited in its embodied reasoning abilities. Then the
central question that guides our work is:

“Can slots serve as effective representations to ground object semantics in visual scenes?"

Grounding, in the context of slot representations, refers to the ability to associate labels (for e.g., identi-
fying objects and their properties) with slot representations learned from a scene’s visual features. Prior
works (Locatello et al., 2020; Seitzer et al., 2023; Kori et al., 2024a) have tackled learning to ground slots
by predicting object properties (texture, material, category, etc.) from the representations. The grounding
objective is, therefore, implicit within the prediction of object semantics. However, ground truth correspon-
dences between object concepts and slots are generally unknown, restricting prediction to a set-matching
template. Under a set-matching framework, a single slot predicts object properties of a single object, thereby
constraining the grounding information assimilated per slot. We circumvent the limitations of prediction as
a surrogate for grounding by making the grounding objective explicit in the form of a co-training paradigm
that we call the Neural Slot Interpreter (NSI).
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Figure 1: NSI abstracts grounded slots from
scenes and enhances object discovery, ground-
ing efficacy, and downstream reasoning abilities
of slot representations.

The core insight behind NSI is simple: instead of predict-
ing a single object-concept from a slot, assign multiple
concepts to slots over a shared latent space. Our primary
contribution is a similarity metric that explicitly reasons
about the intermodal assignments. Notably, the proposed
metric for NSI supplants the one-object-per-slot assump-
tion and facilitates flexible assignment. Contrastive learn-
ing over the similarity objective yields grounded slots that
outperform their ungrounded and set-matched counter-
parts over a broad swath of tasks (see Fig. 1). We propose
an object-centric annotation schema in Section 4.1 for
dense alignment to organize scene annotations for ground-
ing into slots. We describe the design of a hierarchical
transformer-based architecture in Section 4.2.2 to extract
neural representations from the schema. To enable slots
to ground a wide array of concepts flexibly without rely-
ing on matching templates, we formulate a bi-level scoring
metric over a learned latent space in Section 4.2.

Does NSI necessitate training slot-centric architectures
from scratch? Our experiments demonstrate that
slots learned from pre-trained object-centric backbones
(Seitzer et al., 2023) are easily adaptable to the NSI objec-
tive. Are notions of objects effectively grounded in emer-

gent slot representations? We explicitly evaluate grounding efficacy through bi-modal retrieval tasks (Sec-
tion 5.2.1), where models must retrieve corresponding object properties given a scene, and vice versa. Our
experiments demonstrate that NSI outperforms approaches based on ungrounded slots, set-matching, and
non-compositional embeddings. How does NSI compare against traditional weakly supervised visual ground-
ing? In Section 5.2.2 we show that conventional bounding box abstractions are ineffective at grounding
object semantics compared to NSI. Can NSI be effective across different annotation size regimes? We train
NSI on different annotation levels and discuss it in Section 5.2.2. We find that NSI enables grounded slots to
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be data-efficient, especially on real-world data. Do slots that emerge from the NSI objective preserve object
discovery abilities? NSI slots preserve and often improve object discovery, as discussed in Section 5.3, where
we demonstrate its competitiveness on object discovery benchmarks. Can NSI-grounded slots be effective
substrates for downstream tasks? In Section 5.4, we discuss training of a vision transformer (ViT) (Dosovit-
skiy et al., 2021) for a scene classification task where significantly fewer grounded slot tokens show improved
performance and adaptability over traditional patch-based tokens. Can dense associations learned by NSI
inform real-world reasoning systems? Our experiments described in Appendix E.1 show the usefulness of
learned correspondences in identifying and locating objects in diverse scenes.

Concretely, our contributions are as follows:

1. We present NSI (Section 4), a co-training grounding paradigm for object-centric learners. We use a
nested object-centric annotation schema for dense slot-label alignment (Section 4.1). We formulate a
similarity metric that measures scene-schema similarity by recursively reasoning over the similarity of
compositional attributes of the respective modalities (Section 4.2.3). NSI utilizes the metric to ground
slots via a contrastive learning objective (Section 4.2.4).

2. Our model demonstrates the effectiveness of NSI-trained slot representations at grounding object proper-
ties via a bimodal retrieval task (Section 5.2.1). NSI significantly improves retrieval performance compared
to Hungarian Matching Criterion (HMC) matching slots, ungrounded slots, and non-compositional em-
bedding baselines. Moreover, dense and interpretable correspondences between slot masks and object
properties emerge from the NSI similarity metric.

3. We also compare NSI to conventional methods in weakly supervised grounding where practitioners tradi-
tionally utilize bounding box regions to encode visual object features (Section 5.2.2). Overlapping objects
within coarser bounding box regions impede accurate object property assignment, a problem mitigated
by learned slot masks via NSI. We also probe the data efficiency of both approaches and find that for a
given set of annotations, NSI is more adept at aligning object semantics to scenes.

4. Our experiments also demonstrate that slots grounded via NSI improve slot performance over a wide array
of tasks that encompass (1) object discovery (Section 5.3), (2) few-shot scene classification (Section 5.4),
and (3) object detection (Appendix E.1). Overall, we find that grounded slot representations are key to
object-centric perception, property grounding, and downstream adaptability for object-centric reasoning.

2 Related Work

Object-Centric Learning. Researchers have formulated inductive biases for learning composable visual
representations called ‘slots’ from raw visual stimuli (Burgess et al., 2019; Greff et al., 2019; Locatello et al.,
2020; Greff et al., 2020; Engelcke et al., 2019; 2021; Singh et al., 2021; Seitzer et al., 2023) and auxiliary
temporal information (Kipf et al., 2021; Elsayed et al., 2022; Singh et al., 2022). While this line of work
demonstrates unsupervised object discovery, the adoption of slot representations for grounding scenes re-
mains largely underexplored. Prior works have been limited to using the HMC to align slots to ground-truth
property labels for property prediction (Locatello et al., 2020) or fine-tuning shallow property predictors on
pre-trained backbones (Seitzer et al., 2023). A recent work (Kori et al., 2024a) improves the predictive power
of slots by learning quantized factorised priors to foster invariance of slots with object properties they repre-
sent. However, these methods, often relying on HMC for training or evaluation, fundamentally operate under
a one-object-per-slot prediction constraint. This limits the richness of grounding information assimilated per
slot and poses challenges in learning highly specialized representations, particularly in complex scenes. An
orthogonal body of work aims to learn identifiable and interpretable slots without supervision. For instance,
Kori et al. (2024b) focus on providing theoretical identifiability guarantees for unsupervised object-centric
learning through probabilistic slot attention. Stanić et al. (2023) investigate synchrony-based models using
complex-valued slot representations and contrastive learning for unsupervised object discovery. Similarly,
Baldassarre & Azizpour (2022) incorporate contrastive losses to facilitate symmetry-breaking between slots.
Furthermore, efforts like Zhang et al. (2023) focus on improving the core slot attention mechanism itself,
using optimal transport to enhance tie-breaking in dynamic scenes. In contrast to these directions that focus
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on unsupervised identifiability, our NSI method directly tackles the challenge of explicit semantic grounding
through annotation-driven contrastive alignment. Moreover, intepretable slot features can potentially be
integrated within the NSI framework to improve alignment.

Visual Grounding. Several bodies of works have grounded text into scenes by pre-training large-scale
transformers using Internet-scale natural language supervision (Chen et al., 2020; Desai & Johnson, 2021; Li
et al., 2019; 2020; Radford et al., 2021). Subsequent work has improved modeling of the multimodal streams
by explicitly imbibing compositional synergy between visual concepts and text phrases. A prominent line
of work trains predictive models on labeled text-bounding box correspondences (Chen et al., 2020; Kamath
et al., 2021; Gan et al., 2020; Lu et al., 2019) but is expensive due to its fully supervised nature. To reduce
the reliance on pre-specified correspondences for training, like NSI, several works propose weakly supervised
visual grounding (Karpathy & Fei-Fei, 2015; Gupta et al., 2020; Wang et al., 2021a; Liu et al., 2024), but
these approaches are still reliant on object detectors for bounding box proposals. Moreover, bounding boxes
underspecify overlapping or occluded objects, thus making them a poor choice for grounding object semantics
beyond categories. A recent work by Xu et al. (2022) goes beyond image patches to hierarchically discover
semantic masks but relies on careful stacking of ViTs (Dosovitskiy et al., 2021) to achieve necessary object
granularity. As opposed to completely neural methods, neuro-symbolic approaches use symbolic domain-
specific languages to reason about image concepts (Johnson et al., 2017; Yi et al., 2018; Wang et al., 2021b).
Such methods are extremely effective at question-answering but rely heavily on well-engineered logic priors
and fail to generalize beyond synthetic data.

Visual Tokenizers. Patch-based tokens have been adopted as the standard for visual understanding
(Dosovitskiy et al., 2021) and generation (Peebles & Xie, 2023). Variations of this template include discretized
patch tokens (Du et al., 2024), mixed-resolution patch tokens (Ronen et al., 2023), and pruned patch tokens
(Kong et al., 2022; Tang et al., 2023). Beyond patches, recent works have explored region-based tokens
(Ma et al., 2024). However, these tokenizers are inherently grounding-agnostic, in contrast to humans, who
possess the ability to abstract concepts based on linguistic or cultural grounding priors, (Segall et al., 1966;
Winawer et al., 2007). To this end, our work explores a grounding-aware tokenizer.

3 Preliminaries

We detail a few essential preliminaries in this section. Readers should refer to the original manuscripts for
further details.

3.1 Slot Attention

Object-centric learning frameworks decompose scenes by organizing them into compact representations called
slots. Slot Attention (SA) (Locatello et al., 2020) is a powerful iterative attention mechanism for learning
such slots from perceptual features extracted from vision backbones. At iteration t, for L features H ∈ RL×c

and K slots St ∈ RK×d, the slots compete to explain the features as follows:

M = K(H)Q(St)T

√
D

∈ RL×K ; Aij = eMij∑
j∈{1,··· ,K} eMij

(1)

Update = W T V (St) where Wij = Aij∑
i∈{1,··· ,N} Aij

(2)

D denotes the dimension of the attention head. Here, Q(.) ∈ Rd×D, K(.) ∈ Rc×D, V (.) ∈ Rd×D are learned
query, key, and value matrices, respectively. After attention-based weighted aggregation of features, a Gated
Recurrent Unit G(.) (Cho et al., 2014) updates the slots as follows:

St+1 = G(state = St, input = Update) (3)

The aggregation and updates are performed over multiple iterations to obtain the final representations. Slots
have been empirically shown to bind to the features of the same object as the forward iteration proceeds,
yielding per-object representations. We refer the reader to the original article by Locatello et al. (2020) to
understand the complete rollout.
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3.2 DINOSAUR Slot Attention

The original slot attention could learn slots on synthetic objects but failed to scale to real-world scenes.
A recent object-centric learning method by Seitzer et al. (2023), called DINOSAUR, uses the DINO vision
backbone (Caron et al., 2021) to scale slot representation learning to complex real-world scenes. The funda-
mental insight of the work lies in using features from strong, pre-trained encoders to perform slot attention
instead of pixel-level reconstruction used by prior works. The authors use the rich representations from
DINO as a substrate for learning grouped slots that capture spatial objectness features. Motivated by these
findings, we adopt the pre-trained DINOSAUR as our slot-attention backbone for NSI and fine-tune it for
semantic grounding.

3.3 Hungarian Matching Criterion (HMC) for Prediction using Slots

Learning object properties from slots is a challenging problem because the ground truth correspondences
between objects and slots are unknown. Practitioners circumvent this problem by assuming that every slot
contains a single object and minimize the costs associated with the bijection mapping from the set of slots to
the set of objects using the Hungarian Algorithm (Kuhn, 1955). Given a set of slots S1:K , object properties
P1:K , and assignment cost function C(.), the Hungarian algorithm is a polynomial-time algorithm that finds
the optimal assignment U∗(.):

U∗ = arg min
U

∑
i∈{1,··· ,K}

C
(

Si, P U(i)
)

(4)

HMC is the primary method utilized by prior methods (Locatello et al., 2020; Seitzer et al., 2023; Kori et al.,
2024a) to predict object properties from slots.

4 Neural Slot Interpreters

Recall that the goal of NSI is to ground concepts into slot representations such that the objects contained
within the slot align with the embodied notions of the object. We begin by discussing the proposed organi-
zation for scene labels.

4.1 Nested Object-Centric Annotation Schema

<element:id1><cat>person</cat>
<bbox>..... </bbox></element>

<element:id2><cat>tv</cat>
<bbox>..... </bbox></element>

<element:id3><cat>couch</cat>
<bbox>..... </bbox></element>

<element:id4><cat>clock</cat>
<bbox>..... </bbox></element>

<element:id5><cat>person</cat>
<bbox>..... </bbox></element>

<element:id6><cat>donut</cat>
<bbox>..... </bbox></element>

Figure 2: Description of a real-world scene
using the nested schema. The dotted ar-
rows show correspondences between primi-
tives and the objects they annotate.

We propose a simple nested schema for expressing scene labels
as a collection of objects and their associated properties. At a
higher level, instances in the schema comprise multiple object-
centric primitives (<element>). Primitives, in turn, contain re-
spective object properties that form atomic units of the schema.
Each primitive identifies a unique object in the scene. The
nested properties <pj> (p1, · · · , pJ) form the children of the
parent objects <element>. Some examples of <pj> properties
are, but not limited to, shape, material, category, and object
position. Thus, instance primitives naturally capture the no-
tion of an object, and neural representations extracted from
primitives are, as such, well-suited for being grounded in slots.
In Section 5.1, we demonstrate the straightforward application
of the schema to organize labels on popular datasets. See Fig. 2
for an example instance and Appendix A.3 for more examples.
On a more practical note, such schemas are commonly used

software abstractions and can be ubiquitously interfaced with graphics engines, web APIs, or even large
language models for semantic understanding (Dunn et al., 2022; Bubeck et al., 2023).
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4.2 NSI Grounding Technique

Scenes and their corresponding schema instances capture object-centric representations through slots and
primitives, respectively. NSI learns to align the object-centric representations of the respective modalities,
i.e., slots and primitives, by grounding neural representations of schema primitives into slots (see Fig. 3).
The grounding is learned by optimizing a contrastive learning objective over ground-truth scene-schema pairs
(see Fig. 4). We describe the scene and schema encoder next.

Slot Attention

<...>
<...>
<...>

<...>
<...>
<...>

<.....>
<.....>
<.....>

Object-Centric
Learning

Contrastive 
Learning

Encoder

Figure 3: NSI overview. NSI augments object-centric learning autoencoders with a contrastive learning
objective over a batch of scene-schema pairs. A DINOSAUR backbone (Seitzer et al., 2023) extracts slot
representations S1:K

x from a batch of scenes and a schema encoder extracts neural primitives Z1:N
y from their

corresponding schema pair. The slots are then passed to a decoder for reconstruction and the slot-primitive
neural pairs are passed to the contrastive learning objective.

4.2.1 Learning Scene Representations

A given scene Ix is represented via K slots S1:K
x ∈ RK×d abstracted from its perceptual features Hx ∈ RL×c

(see Fig. 4 (a)) For a given feature extractor Eϕ(.), the slots are obtained as

Hx = Eϕ (Ix) ; S1:K
x = SA (Hx) → Slot Attention (5)

A spatial broadcast decoder Dθ(.) (Locatello et al., 2020) reconstructs the features from slots, with the
reconstruction error used as a learning signal:

Ĥx = Dθ

(
S1:K

x

)
; Lrecon =

∥∥∥Hx − Ĥx

∥∥∥2
(6)

4.2.2 Learning Schema Representations

A bi-level architecture (see Fig 4 (b)) learns neural representations of the schema primitives. First, a lower-
level primitive encoder learns property-specific dictionaries D(.) and embeds the property features into
neural primitive representations. For discrete-valued properties, D(.) is modeled as a simple lookup table of
learnable weights, while continuous-valued properties are embedded via multi-layered perceptrons (MLPs).
Let the dictionary Dj(.) learn features for property pj . Then, a primitive embedding Zprim is computed as:

Z = concat [D1(p1), · · · , DJ(pJ)] ; Zprim = MLP (Z) (7)

Note that these lower-level representations are schema-agnostic and only capture object-specific features.
Then an upper-level schema encoder uses a bidirectional schema Transformer to further embed primitives,
endowing representations with the overall schema context. For a given schema instance Py with N primitives,
the final representations Z1:N

y ∈ RN×d are computed via Transformer Tschema(.) as:

Z1:N
y = Tschema

(
Z1

prim, · · · , ZN
prim

)
(8)
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4.2.3 Compositional Score Aggregation

Recall that we want to ground entities Z1:N
y into entities S1:K

x . As a first step, we project these embeddings
into a shared semantic space Y ∈ Rdproj . The projection head Hscene(.) for slots is modeled as the following
residual network:

Ỹ k
x = WprojSk

x , W ∈ Rdproj×d ; Y k
x = Ỹ k

x + MLP
(
LayerNorm

(
Ỹ k

x

))
(9)

Here, LayerNorm denotes the layer normalization operation. A separate residual head Hschema(.) projects
the primitive representations Z1:N

y into the semantic embeddings Y 1:N
y . Next, we supplant the traditional

single object per slot assumption by assigning each primitive to its nearest slot in the latent space, as
measured by dot-product similarity. The similarity score Sxy between a scene x and primitive y is the sum
of nearest-neighbor similarities resulting from the primitive-slot assignment (see Fig. 4 (c)).

k∗
n = arg max

k∈{1,··· ,K}
Y k

x

T
Y n

y ; Sxy =
∑

n∈{1,··· ,N}

max
k∈{1,··· ,K}

(
Y k

x

T
Y n

y

)
(10)

4.2.4 Contrastive Learning Objective

The modality-specific embeddings and the resultant grounding are learned by optimizing a contrastive learn-
ing objective (Fig 4 (d)). More precisely, given a B-sized batch of {scene, schema} pairs, we use the Sxy

scores to distinguish the B correct pairs from the B2 − B incorrect pairs. The probability of correctly clas-
sifying schema Px as the true pairing for scene Ix (and conversely predicting Ix from Px) is formulated as
follows:

Pschema
x = exp (Sxx/τ)∑

y∈{1,··· ,B} exp (Sxy/τ) ; Pscene
x = exp (Sxx/τ)∑

y∈{1,··· ,B} exp (Syx/τ) (11)

Here, the calculated scores are interpreted as logits and τ denotes the temperature parameter. The cross-
entropy losses for scene and schema prediction are given by:

Lschema = −
∑

x∈{1,··· ,B}

log
(
Pschema

x

)
; Lscene = −

∑
x∈{1,··· ,B}

log (Pscene
x ) (12)

The global contrastive learning objective is based on the InfoNCE loss (van den Oord et al., 2019) as follows:

Lcontrastive = (Lscene + Lschema)/2 (13)

The overall training objective for NSI is given by:

Ltrain = β1 × Lcontrastive + β2 × Lrecon (14)

Note that β1 = 0.0, β2 = 1.0 corresponds to traditional autoencoder object-centric learning frameworks. The
learning objective can be interpreted as estimating a lower bound on the Mutual Information (MI) between
the scene and schema distribution by optimizing the compatibility of their compositional embeddings. Let
the MI between the joint scene and schema distribution p(.) be defined as:

MI(I, P ) = E(Ix,Py)∼p(I,P )

[
log

p(Ix, Py)
p(Ix)p(Py)

]
(15)

van den Oord et al. (2019) show that the optimized InfoNCE distributions P∗
schema and P∗

scene provide a
low variance estimator of MI (which is generally intractable for high-dimensional data). The InfoNCE lower
bound on MI is given by

MI(I, P ) ≥ log(B) − Lschema ; MI(I, P ) ≥ log(B) − Lscene (16)

⇒ MI(I, P ) ≥ log(B) − Lschema + Lscene

2 ≡ log(B) − Lcontrastive (17)

which becomes tighter as B becomes larger. Therefore, minimizing the NSI contrastive loss maximizes a lower
bound on MI. Algorithm 1 presents the NSI pseudocode for aggregating local alignments and computing the
contrastive loss.
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Figure 4: NSI method. (a) A DINOSAUR encoder (Seitzer et al., 2023) learns to represent images via slots.
(b) A bi-level schema encoder learns a representation of schema primitives. The primitive encoder embeds
the object properties of each schema primitive. Then, a Transformer learns embeddings that assimilate
the entire schema context. (c) The inner loop of the metric computes the score Sxy between compositional
abstractions of an image Ix and a schema Py. Object slots and schema primitives are projected onto a shared
embedding space and every latent primitive is assigned to its nearest slot for score aggregation. (d) The Sxy

scores obtained from local entities are used to optimize a global contrastive learning objective in the outer
loop over a batch of image-schema pairs.

5 Experiments

In this section, we set up experiments to (1) answer whether the slots are coherently imbued into the notion
of the object properties, (2) study how the grounding compares to traditional weakly supervised contrastive
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Algorithm 1 Neural Slot Interpreter Contrastive Learning Pseudocode
1: Require: Projection heads Hscene(.), Hschema(.)
2: Require: Batch of slot embeddings from the slot encoder {S1:K

x }1:B
3: Require: Batch of primitive embeddings from the schema encoder {Z1:N

y }1:B
4: # Compositional Score Aggregation
5:

{
Y 1:K

x

}
1:B = Hscene

(
{S1:K

x }1:B
)

▷ Project slots
6: {Y 1:N

y }1:B = Hschema

(
{Z1:N

y }1:B
)

▷ Project primitives
7: for all i, j ∈ {1, · · · , B} do ▷ Compute S ∈ RB×B

8: Sij =
∑

n∈{1,··· ,N} maxk∈{1,··· ,K} Y k
i

T
Y n

j

9: end for
10: # Contrastive Learning
11: labels = arange(B)
12: Lschema = CrossEntropyLoss (labels, S)
13: Lscene = CrossEntropyLoss

(
labels, ST

)
14: Lcontrastive = (Lschema + Lscene)/2
15: return Lcontrastive

learning, (3) estimate the quality of alignment under different annotation regimes, (4) probe whether the
NSI objective leads to the emergence of slots that bind to raw object features, and (5) answer if the slots are
effectively grounded, do they enhance downstream performance?

5.1 Schema Instantiation and Architecture Backbone

Our experiments encompass different tasks on scenes ranging from synthetic renderings to in-the-wild scenes
viz. (1) CLEVr Hans (Stammer et al., 2020): objects scattered on a plane, (2) CLEVrTex (Karazija et al.,
2021): textured objects placed on textured backgrounds (3) MOVi-C (Greff et al., 2022): photorealistic
objects on real-world surfaces, and (4) MS-COCO 2017 (Lin et al., 2015): a large-scale object detection
dataset containing real-world images. In a pre-processing step, we organize scene labels into the proposed
schema (Section 4.1). The property tags <pj> that populate schema primitives in each dataset are listed in
Table 1. We use the schema instances to ground object information in their corresponding scenes via NSI.
See Appendix A.3 for schema instances.

Dataset Property tags <pj>

CLEVr Hans <color>, <shape>, <material>, <size>, <3D position>
CLEVrTex <texture>, <shape>, <size>, <3D position>
MOVi-C <category>, <scale>, <2D position>, <bounding box>

MS-COCO 2017 <category>, <bounding box>

Table 1: Property tags used to instantiate and ground schema primitives.

We followed the DINOSAUR (Seitzer et al., 2023) recipe for learning slot representations. DINOSAUR uses
semantically-informative DINO ViT (Caron et al., 2021) features as an autoencoding objective, significantly
improving real-world object-centric learning abilities. More specifically, we train an MLP decoder to re-
construct features from slots for all our experiments. Training details and hyperparameters are given in
Appendix C.2.

5.2 Grounded Compositional Semantics

5.2.1 Scene-Schema Alignment Evaluation

Grounded concepts should be effectively aligned to the slots they represent, and we operationalize this ability
through the lens of retrieval, a task providing a direct and quantifiable test of this concept-slot alignment.
To this end, we set up a bimodal scene-property retrieval task.
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Experiment Setup: This task consists of two databases - an annotation database and a scene database.
The annotation database contains a collection of object properties, and the other contains a collection of
scene images. Each set of properties in the annotation database has a corresponding scene in the scene
database. In the first half, we measure property retrieval, where models are tasked with retrieving the
correct set of object properties, given the scene, using their respective alignment scores. In the second half,
the task is inverted to perform scene retrieval, where the models search for scenes in the scene database,
given the object properties. We set up the task on CLEVrTex, MOVi-C, and MS-COCO datasets using their
test split to instantiate the databases. The task contains 10000, 6000, and 4952 instances in both retrieval
databases for CLEVrTex, MOVi-C, and MS-COCO, respectively.

Baseline Setup: We consider several baselines for the retrieval task spanning the compositionality contin-
uum.

(a) CLIP embeddings: (Radford et al., 2021) CLIP embeddings have been explicitly trained for retrieval
on image-text pairs and form a strong non-compositional baseline. Here, we encoded the schema as a
string and measured the similarity between the text-image CLIP embeddings.

(b) GroundingDINO (Liu et al., 2024): We consider GroundingDINO, which is an open set vision-
language model pre-trained on a large corpus to align text and images on a grounding objective. Unlike
CLIP, which is non-compositional, the alignment in GroundingDINO is dependent on the compositional
sub-alignment between text phrases and image regions. We directly measure the similarity score outputs
obtained from the model on a (schema string, image) pair to perform retrieval.

(c) Ungrounded slots (Seitzer et al., 2023): Our first slot-based baseline utilizes the slots from a frozen
pre-trained DINOSAUR backbone with a shallow predictor fine-tuned for property prediction using
HMC (Kuhn, 1955). Subsequently, we used HMC scores for retrieval. See Appendix C.1 for training
details.

(d) HMC matching: For this baseline, we fine-tune the ungrounded slot architecture, including the
backbone end-to-en,d to predict object properties from slots. We used the optimal HMC scores of
fine-tuned slots for retrieval.

(e) Ablations: On NSI, where NSI-ResNet 34 replaced DINO ViT with the ResNet backbone, as
described in (Elsayed et al., 2022), and on NSI-Schema Agnostic where schema primitives were
encoded without the schema Transformer (Fig 4 (b)).

Metrics: We report Recall@K (k ∈ [1, 5]), which measures the fraction of times a correct item was retrieved
among the top K results. The results of the retrieval task are in Fig. 5(a),(b),(c), and Fig. 5(d),(e),(f)
visualizes the alignment learned by NSI. We now highlight the major observations.

(a) Explicitly grounding slots through NSI significantly enhances semantic alignment com-
pared to set matching approaches: HMC matching slots that rely on set-matching of predicted
slots exhibit notably weaker performance across all datasets in both property and scene retrieval tasks.
NSI and its ablations, by design, learn to associate individual slots with semantically meaningful object
attributes. This explicit grounding mechanism proves crucial, especially as we move towards more com-
plex and realistic datasets like MOVi-C and MS-COCO, where the performance gap between NSI-based
models and set-matching methods widens considerably.

(b) The full model is essential: Schema-agnostic encoders that encode object primitives independently
perform sub-par compared to NSI. This underscores the importance of contextualizing object semantics
in the overall schema. The pre-trained DINO backbone is crucial for textured objects and real-world
generalization, as evidenced by CLEVrTex/COCO results.

(c) Vision-Language Models grounded in text inadequately capture object semantics: CLIP
embeddings and GroundingDINO both fall short in retrieving object properties beyond basic semantic
categories, as evidenced by the weaker performance on MOVi-C and CLEVrTex datasets. This limitation
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Figure 5: Retrieval results. (a), (b), (c) Property and scene retrieval results. We report Recall@1/5 (higher
is better). The standard deviation (over five seeds) was < 0.3 across all model instances and retrieval tasks.
The lighter shade shows Recall@5 while the darker shade shows Recall@1. (d), (e), (f) Visualization of cor-
respondences learned by the NSI similarity metric. The colored arrows show the respective correspondences
of schema primitives to the slots. Each schema instance is chunked and color-coded by the slot to which its
primitives are assigned.

is further emphasized by their relatively weak performance across the two datasets compared to methods
that explicitly model object compositionality in scene and annotation representations. We posit that
while natural language is effective in grounding object properties pertaining to broad categories (as
evidenced by the stronger performance on MS-COCO), it appears insufficiently equipped for object-
centric grounding (Chandu et al., 2021).

Qualitative: In Fig. 5(d),(e),(f), we visualize the slot-object pairs inferred by our scoring metric. Inter-
pretable and dense correspondences emerge from NSI contrastive learning. Notably, in complex real-world
COCO scenes (Fig. 5(f)), NSI slots successfully ground to a diverse set of objects, even capturing instances
where a single slot might be associated with multiple related objects (e.g., multiple bowls and a spoon
associated with a slot). See Appendix D.1.6 for more results.

5.2.2 Comparison against Traditional Weakly-Supervised Visual Grounding

Weakly supervised visual grounding, by learning to link phrases in a caption to specific regions in an image,
is a well-established area of research (Karpathy & Fei-Fei, 2015; Yeh et al., 2018; Wang & Specia, 2019;
Gupta et al., 2020). These same region-phrase alignment techniques can be easily adapted to the scene-
schema grounding problem by replacing phrase embeddings with schema representations. However, a key
distinction between these approaches and NSI is how scenes are represented. Traditional image-caption
alignment methods rely on pre-trained models to propose bounding boxes around objects, while NSI learns
slot representations concurrently with the grounding objective. In this section, we then explore (1) whether
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Figure 6: Comparison against traditional weakly supervised visual grounding. We compared NSI against a
state-of-the-art bounding box-based phrase grounding method (Gupta et al., 2020). (a) and (b) compare
the performance of either method on the property-scene retrieval task on MOVi-C and COCO datasets,
respectively. Despite being trained on the same InfoNCE objective, NSI outperforms region-based ground-
ing, demonstrating that slot representations emergent from the NSI objective are key to grounding object
semantics. Moreover, NSI is also data-efficient in real-world COCO scenes. (c) plots the InfoNCE lower
bound attained on the test set as training progresses (smoothened for improved visualization). NSI has a
stronger lower bound and more effectively captures the scene-schema MI via object-centric abstractions.

bounding box representations are equally effective as slot representations at grounding object properties,
and (2) how the efficacy of each method compares across different annotation levels.

Experiment Setup: We investigated the efficacy of the contrastive learning-based phrase grounding method
by Gupta et al. (2020) and trained it on scene-schema pairs from the MOVi-C and COCO datasets. This
method utilizes bounding box proposals to encode scenes, and we refer to it as BBox QKV. Like NSI,
BBox QKV optimizes the modality encoders to maximize the lower bound on MI via the InfoNCE loss. In
addition, this method trains extra Query, Key, and Value heads to compute similarity scores between image
regions and schema primitives via the attention method.

Baseline Setup: Bounding box-based grounding methods rely on detectors like Fast R-CNN (Girshick,
2015) to extract image regions. To simplify the setup and eliminate errors arising from the detection pipeline,
we directly utilize ground truth bounding box annotations provided in the schema. The bounding boxes
are then represented by directly averaging the DINO features contained within the box and used to ground
scenes into schema labels.

Dataset Setup: We further sought to understand the data efficiency of NSI against the conventional
bounding box-based approach. To this end, we controlled for training data size and explored four training
regimes for each method: {1%, 10%, 50%, and 100% } of the training dataset, ranging from data-scarce to
data-rich.

Evaluation Setup: We evaluated BBox QKV trained on various dataset sizes on the bimodal retrieval task
setup from the previous section. The retrieval results are summarized in Fig. 6. Our major findings were:

(a) Slot encoding outperforms Bounding Box encoding. NSI consistently outperforms BBox QKV
in both Property and Scene Retrieval tasks on either dataset (see Fig. 6(a) and (b)). This performance
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Figure 7: BBox QKV vs NSI retrieval results. After being trained on two different settings, we demonstrate
the emergent correspondences from BBox QKV and NSI. For NSI, at the 10% setting, the slots are less
robust than the 50% setting, however, the correspondences between objects in the slot and their labels are
accurate overall. On the other hand, we observe multiple failure modes for BBox-QKV at low-data settings
where overlapping regions are assigned incorrectly or the model fails to ground objects at all (see (a) and (b),
BBox QKV 10% training data). The issue with disambiguating occluded and overlapping objects persists
even with greater training data.

difference arises despite both methods employing identical InfoNCE estimation and scoring functions,
differing solely in image encoding: NSI utilizes slots, while BBox QKV relies on bounding boxes. This
suggests that coarser bounding boxes may underspecify objects they contain, leading to weaker semantic
grounding and diminished retrieval efficacy than slot-based counterparts. On the other hand, the slot-
attention mechanism explicitly encourages symmetry breaking between slots such that they encode
non-overlapping fine-grained spatial features that facilitate improved alignment to object features.
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(b) NSI is data-efficient on real-world scenes. NSI exhibits remarkable data efficiency, demonstrating
robust performance even in data-scarce scenarios, notably on MS-COCO. Performance remains strong
with only 10% (∼ 10,000 examples) of MS-COCO training data. Despite limited data, this robustness
highlights that grounding via the NSI objective facilitates a strong transfer of discriminative object
semantics to slots that originally only contained spatial biases. Moreover, such transfer is significantly
more data-efficient compared to the performance of bounding box abstractions across dataset sizes.

(c) NSI achieves a higher InfoNCE lower bound. We plot the InfoNCE lower bound (Eq. 17)
obtained from the validation split across the training iterations in Fig. 6(c). NSI consistently achieves
a much stronger (higher) lower bound compared to BBox QKV for both MOVI-C and MS-COCO
datasets and across annotation levels. A higher InfoNCE Lower Bound for NSI indicates that it is
more effectively extracting the MI between schema and scene pairs. This further suggests that the slot-
based representations learned by NSI allow for a more discriminative representation of the relationship
between scenes and their object semantics.

Qualitative: Fig. 7 (a) and (b) demonstrate the correspondences learned by NSI and BBox QKV across
the datasets and the 10% and 50% training data fractions. The qualitative results further illuminate the
limitations of bounding box representations, particularly in scenarios with object overlap or occlusion. As
seen in MOVI-C (a) and MS-COCO (b), BBox QKV exhibits failure modes when objects are not distinctly
isolated, often misattributing objects (e.g., see MOVI-C 10% data) or failing to ground objects altogether.
These instances suggest that bounding boxes, being granular and encompassing potentially overlapping
regions, struggle to disambiguate objects and their semantics, especially when trained on fewer instances.

5.3 Object Discovery with NSI

Object-centric frameworks have been traditionally used to bind neural network representations to distinct
objects within a scene. Here, we evaluate whether grounded slots are more adept at discovering objects in
the context of visual segmentation.

Experiment Setup: We extract object attention masks from the backbone derived from slot-attention
clusters. The masks are then upsampled from the feature resolution to image resolution. We compared these
masks to the ground truth segmentation across the CLEVrTex, MOVi-C, and MS-COCO datasets on the
test split scenes.

Baselines Setup: We compare masks from the DINOSAUR scene encoder trained on three different ground-
ing objectives.

(a) Ungrounded slots derived from the autoencoder reconstruction objective, without any semantic
grounding.

(b) HMC matching grounded slots learned from predicting object properties from slots via set-matching.
(c) NSI grounded slots that explicitly ground object properties in slots via latent semantic assignment.

Metrics: We report the quality of object masks obtained from the slot representations based on two
segmentation metrics: (1) Foreground Adjusted Rand Index (FG-ARI): measures the accuracy of clustering
foreground objects into their respective segments and (2) Mean Best Overlap (mBO): assesses the best
overlap between predicted and ground truth object masks. We report both instance (mBOi) and class
(mBOc) level mBO scores for COCO. The segmentation results can be found in Fig. 8(a). We observe that:

(a) NSI endowed slots meaningfully segment objects. Object masks generated by NSI are com-
petitive on synthetic scenes and markedly improve object discovery on COCO scenes. We posit that
contrastive learning via NSI enhances symmetry breaking of the slot attention backbone for challenging
real-world scenes, effectively binding slots to raw visual features.

(b) HMC matching obscures object discovery on COCO. Constraining slots to predict a single
object forces the backbone to develop specialized representations for each object. This imposes a
difficult learning problem on real-world scenes and causes slots to deteriorate.
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(c) NSI is biased towards semantic classes over instance classes. On COCO instances, semantic
segmentation scores (mBOc) are higher compared to the baseline. We attribute this to the NSI metric
that biases slots to represent broader categories by grounding multiple objects.
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Figure 8: Object discovery results. (a) Segmentation results on three datasets. We report scores of FG-ARI
(higher is better) and mBO (higher is better). We also show scores relative to the ungrounded baseline on
top of each bar. (b) Visualization of attention masks learned by different models on instances of the datasets.
See Appendix D.2.1 for error bars and more qualitative results.

Qualitative: Fig. 8(b) visualizes the object masks that are emergent across the various methods. We notice
that NSI grounding of object semantics is helpful in disambiguating masks that violate object boundaries
or contain more than one object. For example, in the CLEVrTex example, the yellow mask learned by the
Ungrounded instance contains two objects, but the NSI instance, which encourages each slot to map to its
distinct semantics, separates the two objects. Similarly, in the case of the COCO example, the boundaries
of the bench and person are obfuscated and ambiguously overlapped. However, in the NSI instance, the
learned mask of the person is non-contiguous and allows for the full bench mask to form.
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Figure 9: Few-shot classification results. (a) (b) Few-shot classification accuracy on Hans 3 and Hans 7
datasets, respectively. (c) Task accuracy on NSI-CLEVr tokenizers trained on different numbers of grounding
examples. The standard deviation (over five seeds) was < 0.03 across tasks and methods. (d) Visual
rationales are generated across the grounding continuum by extracting attention maps from the final ViT
layer. See Appendix D.3.2 for more examples.

5.4 Grounded Slots as Visual Tokens

Grounding-agnostic patch-based tokens are the de facto standard for transformer-based models. On the
other hand, humans can flexibly abstract out entities free of rigid geometric templates. Here, we investigate
the ability of grounded slots to bridge this abstraction gap on a downstream classification task.

Experiment Setup: We consider the CLEVr-Hans classification benchmark (Stammer et al., 2020). The
data set comprises images derived from the CLEVr scenes, which are partitioned into distinct classes. Class
membership is determined by predefined combinations of object attributes and their inter-object relation-
ships (e.g., ‘Large cube and large cylinder’). Notably, specific classes within this collection are intentionally
designed with confounding factors that consists of multiple classes based on object attributes and rela-
tions. Moreover, the true membership properties are confounded with other attributes in the train split.
Consequently, achieving accurate classification on test images necessitates that the model effectively decon-
found the attribute correlations inherent in the training set. Here, we maintain a common ViT classifier
(Dosovitskiy et al., 2021) backbone and train it on tokens obtained from different tokenizers. We conduct
experiments on CLEVr-Hans 3 and CLEVr-Hans 7 benchmarks containing three and seven classification
categories, respectively. We further sweep across training dataset size across 100, 1000, and the full training
set.

Baselines Setup: We explore the following tokenization schemes:

(a) Traditional patch tokens extracted from 14 × 14 image patches of the scene.
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(b) Ungrounded slot tokens learned from autoencoder object-centric learning on CLEVr.
(c) Conditional Slot Attention (CoSA) slot tokens (Kori et al., 2024a) derived from set-matching slots

to property labels on the CLEVr dataset.
(d) NSI-CLEVrTex slot attention trained on CLEVrTex via NSI. The backbone is frozen and subsequently

used to infer CLEVr slots. This setup makes the slots partially grounded because CLEVr and CLEVrTex
share common attribute types (shape, size, texture), and the scenes and the scenes across the datasets
are also structurally similar.

(e) Fully grounded NSI-CLEVr slot attention trained on CLEVr via NSI.

Metrics: In Fig. 9(a),(b), we report test accuracy against the k-shot training sweep for CLEVr-Hans 3 and
CLEVr-Hans 7. We find that:

(a) Grounded slots facilitate improved reasoning and surpass patch-based tokenizers across data
regimes using 25× fewer tokens. While the performance of the patch-tokens saturates, grounded slots
de-confound object attributes with greater ability with increasing data.

(b) Partial grounding is often sufficient: NSI-CLEVrTex slots grounded in a different dataset demon-
strate competitive reasoning abilities. CLEVrTex and CLEVr capture the common structural notion of
objects in a scene but significantly differ in their texture semantics. However, a tokenizer trained on
CLEVrTex still facilitates downstream reasoning on the CLEVr scenes. This result further corroborates
the strong transfer effect of explicit grounding observed in Section 5.2.2 where grounded slots assimilate
generalizable representations with annotations from the same scene and also facilitate rapid transfer
across distinct stimuli.

(c) Property prediction ability does not necessarily transfer to class prediction: CoSA slots
trained on object-attribute prediction learned from HMC matching show weaker transfer on the Hans-3
dataset. This points out another limitation of the one-to-one template imposed by HMC where slots
are predictive of individual objects but lack the contextual abstractions for downstream inference.

How many schema annotations are essential? In Fig. 9(c), when ablating the number of annotations
used to train the NSI-CLEVr tokenizer, we observe that inductive biases instilled by grounding are key, as
seen from the sensitivity of the performance to the number of examples. On the other hand, significant
annotation of scenes is not necessary. Annotating just 100 schema examples yields performative accuracy
within a 3% margin of the tokenizer trained on the complete set.

Qualitative: We probed the attention maps from the final layer of the ViT to generate visual rationales.
Fig. 9(d) visualizes the maps across the grounding continuum. The ungrounded slots showed little to no
correlation with the class rule. The partially ground slots in CLEVrTex are more discriminative than the
ungrounded slots but often yield incorrect rationales. On the other hand, ViT trained on the NSI-CLEVr
slots and weighed slots pertinent to the class rule with greater attention. The visual rationales can be
valuable in interpreting the predictions of the model.

6 Conclusion

This work introduced NSI, which grounds object semantics into slots for object-centric understanding. It
uses a simple schema abstraction to define object concepts and learns to flexibly associate neural embeddings
of the schema primitives with object slots via contrastive learning. NSI facilitates interpretable grounding
in slot representations. Whereas natural language-grounded embeddings struggle to retrieve granular object
properties, NSI embeddings abstracted from the slot-schema intermodal alignment are key representations
for such tasks. The effectiveness of the representations is also highlighted when pre-specified bounding boxes
trained with the same contrastive learning objective demonstrate weaker grounding. Furthermore, unlike
set-matching approaches, which struggle when scaled to real-world scenes, NSI enhances object discovery
compared to ungrounded counterparts. Finally, we demonstrated the usefulness of NSI as a grounding-aware
visual tokenizer that improves the few-shot visual reasoning abilities of ViTs on a hard classification task. The
major limitation of the work lies in requiring annotations that can be prohibitively expensive and laborious.
However, we empirically showed the data efficiency of the method on real-world scenes where using as little
as 10% training data yielded grounding comparable to the full setting. We also demonstrated performative
reasoners under practical annotation settings. Slot representations have traditionally been associated with
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visual stimuli, but object concepts transcend perception to other sensorimotor experiences like audio, tactile
signals, and motor behaviors. To this end, NSI lays the groundwork for multimodal object-centric learning.
Future work involves adopting NSI to ground common object-centric concepts into different sensorimotor
experiences as a step towards a modular human-like understanding of the world.
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A Data

This section contains additional information on the datasets, nested schema space instantiation, and examples
of the annotation organization.

A.1 Nested Schema Space Description

Table 2 lists the various object properties used to create schema description of scenes.

A.2 Dataset Splits

The dataset splits used in this work are detailed in Table 3.

A.3 Schema Examples

Figs. 10-13 show schema descriptions of instances from all the datasets.
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Dataset Property Discrete/Continuous Size

CLEVr Hans (Johnson et al., 2016; Stammer et al., 2020)

Material Discrete 2
Color Discrete 8
Shape Discrete 3
Size Discrete 2

Object Position Continuous 3

CLEVrTex (Karazija et al., 2021)

Texture Discrete 60
Shape Discrete 4
Size Discrete 3

Object Position Continuous 3

MOVi-C (Greff et al., 2022)

Object Category Discrete 17
Object Size Continuous 1

Object Position Continuous 2
Bounding Box Continuous 4

MS-COCO 2017 (Lin et al., 2015) Object Category Discrete 90
Bounding Box Continuous 4

Table 2: Schema space across various datasets.

Name Train Split Size Validation Split Size Test Split Size
CLEVr Hans 3 9000 2250 2250
CLEVr Hans 7 21000 5250 5250

CLEVrTex 37500 2500 10000
MOVi-C 198635 35053 6000

MS COCO 2017 99676 17590 4952

Table 3: Dataset splits used in experiments.
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<element: 0>
<size> small</size>
<shape> cube</shape>
<color> gray</color>
<material> metal</material>
<pos> (-0.76, -0.79, 0.35)</pos>

</element>
<element: 1>

<size> small</size>
<shape> sphere</shape>
<color> yellow</color>
<material> metal</material>
<pos> (-0.14, 1.75, 0.35)</pos>

</element>
<element: 2>

<size> large</size>
<shape> cube</shape>
<color> green</color>
<material> rubber</material>
<pos> (1.24, 2.12, 0.69)</pos>

</element>
<element: 3>

<size> small</size>
<shape> cylinder</shape>
<color> gray</color>
<material> rubber</material>
<pos> (-1.11, 1.79, 0.35)</pos>

</element>
<element: 4>

<size> large</size>
<shape> cube</shape>
<color> red</color>
<material> rubber</material>
<pos> (2.73, -2.23, 0.69)</pos>

</element>

Figure 10: CLEVr Hans instance with its corresponding schema description.
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<element:0><size>medium</size>
<shape> sphere</shape>
<material> whitemarble</material>
<pos> (1.58, -2.81, 0.60) </pos>

</element>
<element:1><size>small</size>

<shape> cylinder</shape>
<material> polyhaven_aerial_mud_1</material>
<pos> (-0.23, -2.94, 0.40) </pos>

</element>
<element:2><size>medium</size>

<shape> cylinder</shape>
<material> polyhaven_forrest_ground_01</material>
<pos> (2.67, 2.78, 0.60) </pos>

</element>
<element:3><size>medium</size>

<shape> monkey</shape>
<material> polyhaven_cracked_concrete_wall</material>
<pos> (-0.63, 1.98, 0.60) </pos>

</element>
<element:4><size>medium</size>

<shape> cube</shape>
<material> polyhaven_brick_wall_005</material>
<pos> (-2.81, 0.52, 0.42) </pos>

</element>
<element:5><size>large</size>

<shape> sphere</shape>
<material> polyhaven_large_grey_tiles</material>
<pos> (-2.66, 2.94, 0.90) </pos>

</element>
<element:6><size>small</size>

<shape> cylinder</shape>
<material> polyhaven_leaves_forest_ground</material>
<pos> (1.12, 2.49, 0.40) </pos>

</element>
<element:7><size>small</size>

<shape> monkey</shape>
<material> polyhaven_aerial_rocks_01</material>
<pos> (1.98, 0.84, 0.40) </pos>

</element>
<element:8><size>medium</size>

<shape> cube</shape>
<material> polyhaven_wood_planks_grey</material>
<pos> (0.78, -1.23, 0.42) </pos>

</element>

Figure 11: CLEVrTex instance with its corresponding schema description.
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<element:0><category>Hat</category>
<scale> 1.93 </scale>
<position> (0.68, 0.80) </position>
<bbox> (0.70, 0.52, 0.98, 0.84) </bbox>

</element>
<element:1><category>Consumer Goods</category>

<scale> 2.25 </scale>
<position> (0.28, 0.28) </position>
<bbox> (0.18, 0.14, 0.39, 0.42) </bbox>

</element>
<element:2><category>None</category>

<scale> 1.98 </scale>
<position> (0.67, 0.15) </position>
<bbox> (0.02, 0.60, 0.29, 0.77) </bbox>

</element>
<element:3><category>Consumer Goods</category>

<scale> 1.97 </scale>
<position> (0.50, 0.20) </position>
<bbox> (0.09, 0.41, 0.32, 0.58) </bbox>

</element>
<element:4><category>Toys</category>

<scale> 1.45 </scale>
<position> (0.33, 0.75) </position>
<bbox> (0.63, 0.27, 0.86, 0.39) </bbox>

</element>
<element:5><category>Media Cases</category>

<scale> 0.80 </scale>
<position> (0.20, 0.25) </position>
<bbox> (0.21, 0.15, 0.29, 0.26) </bbox>

</element>
<element:6><category>None</category>

<scale> 1.02 </scale>
<position> (0.62, 0.33) </position>
<bbox> (0.28, 0.54, 0.38, 0.66) </bbox>

</element>

Figure 12: MOVi-C instance with its corresponding schema description.
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<element:0>
<cat>tv</cat>

<bbox> (0.34, 0.26, 0.18, 0.17) </bbox>
</element>
<element:1>

<cat>chair</cat>
<bbox> (0.03, 0.32, 0.27, 0.33) </bbox>

</element>
<element:2>

<cat>book</cat>
<bbox> (0.70, 0.67, 0.30, 0.24) </bbox>

</element>
<element:3>

<cat>vase</cat>
<bbox> (0.59, 0.46, 0.10, 0.32) </bbox>

</element>
<element:4>

<cat>chair</cat>
<bbox> (0.72, 0.27, 0.08, 0.22) </bbox>

</element>
<element:5>

<cat>dining table</cat>
<bbox> (0.79, 0.32, 0.07, 0.22) </bbox>

</element>
<element:6>

<cat>remote</cat>
<bbox> (0.34, 0.62, 0.06, 0.04) </bbox>

</element>
<element:7>

<cat>book</cat>
<bbox> (0.71, 0.77, 0.07, 0.09) </bbox>

</element>
<element:8>

<cat>chair</cat>
<bbox> (0.80, 0.28, 0.09, 0.21) </bbox>

</element>

Figure 13: COCO instance with its corresponding schema description.
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B Neural Slot Interpreter

Next, we present details of NSI training modules and summarize the NSI pseudocode.

C Hyperparameters

We list the hyperparameters for NSI and other methods used in our experiments, which were all performed
on Nvidia A100 GPUs.

C.1 Ungrounded and HMC Matching Backbone Hyperparameters

The hyperparameters for ungrounded and HMC matching backbones are given in Table 4.

Module Hyperparameters CLEVr Hans CLEVrTex MOVi-C MS COCO 2017

DINO Backbone

Image Size 224 224 224 224
Patch Size 8 8 8 8

Num. Patches 784 784 784 784
Num. Layers 8 8 8 8
Num. Heads 8 8 8 8
Hidden Dims. 192 192 192 192

Slot Attention
Num. Slots 10 10 10 93
Iterations 3 3 3 3

Hidden Dims. 192 192 192 192

Broadcast Decoder
Num. MLP Layers 3 3 3 3
MLP Hidden Dims. 1024 1024 1024 1024

Output Dims. 785 785 785 785

Prediction Head
MLP Hidden Layers 2 2 2 2
MLP Hidden Dims. 64 64 64 64

Output Size 18 71 25 95

Training Setup

Batch Size 128 128 128 128
LR Warmup steps 10000 10000 10000 30000

Peak LR 4 × 10−4 4 × 10−4 4 × 10−4 1 × 10−4

Dropout 0.1 0.1 0.1 0.1
Gradient Clipping 1.0 1.0 1.0 1.0

Inference Configuration Num. Slots 10 10 10 30

Training Cost GPU Usage 40 GB 40 GB 40 GB 40 GB
Days 1 3 3 5

ViT
Num Layers 2 - - -
Hidden Dims 64 - - -
Num Heads 4 - - -

Table 4: Hyperparameters for the ungrounded and HMC matching method used in our experiments. In the
ungrounded case, the backbone and slot attention modules are trained solely on the reconstruction objective
and frozen.

C.2 NSI Hyperparameters

The hyperparameters for the NSI alignment model are listed in Table 5. The ablated architectures follow
the same setup without the ablated module.

30



Published in Transactions on Machine Learning Research (05/2025)

Module Hyperparameters CLEVr Hans CLEVrTex MOVi-C MS COCO 2017

DINO Backbone

Image Size 224 224 224 224
Patch Size 8 8 8 8

Num. Patches 784 784 784 784
Num. Layers 8 8 8 8
Num. Heads 8 8 8 8
Hidden Dims. 192 192 192 192

Broadcast Decoder
Num. MLP Layers 3 3 3 3
MLP Hidden Dims. 1024 1024 1024 1024

Output Dims. 785 785 785 785

Slot Attention
Num. Slots 10 10 10 15
Iterations 3 3 3 3

Hidden Dims. 192 192 192 192

Schema Encoder

Num. Layers 8 8 8 8
Num. Heads 8 8 8 8
Hidden Dims. 192 192 192 192

Max. Schema Len. 10 10 10 93

Projection Heads
Embedding Dims. 64 64 64 64

MLP Hidden Layers 2 2 2 2
MLP Hidden Dims. 256 256 256 256

Training Setup

Batch Size 128 128 128 128
LR Warmup steps 10000 10000 10000 30000

Peak LR 4 × 10−4 4 × 10−4 4 × 10−4 1 × 10−4

Dropout 0.1 0.1 0.1 0.1
Gradient Clipping 1.0 1.0 1.0 1.0

β1, β2 0.5, 0.5 0.5, 0.5 0.5, 0.5 0.5, 0.5

Training Cost GPU Usage 40GB 40 GB 40 GB 40 GB
Days 1 3 3 5

ViT
Num Layers 2 - - -
Hidden Dims 64 - - -
Num Heads 4 - - -

Table 5: Hyperparameters for the NSI alignment model instantiation and training setup.
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D Experiments

D.1 Grounded Compositional Semantics

D.1.1 Top Learned Slots

Figs. 14-16 show the top 50 slots learned by the image encoder over each dataset. Each slot is weighted by
the l2 norm of its embeddings Y k

x . The top slots follow an interesting distribution. On CLEVrTex (Fig. 14),
slots with larger objects and a clean segmentation are assigned a higher magnitude. Intuitively, these slots
are the most discriminative when assigning primitives that contain shape, texture, and size, and benefit from
large, cleanly segmented objects. On the other hand, the emergent distribution in MOVi-C (Fig. 15) and
COCO (Fig. 16) weights edge artifacts more. We posit that since the object annotations of these datasets
contain object positions in the image, edge objects tend to be more discriminative.

Figure 14: Top 50 slots (left to right, top to bottom) ranked by magnitude from test split of the CLEVrTex
dataset.

D.1.2 Top Learned Primitives

Figs. 17-19 show the t-SNE visualization (van der Maaten & Hinton, 2008) of representations learned by the
schema encoder on the schema primitives. In each plot, primitives in the test split are encoded context-free.
The learned embeddings exhibit clustering effects on property categories.

D.1.3 Searching over Slots

We found that the NSI metric, which learns to match entire schemas to entire images, can also be used
zero-shot to reliably retrieve individual slots from primitives. We demonstrate two instances of slot search
in Figs. 20 and 21. A query in the form of a single primitive is embedded using the schema encoder. The
query embedding ranks the slot of a database formed from the test split. In Figs. 20 and 21, we show the
property search and position search results, respectively.
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Figure 15: Top 50 slots (left to right, top to bottom) ranked by magnitude from test split of the MOVi-C
dataset.

Figure 16: Top 50 slots (left to right, top to bottom) ranked by magnitude from test split of the COCO
dataset.

D.1.4 Slot Sweep for COCO Retrieval Task

Fig. 22 shows the effect of the number of slots on the recall rates. Recall is highest at 15-20 slots for COCO
scenes and the model overfits as the number of slots increases further.
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cube
cylinder
sphere
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(a) t-SNE scatter plot labeled with object
shapes.

t-SNE 1

t-S
NE
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small
medium
large

(b) t-SNE scatter plot labeled with object sizes.

t-SNE 1

t-S
NE

 2

polyhaven_wood_floor_deck
polyhaven_stone_wall
polyhaven_dark_wood
polyhaven_plank_flooring_02
polyhaven_bark_willow
polyhaven_denim_fabric
polyhaven_aerial_rocks_01
polyhaven_red_sandstone_wall
polyhaven_roof_07
polyhaven_asphalt_02

(c) t-SNE scatter plot labeled with object materials.

Figure 17: t-SNE scatter plots of the top 10000 CLEVrTex primitives weighted by the l2 norm of their
embeddings. The embeddings are clearly clustered by the shape type. Interestingly, when looking at the
object size, only large and medium-sized objects are represented in the top primitives.
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Action Figures
Bag
Board Games
Bottles and Cans and Cups
Camera
Car Seat
Consumer Goods
Hat
Headphones
Keyboard
Legos
Media Cases
Mouse
None
Shoe
Stuffed Toys
Toys

Figure 18: t-SNE scatter plots of the top 10000 MOVi-C primitives weighted by the l2 norm of their
embeddings. The scatter points are labeled with the object categories. While there are multiple local
clusters, a larger clustering effect based on object categories are not apparent.
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Figure 19: t-SNE scatter plots of the top 10000 COCO primitives weighted by the l2 norm of their em-
beddings. The scatter points are labeled with the object categories. A category-based clustering pattern is
emergent.
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Figure 20: Searching over slots with property queries. The rows represent a shape and the columns represent
an object material. The position is fixed at [0, 0, 0] and the size is set to ‘Large.’ The alignment model reliably
retrieves slots with desired object properties if they exist in the database.

D.1.5 Retrieval with Underspecified Annotations

We investigated the efficacy of grounding under the setting where the annotations of scenes were under-
specified. Figs. 23(a) and (b) show the retrieval results under two settings: (a) a maximum of ten objects
annotated in a scene and (b) a maximum of five objects annotated in a scene. First, we observed that the
drop in recall rates for the ResNet backbone was significant compared to the full setting. Second, CLIP
and NSI were resilient to the limited annotation, with NSI outperforming other methods. CLIP benefited
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(c) Position search on cylinders.

Figure 21: Searching over slots with position queries. We adjust the ‘Pos-X’ for each shape on the x-axis
and ‘Pos-Y’ on the y-axis. The top-ranked slot clearly reflects the position adjustment.

Property Retrieval Scene Retrieval

Figure 22: Ablation on the number of slots for scene-property retrieval task. The standard deviation over
five seeds was < 0.3 across datasets.

from the vast training corpora that helped it generalize to the underspecification. On the other hand, the
compositional grounding with strong backbones endows NSI with strong retrieval despite being trained on
limited data.

MS-COCO retrieval with ten annotations MS-COCO Retrieval with five annotations

CLIP HMC Resnet 34 NSI CLIP HMC Resnet 34 NSI CLIP HMC Resnet 34 NSICLIP HMC Resnet 34 NSI

Property Retrieval Scene Retrieval Property Retrieval Scene Retrieval(a) (b)

Figure 23: Retrieval results on underspecified scene annotations settings.

D.1.6 Additional Qualitative Results

Fig. 24 shows additional results on the associations inferred by NSI on MOVi-C and MS COCO 2017.
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D.1.7 Retrieval Results across Property Types

We trained and compared the MOVi-C scene retrieval via NSI and BBox QKV on two separate tasks – one
where schemas only contain non-positional object properties (category, size) and one where schemas only
contain object positions (center coordinates, bounding boxes). The results are shown in Tab. 6. First, we
found that retrieval results across both models and both instances are worse off compared to the completely
populated schemas. However, we observe that BBOx QKV relies on positional properties more than non-
positional semantics for retrieval and even outperforms NSI on the former type. On the other hand, NSI
depends more on non-positional properties and scores significantly higher on retrieving them.

Model Recall@5 (%) Non Positional Properties Recall@5 (%) Positional Properties
NSI 58.51 43.73

BBox QKV 38.25 45.53

Table 6: MOVi-C scene retrieval results on schemas populated by only specific object property types
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<element:0><cat>potted plant</cat></element>

<element:1><cat>dog</cat></element>

<element:2><cat>car</cat></element>

<element:3><cat>car</cat></element>

<element:3><cat>car</cat></element>

<element:4><cat>car</cat></element>

<element:0><cat>dog</cat></element>

<element:1><cat>car</cat></element>

<element:2><cat>car</cat></element>

<element:3><cat>bench</cat></element>

<element:0><cat>person</cat></element>

<element:1><cat>surfboard</cat></element>

<element:0><cat>person</cat></element>
<element:1><cat>person</cat></element>
<element:2><cat>handbag</cat></element>

<element:3><cat>person</cat></element>
<element:4><cat>person</cat></element>

<element:5><cat>person</cat></element>

<element:6><cat>sheep</cat></element>

<element:0><cat>zebra</cat></element>

<element:2><cat>zebra</cat></element>

<element:1><cat>zebra</cat></element>

<element:0><cat>bottle</cat></element>
<element:1><cat>bottle</cat></element>

<element:4><cat>cellphone</cat></element>

<element:3><cat>laptop</cat></element>

<element:2><cat>bowl</cat></element>

<element:0><cat>spoon</cat></element>
<element:1><cat>spoon</cat></element>
<element:2><cat>bottle</cat></element>

<element:3><cat>dog</cat></element>

<element:5><cat>refrigerator</cat></element>

<element:4><cat>bottle</cat></element>

<element:6><cat>oven</cat></element>

<element:0><cat>skateboard</cat></element>

<element:1><cat>person</cat></element>

<element:1><category>Bag</category> 
<scale> 2.33 </scale></element>

<element:0><category>None</category> 
<scale> 2.04 </scale></element> 

<element:2><category>None</category> 
<scale> 2.71</scale></element></element> 

<element:3><category>Consumer Goods</category> 
<scale> 0.945</scale></element></element> 

<element:4><category>Toys</category>
<scale>0.92</scale> </element>

<element:5><category>Shoe</category> 
<scale>1.44</scale></element>

<element:1><category>Bag</category> 
<scale> 2.66 </scale></element> 

<element:0><category>None</category> 
<scale> 2.67</scale></element>

<element:2><category>Shoe</category> 
<scale> 2.43 </scale></element>

Figure 24: Correspondences inferred by NSI on MOVi-C and COCO scenes.
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D.2 Object Discovery

D.2.1 Object Discovery Results

Dataset Metric Ungrounded HMC Matching NSI

CLEVrTex FG-ARI 87.79 ± 0.12 88.37 ± 0.12 89.89 ± 0.01
mBO 44.86 ± 0.04 45.23 ± 0.23 46.60 ± 0.02

MOVi-C FG-ARI 65.53 ± 0.15 65.61 ± 0.31 66.41 ± 0.12
mBO 36.79 ± 0.03 36.79 ± 0.41 38.52 ± 0.23

COCO
FG-ARI 40.12 ± 0.29 32.18 ± 0.45 44.24 ± 0.27
mBOi 27.20 ± 0.31 18.32 ± 0.51 28.12 ± 0.25
mBOc 26.54 ± 0.25 19.61 ± 0.82 32.10 ± 0.31

PASCAL VOC 2012 (Zero-Shot)
FG-ARI 20.42 ± 0.13 15.14 ± 0.09 21.97 ± 0.17
mBOi 35.97 ± 0.15 25.15 ± 0.08 36.98 ± 0.19
mBOc 37.94 ± 0.17 27.02 ± 0.12 39.06 ± 0.22

Table 7: Object discovery results. We use the DINO backbone and an MLP decoder across methods. The
standard deviation was calculated over five random seeds.

Table 7 contains the complete set of object discovery results with the standard deviations. We also conducted
a zero-shot evaluation of the models trained on MS-COCO on Pascal VOC 2012 (Everingham et al., 2015).
We observed that the benefits of grounding the model via NSI on one real-world dataset were transferred
to the other for object discovery, with the grounded model also improving mask segmentation over its
ungrounded counterparts for Pascal VOC.

D.2.2 Slot Sweep over COCO Scenes

Fig. 25 shows the NSI object discovery results on COCO scenes as the number of slots is increased. We
observe that segmentation improves until 15 slots and then slowly tapers off.

FG-ARI mBO i mBOc
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Figure 25: Ablation on the number of slots for COCO object discovery using NSI.

D.2.3 Property Ablations on COCO Scenes

In Fig. 26, we ablate the properties used to form schema primitives. Ostensibly, the slots weigh bounding
box coordinates more than categories, as the performance drop is steeper when the former is ablated as
opposed to the meager loss when the latter is ablated.
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Figure 26: Ablation on the schema properties for NSI.

D.2.4 Grounding Examples Ablation on COCO Scenes

Fig. 27 shows the results of ablating over the number of grounding examples used for NSI co-training.
We observe that the ARI metric and the class-wise mBO are sensitive to grounding, with as few as 100
annotations improving object discovery via segmentation masks.

3.12 %

1.76%

Number of grounding examples

Figure 27: Ablation on number of grounding examples used to train NSI on MS COCO.

D.2.5 Mask Visualizations

Figs. 28, 29, 30, 31 visualize slot masks over scenes from CLEVrTex, MOVi-C, COCO, and Pascal VOC,
respectively.
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Original Ground Truth Ungrounded HMC Matching NSI 

Figure 28: Object discovery results on CLEVrTex scenes.
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Original Ground Truth Ungrounded HMC Matching NSI 

Figure 29: Object discovery results on MOVi-C scenes.
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Original Ground Truth Ungrounded HMC Matching NSI 

Figure 30: Object discovery results on COCO scenes.
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Original Ground Truth Ungrounded HMC Matching NSI 

Figure 31: Zero-shot object discovery results on Pascal VOC 2012 scenes.
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D.3 Grounded Slots as Visual Tokens

D.3.1 Confusion Matrices

Figs. 32 and 33 show the classification confusion matrices for the CLEVr-Hans 3 and CLEVr-Hans 7 tasks.
In the few-shot setting, the model often predicts scenes into under-specified and less discriminative classes,
like “cyan object in front of two red objects.” Similarly, it also tends to mispredict into classes containing
large objects like “large cube and large cylinder” that contain reasoning over larger objects and are easier to
tokenize.
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Figure 32: Confusion matrices for NSI prediction on the CLEVr-Hans 3 task.
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Figure 33: Confusion matrices for NSI prediction on the CLEVr-Hans 7 task.

D.3.2 Visual Rationales

Fig. 34 simultaneously visualizes the rationales across data settings and attention layers. On an average, we
observe that rationales tend to get stronger and more accurate as the number of training examples increases
and the ViT depth increases.

Figs. 35 and 36 demonstrate rationales across the grounding continuum for Hans 3 and Hans 7 classification
tasks, respectively.

Fig. 37 demonstrates attention maps where the model prediction is correct, but the rationale is not entirely
dispositive.
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"Large Cube and Large Cylinder" "Small Metal Cube and Small Metal Sphere"

"Large Blue Sphere and Small Yellow Sphere" "Large Blue Sphere and Small Yellow Sphere"

"Cyan Object in front of Two Red Objects"  "Three Spheres on the Left Side"

"Large Blue Sphere and Small Yellow Sphere" "Small Metal Cube and Small Metal Sphere"

Figure 34: NSI visual rationales across different data regimes and attention depth.
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Small Metal Cube and 
Small Sphere 

Large Cube and
Large Cylinder

Large Blue Sphere
and

Small Yellow Sphere

Scene Ungrounded NSI-CLEVrTex NSI-CLEVr

Figure 35: Visual rationales on Hans 3 across different methods.
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Figure 36: Visual rationales on Hans 7 across different methods.
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Figure 37: Some failure cases where NSI makes the correct prediction, albeit using incorrect or ambiguous
support slots.
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E Object Detection with NSI

In this section, we demonstrate an architecture that uses inferred correspondences by NSI to perform object
detection. We run preliminary experiments and explore the use of slots in real-world visual reasoning systems.

E.1 NSI Schema Generator Model

We formulate the NSI schema generator (see Fig. 38) to predict, from each slot, its corresponding schema
primitives. To this end, we modify an encoder Transformer by interleaving cross-attention blocks with the
self-attention layers to assimilate the context from the encoded slots. The input to the model is simply
learned positional embeddings P1:N that are decoded by L attention-ensemble stacks to output primitive
representations. We call this architecture SETθ(.). The Slot Encoder Transformer (SET) is a stack of
L blocks, each computing (a) self-attention over inputs followed by (b) cross-attention of inputs over the
context slot. Let Zdec,1:T

prim,l−1 be the sequence representation at layer l − 1 and S denote the slot. Then

Zdec,1:N
prim,L = SETθ(P1:N , S) (18)

The cross-attention implementation of block l is shown in Algorithm 2.

Algorithm 2 Cross-Attention for Block l of SET

Require: Zdec,1:T
prim,l ∈ RT ×d, T primitive embeddings from self-attention of layer l

Require: S ∈ Rd, Context Slot
Get query tokens: Q1:T

l−1 = MLPQ(Zdec,1:T
prim,l )

Get keys, values of slot S: K, V = MLPKV (S)
Compute attention values: M = softmax(QT K/

√
d)

Get output: Zdec,1:T
prim,l = M × V

Using an encoder-transformer-styled predictor has two advantages: (1) primitives can be generated in parallel
and (2) each primitive representation is aware of the overall prediction context. MLP property heads predict
the object properties from the Zdec,1:N

prim,L representations. At each training iteration, the predicted properties
p̂1:N are optimally matched to their ground truth labels p1:N via an ordering σ(1 : N) obtained from
Hungarian matching (HM) (Kuhn, 1955) on the property prediction loss Lproperties. Note that Lproperties

is a per-primitive loss obtained from the sum of individual property prediction losses. We use the cross-
entropy loss for discrete properties, mean-squared error for continuous properties, and augment bounding-box
regression with the Intersection over Union (IoU) loss. The training objective Lgen(.) is formulated as follows:

σ(1 : N) = HM
(
Lproperties

(
p1:N , p̂1:N ))

(19)

Lgen =
N∑

i=1
Lproperties(pi, p̂σ(i)) (20)

At training time, we pad the aligned ground-truth instances with no-object labels Φ to account for rep-
resentations without object predictions. In practice, bipartite matching for a single-slot instance is more
computationally feasible than the overall image instance because per-slot object instances are significantly
fewer.

E.2 NSI Schema Generator Hyperparameters

The hyperparameters for the NSI schema generator are listed in Table 8.

E.3 Experiments

The correspondences from the train split are used to learn the NSI schema generator, as outlined in Ap-
pendix E.1. The schema generator decodes T primitives from each slot, including the confidence level of
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Slot Encoder Transformer

Prediction Heads

<cat>person</cat>
<bbox>...</bbox>
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<cat>person</cat>
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(a) Learned Correspondences (b) Schema Generator

Figure 38: NSI schema generator model: (a) Learned correspondences between slot and schema primitives
are used to train the schema generator. (b) A Slot Encoder Transformer attends to individual slots via cross-
attention and, in parallel, decodes tokens into schema primitives. At training time, a Hungarian set matching
procedure assigns predictions to primitives associated with the slot. The prediction error is aggregated over
assignments to compute Lgen.

Module Hyperparameters MOVi-C COCO-10 COCO-30

SET

Num. Layers 2 2 2
Num. Heads 2 2 2
Hidden Dims. 192 192 192

Predictions per Slot (T ) 5 8 8

Inference top-M predictions 10 10 30
Non-Max Suppression/Threshold Yes (0.75) Yes (0.75) Yes (0.75)

Training Setup

Batch Size 64 64 64
LR Warmup steps 10000 30000 30000

Peak LR 4 × 10−4 1 × 10−4 1 × 10−4

Dropout 0.1 0.1 0.1

Training Cost GPU Usage 40 GB 40 GB 40 GB
Days 2 4 4

Table 8: Hyperparameters for the NSI schema generator model instantiation and training setup.

each object prediction. The overall schema for a single image is obtained as the top M confident primitives
out of predictions from all K slots of that image. The NSI schema generator enables solving of downstream
tasks with slots by making use of predicted properties from primitive tags. We demonstrate the usefulness
of NSI for object detection.
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Object Detection Results: In the context of real-world object detection on images, the schema properties
can be used to identify and locate objects in diverse scenes from the MOVi-C and COCO datasets. To this
end, we extract the (<cat>) category and (<bbox>) bounding box fields from the generated primitives that
depict the object category and location, respectively. For COCO, we test on two variants of the dataset: (1)
COCO-10, a simple subset of the test split containing ten objects at a maximum, and (2) COCO-30 that
contains as many as 30 objects in a scene. We report the APIoU metric across all three benchmarks. It denotes
the area under the precision-recall curve for a certain IoU threshold (in %). We also run comparisons against
the methods outlined in the retrieval experiments. Fig. 39 shows the experimental results and Figs. 40, 41
visualize object detection across various predictors. Our comparison baselines include:

(a) Vanilla Slot Attention (Locatello et al., 2020): The model is trained from scratch to resolve slot-
object assignments through HMC.

(b) DINOSAUR (Locatello et al., 2020): It uses the DINO ViT backbone to learn slots for unsupervised
object discovery by reconstructing perceptual features. The architecture is frozen while we train shallow
predictors on top to detect objects.

(c) DINOSAUR-FT: We use the DINOSAUR model but fine-tune the architecture end-to-end on the
prediction task.

We make the following observations:

(a) NSI outperforms prior set-matching slot predictors, especially by significant margins (20-30%)
at lower IoU thresholds. Grounding object concepts in slots a priori improves the predictive power
of slots. In comparison, matching the set of slots against the entire set of object annotations of the
image yields poor generalization. In addition, large-scale pre-training and end-to-end fine-tuning are
crucial ingredients, as evidenced by the subpar performance of the Vanilla and DINOSAUR methods
on COCO.

(b) The performance disparity between NSI and DINOSAUR-FT widens as the complexity of
scenes increases from COCO-10 to COCO-30. The inability of DINOSAUR to predict more than one
object per slot necessitates modeling and learning to match up to 30 different slots, which generalizes
poorly on novel scenes.

(c) HMC slots deteriorate for COCO-30 where the backbone is tasked with matching with 30 different
objects at a time.
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Figure 39: Object detection performance of various prediction methods on the MOVi-C, COCO-10, and
COCO-30 benchmarks. We report AP@IoU (higher is better) for different IoU thresholds. Standard devia-
tion is reported over five random seeds.
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Ground Truth Vanilla DINOSAUR DINOSAUR-FT NSI

Figure 40: Object detection results on COCO scenes. NSI schema generator can flexibly detect multiple
objects from the same slot, as evidenced by detections on COCO images. For example, a single slot predicts
multiple ‘donuts,’ ‘chair and dining table,’ and ‘person and tennis racket’.
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Ground Truth Vanilla DINOSAUR DINOSAUR-FT NSI

Figure 41: Object detection results on MOVi-C scenes.
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