
Under review as a conference paper at ICLR 2022

SELF-SUPERVISED SPATIAL REPRESENTATIONS
FOR DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent reinforcement learning (RL) methods have found extracting high-level
features from raw pixels with self-supervised learning to be effective in learning
policies. However, these methods focus on learning global representations of
images, and disregard local spatial structures present in the consecutively stacked
frames. In this paper, we propose a novel approach that learns self-supervised
spatial representations (S3R) for effectively encoding such spatial structures in an
unsupervised manner. Given the input frames, the spatial latent volumes are first
generated individually using an encoder, and they are used to capture the change in
terms of spatial structures, i.e., flow maps among multiple frames. To be specific,
the proposed method establishes flow vectors between two latent volumes via a
supervision by the image reconstruction loss.This enables for providing plenty of
local samples for training the encoder of deep RL. We further attempt to leverage
the spatial representations in the self-predictive representations (SPR) method
that predicts future representations using the action-conditioned transition model.
The proposed method imposes similarity constraints on the three latent volumes;
warped query representations by estimated flows, predicted target representations
from the transition model, and target representations of future state. Experimental
results on complex tasks in Atari Games and DeepMind Control Suite demonstrate
that the RL methods are significantly boosted by the proposed self-supervised
learning of spatial representations. The code is available at https://sites.
google.com/view/iclr2022-s3r.

1 INTRODUCTION

Deep reinforcement learning (RL) has been an appealing tool for training agents to solve various tasks
including complex control and video games (François-Lavet et al., 2018). While most approaches
have focused on training deep RL agent under the assumption that compact state representations
are readily available, this assumption does not hold in the cases where raw visual observations
(e.g. images) are used as inputs for training the deep RL agent. Without designing an effective
algorithm that uses model-based policy and value improvement operators (Schrittwieser et al., 2021),
or without attempting to use additional image augmentation (Laskin et al., 2020a; Kostrikov et al.,
2020), learning visual features from raw pixels only using a reward function might fail to learn good
features in terms of the performance and sample efficiency.

To address this challenge, a number of deep RL approaches (Sermanet et al., 2018; Dwibedi et al.,
2018; Anand et al., 2019; Laskin et al., 2020b; Mazoure et al., 2020; Stooke et al., 2020; Schwarzer

flow based warping

flow

global & pixel level
similarity

transition model

Figure 1: Abstract form of the S3R method: Warped representation Zw
k+1 and predicted representation

Zp
k+1 are obtained from query encoder representation Zq

k at frame k by flow based warping and
transition model, respectively. Both global-level and pixel-level similarity are then imposed with
target encoder representation Zt

k+1 at future frame k + 1.

1

https://sites.google.com/view/iclr2022-s3r
https://sites.google.com/view/iclr2022-s3r

Under review as a conference paper at ICLR 2022

et al., 2021) leverage the recent advance of self-supervised learning which effectively extracts high-
level features from raw pixels in an unsupervised fashion. In Laskin et al. (2020b); Stooke et al.
(2020), they propose to train the convolutional encoder for pairs of images using a contrastive loss
(van den Oord et al., 2018). For training the RL agent, given a query and a set of keys consisting of
positive and negative samples, they minimize the contrastive loss such that the query matches with
the positive sample more than any of the negative samples (Laskin et al., 2020b; Stooke et al., 2020).
While the parameters of the query encoder are updated through back-propagation using the contrastive
loss (van den Oord et al., 2018), the parameters of the key encoder are computed with an exponential
moving average (EMA) of the query encoder parameters. The output representations of the query
encoder are passed to the RL algorithm for training the agent. Schwarzer et al. (2021) proposes
the self-predictive representations (SPR) method that trains the RL agent by leveraging the query
and positive sample only, following Grill et al. (2020) that achieves state-of-the-arts performance
without the negative samples in the self-supervised learning. Especially, it extends a model-free RL
agent by adding the transition model that predicts its own latent representation multiple steps into
the future (Schwarzer et al., 2021). The predicted future representations and the representations for
future states computed using a target encoder serve as the query and positive sample, respectively.
These approaches have shown compelling performance and high sample efficiency on the complex
control tasks when compared to existing image-based RL approaches (Kaiser et al., 2019; van Hasselt
et al., 2019; Kielak, 2020).

While these approaches can effectively encode the global representations of images with the self-
supervised representation learning, there has been no attention on the local spatial structures present
in the consecutively stacked images. Our key observation is that spatial deformation, i.e., the change
in terms of the spatial structures across the consecutive frames, can provide plenty of local samples
for training the RL agent. A two-frame flow estimation (Dosovitskiy et al., 2015; Ilg et al., 2017;
Jonschkowski et al., 2020), which has been widely used for video processing and recognition in
computer vision, can be an appropriate tool in modeling the spatial deformation. In this work, we
propose a novel approach, termed self-supervised spatial representations (S3R), that learns spatial
representations for effectively encoding the spatial structures in a self-supervised fashion. Note that
we use the term ‘spatial representations’ to indicate a set of feature maps extracted over frames for
inferring locally-varying flow maps. The spatial representations generated from an encoder are used
to predict the flow maps among the input frames by minimizing an image reconstruction loss in a
self-supervised manner. A flow-based warping is then applied to generate future representations.
We further extend our framework by leveraging SPR method (Schwarzer et al., 2021). As depicted
in Figure 1, we impose similarity constraints on the three representations; query representations
warped by the estimated flow maps, self-predicted target representations from the transition model
(Schwarzer et al., 2021), and target representations of future state.

Note that Shang et al. (2021) encodes the temporal information by concatenating latent differences of
input frames, but the simple substraction operation has certain limitations in effectively capturing the
spatial deformation. Contrary to Amiranashvili et al. (2018) in which the flow map is directly fed
into RL algorithms with a stack of images, our method leverages the flow maps to effectively encode
the spatial representations of the images and warp spatial representations at the future state.

Our contribution is summarized as follows.

• Our method learns the spatial representations using the self-supervised flow model for
encoding local spatial structures from the consecutive frames used in RL algorithms.

• We propose to impose the similarity constraint on the spatial representations as well as the
global representations, providing plenty of supervision for training the encoder of deep RL.

• We compute the future representations through the flow-based warping for imposing the
similarity constraint with target representations.

2 RELATED WORK

Self-supervised Representation Learning: The self-supervised representation learning aims to
learn general features from large-scale unlabeled images or videos without expensive data annota-
tions. The contrastive methods have achieved state-of-the-art performance in the self-supervised
representation learning. The contrastive learning aims to bring positive samples closer while sep-

2

Under review as a conference paper at ICLR 2022

arating negative samples from each other (Hadsell et al., 2006). Wu et al. (2018) formulate the
contrastive learning as a non-parametric classification problem at the instance level, and propose to
learn visual features with the memory bank and noise contrastive estimation (NCE) (Gutmann &
Hyvärinen, 2010; Mnih & Kavukcuoglu, 2013). The method in van den Oord et al. (2018) proposes a
probabilistic contrastive loss, called InfoNCE, for inducing representations by leveraging positive
and negative samples. The InfoNCE loss has widely been adopted in Chen et al. (2020); He et al.
(2020); Hénaff et al. (2020); Tian et al. (2020). Chen et al. (2020) present a simple framework for
contrastive self-supervised learning without specialized architecture (Bachman et al., 2019; Hénaff
et al., 2020) or memory bank (Wu et al., 2018), but it requires a large batch size for using enough
negative samples when computing the InfoNCE loss (van den Oord et al., 2018). He et al. (2020)
propose to build a dynamic dictionary with a queue to avoid the use of large batches when collecting
negative samples, and also uses the moving averaged (momentum) encoder for target data (positive
and negative samples of query data). Grill et al. (2020) use the momentum encoder to produce
representations of the targets as a means of stabilizing the bootstrap step. This enables for learning
the representations with only positive samples, which are generated by data augmentation, for a given
query without the need to carefully set up negative samples. The method in Chen & He (2020) further
extends this idea by using only stop-gradient operation without using the momentum update. While
these approaches focuses on learning global representations of a single image, our method proposes
to learn spatial representations for effectively encoding the spatial structures (i.e., flow map) in the
consecutive images.

Self-supervised Representation Learning in Deep RL: Representation learning is crucial for RL
algorithms to learn policies with high-dimensional visual observations. The future prediction condi-
tioned on the past observations and actions serves as auxiliary tasks to improve the sample efficiency
of model free RL algorithms. Gelada et al. (2019) train a transition model to predict representations
of future states together with a reward prediction loss. Guo et al. (2020) present Predictions of Boot-
strapped Latents (PBL) that builds on multi-step predictive representations of future observations for
deep RL. The method in Schwarzer et al. (2021) propose Self-Predictive Representations (SPR) based
on an action-conditioned transition model that can predict future representations computed using
a target (momentum) encoder. Our method attempts to predict the future representations through
a warping operation using flow maps computed from the spatial representations of the consecutive
frames.

Contrastive learning has been used to extract desired latent representations of visual observations used
in the RL algorithms. For training robot agents, Sermanet et al. (2018) present the time-contrastive
networks (TCN) that train viewpoint-invariant representations using a metric learning. This work
was extended in Dwibedi et al. (2018) by embedding multiple frames at each timestep for learning
task-agnostic representations such as position and velocity attributes in continuous control tasks.
In Anand et al. (2019), the representations for RL algorithms are learned by maximizing mutual
information (Hjelm et al., 2019) across spatially and temporally distinct features of an encoder of
visual observations. Schwarzer et al. (2021) leverage the self-supervised learning (Grill et al., 2020)
for imposing the similarity constraint between self-predictive and target representations. Laskin et al.
(2020b) introduce Contrastive Unsupervised representations for Reinforcement Learning (CURL)
that learns the representations from visual inputs using the InfoNCE loss (van den Oord et al., 2018).
Stooke et al. (2020) present Augmented Temporal Contrast (ATC) using image augmentations and
InfoNCE loss (van den Oord et al., 2018) for representation learning, and decouples it from policy
learning. From a different perspective, Hansen et al. (2020) propose to adapt the policy network
through self-supervised representation learning in unseen environments where it is difficult to predict
changed rewards. Our method imposes the similarity constraint on the spatial representations as well
as the global representations, thus providing plenty of supervision for training the encoder of deep
RL.

Visual Correspondence Learning: Visual correspondence estimation is a long-standing research
in the computer vision community. It aims to establish a pair of corresponding pixels between two
(or more) views taken under different locations (stereo matching) or timestep (optical flow). Recent
methods for stereo matching (Žbontar & LeCun, 2016; Chang & Chen, 2018; Zhang et al., 2019) and
optical flow estimation (Dosovitskiy et al., 2015; Ilg et al., 2017; Sun et al., 2018) have been advanced
largely thanks to the expressive power of deep networks. Though both approaches share a similar
objective of finding corresponding pixels across views, the optical flow is known to be effective for
encoding temporal motion trajectories, while the stereo matching is tailored to predicting 3D depth

3

Under review as a conference paper at ICLR 2022

Figure 2: Overall framework of the S3R method: Multiple representations generated by the query
and target encoders are used to infer a set of flow maps from F. The warped representation Zw

k+1 is
produced using an inverse warping with the set of flow maps. The transition model with an action ak
also predicts the future representation Zp

k+1, similar to Schwarzer et al. (2021). The target encoder
and projection heads are updated using the stop-gradient operation as in Chen & He (2020). ⊕
indicates a channel-wise concatenation and 1× 1 convolution. The encoder representations Zq

k are
used as inputs in the RL algorithm. In our work, Rainbow DQN (van Hasselt et al., 2019) (M = 3)
and SAC (Haarnoja et al., 2018a) (M = 2) are used as RL algorithms.

map in the scene. The commonly used architecture for two-frame optical flow estimation involves
the feature map extraction of two frames, correlation volume computation, a series of convolutions
for refinement, and flow regression. While state-of-the-arts flow estimation methods require using
ground truth flow maps as an explicit supervision (Dosovitskiy et al., 2015; Ilg et al., 2017; Sun
et al., 2018), some unsupervised learning approaches have attempted to infer flow maps with an
image reconstruction loss for imposing the constraint that corresponding pixels should have similar
intensities (Ren et al., 2017; Meister et al., 2018; Wang et al., 2018; Jonschkowski et al., 2020). In
our work, we present the self-supervised flow network that learns spatial representations from the
consecutive frames used in the RL algorithms.

3 METHOD

We consider the Markov Decision Process (MDP) setting where an agent interacts with environments
in a sequence of observations, actions, and rewards. We denote ok, ak, and rk as the observation, the
action of the agent, and the reward received at timestep k. Since our method is a general framework
that leverages the representation learning for training the RL agent, it can be combined with any RL
algorithm. Following the state-of-the-arts RL approaches (Laskin et al., 2020b; Stooke et al., 2020;
Schwarzer et al., 2021) using the self-supervised learning, we adopt the Soft Actor Critic (SAC)
method (Haarnoja et al., 2018a) for continuous control task in DeepMind Control Suite benchmark,
and Rainbow DQN (van Hasselt et al., 2019) for discrete control task in Atari Games. The proposed
self-supervised spatial representations (S3R) are used as an auxiliary task for training RL agents.

4

Under review as a conference paper at ICLR 2022

3.1 SELF-SUPERVISED FLOW MODEL FOR SPATIAL REPRESENTATION

We start with how to generate the spatial representations for capturing spatial deformations from
the consecutively stacked frames in a self-supervised manner. An instance used by the model-free
off-policy RL algorithms (Haarnoja et al., 2018a; van Hasselt et al., 2019) is a stack of images,
not a single image. Given an input raw observation ok = {Ik, ..., Ik+M} where Ik is an image
at timestep k, the spatial encoder features ek = {zk, ..., zk+M} are first generated by applying an
encoder individually to each of the input observations ok. Note that z ∈ Rh×w×d is a 3-D volume
with a spatial resolution h×w and a feature dimension d. We apply query encoder and target encoder
to ok and ok+1, respectively, and denote the output of the query encoder eq as zq, and the output of
the target encoder et as zt.While the existing methods (Sermanet et al., 2018; Dwibedi et al., 2018;
Laskin et al., 2020b; Schwarzer et al., 2021) feeds the stacked frames to the encoder at once, which
can be viewed as an early fusion (Karpathy et al., 2014), our method generates the set of the spatial
latent representations individually with the encoder. Later, they are fused using 1× 1 convolutional
layer in a manner similar to late fusion (Simonyan & Zisserman, 2014) (see Figure 2). A similar
strategy was also adopted in Shang et al. (2021) for encoding the temporal information when training
the RL agent.

The set of spatial representations is used to predict the spatial deformations, i.e., flow maps between
two consecutive frames via a supervision by the image reconstruction loss (Godard et al., 2017; 2019;
Wang et al., 2020). We compute a correlation volume Va,b ∈ Rh×w×r2 using a dot product between
two latent representations za and zb (Dosovitskiy et al., 2015) as follows:

Va,b(p, q) =
∑

o∈[−r̄,r̄]×[−r̄,r̄]

< za(p+ o), zb(q + o) >, (1)

where p and q represent 2D feature position in za and zb, and r̄ indicates the kernal size for computing
correlation, r = 2r̄+ 1. Computing the patch similarity in (1) for all combinations of p and q (totally,
h2 ·w2 times) yields huge amount of computations. Thus, the maximum displacement for computing
the patch similarity is limited for q ∈ N(p) where N(p) represents a square window of size r2

centered at p, following visual correspondence literature (Dosovitskiy et al., 2015; Ilg et al., 2017;
Sun et al., 2018).

The correlation volume is fed into a series of convolutions followed by the refinement module,
producing a flow map fa→b ∈ Rh×w×2 from Ia to Ib. We follow the architecture of ‘FlowNetCorr’ in
Dosovitskiy et al. (2015) with some modifications in the spatial resolution, encoder feature dimension
and search range r2 in order to keep the model complexity low. Note that while ‘FlowNetCorr’ is
trained with the supervision by ground truth flow maps, our method relies on the image reconstruction
loss for self-supervised learning such that

Lr(fa→b) =
∑
p

|Ia(p)− Ib(p+ fa→b)|+ Lreg, (2)

where I(p) indicates an intensity at the pixel corresponding to 2D feature position p. For computing
the loss Lr, we resize Ia and Ib to the size of the spatial representations, h× w. We additionally use
the Charbonnier regularization loss Lreg (Barron, 2019) for producing spatially smooth flow maps.
In Figure 2, we denote F(za, zb) = fa→b as the self-supervised flow estimation network including
the correlation volume computation, the series of convolutions, and the refinement module.

3.2 REPRESENTATION LEARNING WITH WARPING AND SELF-PREDICTION

Figure 2 illustrates the overall architecture of the proposed S3R approach. Following the prior work
on the self-supervised learning (He et al., 2020; Grill et al., 2020; Chen & He, 2020), we use the query
encoder Eq with the parameters θq and the target encoder Et with the parameters θt for encoding the
query observation ok and the target observation ok+1. While the parameters θq of the query encoder
are updated through back-propagation, the parameters θt of the target encoder are updated with the
query encoder parameters θq using a stop-gradient operation (Chen & He, 2020) as θt ← θq .

Flow Learning and Warping: By minimizing (2), we first compute a set of M + 1 external flow
maps {fextk+i+1→k+i|i = 0, ...,m} with the self-supervised flow network F such that

fextk+i+1→k+i = F(ztk+i+1, z
q
k+i) for i = 0, ...,M. (3)

5

Under review as a conference paper at ICLR 2022

Note that the external flow map is predicted from the target feature ztk+i+1 to the query feature
zqk+i. Then, we warp the query features eqk = {zqk, ..., z

q
k+M} into the future state via the inverse

warping (Jaderberg et al., 2015) using M + 1 external flow maps. The warped query features
{zwk+1, ..., z

w
k+M+1} are then fused using 1× 1 convolution, producing the warped query representa-

tion Zw
k+1 at the timestep k + 1 (see Figure 2).

We can also predict internal flow maps within the query features eqk = {zqk, ..., z
q
k+M} as f inta→b =

F(zqa, z
q
b). Various combinations of a and b are possible for computing the internal flow maps, and

we choose to compute a single flow map f intk→k+M . We found that this is an appropriate choice in
terms of computational efficiency and performance as the external flow maps are already used to
impose the structural similarity constraint between multiple frames, and is effective in dealing with
the case where the external flow between two consecutive frames is relatively small. More details are
presented in the Appendix. The loss function Lf for computing the internal and external flow maps
is given as

Lflow = Lr(f intk→k+M) +

M∑
i=0

Lr(fextk+i+1→k+i). (4)

Representation Learning with Global-level and Pixel-level Similarities: To measure the global-
level similarity between the warped query representation Zw

k+1 and the target representation Zt
k+1

which is the fusion of target encoder features etk+1 = {ztk+1, ..., z
t
k+M+1}, we use two projection

heads and one predictor in a manner similar to Grill et al. (2020); Chen & He (2020). We project
the two representations Zw

k+1 and Zt
k+1 into a smaller latent space by passing them into the query

projection head Pq with parameters ξq and the target projection head Pt with parameters ξt, and
also apply an additional query prediction head Qq to the query projection. The target projection
head parameters ξt are updated using the query projection head parameters ξq with the stop-gradient
operation as in the target encoder, i.e., ξt ← ξq. The prediction loss is computed using the cosine
similarity between the warped query representation ywk+1 = Qq(Pq(Zw

k+1)) and the observed target
representation ytk+1 = Pt(Z

t
k+1), which is defined as

Ls(y
w
k+1, y

t
k+1) = −

< ywk+1, y
t
k+1 >

‖ywk+1‖2‖ytk+1‖2
. (5)

In Figure 2, we denote the module consisting of the query projection and prediction heads and the
target projection heads as ‘Sim(Za, Zb)’ where Za and Zb can be the warped representation from
query and spatial representations from target network, respectively.

We further extend our method by leveraging a self-prediction module conditioned on an action.
The action-conditioned convolutional transition model of Schwarzer et al. (2021) is applied in our
framework with some modifications. We generate the query representation Zq

k by applying 1 × 1
convolution to the query features {zqk, ..., z

q
k+M} and then feed it into the convolutional transition

model H. Note that we use only a single next prediction Zp
k+1 = H(Zq

k , ak) of the transition from
the query representation Zq

k , unlike Schwarzer et al. (2021) that recursively generates a sequence
of L predictions Zp

k+1:k+L with Zp
k+l+1 = H(Zp

k+l, ak+l) for l = 0, ..., L − 1 and Zp
k = Zq

k . We
found that since the spatial representation learning using the flow estimation and warping provide a
sufficient amount of supervision, the single self-prediction is enough to train the query encoder. The
self-prediction Zp

k+1 is fed into the query projection head Pq and the query prediction head Qq such
that ypk+1 = Qq(Pq(Zp

k+1)). The prediction loss is also computed using the cosine similarity loss
Ls(y

p
k+1, y

t
k+1).

The loss function Lsim for measuring the similarity between the three representations ywk+1, ypk+1,
and ytk+1 is summarized as

Lsim = Ls(y
w
k+1, y

t
k+1) + Ls(y

p
k+1, y

t
k+1) + λL1(Zp

k+1, Z
t
k+1), (6)

where ywk+1 = Qq(Pq(Zw
k+1)), ypk+1 = Qq(Pq(Zp

k+1)), ytk+1 = Pt(Z
t
k+1), and λ is a hyperparam-

eter of loss functions. We also include L1 loss L1(Zp
k+1, Z

t
k+1) on the original spatial latent space

to impose the pixel-level similarity. Note that L1 loss between Zw
k+1 and Zt

k+1 is not used, as the
external flow loss Lr(fext) implicitly considers the similarity between the two.

6

Under review as a conference paper at ICLR 2022

Algorithm 1: Self-Supervised Spatial (S3R) Representations
Eq , Et: Query encoder, Target encoder F, H: Flow model, Transition model
Pq , Qq , Pt: Query projection head, Query prediction, Target projection head
Initialize replay buffer and parameters of Eq , Et, Pq , Qq , Pt, F, H;
while Training do
• Spatial Representation with Flow Learning
Generate zqk+i, z

t
k+i+1 with Eh, Eg for i = 0, ...,M

Learn external flow and internal flow with (4)
• Representation Learning with Warping and Self-Prediction
Warp a set of query features zqk+i with external flow fextk+i+1→k+i for i = 0, ...,M .
Generate warped query representation Zwk+1 by fusing a set of warped query features.
Generate query representation Zqk by fusing a set of query features zqk+i for i = 0, ...,M .
Generate predicted target representation Zpk+1 from Zqk using transition model H.
Generate target representation Ztk+1 by fusing a set of target features ztk+i+1 for i = 0, ...,M .
Zqk goes into RL MLP head.

Compute global and local similarity of (6) from Zwk+1, Zpk+1, and Ztk+1 using ‘Sim’ in Figure 2.
Optimize parameters of Eq , Pq , Qq , F, H by minimizing Ltotal = Lflow + αLsim + βLRL in (7).
Update parameters of Et and Pt with Eq and Pq;

end

Finally, the query representation Zq
k ∈ Rh×w×c is fed into the deep RL algorithm, e.g., c = 64 for

DQN (van Hasselt et al., 2019) and c = 32 for SAC (Haarnoja et al., 2018a).

Loss functions: The final loss function is summarized as

Ltotal = Lflow + αLsim + βLRL(Zq
k), (7)

where LRL(Zq
k) indicates the loss of the RL algorithms which use Zq

k as an input. α and β are
hyper-parameters that balance the loss functions. We summarize the overall method in Algorithm 1.

3.3 IMPLEMENTATION DETAILS

Self-supervised Flow Model: The input image Ii is of 84 × 84 for Atari Games and DeepMind
Control (DMControl) Suites. The query and target encoders generates zqi , z

t
i+1 ∈ R7×7×64 (i =

k, ..., k + 3) for Atari Games and zqi , z
t
i+1 ∈ R32×32×32 (i = k, ..., k + 2) for DMControl Suites,

respectively. The search window for computing the correlation volume V is 6× 6 for Atari games
and DMControl Suites. The correlation volume goes through 3× 3 convolution layers 3 times. The
decoder is then applied to provide a dense flow map. The decoder includes three un-convolutional
layers, consisting of un-pooling and convolution, and the coarser flow maps and encoder feature maps
are concatenated into each un-convolutional layer (Dosovitskiy et al., 2015).

Action Conditioned Transition Model: This basically follows the structure of Schwarzer et al.
(2021), but in order to compute the structural similarity with the features of each frame, we set the
input and output channel size to 256, which was originally set to 64 in Schwarzer et al. (2021). The
transition model includes two convolutional layers interweaved with ReLU and batch normalization
(Ioffe & Szegedy, 2015), with the current representations Zq

k and the action ak of one-hot vector
taken to each location being fed to the first convolutional layer.

Other Details: The query and target projection heads, Pq and Pt, are implemented as the multi-layer
perceptron (MLP). For the query prediction head Qq, we reuse the first linear layer of the RL head
similar to Schwarzer et al. (2021). We used λ = 0.1 in (6) and α = 5, β = 1 in (7) to balance the
weight of the losses. More details are presented in the Appendix.

4 EXPERIMENTAL RESULTS

4.1 EVALUATION ON ATARI GAMES

To compare the performance of the proposed method with state-of-the-arts, we chose Atari 2600
Games introduced in Kaiser et al. (2019); van Hasselt et al. (2019) where only 100K environment

7

Under review as a conference paper at ICLR 2022

Table 1: Quantitative evaluation with state-of-the-arts on the 26 Atari games (Kaiser et al., 2019)
after 100K time steps using 10 random seeds: Numbers in bold represent 1st ranking. S3R achieves
the best performance on 13 out of 26 environments. We compared results with SimPLe (Kaiser et al.,
2019), Data-Efficient Rainbow (DER) (van Hasselt et al., 2019), OverTrained Rainbow (OTRainbow)
(Kielak, 2020), CURL (Laskin et al., 2020b), DrQ (Kostrikov et al., 2020), and SPR (Schwarzer et al.,
2021).

Game Human Random Rainbow SimPLe DER OTRainbow CURL DrQ SPR S3R
Alien 7127.7 227.8 318.7 616.9 739.9 824.7 558.2 771.2 801.5 1030.1
Amidar 1719.5 5.8 32.5 88.0 188.6 82.8 142.1 102.8 176.3 114.3
Assault 742.0 222.4 231.0 527.2 431.2 351.9 600.6 452.4 571.0 708.3
Asterix 8503.3 210.0 243.6 1128.3 470.8 628.5 734.5 603.5 977.8 959.3
Bank Heist 753.1 14.2 15.55 34.2 51.0 182.1 131.6 168.9 380.9 95.8
BattleZone 37187.5 2360.0 2360.0 5184.4 10124.6 4060.6 14870.0 12954.0 16651.0 16688.0
Boxing 12.1 0.1 -24.8 9.1 0.2 2.5 1.2 6.0 35.8 35.9
Breakout 30.5 1.7 1.2 16.4 1.9 9.8 4.9 16.1 17.1 17.5
ChopperCommand 7387.8 811.0 120.0 1246.9 861.8 1033.3 1058.5 780.3 974.8 1251.2
Crazy Climber 35829.4 10780.5 2254.5 62583.6 16185.3 21327.8 12146.5 20516.5 42923.6 42544.0
Demon Attack 1971.0 152.1 163.6 208.1 508.0 711.8 817.6 1113.4 545.2 884.0
Freeway 29.6 0.0 0.0 20.3 27.9 25.0 26.7 9.8 24.4 24.8
Frostbite 4334.7 65.2 60.2 254.7 866.8 231.6 1181.3 331.1 1821.5 776.9
Gopher 2412.5 257.6 431.2 771.0 349.5 778.0 669.3 636.3 715.2 920.3
Hero 30826.4 1027.0 487.0 2656.6 6857.0 6458.8 6279.3 3736.3 7019.2 3977.3
Jamesbond 302.8 29.0 47.4 125.3 301.6 112.3 471.0 236.0 365.4 471.4
Kangaroo 3035.0 52.0 0.0 323.1 779.3 605.4 872.5 940.6 3276.4 1580.0
Krull 2665.5 1598.0 1468.0 4539.9 2851.5 3277.9 4229.6 4018.1 3688.9 4958.3
Kung Fu Master 22736.3 258.5 0.0 17257.2 14346.1 5722.2 14307.8 9111.0 13192.7 17759.5
Ms Pacman 6951.6 307.3 67.0 1480.0 1204.1 941.9 1465.5 960.5 1313.2 1597.3
Pong 14.6 -20.7 -20.6 12.8 -19.3 1.3 -16.5 -8.5 -5.9 -8.2
Private Eye 69571.3 24.9 0.0 58.3 97.8 100.0 218.4 -13.6 124.0 158.0
Qbert 13455.0 163.9 123.46 1288.8 1152.9 509.3 1042.4 854.4 669.1 1290.3
Road Runner 7845.0 11.5 1588.46 5640.6 9600.0 2696.7 5661.0 8895.1 14220.5 3175.7
Seaquest 42054.7 68.4 131.69 683.3 354.1 286.9 384.5 301.2 583.1 734.9
Up N Down 11693.2 533.4 504.6 3350.3 2877.4 2847.6 2955.2 3180.8 28138.5 4263.8

Table 2: Quantitative evaluation of mean and standard deviation with state-of-the-arts on the DM-
Control suite (Tassa et al., 2018) after 100K time steps and 500K time steps using 10 random
seeds. Numbers in bold represent 1st ranking, and S3R achieves the best performance on 4 out of
6 environments for 500K time steps. We compared results with state-based SAC and pixel-based
SAC (Haarnoja et al., 2018b), SAC+AE (Yarats et al., 2019), Dreamer (Hafner et al., 2019a), PlaNet
(Hafner et al., 2019b), CURL (Laskin et al., 2020b), RAD (Laskin et al., 2020a), and DrQ (Kostrikov
et al., 2020).

100K step scores State SAC Pixel SAC SAC+AE Dreamer PlaNet CURL RAD DrQ S3R
Finger, Spin 811±46 179±66 740±64 341±70 136±216 767±56 856±73 901±104 880±127
Cartpole, Swingup 835±22 419±40 311±11 326±27 297±39 582±146 828±27 759±92 841±47
Reacher, Easy 746±25 145±30 274±14 314±155 20±50 538±233 826±219 601±213 621±202
Cheetah, Run 616±18 197±15 267±24 235±137 138±88 299±48 447±88 344±67 251±34
Walker, Walk 891±82 42±12 394±22 277±12 224±48 403±24 504±191 612±164 595±104
Ball in Cup, Catch 746±91 312±63 391±82 246±174 0±0 769±43 840±179 913±53 922±60
500K step scores State SAC Pixel SAC SAC+AE Dreamer Planet CURL RAD DrQ Ours
Finger, Spin 923±21 179±166 884±128 796±183 561±284 926±45 947±101 938±103 954±131
Cartpole, Swingup 848±15 419±40 735±63 762±27 475±71 841±45 863±9 868±10 880±34
Reacher, Easy 923±24 145±30 627±58 793±164 210±390 929±44 955±71 942±71 932±41
Cheetah, Run 795±30 197±15 550±34 570±253 305±131 518±28 728±71 660±96 501±63
Walker, Walk 948±54 42±12 847±48 897±49 351±58 902±43 918±16 921±45 930±75
Ball in Cup, Catch 974±33 312±63 794±58 879±87 460±380 959±27 974±12 963±9 988±54

steps, corresponding to two hours of gameplay experiences, are available for training data. This
sample-efficient setup, which uses much less environment steps than the standard setup of 50,000K
environment steps, has been adopted for evaluating the performance of recent sample-efficient deep
RL algorithms (Kaiser et al., 2019; van Hasselt et al., 2019; Kielak, 2020; Laskin et al., 2020b;

Table 3: To study the impact of several losses, we measured the average performance over 10 random
seeds according to the combinations of losses on DMControl Suite (Tassa et al., 2018) with 500K
time steps. Refer to section 4.3 for ‘F’, ‘F+W’, ‘P’, and ‘F+P’.

500K step scores F F+W P F+P F+W+P (= S3R)
Finger, Spin 729±110 757±100 711±64 768±112 834±95
Cartpole, Swingup 819±38 876±19 793±15 868±27 880±34
Reacher, Easy 857±45 901±29 904±58 922±31 932±41
Cheetah, Run 366±63 411±53 482±87 392±69 448±65
Walker, Walk 770±87 879±67 822±53 876±41 914±30
Ball in Cup, Catch 849±42 953±26 848±107 951±20 962±14

8

Under review as a conference paper at ICLR 2022

Schwarzer et al., 2021). We compared our results with various RL algorithms including SimPLe
(Kaiser et al., 2019) which learns a pixel-level transition model for Atari, Data-Efficient Rainbow
(DER) (van Hasselt et al., 2019) which modifies the Rainbow hyperparameters for improving the
sample efficiency, OTRainbow (Kielak, 2020) which is an over-trained version of the Rainbow for
the sample efficiency, CURL (Laskin et al., 2020b) which proposes the use of image augmentation
with the contrastive loss (van den Oord et al., 2018) for self-supervised representation learning, DrQ
(Kostrikov et al., 2020) which uses the modest image augmentation to improve the sample efficiency,
and SPR (Schwarzer et al., 2021) which trains an agent to predict its own latent state representations
into the future. Following the experimental setup on the above-mentioned approaches, we evaluated
on 26 environments of Atari 2600 games by measuring the average return after 100K interaction
steps. As shown in Table 1, the proposed method (S3R) achieved the best performance on 13 out of
26 environments. We trained our method with 10 random seeds, similar to other methods.

4.2 EVALUATION ON DMCONTROL SUITE

Various approaches including ours have been benchmarked on the DMControl Suite where the agent
operates from pixels to evaluate challenging visual continuous control tasks (Tassa et al., 2018). We
compared our results with State-SAC which supposes that the agent has access to low-level state
based features, Pixel-SAC (Haarnoja et al., 2018b) which directly operates from pixels, SAC+AE
(Yarats et al., 2019) which uses a joint learning of SAC with β-VAE (Higgins et al., 2017), VAE
(Kingma & Welling, 2013), and regularized autoencoder (Vincent et al., 2008), Dreamer (Hafner
et al., 2019a) and PlaNet (Hafner et al., 2019b) which learn a latent space world model, CURL
(Laskin et al., 2020b) which uses image augmentation with the contrastive loss (van den Oord et al.,
2018), RAD (Laskin et al., 2020a) and DrQ (Kostrikov et al., 2020) which demonstrate that data
augmentation can greatly improve the performance of model-free RL algorithms and achieve state-
of-the-art performance on DMControl Suite. Table 2 demonstrates that the self-supervised spatial
representations of S3R achieved best performance on 4 out of 6 environments for 500K time steps
including Cartpole Swingup, Reacher Easy, Walker Walk and Ball in Cup Catch. We trained our
method with 10 random seeds, and the results with 5 random seeds are provided in the Appendix.

4.3 ABLATION STUDY

Table 3 measured the average performance over 10 random seeds according to the combinations of
several losses on DMControl Suite (Tassa et al., 2018) with 500K time steps.
• ‘F’ using only the flow loss in (4)
• ‘F+W’ using flow loss and similarity loss with ‘W’arped query and target representations in (6)
• ‘P’ using prediction loss with self-‘P’redicted and target representations in (6)
• ‘F+P’ using the flow loss, L1 loss, and the prediction loss in (6).
The network trained with only ‘F’ produces worse performance compared to ‘F+W’, ‘F+P’ and
‘F+W+P’, but still produces comparable performance to state-of-the-arts, implying that even without
the warping and transition model, simply guiding the encoder to extract features for the flow prediction
helps the RL agent to perform well enough. The performance of ‘F+W’ and ‘F+P’ is similar, but
‘F+W’ has slightly better performance on step scores with smaller standard deviations. This implies
that the warped query representation to the future state using the estimated flow is capable of providing
as useful supervision as the self-predicted representation that uses an action-conditioned transition
model to predict future representations. The performance was further boosted, when using ‘F+W+P’
altogether (= S3R). To measure only the impact of each loss, data augmentation was not performed.
Note that ‘P’ is similar to SPR method (Schwarzer et al., 2021) using only one prediction.

5 CONCLUSION

We have presented the self-supervised spatial representations, termed S3R to encode local spatial
structures in an unsupervised manner. The flow maps inferred by the proposed method offer plenty
of supervision for learning the spatial representations, and also compute warped predictions at
future frame. S3R achieves state-of-the-art performance on Atari benchmark with 100K steps and
DMControl Suites with 100K/500K steps. We have shown the importance of learning the spatial
representations in improving the performance and sample-efficiency of image-based RL algorithms.
We hope this can facilitate future works at various aspects for RL based on self-supervised learning.

9

Under review as a conference paper at ICLR 2022

6 REPRODUCIBILITY STATEMENT

For the reproducibility of the proposed method, we opened our code at https://sites.google.
com/view/iclr2022-s3r as stated in the Abstract. We also provide the full hyperparameters
in Section A of Appendix, so others can use the code with the same settings we experimented with.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. In Thirty-Fifth Conference on
Neural Information Processing Systems, 2021.

Artemij Amiranashvili, Alexey Dosovitskiy, Vladlen Koltun, and Thomas Brox. Motion perception
in reinforcement learning with dynamic objects. In Annual Conference on Robot Learning (CoRL),
pp. 156–168, 2018.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R. Devon
Hjelm. Unsupervised state representation learning in atari. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 8766–8779, 2019.

Philip Bachman, R. Devon Hjelm, and William Buchwalter. Learning representations by maximizing
mutual information across views. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 15509–15519, 2019.

Jonathan T. Barron. A general and adaptive robust loss function. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4331–4339, 2019.

Jia-Ren Chang and Yong-Sheng Chen. Pyramid stereo matching network. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418, 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning
(ICML), pp. 1597–1607, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. CoRR,
abs/2011.10566, 2020.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Häusser, Caner Hazirbas, Vladimir Golkov,
Patrick van der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow
with convolutional networks. In IEEE International Conference on Computer Vision (ICCV), pp.
2758–2766, 2015.

Debidatta Dwibedi, Jonathan Tompson, Corey Lynch, and Pierre Sermanet. Learning actionable
representations from visual observations. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 1577–1584, 2018.

Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, and Joelle Pineau. An
introduction to deep reinforcement learning. Found. Trends Mach. Learn., 11(3-4):219–354, 2018.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. Deepmdp:
Learning continuous latent space models for representation learning. In International Conference
on Machine Learning (ICML), pp. 2170–2179, 2019.

Clément Godard, Oisin Mac Aodha, and Gabriel J Brostow. Unsupervised monocular depth estimation
with left-right consistency. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 270–279, 2017.

Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow. Digging into self-
supervised monocular depth estimation. In Proceedings of the IEEE international conference on
computer vision, pp. 3828–3838, 2019.

10

https://sites.google.com/view/iclr2022-s3r
https://sites.google.com/view/iclr2022-s3r

Under review as a conference paper at ICLR 2022

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A
new approach to self-supervised learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Zhaohan Daniel Guo, Bernardo Ávila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi
Munos, and Mohammad Gheshlaghi Azar. Bootstrap latent-predictive representations for multitask
reinforcement learning. In International Conference on Machine Learning (ICML), pp. 3875–3886,
2020.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation principle
for unnormalized statistical models. In International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 297–304, 2010.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Conference
on Machine Learning (ICML), pp. 1856–1865, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1735–
1742, 2006.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019b.

Nicklas Hansen, Yu Sun, Pieter Abbeel, Alexei A. Efros, Lerrel Pinto, and Xiaolong Wang. Self-
supervised policy adaptation during deployment. CoRR, abs/2007.04309, 2020.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
unsupervised visual representation learning. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 9726–9735, 2020.

Olivier J. Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch, S. M. Ali Eslami,
and Aäron van den Oord. Data-efficient image recognition with contrastive predictive coding. pp.
4182–4192, 2020.

Irina Higgins, Arka Pal, Andrei Rusu, Loic Matthey, Christopher Burgess, Alexander Pritzel, Matthew
Botvinick, Charles Blundell, and Alexander Lerchner. Darla: Improving zero-shot transfer in
reinforcement learning. In International Conference on Machine Learning, pp. 1480–1490. PMLR,
2017.

R. Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In International Conference on Learning Representations (ICLR), 2019.

Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox.
Flownet 2.0: Evolution of optical flow estimation with deep networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1647–1655, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning (ICML), pp.
448–456, 2015.

Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray Kavukcuoglu. Spatial transformer
networks. In Advances in Neural Information Processing Systems (NIPS), pp. 2017–2025, 2015.

11

Under review as a conference paper at ICLR 2022

Rico Jonschkowski, Austin Stone, Jonathan T. Barron, Ariel Gordon, Kurt Konolige, and Anelia
Angelova. What matters in unsupervised optical flow. In European Conference on Computer
Vision (ECCV), pp. 557–572, 2020.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Fei-Fei
Li. Large-scale video classification with convolutional neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 1725–1732, 2014.

Kacper Kielak. Do recent advancements in model-based deep reinforcement learning really improve
data efficiency? arXiv preprint arXiv:2003.10181, 2020.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas.
Reinforcement learning with augmented data. In Advances in Neural Information Processing
Systems (NeurIPS), 2020a.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: contrastive unsupervised representations
for reinforcement learning. In International Conference on Machine Learning (ICML), pp. 5639–
5650, 2020b.

Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In International Conference on Machine Learning (ICML), 2013.

Bogdan Mazoure, Remi Tachet des Combes, Thang Doan, Philip Bachman, and R. Devon Hjelm.
Deep reinforcement and infomax learning. In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Unsupervised learning of optical flow with
a bidirectional census loss. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, pp. 7251–7259, 2018.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently with noise-contrastive
estimation. In Advances in Neural Information Processing Systems (NIPS), pp. 2265–2273, 2013.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

Zhe Ren, Junchi Yan, Bingbing Ni, Bin Liu, Xiaokang Yang, and Hongyuan Zha. Unsupervised
deep learning for optical flow estimation. In Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, pp. 1495–1501, 2017.

Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Barekatain, Ioannis
Antonoglou, and David Silver. Online and offline reinforcement learning by planning with a
learned model. arXiv preprint arXiv:2104.06294, 2021.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bach-
man. Data-efficient reinforcement learning with self-predictive representations. In International
Conference on Learning Representations (ICLR), 2021.

Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, and Sergey
Levine. Time-contrastive networks: Self-supervised learning from video. In IEEE International
Conference on Robotics and Automation (ICRA), pp. 1134–1141, 2018.

12

Under review as a conference paper at ICLR 2022

Wenling Shang, Xiaofei Wang, Aravind Srinivas, Aravind Rajeswaran, Yang Gao, Pieter Abbeel, and
Michael Laskin. Reinforcement learning with latent flow. CoRR, abs/2101.01857, 2021.

Karen Simonyan and Andrew Zisserman. Two-stream convolutional networks for action recognition
in videos. In Advances in Neural Information Processing Systems (NIPS), pp. 568–576, 2014.

Adam Stooke and Pieter Abbeel. rlpyt: A research code base for deep reinforcement learning in
pytorch. arXiv preprint arXiv:1909.01500, 2019.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. CoRR, abs/2009.08319, 2020.

Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz. Pwc-net: Cnns for optical flow using
pyramid, warping, and cost volume. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 8934–8943, 2018.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv preprint
arXiv:1801.00690, 2018.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In European
Conference on Computer Vision (ECCV), pp. 776–794, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Aäron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748, 2018.

Hado van Hasselt, Matteo Hessel, and John Aslanides. When to use parametric models in rein-
forcement learning? In Advances in Neural Information Processing Systems (NeurIPS), pp.
14322–14333, 2019.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and
composing robust features with denoising autoencoders. In Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, 2008.

Longguang Wang, Yulan Guo, Yingqian Wang, Zhengfa Liang, Zaiping Lin, Jungang Yang, and Wei
An. Parallax attention for unsupervised stereo correspondence learning. CoRR, abs/2009.08250,
2020.

Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, Peng Wang, and Wei Xu. Occlusion aware
unsupervised learning of optical flow. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4884–4893, 2018.

Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning via
non-parametric instance discrimination. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

Jure Žbontar and Yann LeCun. Stereo matching by training a convolutional neural network to
compare image patches. The journal of machine learning research, 17(1):2287–2318, 2016.

Feihu Zhang, Victor Adrian Prisacariu, Ruigang Yang, and Philip H. S. Torr. Ga-net: Guided
aggregation net for end-to-end stereo matching. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 185–194, 2019.

13

Under review as a conference paper at ICLR 2022

A IMPLEMENTATION DETAILS

This section provides tables summarizing the hyperparameters used for experiments on Atari Games
(Kaiser et al., 2019) and DMControl Suite (Tassa et al., 2018) and the detailed description of our
network architecture.

A.1 HYPERPARAMETERS ON ATARI GAMES AND DMCONTROL SUITE

Table 4: Hyperparameters used for S3R experiments on Atari Games
Parameter Value
Observation Size (84, 84)

Augmentation Random shifts (±4 pixels),
Intensity (scale=0.05)

Image Gray-scale True
Update Distributional Q
Stacked Frames 4
Action Repeat 4
Reward Clipping [-1, 1]
Training Steps 100K
Evaluation Trajectories 100
Minimum Replay Size
(for sampling) 2000

Max Frames
(per episode) 108K

Support Of Q-Distribution 51 bins
Discount Factor 0.99
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: β1 0.9
Optimizer: β2 0.999
Optimizer: ε 0.00015
Max Gradient Norm 10
Multi Step Return 10
Target Network: Update Period 1
Q Network: Channels 32, 64, 64
Q Network: Filter Size 8 × 8, 4 × 4, 3 × 3
Q Network: Stride (4, 4), (2, 2), (1, 1)
Q Network: Hidden Units 256
Non-Linearity ReLU
Replay Period Every 1
Updates Per Step 2
Exploration Noisy Nets
Noisy Nets Parameter 0.5
Priority Exponent 0.5
Priority Correction 0.4→ 1

For the reproducibility of our work, we provide full hyperparameters for our experiments on Atari
Games (Kaiser et al., 2019) in Table 4. We follow the common practices used to set up Rainbow
DQN van Hasselt et al. (2019) in existing methods Laskin et al. (2020b); Schwarzer et al. (2021) for
experimenting on Atari Games. Table 5 shows a full list of hyperparameters for DMControl suites
experiments. We utilize the similar hyperparameters and optimizer to CURL Laskin et al. (2020b).

14

Under review as a conference paper at ICLR 2022

Table 5: Hyperparameters used for S3R experiments on DMControl
Parameter Value
Observation Size (84, 84)
Observation Rendering (100, 100)
Augmentation Random crop, translation
Stacked Frames 3

Action Repeat
2 (finger-spin, walker-walk),
8 (cartpole-swingup),
4 (otherwise)

Evaluation Episodes 10
Discount Factor 0.99
Optimizer Adam
(β1, β2)→ (fθ, πψ, Qφ) (0.9, 0.999)
(β1, β2)→ (α) (0.5, 0.999)

Learning Rate (fθ, πψ, Qφ)
2e− 4 (cheetah-run),
1e− 3 (otherwise)

Learning Rate (α) 1e− 4
Batch Size 64
Replay Buffer Size 100000
Initial Steps 1000
Hidden Units (MLP) 1024
Q Function EMA τ 0.01
Critic Target Update Frequency 2
Convolutional Layers 4
Number Of Filters 32
Non-Linearity ReLU
Latent Dimension 50
Initial Temperature 0.1

15

Under review as a conference paper at ICLR 2022

A.2 NETWORK ARCHITECTURE

The detailed network architecture of our method is provided in Table 6. We describe the architectures
of the encoder, FlowNet and transition model. ‘N’, ‘K’ and ‘S’ of convolution operations represent
the channel, kernel size, and stride, respectively. ‘LReLU’ and ‘BN’ indicate LeakyReLU Maas et al.
(2013) and Batch Normalization Ioffe & Szegedy (2015). We also provide input and output tensors
of each layer for better understanding.

Table 6: Detailed describtion of the proposed network architecture

Encoder

Layer Operations Input Output

1 Conv(N32, K8, S4) - ReLU - DropOut It∼It+M en1t∼en1t+M

2 Conv(N64, K4, S2) - ReLU - DropOut en1t∼en1t+M en2t∼en2t+M

3 Conv(N64, K3, S1) - ReLU - DropOut en2t∼en2t+M en3t∼en3t+M

FlowNet

Layer Operations Input Output

4 Conv(N32, K1, S1) - BN - LReLU en3t ˜en3t
5 Compute Correlation Volume en3t, en3t+k corr
6 Concatenation ˜en3t, corr conc0
5 Conv(N256, K3, S1) - BN - LReLU conc0 conv1
6 Conv(N512, K3, S1) - BN - LReLU conv1 conv2p
7 Conv(N512, K3, S1) - BN - LReLU conv2p conv2
8 Conv(N512, K3, S1) - BN - LReLU conv2 conv3p
9 Conv(N512, K3, S1) - BN - LReLU conv3p conv3

10 Conv(N2, K3, S1) conv3 flow3
11 Upsampling flow3, conv2 flow3up, conv2up
12 Deconv(N256, K4, S2) - LReLU conv3 conv3d
13 Concatenation conv2up, conv3d, flow3up conc3
14 Conv(N2, K3, S1) conc3 flow2
15 Upsampling flow2, conv1 flow2up, conv1up
16 Deconv(N128, K4, S2) - LReLU conc3 conc3d
17 Concatenation conv1up, conc3d, flow2up conc2
18 Conv(N2, K3, S1) conc2 flow1
19 Upsampling flow1, en2t flow1up, en2upt
20 Deconv(N130, K4, S2) - LReLU conc2 conc2d
21 Concatenation en2upt, conc2d, flow1up conc1
22 Conv(N2, K3, S1) conc1 flow0

Transition Model

Layer Operations Input Output

1 Onehot Encoding (Only for Atari) ak ak
2 Concatenate Zq

k , ak conc
3 Conv(N256, K3, S1) - ReLU conc conv1t
4 Conv(N64, K3, S1) - ReLU conv1t conv2t
5 Min-Max Normalize conv2t Zp

k+1

A.3 ENVIRONMENTS

S3R was implemented in Pytorch (Paszke et al., 2019) with the use of rlpyt (Stooke & Abbeel, 2019)
and Mujoco (Todorov et al., 2012) license, and was simulated on 1 Titan RTX GPU.

16

Under review as a conference paper at ICLR 2022

A.4 DETAILS OF USING FLOW MAPS

Use of internal flow: When four consecutive frames are used in Rainbow DQN (M = 3), the
external flows are specified using query images ok (Ik ∼ Ik+3) and target images ok+1 (Ik+1 ∼
Ik+4) as follows:

• flow (zqk, ztk+1)

• flow (zqk+1, ztk+2)

• flow (zqk+2, ztk+3)

• flow (zqk+3, ztk+4).

The internal flow is computed using query images ok as

• flow (zqk, zqk+3).

The external flows computed between consecutive two frames are used to warp the query represen-
tations. The internal flow is also predicted using the same self-supervised flow network yet with
two distant frames (zqk → zqk+3). We found that this is often effective in dealing with the case where
the flow between two consecutive frames is relatively small. Namely, the internal flow between kth
and (k + 3)th frames can be complementary when the external flows are rather small and thus flow
learning becomes less effective.

The internal flow is computed with a stack of images ok, while the external flows are computed
between ok and ok+1. This is why we name two flow parts ‘internal’ flow and ‘external’ flow,
respectively. Note that the internal flow is computed only between two distant frames (kth and
(k + 3)th frames in ok), considering that the external flow is computed between two consecutive
frames as above.

Image and representation warping: The representation we use contains spatial information. For
instance, suppose the convolutional feature map z of the size 32 × 32 × 64 is generated from an
input image I of the size 128× 128× 3. The feature map can have a lower spatial resolution (by the
downsampling operator such as max-pooling or strided convolution) and a larger channel dimension
than the input image. The 64 dimensional vector at a spatial position of the feature map represents the
information of corresponding positions of the input image. Therefore, we can employ the flow used
for image warping for warping the feature map (query representations). This kind of implementation
has been commonly used in many computer vision tasks where an image alignment is required.

Visualization of flow maps: For a better understanding of the proposed method, the examples of the
flow maps predicted by S3R are represented in Figure 3.

(a) (b) (c) (a) (b) (c)

Figure 3: Visualization of the flow maps learned by S3R: (a) The source frame, (b) the target frame,
and (c) the flow map of the task ‘Walker, Walk’ and ‘Cheetah, Run’ of the DM Control Suite.

17

Under review as a conference paper at ICLR 2022

B PERFORMANCE CONSISTENCY EVALUATION

We consider that the performance depends on the choice of the seed, so we measure the performance
by using 10 random seeds and averaging results. To prove that our performance improvement is
consistent and not caused by the noise of the estimation, we observed the change in the average
performance according to the number of the random seeds. Figure 4 and 5 represent the quantitative
evaluation on the Atari games (Kaiser et al., 2019) and DMControl Suite (Tassa et al., 2018) according
to the number of the random seed. We show result of 5 random seeds and 10 random seeds to compare
the performance. In Figure 5, we additionally showed the standard deviation of the performance.
The bar graph represents the average of the performance, and the line graph represents the standard
deviation of the performance.

From Figure 4 and 5, it can be seen that our results do not differ significantly depending on the
number of random seeds. It can be seen that our performance is significantly higher than the SOTA
performance regardless of random seed, and is consistent.

Figure 4: Quantitative evaluation on the 26 Atari games (Kaiser et al., 2019) according to the number
of the random seeds: We show the mean performance on the 26 Atari games (Kaiser et al., 2019)
after 100K time steps for each 5 random seeds and 10 random seeds to show the consistency of the
proposed method regardless of random seeds.

18

Under review as a conference paper at ICLR 2022

Figure 5: Quantitative evaluation on the DMControl Suite (Tassa et al., 2018) according to the number
of the random seed: We show the mean performance on the DMControl Suite (Tassa et al., 2018)
after 500K time steps for each 5 random seeds and 10 random seeds to show the consistency of the
proposed method regardless of random seed.

C ABLATION STUDY ON DATA AUGMENTATION

As described in RAD (Laskin et al., 2020a) and DrQ (Kostrikov et al., 2020), image augmentation
can improve the data-efficiency and generalization of RL methods. To study the impact of data
augmentation when used with the proposed method, we measured the average performance over 10
random seeds according to the data augmentation on DMControl Suite (Tassa et al., 2018). In Table 7,
we evaluated the performance of the proposed method when used with crop and translation proposed
in Laskin et al. (2020a).

Slightly different from the result presented in Laskin et al. (2020a), Cartpole Swingup and Reacher
Easy has the best performance when no augmentation was used, Finger Spin and Cheetach Run has
the best performance for translation, and Walker Walk and Ball in cup Catch has the best performance
for crop. Since S3R learns flow in an end-to-end manner with RL algorithm, it is analyzed that the
results are different from those of Laskin et al. (2020a).

Table 7: To study the impact of various data augmentation, we measured the average performance
over 10 random seeds according to the data augmentation on DMControl Suite (Tassa et al., 2018)
with 500K time steps.

500K step scores S3R + no aug S3R + crop S3R + translation
Finger, Spin 834±95 821±128 954±131
Cartpole, Swingup 880±34 837±16 872±51
Reacher, Easy 932±41 833±87 908±79
Cheetah, Run 448±65 412±81 501±63
Walker, Walk 914±30 930±75 886±51
Ball in cup, Catch 962±14 988±54 946±42

19

Under review as a conference paper at ICLR 2022

D ADDITIONAL EVALUATION METRIC

In all experiments, the evaluation on Atari Games (Kaiser et al., 2019) was conducted by measuring
the performance with 10 or more random seeds, following the previous studies including SPR
(Schwarzer et al., 2021) and CURL (Laskin et al., 2020b). Recently, Agarwal et al. (2021) analyzes
the problems related to statistical uncertainty in the existing evaluation method of Atari Games
(Kaiser et al., 2019). Accordingly, we add the results of a more complete evaluation using ‘Probability
of Improvement’ proposed in Agarwal et al. (2021) in Figure 6.

Figure 6: Evaluation result of ‘Probability of Improvement’ proposed in Agarwal et al. (2021).

This evaluation method estimates how likely an algorithm improves upon another algorithm Agarwal
et al. (2021). For instance, ‘P(SimPLe>X)’ indicates the probability (written in the horizontal line)
that ‘SimPLe’ is better than another algorithm, called ‘X’, which is listed in the vertical line (e.g.,
S3R, SPR,..., DER). Namely, the probability that SimPLe is better than SPR, ‘P(SimPLe>SPR)’, has
an average value of about 0.3.

In this context, in the six graphs above, the smaller the value of S3R, the higher the performance.
Also, in the graph of S3R below, ‘P(S3R > X)’, S3R ranks the highest as the remaining bars of
algorithms are located to the right of the bar of S3R. From this analysis, it can be reconfirmed that
S3R has the most superior performance compared to the state-of-the-art methods on Atari Games
(Kaiser et al., 2019) as mentioned in the result of Section 4.1.

20

Under review as a conference paper at ICLR 2022

E ANALYSIS ON COMPUTATIONAL COST AND PERFORMANCE IMPROVEMENT

Computational cost: The increase in the computational cost for training is unavoidable because S3R
additionally leverage the flow prediction and warping networks used in the vision task, but we found
that the additional computational cost for training is not so significant. For training on DMControl
Suite (Tassa et al., 2018) up to 500K on the same GPU environment, the proposed method takes about
16 hours, whereas the state-of-the-art methods CURL (Laskin et al., 2020b) and SPR (Schwarzer
et al., 2021) take about 10 hours and 13 hours, respectively. Note that the original SPR paper did not
provide the code implemented for DM Control Suite, so we conducted the experiments by modifying
the original SPR code. Additionally, the flow prediction and warping networks are used only during
training, and the inference process is implemented in the same manner as other methods. Therefore,
the inference time of our method is exactly the same as that of the state-of-the-arts methods (CURL
(Laskin et al., 2020b), SPR (Schwarzer et al., 2021), DrQ (Kostrikov et al., 2020)) as long as the
same encoder for query images is used.

We further analyzed the performance improvement by our method based on the two benchmarks used
in Section 4.

26 Atari Games: Based on the evaluation method used in the existing Atari Games (Kaiser et al.,
2019), CURL (Laskin et al., 2020b) recorded the highest mean in 7 games out of 26, and SPR
(Schwarzer et al., 2021) recorded the highest mean in 11 games out of 26. S3R has the highest mean
in 13 games out of 26. It can be interpreted that the performance increase of the S3R is not small by
considering the quantitative aspects of these games. Also, among the 13 games in which S3R has
an edge, in particular, in 8 games (Alien, Assault, Gopher, Jamesbond, Krull, Kung Fu Master, Ms
Pacman, and Seaquest), S3R records a remarkably higher performance compared to other methods.
Even the performance of certain games is high enough to match that of humans. This is because the
proposed method of capturing the local spatial structure is able to derive an effective representation
from the images of the specific Atari Games with various movements.

However, S3R may not be effective for some games. In particular, S3R did not perform well in the
task ‘Pong’ in Atari Games (Kaiser et al., 2019). The biggest reason for this is that there are too few
discriminative spatial structures available in the game images. Therefore, we can be sure that our
representation learning method, which effectively captures the spatial structure, will work particularly
well for data with much more complex structural features. In other words, while most of the simple
methods suffer from training with data with complex structural features, S3R can be a good substitute
for addressing this.

A method with relatively low-complexity may be preferred depending on the situation. However, as
mentioned above, it was shown from the Atari benchmark that it is a much better choice to use S3R
in the tasks that need to capture complex structural features.

DMControl Suite: In the case of DMControl Suite (Tassa et al., 2018), the performance at 100K
steps is usually based on when most methods do not converge. In Table 2, the performance of
S3R recorded the highest mean in 2 tasks out of 6 tasks, and RAD (Laskin et al., 2020a) and DrQ
(Kostrikov et al., 2020) also recorded the highest mean in 2 tasks out of 6 tasks, respectively. It can
be interpreted that RAD (Laskin et al., 2020a), DrQ (Kostrikov et al., 2020) and S3R are the three
methods with the highest convergence speed.

In general, the performance at 500K steps after most methods converge is widely adopted for the
evaluation. In Table 2, S3R shows the highest performance in 4 out of 6 tasks compared to state-
of-the-arts. Considering that this performance is the average value obtained by running 10 random
seeds, it is a credible assessment. Also, when compared to the performance improvement rate of
other methods, the performance increase of S3R is by no means small.

21

	Introduction
	Related Work
	Method
	Self-supervised Flow Model for Spatial Representation
	Representation Learning with Warping and Self-Prediction
	Implementation Details

	Experimental Results
	Evaluation on Atari Games
	Evaluation on DMControl Suite
	Ablation Study

	Conclusion
	Reproducibility Statement
	Appendices
	Implementation Details
	Hyperparameters on Atari Games and DMControl Suite
	Network Architecture
	environments
	Details of using flow maps

	Performance consistency evaluation
	Ablation study on Data Augmentation
	Additional evaluation metric
	Analysis on computational cost and performance improvement

