
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROS: TOWARDS COMPUTE-EFFICIENT RLVR VIA
ROLLOUT PREFIX REUSE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs) trained with Reinforcement Learning with Veri-
fiable Rewards (RLVR) have achieved remarkable progress on complex reasoning
tasks. However, RLVR heavily relies on on-policy rollout generation, whose cost
grows rapidly with rollout length and model size, eventually becoming the training
bottleneck. Our empirical analysis reveals that independent rollouts for the same
query often share similar early steps, indicating substantial redundancy. To ad-
dress this, we propose PROS (Prefix Reuse for On-policy Sampling), a paradigm
that reuses promising prefixes of historical rollouts in RLVR training. PROS ap-
pends these self-generated partial rollouts to the original queries to form Aug-
mented Queries, which are then used as regular training inputs in subsequent it-
erations, thereby reducing redundant computation. To select training batch from
augmented queries, PROS adopts a hierarchical Bayesian model to estimate their
pass rates and prioritize those with the highest reward uncertainty. Experiments
across diverse settings show that PROS consistently improves training efficiency
and achieves higher accuracy than strong baselines. These results highlight PROS
as a practical path toward scalable and compute-efficient RLVR. The source code
is available in supplementary materials.

1 INTRODUCTION

Large reasoning models (LRMs) have achieved remarkable progress on complex tasks, especially in
code generation and mathematical problem solving, in some cases even surpassing average human
performance (OpenAI et al., 2024; Shao et al., 2024; DeepSeek-AI et al., 2025; Team et al., 2025a;
Lambert et al., 2025). A key driver behind these advances is Reinforcement Learning with Verifiable
Rewards (RLVR), where an LRM is optimized as a policy that generates chain-of-thoughts (CoTs) as
trajectories and receives binary rewards on final answers from deterministic verifiers. This paradigm
enables models to improve reasoning abilities via supervision from verifiable outcomes, offering a
scalable path for learning from self-exploration.

Despite its promise, the RLVR paradigm is constrained by heavy reliance on on-policy rollout gen-
eration. Each training iteration of a RLVR algorithm consists of four steps: Select queries from a
given dataset as a training batch, Generate several rollouts based on selected queries with the policy,
Verify these rollouts with a deterministic verifier to obtain binary rewards, and Update parameters
of the policy to increase the likelihood of high-reward actions via policy-gradient methods such as
PPO(Schulman et al., 2017) or GRPO(Shao et al., 2024). As models tackle increasingly complex
problems, the length of their chain-of-thoughts (CoTs) grows accordingly. Consequently, the cost
of online rollout generation escalates and soon dominates the overall training time, making it one of
the principal obstacles to further scaling RLVR.

Our empirical analysis reveals that, for a given query, independently sampled reasoning trajectories
can be naturally organized into a tree structure like a branching search over the answer space as
shown in Figure 1. Although their final answers may diverge, the early steps often share similar
lines of reasoning. This observation indicates substantial redundancy: by reusing the prefixes of
historical rollouts in the previous iteration, we can avoid repeatedly generating these near-duplicate
initial steps and thereby saving a significant amount of computation.

Based on this observation, we introduce PROS (Prefix Reuse for On-policy Sampling), a paradigm
designed to make RLVR more compute-efficient for further scaling. In each training iteration, PROS

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Jen enters a lottery by picking 4 distinct numbers from S={1,2,3,⋯,9,10}. 4 numbers are randomly chosen from S. She wins a prize if at least two of her numbers were 2 of the
randomly chosen numbers, and wins the grand prize if all four of her numbers were the randomly chosen numbers. The probability of her winning the grand prize given that she
won a prize is nm where m and n are relatively prime positive integers. Find m+n.

Answer:
674

Iteration 10
…

… Answer:
404

…

…

Alice and Bob play the following
game. A stack of 𝑛 tokens lies
before them. The players take
turns with Alice going first. On
each turn, the player removes
either 1 token or 4 tokens from
the stack. Whoever removes the
last token wins. Find the number
of positive integers 𝑛 less than
or equal to 2024 for which
there exists a strategy for Bob
that guarantees that Bob will
win the game regardless of
Alice's play.

Analyze base cases:
𝑛 = 0 𝑤𝑖𝑛 , 𝑛 = 1 𝑙𝑜𝑠𝑒 , 𝑛 = 2 𝑤𝑖𝑛
𝑛 = 3 𝑙𝑜𝑠𝑒 , 𝑛 = 4 𝑙𝑜𝑠𝑒 , 𝑛 = 5 𝑤𝑖𝑛

Analyze base cases:
𝑛 = 0 𝑤𝑖𝑛 , 𝑛 = 1 𝑤𝑖𝑛 , 𝑛 = 2 𝑙𝑜𝑠𝑒
𝑛 = 3 𝑤𝑖𝑛 , 𝑛 = 4 𝑤𝑖𝑛 , 𝑛 = 5 𝑙𝑜𝑠𝑒

Losing positions follows:
𝑛 = 3𝑘 + 2

Analyze more cases:
𝑛 = 6 𝑤𝑖𝑛 , 𝑛 = 1 𝑤𝑖𝑛 , 𝑛 = 2 𝑙𝑜𝑠𝑒

Find recurrence relation:
Suppose 𝐿(𝑛) indicates 𝑛 is a losing
position:
𝐿 𝑛 → ¬𝐿 𝑛 + 1 ∧ ¬𝐿(𝑛 + 4)

Write recursive function in pseudo
code

Find the pattern:
𝑛 is a losing position if and only if:

𝑛 ≡ 0 or 2 mod 5

Analyze more cases:
𝑛 = 6 𝑙𝑜𝑠𝑒 , 𝑛 = 1 𝑤𝑖𝑛 , 𝑛 = 2 𝑙𝑜𝑠𝑒

…

Answer:
809

Iteration 20

Iteration 30

Iteration 40

Iteration 50

Iteration 60

…

Query Rollout Step 1 Rollout Step 2

Figure 1: Rollouts for a query from different training iterations can naturally be organized into a tree
structure, where their reasoning trajectories are highly similar in early steps and gradually diverge.

identifies high-quality prefixes of generated rollouts using readily available signals such as token-
level entropy or value estimation from a critic. These rollout prefixes are then appended to their
original queries to construct Augmented Queries. An augmented query preserves the task semantics
of the original query while adding partial reasoning steps produced by the policy itself. It can be
fed back into subsequent training iterations as a prompt, shortening on-policy generated reasoning
steps required and thus reducing overall training compute. Beyond efficiency, PROS also enables a
form of cross-iteration search pruning: it allows the policy to exploit those high-quality initial steps
while avoiding useless early dead ends, thereby steering subsequent reasoning towards promising
directions. This reallocates training compute to meaningful exploration in later reasoning steps,
enabling the policy to acquire richer reasoning patterns.

As training progresses, more augmented queries are generated, and the dataset expands into a two-
layer tree-structured hierarchy: each original query serves as a parent, and its derived augmented
queries serve as children. A central challenge is selecting which augmented queries to train on.
Bae et al. (2025) give a principle that queries with the highest reward variance exhibit the greatest
learnability and provide the most informative training signals. Motivated by this, we instantiate a
hierarchical Bayesian model over augmented queries, estimate per-query pass rate from historical
reward statistics and prioritize those queries with high reward uncertainty (i.e. pass rate close to 0.5)
(Hong et al., 2022a;b).

Essentially, PROS can be seamlessly integrated into most policy-gradient RLVR algorithms as a
plugin. With the main algorithm logic unchanged, it only adds two additional steps, augmented
query construction (Section 3) and augmented query selection (Section 4), both of which incur
negligible computational overhead. In summary, this paper makes the following contributions:

• We propose PROS, a simple and general training paradigm that reuses high-value histor-
ical prefixes as Augmented Queries, reducing redundant generation and enhance policy
exploitation.

• We further introduce a selection mechanism over all augmented queries that targets at the
most valuable one for training, which is implemented via pass rate estimation by a hierar-
chical Bayesian model.

• PROS consistently outperforms strong baselines across diverse settings, achieving the best
performance–cost trade-offs. Integrated as a plugin, it can further raise the upperbound
of both PPO and GRPO, yielding an average improvements of +3.96 and +6.21 points on
AIME24 and AMC23, respectively.

2 TRAINING BOTTLENECK ANALYSIS

RLVR Basics We begin by reviewing the process of Reinforcement Learning with Verifiable Re-
wards (RLVR) for training large reasoning models. For simplicity, we describe the setting with
batch size 1, and denote the policy by πθ. In each training iteration, a query q is selected from
a training dataset, and πθ autoregressively produces a chain of thought y = [y1, . . . , yT] condi-
tioned on q. A deterministic verifier serves as an environment mapping (q, y) to a binary reward

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

��
��
��
��
��
���
��
��
��
��
��
��
�
�

�
��
�
��
��
��
�

��
��
�
�

��
��
�

	�
��
��
�

� � � � �
������� ��������������

��� ��� ���

Figure 2: (a) Fraction of rollout generation time versus different max rollout length under fixed batch
size and hardware. (b) Pairwise normalized edit distance versus prefix window size averaged over
64 rollouts per query. (c) Self-rouge versus prefix window size averaged over 64 rollouts per query.

r = R(q, y) ∈ {0, 1}, indicating whether the final answer matches the ground truth or satisfies
a task-specific specification (e.g. passing all unit tests for code generation). And the objective
of RLVR finetuning is to optimize the policy parameters θ to maximize the expected rewards, i.e.
maxθ Eq;y∼πθ(·|q)[R(q, y)] , which is commonly implemented via policy-gradient methods like PPO
or GRPO.

Generation Share. As both the scale of LRMs and the length of CoTs grow, on-policy rollout
generation gradually dominates the training time of RLVR algorithms. We perform a preliminary
measurement to quantify the generation share (i.e. the fraction of wall-clock time spent in rollout
generation) under varying max rollout length Lmax. As shown in Figure 2, the generation share
rises rapidly as the maximum generation length increases. Currently, the scale of LRMs have already
approached hundreds of billions, with context lengths more than hundreds of thousands tokens. This
trend highlights a scalability issue, underscoring the need for methods to alleviate generation costs.

Redundancy in Early Reasoning Steps. We empirically observe strong similarity at the begin-
ning of different rollouts for the same query across training iterations. Their reasoning trajecto-
ries naturally unfold like a branching search: the early steps share similar setup, while later steps
gradually diverge for different reasoning directions. A specific case is presented in Figure 1. To
further quantify this effect, we sample 64 independent rollouts per query on DAPO-Train dataset
(Yu et al., 2025) and measure pairwise similarity on truncated prefixes of different lengths. Con-
cretely, we compute the average of two pairwise similarity metrics: (i) normalized edit distance
(i.e. EditDist/TotalLen), and (ii) ROUGE-L (Lin, 2004). As shown in Figure 2, shorter prefixes
yield markedly higher similarity, indicating substantial redundancy in repeatedly generating near-
duplicate initial reasoning steps.

Wasted Computation in Early Dead Ends. A second source of redundancy also follows from
the tree structure of reasoning trajectories. Correct solution trajectories are sparse in the reasoning
space. Naive multi-sampling may therefore start on branches that are truly dead ends. Subsequently,
their remaining suffix contribute little training value. For example, in Figure 1, rollouts in iterations
10 to 30 make a mistake at the first step and still consume long suffixes. This unnecessary dead-end
cost compounds as model scale and sequence length grow.

3 AUGMENTED QUERY CONSTRUCTION

3.1 OVERVIEW

Building on the observations from Section 2, we introduce PROS (Prefix Reuse for On-policy
Sampling), a paradigm designed to mitigate redundant generation and wasted computation in RLVR.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Pass Rate Estimation 0𝜃

0.7

0.9

0.6

0.5

0.6

0.8

…
…

…

Training Batch {𝑞!}

𝑞$(#𝜃$ = 0.5)

𝑞#(#𝜃# = 0.6)

𝑞%(#𝜃% = 0.6)
…

Training Batch w/ Rollouts {𝑦!}

𝑞$

𝑞#
𝑞%

…

𝑦$
𝑦#
𝑦%

Training Batch w/ Rewards {𝑟!}

𝑞$

𝑞#
𝑞%

…

Promising prefix identification
Value

Entropy

𝑞# 𝑦#[: 𝑡∗] 𝑦#[𝑡∗:]

AQ Dataset in Tree Structure

……

𝑞!

𝑞"

𝑞#

𝑞$

𝑞%

𝑞&

𝑞!

𝑞"

𝑞#

𝑞$

𝑞%

𝑞&

add a new query to dataset
𝑞(= cat(𝑞#, 𝑦#[: 𝑡∗])

(1) Select AQ

(2) Generate

(3) Verify

(4) Update

select query with pass rate
close to 0.5 (i.e. 𝑞", 𝑞$, 𝑞%)

on-policy rollouts

(5) Construct AQ

estimate pass rate
for each augmented query

Original Query

Augmented Query

Rollout

Verify the final answer

(A) PROS modules (B) RLVR standard pipeline

∀ correct query 𝑞!
identify the best 𝑡∗
from its rollout 𝑦! based on generated rollout

Figure 3: Overview of PROS. The right-hand side follows standard RLVR algorithms, while the left-hand
side is the augmented query modules introduced by PROS. (1) Estimate the pass rate θ̃ of each query and select
those with highest uncertainty; (2) Generate rollouts {yi} for selected queries {qi}; (3) Verify rollouts against
ground truths; (4) Update the policy with rollouts and rewards; (5) Construct augmented queries by appending
high-quality rollout prefixes to original queries (e.g. q′ = concat(q3, y3[: t

∗])) for future reuse.

Concretely, in each training iteration, after the rollouts are generated and verified, we identify high-
quality prefixes within them. We then append these valuable prefixes to their original queries to cre-
ate new Augmented Queries (AQ), which are then added to the training set as new query instances
for subsequent training iterations. Over time, this augmentation process expands the training data
into a two-layer tree-structured dataset: each original query serves as a parent node, and its derived
augmented queries become child nodes.

During training, augmented queries are treated equivalently as normal queries. The policy generates
continual reasoning trajectories conditioned on both the historical prefix and the original query.
The reinforcement learning update then proceeds over the collected continuations as in standard
RLVR. The only difference is that both credit assignment and gradient update are conducted only
on the newly generated continuations without the reused historical prefixes. This way, the policy is
reinforced for how it continues from the prefix, preventing overfitting to the previously generated
reasoning steps. Figure 3 illustrates the overall PROS pipeline.

Notably, an augmented query preserves the task semantics of its original query, only providing
unverified partial reasoning steps generated by the policy itself. It does not reveal any final answer
and remains the on-policy nature of RLVR algorithm, in contrast to off-policy experience replay
methods (Fedus et al., 2020; Schaul et al., 2016; Liang et al., 2021).

3.2 PROMISING PREFIX IDENTIFICATION

A crucial question in PROS is identifying which rollout prefixes are worth reusing. We employ
a heuristic strategy based on both policy uncertainty and value signals, along with a length-based
constraint, to construct augmented queries that are both informative and efficient.

We consider two signals to estimate a prefix’s potential: uncertainty-based signal and value-based
signal. As the uncertainty signal, we use the token-level entropy along the rollout, which serves as
a proxy for uncertainty. A higher entropy indicates that the policy was less certain about the next
steps, suggesting the prefix lies in an unexplored and informative region of the reasoning space. Such
prefixes are candidates for reuse because they encourage exploration and mitigate over-confidence
(Cui et al., 2025; Wang et al., 2025). Using entropy is almost free without extra computational
overhead, since the RLVR algorithm already requires a forward pass to compute the log-probability
at every timestep.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Besides entropy, we also leverage the readily available value function learned by critic model for
those actor-critic methods. Prefixes with higher predicted value are more likely to lead to a correct
final answer. So reusing them can help to exploit and focus computational costs on promising
reasoning directions.

In practice, we reuse the prefix y[: t∗] = [y0, . . . , yt∗] with highest token-level entropy from each
correct rollout y, i.e. t∗ = argmaxt∈[0,T)H(π(·|y<t, q)). When the underlying RLVR algorithm
is actor–critic, we additionally use the value function as a filter, restricting t∗ to the top 10% of
timesteps with the highest predicted values. In addition to these signals, we also impose simple
length constraints to seek a balance between exploitation and exploration. Specifically, we limit
the range of t∗ ∈ [14T,

3
4T). Although coarse, this constraint ensures that the reused prefix yields

a non-trivial reduction in generation time, while leaving sufficient room for the policy exploration
without giving away too much of the solution.

4 AUGMENTED QUERY SELECTION

4.1 OVERVIEW

𝜓! 𝜓"
𝒩(𝜇, 𝜏) 𝒩(𝜓! , 𝜎)

∀ 𝑗 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 ∀ 𝑖 ∈ 𝕊!

𝑟!

Bern(Sigmoid(𝜓!)) Bern(Sigmoid(𝜓"))

𝑟"

𝜓!

𝜓"

𝒩(𝜇, 𝜏)

𝒩(𝜓! , 𝜎)

∀ 𝑗 𝑖𝑠 𝑎 𝑝𝑎𝑟𝑒𝑛𝑡 ∀ 𝑖 ∈ 𝕊!

𝑟!#

Bern(Sigmoid(𝜓!)) Bern(Sigmoid(𝜓"))

𝑟"#

Figure 4: Overview of graphical
model. r indicates reward of each
query, following a Bernoulli controlled
by log odds ψ. ψi of each augmented
query i is conditionally Gaussian cen-
tered on its parent’s ψj .

As the augmented query dataset grows continuously across
iterations, selecting a valuable training batch from a large
amounts of AQs is non-trivial. Prior studies suggest that train-
ing is most effective when queries fall into an intermediate dif-
ficulty range rather than being trivially easy or impossibly hard
(Yu et al., 2025; Razin et al., 2025; Vygotsky, 1978). Further-
more, Bae et al. (2025) theoretically demonstrates that queries
with rollout pass rate close to 0.5 exhibit the strongest learn-
ability signal. Both Yu et al. (2025) and Bae et al. (2025) adopt
an online filtering mechanism, removing queries whose pass
rates are too high or too low after on-policy rollout generation.
However, such online filtering requires costly rollout genera-
tion for every query. To reduce this overhead, we instead es-
timate pass rates of augmented queries from historical obser-
vations on rewards via Bayesian inference, and we prioritize
those queries with estimated pass rates near 0.5.

As stated before, the augmented query dataset forms a tree-structured hierarchy, where each original
query serves as a parent while its derived augmented queries serve as children. To leverage the
relationship between original query and its derived augmented queries, we initialize a two-layer
logit–normal Bayesian model for pass rate estimation (Hong et al., 2022a;b). Let pass rate θ =
sigmoid(ψ) = (1 + exp(−ψ))−1, we suppose the log-odds of each parent par follows ψpar ∼
N (µ, τ2) and the log-odds of its children i is conditionally Gaussian, ψi | ψpar ∼ N (ψpar, σ

2).
Each time a query is used for generating a rollout, a binary reward r ∼ Bern(θ) is then observed,
indicating whether the rollout passes verification. The graphical model is presented in Figure 4.

This formulation encodes the inductive bias that an augmented query solves the same underlying
problem as its parent but begins from an intermediate reasoning state, so a child’s pass rate should
be correlated with that of its parent. The hierarchical structure enables information sharing between
related queries and improves statistical efficiency.

Building on the Bayesian model above, we can infer the posterior distribution of latent log-odds by
incorporating historical reward observations. Posterior samples {ψ̃} are then drawn for each query,
and the corresponding pass rates θ̃ = σ(ψ̃) are estimated for training batch selection.

4.2 BAYESIAN INFERENCE WITH PÓLYA–GAMMA AUGMENTATION

In order to sample from the joint posterior, we derive the full conditional distributions for both
parents and children, which allows Gibbs sampling. Specifically at iteration t , let Hi = (ni, si)
denote the reward history of query i, where ni is the number of times the query being selected and
si the number of success times of its corresponding rollouts. Suppose the parent set of nodes is F,
and the children set of node j is Sj . By Bayes’ rule, the joint posterior admits a hierarchical chain

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

factorization:

p({ψ}|H) ∝
∏
j∈F

 p(ψj)︸ ︷︷ ︸
prior of parent

× p(Hj |ψj)︸ ︷︷ ︸
likelihood of parent

×
∏
i∈Sj

p(ψi|ψj)︸ ︷︷ ︸
prior of child

× p(Hi|ψi)︸ ︷︷ ︸
likelihood of child


A key challenge in posterior calculation above is the non-conjugacy of the Bernoulli likelihood and
Gaussian prior. We address this by introducing Pólya–Gamma (PG) auxiliary variables following
Polson et al. (2013); Dumitrascu et al. (2018), which render the calculation tractable.

We first derive the conditional posterior p(ψi|Hi, ψpar) of a child i, given its parent ψpar and history
Hi = (si, ni),

p(ψi|Hi,ψpar)∝p(ψi|ψpar)·p(Hi|ψi)=p(ψi|ψpar)2−ni

∫ ∞

0

exp(κψi−
ωiψ

2
i

2
)pPG(ωi|ni,0)dωi

where κ = si − ni

2 and ωi ∼ PG(ni, 0). The identity follows directly from Polson et al. (2013,
Theorem 1). By introducing an auxiliary variable ωi, the conditional posterior p(ψi|Hi, ψpar, ωi)
becomes Gaussian and thus tractable, given that the prior p(ψi|ψpar) is Gaussian. In particular, we
have the following proposition:
Proposition 4.1. Given the log-odds of parent ψpar and the history Hi = (si, ni),

ωi |ψi,Hi∼PG(ni,ψi) ψi |ωi,Hi,ψpar∼N (m,V)where V =
1

σ−2+ωi
,m=V ·(σ−2ψpar+κ)

Similarly, we introduce a PG variable ωpar for each parent ψpar and derive its conditional posterior
with the same augmentation method:

Proposition 4.2. Given the log-odds of all children {ψk}
Spar

k and the history Hpar = (spar, npar),

ωpar|ψpar, Hpar ∼ PG(npar, ψpar) ψpar|ωpar, Hpar, {ψk}
Spar

k ∼ N (m,V)

where V = (τ−2 + ωpar + |Spar|σ−2)−1, m = V · (τ−2µ+ σ−2
∑
k ψk + κpar)

Proposition 4.1 and 4.2 together define a simple Gibbs sampler for the joint posterior
p({ψ}, {ω}|H), from which we can efficiently sample ψ̃ and estimate pass rates θ̃ for all augmented
queries. The overall estimation process is presented in Algorithm 1. Detailed proofs in this section
are presented in Appendix B.

Algorithm 1 Pass Rate Estimation for Augmented Query
Input: Log-odds of all queries from previous iteration {ψ}; History of all queries {(n,s)}; Number of Gibbs

sweeps G; Model Hyperparameters µ,τ,σ
for t=1 to G do

// One Gibbs sweep
foreach parent par∈F do

foreach child i∈Spar do
// Posterior sampling based on Proposition 4.1
sample ωi∼PG(ni,ψi);
V←(σ−2+ωi)

−1,m←V ·(σ−2ψpar+κ), sample ψi∼N (m,V)
end
// Posterior sampling based on Proposition 4.2
sample ωpar∼PG(npar,ψpar); V←(τ−2+ωpar+|Spar|σ−2)−1,m←V ·(τ−2µ+σ−2∑

kψk+
κpar), sample ψpar∼N (m,V)

end
end

4.3 EXPONENTIAL FORGETTING FOR NON-STATIONARY ENVIRONMENT

As training progresses, the policy evolves continuously, which leads to gradual shifts in the pass
rate of queries. Therefore, we introduce an exponential forgetting mechanism. At each iteration,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Comparison between PROS and other baselines under different settings. #Tokens denotes
the average number of tokens generated per iteration (in millions), and #Time denotes the average
GPU wall-clock time per iteration (in minutes).

DAPO-Train AIME-Old

AIME24 AMC23 #Tokens #Time AIME24 AMC23 #Tokens #Time

PPO 28.23 73.63 10.24 9.17 31.35 57.85 4.39 6.06
w/ Dynamic Sampling 28.85 66.69 11.07 17.62 33.96 69.21 9.10 40.04
w/ Experience Replay 30.10 73.02 8.93 8.98 31.35 57.85 3.61 5.88
w/ Priority Sampling 31.87 73.25 11.35 9.76 31.46 60.82 4.15 5.91
w/ PROS-ablation 31.35 73.93 7.92 9.29 31.87 65.09 6.93 8.89
w/ PROS 33.23 78.20 8.49 9.77 34.27 65.62 5.00 8.09

GRPO 29.58 73.40 9.27 6.58 31.04 59.98 3.58 3.77
w/ Dynamic Sampling 31.15 76.68 11.16 19.45 29.58 68.90 9.22 45.38
w/ Experience Replay 29.90 74.62 7.60 6.36 31.15 59.98 3.14 4.14
w/ Priority Sampling 30.73 73.70 9.55 6.87 33.44 60.14 3.88 4.33
w/ PROS-ablation 30.52 75.91 7.87 7.00 33.44 63.41 5.88 6.26
w/ PROS 34.17 78.28 8.46 7.57 34.38 67.53 5.84 6.69

we scale down the historical statistics si and ni of every augmented query by a forgetting factor
λ ∈ (0, 1) before incorporating new observations. This exponential forgetting ensures that more
recent rewards exert greater influence on posterior updates, allowing the sampler to adapt to policy
improvements.

5 EXPERIMENTS

5.1 SETTINGS

We conduct main experiments on the Qwen3-8B model, trained using PPO (Schulman et al., 2017)
and GRPO (Shao et al., 2024). For evaluation, we report Pass@1 on two benchmarks: AIME 2024
and AMC 2023. To mitigate variance, we report averages over 32 and 16 independent runs on these
datasets, respectively, following Hochlehnert et al. (2025).

Training configuration. We adopt two math reasoning datasets as training corpora: DAPO-Train
is a large and diverse corpus covering broad domains of math problems(Yu et al., 2025); AIME-Old
consists of all AIME problems prior to 2024, which is more relevant to the AIME24 benchmark.
We train for 400 and 300 iterations on these datasets, respectively. At each iteration, we generate
8 rollouts per query. The batch size is 512 with mini-batch size 64, yielding 8 gradient updates per
PPO epoch. The maximum response length is set to 6144 tokens.

Baselines. We compare our proposed PROS against several strong baselines: (1) Vanilla is the stan-
dard PPO/GRPO training algorithm. (2) Dynamic Sampling (Yu et al., 2025) constructs training
batches by filtering queries whose on-policy rollouts are either all correct or all incorrect. (3) Pri-
ority Sampling (Team et al., 2025a;b) tracks the historical pass rate θ̃ of each query and samples
proportionally to 1− θ̃. (4) Experience Replay augment PPO/GRPO with a replay buffer with replay
ratio set to 1/8. We also apply truncated importance sampling following ACER (Wang et al., 2017).
(5) PROS-ablation: a variant of PROS with query being randomly sampled, isolating the effect of
proposed augmented query selection mechanism. Additional details are provided in Appendix C.

6 MAIN RESULTS

Overall performance. Table 1 summarizes the comparison between PROS and other baselines.
PROS delivers consistent improvements across all four settings. Under PPO trained on DAPO-
Train, it outperforms the vanilla baseline by +5 and achieves the best performance on both AIME24
and AMC23. Comparable gains are observed under GRPO. These results validate our hypothesis:
reusing promising prefixes enhances exploitation, thereby improving overall performance. In con-
trast, Experience Replay improves efficiency but yields performance comparable to vanilla. Dynamic
Sampling achieves strong results, particularly on AMC23, but requires 2–4× more wall-clock time

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

���������������������

���
�����

�	
��
��
��
��
��
��

��

�����
�����������
�
��
����

��� ­�����
���������
������������������
�

���

�����
�����������
�
��
����

��� ­�����
���������
������������������
�
�����
�

��	 �
��

�����
�

��	 �
��

Figure 5: Training efficiency comparison among different methods. The x-axis denotes the training
time (GPU hours), and the y-axis reports the best performance achieved up to that time.

Table 2: Comparison between PROS
and other baselines on Qwen3-4B
trained with AIME-Old.

AIME24 AMC23 #Time

PPO 21.25 52.59 5.83
w/ dynamic 25.73 61.19 10.83
w/ replay 23.75 53.73 5.81
w/ prior 24.90 60.44 5.86
w/ PROS 27.40 62.12 6.21

Table 3: Ablation study on hyperparameters by
varying σ and λ. PROS consistently surpasses
Vanilla (59.98 on AMC23; 31.04 on AIME24).

λ = 0.99 (default) σ = 0.3 (default)

σ AMC23 AIME24 λ AMC23 AIME24

0.10 64.25 34.79 0.95 65.62 35.94
0.20 62.42 36.98 0.99 67.53 34.38
0.30 67.53 34.38 0.995 66.77 33.44

than PROS due to repeated rejection sampling. By comparison, PROS attains strong performance
with only modest computational overhead. Most of the extra cost comes from its length scaling
behavior (see below), which yields longer CoTs. To isolate the influence of augmented query sam-
pling, we compare PROS with the PROS-ablation variant. The results show that prefix reuse alone
already improves compute efficiency and achieves better performance. Moreover, incorporating the
proposed augmented query selection mechanism consistently provides additional gains. We also
provide an additional experiments on Qwen3-4B in Table 2, which exhibit similar trends.

Performance-Cost trade-offs. To further assess the compute efficiency of different methods, we
analyze the performance growth with respect to GPU wall-clock time in Figure 5. It is shown that
PROS consistently exhibits better efficiency under different settings. Compared to dynamic sam-
pling, which achieves competitive performance but at prohibitive cost, PROS provides a significantly
more favorable balance between efficiency and performance.

Influence of Hyper-parameters. We conduct an ablation study to evaluate the robustness of
PROS with respect to key hyperparameters. In the Bayesian model (Section 4.1), the child prior
ψi | ψpar ∼ N (ψpar, σ

2) introduces a variance parameter σ2 that controls similarity between parent
and child nodes, while the temporal decay factor λ governs the rate of forgetting in pass rate estima-
tion. We train PROS with GRPO on the AIME-Old dataset, varying both σ and λ. Table 3 reports
Pass@1 results, and Figure 7 shows the estimation error of pass rates. The results show that PROS
consistently brings improvements to vanilla GRPO across all hyperparameter settings, and the pass
rate estimation remains robust, becoming increasingly accurate as training proceeds.

Length scaling. A key property of RLVR algorithms is their ability to benefit from increased rea-
soning lengths, which enables improved test-time scaling (Snell et al., 2024). We present the length
scaling trends of different methods in Figure 6. Across all settings, the rollout length of PROS

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

��
��
��
��
��
��
��
��
��
��
��
�

�������������������

��
�

�
�	���������������
�������

�
������������������
�
�
����������������
�
�
���

	�
������� ��������

Figure 6: Length scaling trends of different methods under different settings.

��
��
�
��
��
��
��
��
���
���
��
��
��
��

�������������������

Figure 7: Average pass rate estimation error in PROS with different hyperparameters.

continues to scale up as the training goes. By contrast, vanilla PPO/GRPO, as well as their experi-
ence replay and prioritized sampling variants, suffer from length collapse on the AIME-Old dataset,
limiting their ability to further exploitation.

7 RELATED WORK

Our proposed method focuses on improving efficiency of rollout generation in RLVR. In traditional
reinforcement learning, a common approach to reduce the cost of on-policy rollout generation is
experience replay (Fedus et al., 2020; Schaul et al., 2016; Liang et al., 2021). For instance, PPO
typically reuses the same batch of rollouts for multiple training epochs. However, He et al. (2025)
show that, due to the complexity of large language models, repeatedly reusing the same data quickly
leads to overfitting and entropy collapse, which prevents RLVR from scaling effectively in the long
run. Another line of related work reduces task difficulty by providing partial reference solutions as
hints during training, which requires costly human annotation(Xi et al., 2024; Liu et al., 2025a;b). In
contrast, our approach derives partial solutions directly from the model’s own past rollouts, removing
the need for external reference solutions in complex reasoning settings. Thirdly, our augmented
query selection also draws inspiration from curriculum learning (Soviany et al., 2022; Narvekar
et al., 2020; Wang et al., 2021), by dynamically selecting training queries whose difficulty best
matches the current policy. Several concurrent studies also investigate online data selection in RLVR
to improve performance (Sun et al., 2025; Bae et al., 2025; Zheng et al., 2025; Qu et al., 2025). Our
method differs in that it is specifically designed for the hierarchical augmented dataset.

8 CONCLUSION

We presented PROS, a prefix-reuse paradigm for RLVR training that constructs augmented queries
from historical rollout and leverages a hierarchical Bayesian model for uncertainty-aware selection.
Experiments demonstrate its consistent improvements in both efficiency and accuracy compared to
strong baselines, highlighting the promise of PROS for compute-efficient training of LRMs.

While effective, our current design of augmented queries is still simple, relying on entropy and value
signals that may introduce bias. Future work could investigate richer or more principled criteria for
prefix identification, explore adaptive integration with other forms of uncertainty estimation, and
extend prefix reuse to broader domains beyond mathematical reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work focuses on improving the compute efficiency of reinforcement learning with verifiable
rewards (RLVR) for large reasoning models. All experiments are conducted on publicly available
datasets (AIME, AMC, DAPO) that do not contain sensitive personal information. Our approach
does not introduce new data collection, and we adhere to the original licenses and intended use of
these datasets.

We believe this work raises no additional ethical concerns beyond those already inherent in the
study of large language models and reinforcement learning. We emphasize that our contributions
are intended solely for research, and caution should be exercised when transferring these methods
to real-world applications.

REPRODUCIBILITY STATEMENT

All experiments in this paper are conducted on publicly available datasets (AIME, AMC, and
DAPO), which can be readily accessed and downloaded. Complete proofs of the theoretical proposi-
tions are provided in Appendix B. Detailed descriptions of experimental settings, including training
configurations, hyperparameters, and baseline implementations, are provided in Appendix C to fa-
cilitate replication. The full source code repository together with reproducibility scripts is included
in the supplementary materials.

REFERENCES

Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun Kwak.
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning, April 2025. URL
http://arxiv.org/abs/2504.03380. arXiv:2504.03380 [cs].

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li,
Yuchen Fan, Huayu Chen, Weize Chen, Zhiyuan Liu, Hao Peng, Lei Bai, Wanli Ouyang,
Yu Cheng, Bowen Zhou, and Ning Ding. The Entropy Mechanism of Reinforcement Learning for
Reasoning Language Models, May 2025. URL http://arxiv.org/abs/2505.22617.
arXiv:2505.22617 [cs].

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda

10

http://arxiv.org/abs/2504.03380
http://arxiv.org/abs/2505.22617

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia
Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu,
Zhongyu Zhang, and Zhen Zhang. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs
via Reinforcement Learning, January 2025. URL http://arxiv.org/abs/2501.12948.
arXiv:2501.12948 [cs].

Bianca Dumitrascu, Karen Feng, and Barbara E Engelhardt. Pg-ts: Improved thompson sampling
for logistic contextual bandits, 2018. URL https://arxiv.org/abs/1805.07458.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay, 2020. URL https:
//arxiv.org/abs/2007.06700.

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang
Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang Zeng, Tianwen Wei, Cheng Cheng, Bo An,
Yang Liu, and Yahui Zhou. Skywork open reasoner 1 technical report, 2025. URL https:
//arxiv.org/abs/2505.22312.

Andreas Hochlehnert, Hardik Bhatnagar, Vishaal Udandarao, Samuel Albanie, Ameya Prabhu,
and Matthias Bethge. A Sober Look at Progress in Language Model Reasoning: Pitfalls
and Paths to Reproducibility, April 2025. URL http://arxiv.org/abs/2504.07086.
arXiv:2504.07086 [cs] version: 1.

Joey Hong, Branislav Kveton, Sumeet Katariya, Manzil Zaheer, and Mohammad Ghavamzadeh.
Deep hierarchy in bandits, 2022a. URL https://arxiv.org/abs/2202.01454.

Joey Hong, Branislav Kveton, Manzil Zaheer, and Mohammad Ghavamzadeh. Hierarchical bayesian
bandits, 2022b. URL https://arxiv.org/abs/2111.06929.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

Xingxing Liang, Yang Ma, Yanghe Feng, and Zhong Liu. Ptr-ppo: Proximal policy optimization
with prioritized trajectory replay, 2021. URL https://arxiv.org/abs/2112.03798.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguis-
tics. URL https://aclanthology.org/W04-1013/.

Mingyang Liu, Gabriele Farina, and Asuman Ozdaglar. Uft: Unifying supervised and reinforcement
fine-tuning, 2025a. URL https://arxiv.org/abs/2505.16984.

Ziru Liu, Cheng Gong, Xinyu Fu, Yaofang Liu, Ran Chen, Shoubo Hu, Suiyun Zhang, Rui Liu,
Qingfu Zhang, and Dandan Tu. Ghpo: Adaptive guidance for stable and efficient llm reinforce-
ment learning, 2025b. URL https://arxiv.org/abs/2507.10628.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey, 2020. URL
https://arxiv.org/abs/2003.04960.

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,
Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghor-
bani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao,
Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary
Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang,
Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel

11

http://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1805.07458
https://arxiv.org/abs/2007.06700
https://arxiv.org/abs/2007.06700
https://arxiv.org/abs/2505.22312
https://arxiv.org/abs/2505.22312
http://arxiv.org/abs/2504.07086
https://arxiv.org/abs/2202.01454
https://arxiv.org/abs/2111.06929
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2112.03798
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2505.16984
https://arxiv.org/abs/2507.10628
https://arxiv.org/abs/2003.04960

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson,
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Eliz-
abeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang,
Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred
von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace
Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart An-
drin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever,
Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng,
Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish,
Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

Nicholas G. Polson, James G. Scott, and Jesse Windle. Bayesian inference for logistic models using
polya-gamma latent variables, 2013. URL https://arxiv.org/abs/1205.0310.

Yun Qu, Qi Cheems Wang, Yixiu Mao, Vincent Tao Hu, and Xiangyang Ji. Can Prompt Difficulty
be Online Predicted for Accelerating RL Finetuning of Reasoning Models?, July 2025. URL
http://arxiv.org/abs/2507.04632. arXiv:2507.04632 [cs].

Noam Razin, Zixuan Wang, Hubert Strauss, Stanley Wei, Jason D. Lee, and Sanjeev Arora. What
makes a reward model a good teacher? an optimization perspective, 2025. URL https://
arxiv.org/abs/2503.15477.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay, 2016.
URL https://arxiv.org/abs/1511.05952.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

12

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/1205.0310
http://arxiv.org/abs/2507.04632
https://arxiv.org/abs/2503.15477
https://arxiv.org/abs/2503.15477
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A survey,
2022. URL https://arxiv.org/abs/2101.10382.

Yifan Sun, Jingyan Shen, Yibin Wang, Tianyu Chen, Zhendong Wang, Mingyuan Zhou, and Huan
Zhang. Improving Data Efficiency for LLM Reinforcement Fine-tuning Through Difficulty-
targeted Online Data Selection and Rollout Replay, June 2025. URL http://arxiv.org/
abs/2506.05316. arXiv:2506.05316 [cs].

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning Tang, Congcong Wang, Dehao Zhang, Enming
Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei
Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin
Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia,
Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang
Hu, Yangyang Liu, Yanru Chen, Yejie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping
Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu,
Zheng Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan
Yang. Kimi k1.5: Scaling Reinforcement Learning with LLMs, January 2025a. URL http:
//arxiv.org/abs/2501.12599. arXiv:2501.12599 [cs] version: 1.

V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
reinforcement learning, 2025b. URL https://arxiv.org/abs/2507.01006.

L. S. Vygotsky. Mind in Society: Development of Higher Psychological Processes. Harvard Uni-
versity Press, 1978. ISBN 9780674576285. URL http://www.jstor.org/stable/j.
ctvjf9vz4.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, Yuqiong Liu, An Yang, Andrew Zhao, Yang Yue, Shiji Song, Bowen
Yu, Gao Huang, and Junyang Lin. Beyond the 80/20 Rule: High-Entropy Minority Tokens Drive
Effective Reinforcement Learning for LLM Reasoning, June 2025. URL http://arxiv.
org/abs/2506.01939. arXiv:2506.01939 [cs].

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning, 2021. URL https:
//arxiv.org/abs/2010.13166.

Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray Kavukcuoglu, and
Nando de Freitas. Sample efficient actor-critic with experience replay, 2017. URL https:
//arxiv.org/abs/1611.01224.

Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou,
Xiao Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, and Xuanjing Huang. Training large
language models for reasoning through reverse curriculum reinforcement learning, 2024. URL
https://arxiv.org/abs/2402.05808.

13

https://arxiv.org/abs/2101.10382
http://arxiv.org/abs/2506.05316
http://arxiv.org/abs/2506.05316
http://arxiv.org/abs/2501.12599
http://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2507.01006
http://www.jstor.org/stable/j.ctvjf9vz4
http://www.jstor.org/stable/j.ctvjf9vz4
http://arxiv.org/abs/2506.01939
http://arxiv.org/abs/2506.01939
https://arxiv.org/abs/2010.13166
https://arxiv.org/abs/2010.13166
https://arxiv.org/abs/1611.01224
https://arxiv.org/abs/1611.01224
https://arxiv.org/abs/2402.05808

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai,
Tiantian Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guang-
ming Sheng, Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu,
Jiaze Chen, Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao
Zhou, Jingjing Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingx-
uan Wang. Dapo: An open-source llm reinforcement learning system at scale, 2025. URL
https://arxiv.org/abs/2503.14476.

Yu Yue, Yufeng Yuan, Qiying Yu, Xiaochen Zuo, Ruofei Zhu, Wenyuan Xu, Jiaze Chen, Chengyi
Wang, TianTian Fan, Zhengyin Du, Xiangpeng Wei, Xiangyu Yu, Gaohong Liu, Juncai Liu,
Lingjun Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Chi Zhang, Mofan Zhang, Wang Zhang, Hang
Zhu, Ru Zhang, Xin Liu, Mingxuan Wang, Yonghui Wu, and Lin Yan. VAPO: Efficient and
Reliable Reinforcement Learning for Advanced Reasoning Tasks, April 2025. URL http://
arxiv.org/abs/2504.05118. arXiv:2504.05118 [cs].

Haizhong Zheng, Yang Zhou, Brian R. Bartoldson, Bhavya Kailkhura, Fan Lai, Jiawei Zhao,
and Beidi Chen. Act Only When It Pays: Efficient Reinforcement Learning for LLM Rea-
soning via Selective Rollouts, June 2025. URL http://arxiv.org/abs/2506.02177.
arXiv:2506.02177 [cs].

A THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were only used for editing and polishing the text of this paper,
in order to improve clarity and fluency of presentation. They were not used for generating ideas,
conducting experiments, analyzing results, or writing technical content.

B PROOFS OF SECTION 4.2

B.1 PROBLEM SETUP

We first review the problem and our proposed Bayesian model. Selection on the AQ tree can be
casted as a hierarchical multi-armed bandit: each parent arm corresponds to an original query and its
children correspond to its derived augmented queries. Each arm (i.e. query) inherently has a success
rate θ. Pulling an arm yields a binary reward r ∼ Bern(θ), indicating whether one generated rollout
from the query is correct.

We propose a two-layer logit–normal Bayesian model for success rate estimation. Let success rate
θ = sigmoid(ψ) = (1+ exp(−ψ))−1. We suppose the log-odds of each parent par follows ψpar ∼
N (µ, τ2) and the log-odds of its children i is conditionally Gaussian, ψi | ψpar ∼ N (ψpar, σ

2).

The objective is to leverage the historical observations on rewards to derive the joint posterior con-
ditioned on history, from which we can sample log-odds parameter ψ̃ of both parents and children
and then estimate their success rates θ̃ = sigmoid(ψ̃).

Specifically at iteration t , let Hi = (ni, si) denote the reward history of query i, where ni is the
number of the query being selected and si the number of successes of its corresponding rollouts.
Suppose the father set of nodes is F, and the children set of node j is Sj . By Bayes’ rule, the joint
posterior admits a hierarchical chain factorization:

p({ψ}|H) ∝
∏
j∈F

 p(ψj)︸ ︷︷ ︸
prior of parent

× p(Hj |ψj)︸ ︷︷ ︸
likelihood of parent

×
∏
i∈Sj

p(ψi|ψj)︸ ︷︷ ︸
prior of child

× p(Hi|ψi)︸ ︷︷ ︸
likelihood of child

 (1)

In the following, we will apply Pólya–Gamma augmentation to render the posterior sampling
tractable by sample from an augmented posterior p({ψ}, {ω}|H), which has a single Gibbs sampler.

B.2 PROOFS OF PROPOSITION 4.1

Polson et al. (2013) gives the following lemma about PG distribution:

14

https://arxiv.org/abs/2503.14476
http://arxiv.org/abs/2504.05118
http://arxiv.org/abs/2504.05118
http://arxiv.org/abs/2506.02177

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Lemma B.1. (Pólya-Gamma identity) Let p(ω) denote the density of the random variable ω ∼
PG(b, 0), b > 0. Then the following integral identity holds for all a ∈ R:

exp(ψ)a

(1 + exp(ψ))b
= 2−b exp((a− b/2)ψ)

∫ ∞

0

exp(−ωψ2/2)p(ω)dω

We first derive the conditional posterior p(ψi|Hi, ψpar) of a child i, given its parent ψpar and history
Hi = (si, ni),

p(ψi|Hi, ψpar)

∝p(ψi|ψpar) · p(Hi|ψi)
=p(ψi|ψpar) · p(si, ni|ψi)

=p(ψi|ψpar) ·
exp(ψi)

si

(1 + exp(ψi))ni

=p(ψi|ψpar) · 2−ni

∫ ∞

0

exp(κψi −
ωiψ

2
i

2
)pPG(ωi|ni, 0)dωi

where κ = si − ni

2 and ωi ∼ PG(ni, 0). The identity follows directly from Lemma B.1. Now that
we have the following identities:

p(ψi, ωi|Hi, ψpar) ∝ p(ψi|ψpar) · exp(κψi −
ωiψ

2
i

2
)pPG(ωi|ni, 0)

p(ωi|ψi, Hi, ψpar) =
exp(−ωiψ

2
i

2)pPG(ωi|ni, 0)∫∞
0

exp(−ωiψ2
i

2)pPG(ωi|ni, 0)dωi
= pPG(ωi|ni, ψi)

The second identity follows from the definition of Pólya-Gamma probability density. The full con-
ditional posterior of ψi then follows:

p(ψi|Hi, ψpar, ωi) = p(ψi, ωi|Hi, ψpar)/p(ωi|Hi) ∝ p(ψi|ψpar) · exp(κψi −
ωiψ

2
i

2
)

Given that the prior ψi|ψpar ∼ N (ψpar, σ
2), ψi’s full conditional posterior p(ψi|Hi, ψpar, ωi) is

also a Gaussian:

ψi|Hi, ψpar, ωi ∼ N (m,V), where V =
1

σ−2 + ωi
, m = V · (σ−2ψpar + κ)

And the proof of Proposition 4.1 ends.

B.3 PROOFS OF PROPOSITION 4.1

Similarly, we can also derive parents’ conditional posteriors p(ψpar|Hpar, {ψk}
Spar

k) by introducing
PG variables:

p(ψpar|Hpar,{ψk}
Spar

k)∝p(ψpar)·p(spar,npar|ψpar)·
∏

k∈Spar

p(ψk|ψpar)

=

p(ψpar)· ∏
k∈Spar

p(ψk|ψpar)

·2−npar

∫ ∞

0

exp(κparψpar−
ωparψ

2
par

2
)pPG(ωpar|npar,0)dωpar

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where κpar = spar − npar

2 , ωpar ∼ PG(npar, 0). The identity also follows from Lemma B.1.
Based on this, we can easily derive the following conditional posteriors:

p(ψpar,ωpar|Hpar,{ψk}
Spar

k)∝

p(ψpar) · ∏
k∈Spar

p(ψk|ψpar)

exp(κparψpar−
ωparψ

2
par

2
)pPG(ωpar|npar,0)

p(ωpar|ψpar,Hpar)=
exp(−ωparψ

2
par

2)pPG(ωpar|npar,0)∫∞
0

exp(−ωparψ2
par

2)pPG(ωpar|npar,0)
= pPG(ωpar|npar,ψpar)

p(ψpar|ωpar,Hpar,{ψk}
Spar

k)∝

p(ψpar) · ∏
k∈Spar

p(ψk|ψpar)

exp(κparψpar−
ωparψ

2
par

2
)

Given that prior ψpar ∼ N (µ, τ2), ψk|ψpar ∼ N (ψpar, σ
2), ψpar’s full conditional posterior is

also a Gaussian:
ψpar|ωpar, Hpar, {ψk}

Spar

k ∼ N (m,V)

, where V = 1
τ−2+ωpar+|Spar|σ−2 ,m = V · (τ−2µ0 + σ−2

∑
k ψk + κpar). And the proof of

Proposition 4.2 ends.

C EXPERIMENTAL SETTINGS

The main experiments are conduct on PPO and GRPO with implementation in verl1. At each train-
ing iteration, we generate 8 rollouts per query with temperature set to 1.0. We use a batch size
of 512 and a mini-batch size of 64, yielding 8 gradient updates per PPO epoch. The maximum
response length is set to 6144 tokens. We adopt the clip-higher strategy (ϵhigh = 0.28) and the
overlong reward shaping (Lcache = 1024) introduced by Yu et al. (2025), but do not apply addi-
tional KL regularization or entropy loss. Specifically for PPO, we adopt the decoupled-GAE and
length-adaptive GAE proposed in VAPO (Yue et al., 2025). We also conduct value pretraining for
twenty iterations following VAPO. For dynamic sampling baseline, we reuse the implementation
code in verl. For prioritized sampling, we tracks the number of rollouts being generated for each
query and the number of success times within these rollouts to calculate the pass rates. Similar to
our proposed PROST, we also adopt a exponential decay of λ = 0.9. For experience replay, we
only reuse the rollouts from the last iteration to avoid large gap. In specific, we use 64 × 8 rollouts
from replay buffer, while the rest of (512 − 64) × 8 rollouts are generated by current policy. The
truncation threshold for truncated importance sampling is set to 10 following Wang et al. (2017).
For PROST, we adopt µ = 0, τ = 1.5 to ensure a near uniform prior of pass rate θ. The exponential
discounting factor λ = 0.99 and the variance of children prior σ = 0.3 by default. We also ap-
ply a diversity regularization in the selection stage that each query appears at most one time within
any consequential K training iterations. To ensure a fair comparison with respect to training effi-
ciency and GPU wall-clock, we apply identical engineering hyperparameters to all methods, such
as gpu memory utilization for inference engine, max token len per gpu for dynamic
batching, etc.

1https://github.com/volcengine/verl

16

https://github.com/volcengine/verl

	Introduction
	Training Bottleneck Analysis
	Augmented Query Construction
	Overview
	Promising Prefix Identification

	Augmented Query Selection
	Overview
	Bayesian Inference with Pólya–Gamma Augmentation
	Exponential Forgetting for Non-stationary Environment

	Experiments
	Settings

	Main Results
	Related Work
	Conclusion
	The Use of Large Language Models
	Proofs of Section 4.2
	Problem Setup
	Proofs of Proposition 4.1
	Proofs of Proposition 4.1

	Experimental Settings

